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Abstract

A general and direct method for computing the betti

numbers of the homology groups of a finite simplicial

complez is given. For subcomplexes of a triangulation

of S3 this method has implementations that run in time

0(’na(n)) and O(n), where n is the number of simplices

in the triangulation. If app!ied to the family of a-shapes

of a finite point set in R3 ittakes time O(ncz(n)) to

compute the betti numbers of all cr-shapes.

1 Introduction

Computing the homology groups of a topological space

is one of the main interests in the field of algebraic topol-

ogy, see e.g. [1, 9J 11, 12]. Although current applica-

tions of homology groups are not numerous, homology

groups of complexes imbeddable in three-dimensional

Euclidean space, R3 , attract attention because of their

intuitive appeal. Given an object in R3, it is natural to

ask how many connected components, how many tun-

nels, and how many holes there are. The number of

components, tunnels, and holes have concrete interpre-

tations. Examples are the number of heavenly bodies

in a galaxy, tkle number of independent closed routes

that go around obstacles, and the number of portions
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of a cell occupied by fluid. The nice thing about these

objects is that they are physically realizable. That is,

it is possible to imbed them in Ki3. It is here where our

algorithm will probably find most of its applications.

In homology theory, if the simplicial complex is small,

then the homology group computations can be done by

hand. To solve these problems in general, a classic algo-

rithm exists and is discussed in length in [11]. It forms

matrices and reduces them to a canonical form, known

as the Smith normal form [13], from which one can read

off the homology groups of the complex. The reduction

to Smith normal form is the bottleneck of this algo-

rithm. Starting with [10], several methods have been

proposed to speed up this part of the computation.

The only upper bound known on the worst-case run-

ning time of the classic reduction algorithm is double-

exponential in the size of the input. However, [4] have

observed that for simplicial complexes that arise in ge-

ometric design the matrices are sparse, and they argue

that in a probabilistic sense the algorithm then runs in

time at most quadratic in the size of the complex.

We describe a more direct method for computing the

betti numbers of the homology groups of simplicial com-

plexes in finite dimensions. Its correctness is est ab-

lished using Mayer-Vietoris sequences. In particular,

this method is applied to complexes imbeddable in R3.

Assuming the complex is given as a sub complex of a tri-

angulation of S3, the algorithm runs in time O(rm(n))}
where n is the number of simplices in the triangulation
and a(n) is the extremely slowly growing inverse of the

Ackermann function. If the complex is represented so

that the simplices incident to a given simplex can be ac-

cessed in constant time each then this can be improved

to time O(n). Section 2 reviews the necessary concepts

from algebraic topology, sections 3, 4, and 5 develop

the algorithm, complete with proofs of correctness and

analjwis, and section 6 applies the algorithm to three-

dimensional a-shttpes.
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2 Algebraic Topology Concepts

This paper requires some prerequisites from homology

theory, at least if one wants to be sure about the cor-

rectness of the general approach. The algorithms them-

selves are reasonably intuitive so that a good under-

standing can be reached without the prerequisites re-

viewed in this section, Our terminology follows the one

in [11].

Simplices, complexes, and triangulations. For

O < k s d, a k-simplex u in E!d is the convex hull

of a set T of k + 1 affinely independent points. The di-

mension of u is direr = ITI – 1 = k. For every u ~ T,

the simplex u’ defined by V is a jace of u, and if U # T

then crt is called a proper face of u. We say that u’ and

u are incident if u’ is a face of u. In three dimensions we

use the terms vertez for O-simplex, edge for l-simplex,

triangle for 2-simplex, and tetrahedron for 3-simplex.

A collection of simplices, K, is a (simplicial) complex

if it satisfies two properties, namely (i) if u’ is a :face

of ~ and u E K then a’ ~ K, and (ii) if al, r7z 6 K

then ml n U2 is either empty or a face of both. The

largest dimension of any simplex in X is the dimen:<ion

of K. All simplices in this paper have finite dimension,

and all complexes are finite collections of simplices. A

subset L ~ K is a subcomplez of K if it is a complex

itself. It is proper if L # K. Note that L inherits

(ii) from K, so it is a subcomplex iff L has property

(i). The zmderiying space of L, denoted ICI, is the set

of all points in I?d contained in at least one simplex

of L. A particular subcomplex of K is its L--skeieion

K?k] = {u c K ] dims < k}. For example, the 1-

skeleton of K is a simple graph in Rd. The componmts

of K are the equivalence classes of the transitive closure

of the incidence relation. If K has only one component

then it is connected. Since K is a complex it is connected

iff K(l) is connected.

An imbedding of a topological space A in another such

space 5 is a continuous one-to-one map from A to El.

It is a homomorphism if it is also onto and its inverse

is continuous. A and B are homomorphic if there is a

homeomorphism between A and D. A triangulation of B

is a simplicial complex, 7, whose underlying space, 171,

is homomorphic to B. Clearly, the underlying space of

every sub complex of T has an imbedding in B. We say

the subcomplex is imbeddable in El. We are particularly

interested in triangulations of the d-sphere, Sd, and in

sub complexes of such triangulations. The usual model

of Sd is the set of points z C Rd+l with unit distance

from the origin. If K is a proper sub complex of a tri-

angulation of Sd then it is imbeddable in Rd, e.g by

stereographic projection.

Boundary, cycles, and homology. Each k-simplex

of a complex X can be oriented by assigning a linear

ordering on its vertices, denoted u = [MO,U1, . . . . uh] .

Two orientations are the same if one sequence differs

from the other by an even number of transpositions.

The boundary of u is

k

8~0=~(–l)i[U0, Ul,..., tii, U.., U’~]J
i=O

where the hat means that u~ is omitted. If u is a vertex

then dou = O. So dk maps each oriented k-simplex to a

formal sum of oriented (k. – l):simplices, A formal sum

of integer multiples of oriented k-simplices is called a k-

chain. If the coefficient of a k-simplex in some k-chain

is non-zero we say the simplex belongs to the chain.

The free abelian. group of k-chains from )C is denoted

as Ck = Ck (~). The map ~k naturally extends to the

boundary homomorphism ~k : ck ~ Ch_~ defined by

where the aj are integers and the Uj are k-simplices of

K. Note that a (k – 1)-simplex can occur in more than

one term of this sum. The coefficients of these terms

are added in the usual way.

A number of interesting groups can be defined using

the boundary homomorphism. The group of k-cycles,

zk = zk (K), is the kernel of dh, that ‘is, the subgroup

of k-chains z E ck with dkZ = O. The group of k-

boundaries, 1% = Bh(~), is the image of dh+l, that is,

the subgroup of k-chains z E CA! for which~ there exists

a (k + 1)-chain z’ G C!k+l with z = dk+l;?’. It can be

shown that & dk+l z’ = O for every (k + I)-chain Z’,

so Bh is a subgroup of ~h. Finally, the quotient group

Hh = Hk(K) = Zh lBk is the k-th homology group of ~.

The groups Ck!, Zk, Bh, and Hh are abelian and
finitely generated, and with the possible exception of ~k

they are free. By the fundamental theorem for finitely

generated abelian groups, see e.g. [11], such a group, G,

is isomorphic to a direct sum

z~@zltl @zlt2@... @z”ltl,

where /3 is a non-negative integer, and the torsion co-

efficients, ti, are integers greater than or equal to 2 so

that -tidivides ti+l,for 1 < i <1 – 1. The subgroup

of G isomorphic to Zltl @ . . . @ ZltI is its torsion sub-

group, T. The rank of the quotient group GIT is the

betti number of G, @(G) = f?. If G is free then T is

trivial, that is, G is isomorphic to Zp, denoted G S Zp.

In this case G is torsion-free.

Set G = Hk and let T~ be its torsion subgroup. Then

p~ = Bk(x) = P(H~) is called the k-th bei!ti number of
K. Each element of HM is a coset of homologous k-

cycles. Particularly, two k-cycles, ZI and 22, belong
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to the same coset iff Z1 – 22 is the boundary of some

(k+ I)-chain.

For simplicial complexes imbeddable in S3, the ho-

mology groups are free, so the torsion subgroups are

trivial, see e.g. [1, chapter X, $1]. Their betti num-

bers lend themselves to clear geometric interpretations.

These are based on the important result that the ho-

mology groups of two complexes, K and .C, are the same
if 1X1 is homomorphic to 111. Hence, it is possible to

talk about the homology groups and betti numbers of

a topological space rather than of its triangulations.

The O-th betti number, PO, is the number of connected

pieces, the l-st betti number, /31, is the number of in-

dependent “tunnels”, and the 2-rid betti number, @z, is

the number of “holes” of 1X1.

Ivlayer-Vietoris sequences. Let AI, Az,, ,., A~+I be

abelian groups and qi : Ai 4 Ai+l homomorphisms

between them. The sequence

A13A2z. ,.79Am+1

is erect if the image of qi, im~i, is the same as the kernel

of qi+l, kerqi+l, for 1 < i < m– 1. If m = 4 and Al

and A5 are trivial then this is a short ezaci sequence:

04Aa ~ AZ ~ As-+().

Call cokqi = Ai~l Iimqi the cokernel of qi, An import-

ant property of short exact sequences is that A2 E

imq2 and A4 = imq3. Since imq2 = kerq3 by defini-

tion, we have cokq2 = A3 limq2 % A4, and therefore

8(A3) = P(A2) + /3(A4). Furthermore, if

Al Z AZ-AS*A4 % A5

is exact then so is

04cokq1-+Aa*ker~a~0.

Let now X, K’, and K?! be complexes so that K =
X’ u ~“, and define ~ = ~’ fl X“. The Mayer-Vietoris

sequence relates the homology groups of X, K!, KY, and

L, see e.g. [11, chapter 3, $25]:

2.1 There is an exact sequence

. . . + H&(L) ~ H~ (K’) @

H~ (K’’)~H@C)~Hk.l (L) ~z’ H~_I(K’) 8

Hk-l(X”)~ . . .

As mentioned above, it follows that

O~cokA~-+Hk(K)aker&.l~O,

is a short exact sequence, Let Nb-1 = ker~k_l; itis the

subgroup of H~ -1 (f.) defined by the (k - 1)-cycles that

bound in K’ and also in Z“. Now, cok& = Hk(K’) @

H~(K”)limAk, and im~~ = Hk (L) [ker~~. Hence we get

the following corollary of the Mayer-Vietoris sequences

that can also be found in [1, chapter VII, \2].

2.2

3

For all k, ~b(~) = p~(x’) + PJKY’) – PJZ) +

,8(Nb)-tp(N~-1).

The Incremental Met hod

The basic idea of the algorithm is to build up a com-

plex by adding one simplex at a time. At each step the

betti numbers of the current complex are updated to

reflect the changes in the homology groups. We first

make this abstract view of the algorithm more precise

and then prove its correctness using Mayer-Vietoris se-

quences. The supporting data structures and the anal-

ysis will be given in sections 4 and 5.

The abstract incremental: method. The in-

put to the algorithm is a simplicial complex, K =

{al, r2, . . . . am}, that is imbeddable in Sd. If K is

not a complete triangulation of Sd, it is imbeddable in

Rd. For eacli O < i < m define Ki. = {UI, U2, . . .,ai}.

We say the ordering (indexing) of the simplices has the

prejix property if every Xi is a genuine complex. The

largest dimension of any simplex can be at most d, so

except possibly for dimensions between O and d inclu-

sive, all betti numbers of K vanish. To compute ~Z(KJ,

for O <1< d, we use the following incremental method.

for 1 := Otodciobl := O endfor;

for i := Otomdo

k := dimui;

if ui belongs to a k-cycle of Ki

then bk := b~+l

else bk_l := bk_l – 1

endif

endf or.

Note that if ui is a vertex, so dim Ui = O, then ui be-

longs to a O-cycle by definition. Hence there will be no

access to an undefined variable b-l. The above algo-

rithm is complete if we can give a concrete method for

deciding whether or not ui belongs to a k-cycle of Ki.

We will sloppily refer to this operation ae “detecting a

k-cycle.” This will be discussed in section 4.

Correctness proof. All algorithms in this paper are

derivatives of the incremental method. Its correctness

is based on the prefix property of the simplex sequence

and on the corollary of the Mayer-Vietoris sequences
theorem stated ae 2.2.

Recall from section 2 that the Mayer-Vietoris se-

quence is defined for a complex, K, and three sub-

complexes, xl, X?’, and L, so that K = Et u K)) and

L = K! n K“. In our application we have K = Kij

K) = Xi-l, and KY the complex consisting of Ui and

its faces. We prove the correctness of the incremental

method inductively. The assumption is that for all 4,

0<4 ~ d, the algorithm correctly computes the l-th
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betti number of Xi_ 1. Locally within this proof we use

index pairs and define Hl,i = Hz(Xi) and ~t,i = ~z(K().

So after processing al through ui_l the variable bf

stores the correct l-th betti number of Xi-1, that is,

bt = Pl,i_l. Assume that vi is a k-simplex and note
that the only betti numbers of xi that can possibly ]be

different from the corresponding ones of xi-1 are the

k-th and the (k – 1)-st. The case k = O is handlsd

correctly because Xi differs from Ki _ 1 only by one ver-

tex, which forms its own component in K~. So assume

k >1. As mentioned before, K!’ consists of ~i and its

faces. Hence

‘ = O, and
~j (K’’)’= { ~ $t;erwise.

Furthermore, .C = Xi-l fiK” = K“-{~i}. is the bound-

ary complex of ai. Hence

{

2 ifk=landj=O,

@j(L) = 1 ifk>2andj=k-l, and

O otherwise.

All groups Nj, for j < k – 2; are trivial because every j-

cycle bounds. in Xi-l and also in X’*. The betti number

of Nk _ 1 depends on whether or not ~kfli bounds in

Ki-l; it always bounds in K“.

Case 1. ui belongs to a k-cycle in Ki, so 8kUi bounds

in Ki - 1. Then

~(Nj) =
{

1 ifj=k–lj and

O otherwise.

We can now use 2.2 to compute the Q-th betti number,

for 1 = k and 1 = k -1. In both cases ~t,i = ~f,i_l +

@t(K”) – 9z(Q + P(N~) + 9(Nt-1). For 4 = k we ~$et

~k(z”) = pk(~) = @(Nk) = O and @(Nk-1) = 1, hence

~k,i = pk,i-~ +1. For ~ = k – 1 we get /?*-~(X”) –

p~-1(1) = -1, 9(N~-1) = 1, and p(Nk-Z) = O, so

~k-l,i = ~k-1 i-l. Both results are consistent with the

actions of the ‘incremental method.

Case 2. ui does not belong to any k-cycle of xi , so ai,wi

does not bound in Ki-l. Then /3(Ni) = O for all j, and

hence /?(Nl) + @(Nt-l) = O for 1 = k,k - 1. The con-

tribution of N1 and Nt_ 1 is thus one less than in case

1. Therefore, ~k,i = ~k,/_~ and ~k_~ i = ~k_~,i_l ‘. 1,

which is again consistent with the ac~ions of the incre-

ment al method. This completes its correctness proof.

Remark. It is interesting to note that the corollary of the

Mayer-Vietoris sequence~ expressed by the incremental

method is sufficient to imply a classic theorem on the

Euler number of a complex. Let vk denote the number

of k-simpljces of K. The Euler number of K is defined

& X = ~k=~(-l)k~k. The theorem asserts that

3.1 X = ~:=&l)k~k,

see e.g. [11, chapter 2, ~22]. It follows from the correct-

ness of the algorithm as follows. Let vi be the number

of k-simplices ai, 6 K so that Ui belongs to a k-cycle
of Ki. Hence ~k = vi + v{, where V; is the number of

k-simplices ui that do not belong to any k-cycle of xi.

Following the computations we get ~k = vi - V(+I. So

k=O kzo
d d

k=O k=o

because ti~ = v~+l = O.

4 Supporting Data Structures

Vertices trivially belong to O-cycles, so they do not

need any data structure support to distinguish between

cases. We have good data structures for detecting and

l-cycles, and for detecting (d - 1)-cycles provided the

complex of interest is a sub complex of a triangulation

of Sd. For d ~ 3 we thus can cover all cases and get

an efficient algorithm. We first discuss l-cycles. The

solution for (d – 1)-cycles is similar.

Detecting l-cycles. Let ai be a l-simplex. It belongs

to a l-cycle of Kt iff it belongs to a l-cycle clf K$~), K\l)

is a graph, and various efficient methods for detecting

l-cycles (cycles) in graphs are known, see e.g. [3]. For

completeness we describe the method that fits best into

our framework. It is based on a data structure for the

so-called union-find problem.

A union-find data structure represents a collection of

elements, partitioned into a system of pairwise disjoint

sets. It supports the following types of operations.

ADD(u):

FIND(u):

UNION(A, B):

Add u as the only element of a

singleton aet, {u}, to the system.

Determine and return (the name

of) the set that contains w

Replace the sets A and B by

their union, A U B.

In our application, the elements are the vertices of the

l-skeleton and the sets correspond to its components.

Initially, the system is empty. The union-find structure

needs to be updated only if u~ is a vertex or an edge;

two- and higher-dimensional simplices can be ignored.

Assume the union-find structure represents K\L)l, and
consider the next simpiex, Ui. If ~i is a vertex then

ADD (~i ) adds it to the system. If ai is an edge con-
necting vertices u and v then we find the corresponding

sets, A := FIND(U) and B := FIND(V). If A = B then

u and v: belong to the same component of X\!.)l and
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thus ai belongs to a l-cycle. Otherwise, Oi does not

belong to any l-cycle in K\l). Rather it connects two

components which must now be merged. This is done

by calling UNION (A, l?).

Detecting (d – 1)-cycles. To detect (d – I)-cycles we

assume that K is a sub complex of a triangulation T =

{a~, a~,..., c7m,..., on} of Sd, and that the ordering

of the simplices has the prefix property. For O < i < n

define Ki = {al, U2, . . . . vi} and ~i = T–Ki. Note that

~i is in general not a complex, However, it satisfies the

reverse of propert y (i), namely (i’) if u’ is a face of a and

u’ c K then u E K. This can be used to characterize

the (d - 1)-cycles of Xi in terms of the components of

a graph. Let V be the set of d-simplices of xi, and let

E be ~he set of pairs of d-simplices, {a, b}, so that a n b

is a (d - I)-simplex in ~~. The graph ~i with node set

V and arc set E is termed the dual graph of ~i.

Let u~ be a (d – 1)-simplex. It is fairly intuitive that

a~ belongs to a (d – 1)-cycle in & iff Gi has one more

component than ~i_l. This can formally be proved

using cohomology groups and duality theorems in alge-

braic topology. We omit the formal argument and refer

to [11] for a good introduction of these concepts. So

this means that ai belongs to a (d – 1)-cycle in Xi iff it

does not belong to a l-cycle in ~i-l. Adding a simplex

to xi– 1 means removing the same simplex from ~ie 1.

Hence it appears that the dual graph must be main-

tained through a sequence of node and arc removals,

which is computationally more expensive than a similar

sequence of node and arc insertions. For this reason we

reverse the processing order of the simplices and obtain

the empty complex by starting with 7 and removing

a simplex at a time. This is done only for detecting

(d – 1)-cycles and does not affect other computations.

The data structure used to represent ~i, and thus

~~, is again a union-find structure. Its elements are the

nodes of ~i (the d-simplices of ~i), and the sets in the

system represent the components of ~i. Initially, i = n,

Gn = (0, 0), and the system that represents Gfl is empty.
The representation of GO (the dual graph of 7 = 7 – 0)

is built by processing the simplices an down to al. Of

course, only d- and (d – 1)-simplices have any effect on

the data structure.

TO go from ~i to ~i- 1 we add the simplex Ci to xi.
If ui is a d-simplex then ADD(Ui) adds it to the sys-
tem. In the forward direction this corresponds to re-
moving an isolated node of ~i_l to obtain Gi. If ~i is a

(d - 1)-simplex then an arc connecting the two incident

d-simplices is added to ~i, resulting in ~i_ 1. Using

two FIND operations, we can test whether or not the

two d-simplices belong to the same component of ~i. If

they do then no further action is required. Otherwise,

the two d-simplices belong to two different components,

represented by two sets A # B in the system. These

two sets are merged by calling UNION (A, B). In the

forward direction this corresponds to splitting a com-

ponent. The communication between the main algo-

rithm, which runs forward, and the (d – 1)-cycle de-

tection mechanism, which runs backward, is based on

marks left with (d – 1)-simplices Ui that belong to a

(d – 1)-cycle of Xi.

5 The Algorithm

After establishing the ingredients in sections 3 and 4, we

put things together to obtain the algorithm in complete

detail. We have good data structures only for 1- and for

(d– 1)-cycles, so we get a good algorithm only ford< 3.

For d ~ 4 we cannot even compute the l-st homology

group because this requires detecting 1- and 2-cycles.

The algorithm is described for d = 3. It assumes that

the input consists of a triangulation of S3 of which the

complex of interest is a sub complex. If only the complex

is given it is necessary to first construct a compatible

triangulation of the complement of its underlying space,

We refer to [2] for an algorithm that constructs such a

triangulation.

The incremental algorithm. Let T be a triangu-

lation of S3 with simplices al, uz, . . . . u~, and define

K.j = {01, U2, ..., Ui}, for O ~ i ~ n, as before. We

assume that each Ki is a complex. The complex of in-

terest is K = A&, with m < n.

The first step of the algorithm marks every simplex,

o~, that belongs to a cycle of the same dimension in

tC~. Each vertex belongs to a O-cycle, so all vertices

get marked. To mark the appropriate edges we pro-

cess the simplices in forward direction and maintain a

union-find structure for K\l). An edge is marked iff it

does not cause a UNION operation. For marking the ap-

propriate triangles we process the simplices backwards,

from c. down to al. A union-find structure represent-

ing the dual graph, ~i of ~i = T – Ki, is maintained,

and a triangle is marked if it causes a UNION opera-

tion. Finally, the only tetrahedron that belongs to a

3-cycle at the time it is processed is un. This is the

only tetrahedron that gets marked.

The second step counts the marked and unmarked

simplices and derives the betti numbers as simple sums

of these numbers. This is done by scanning the sim-
plices once more, in forward direction.

b. := bl := b~ := b~ := O;

fori:=l tomdo

k := dimci;

if ai is marked then bk := bk + 1

else bk_l := bk_l – 1

end if
endf or.

236



The only case where we get b3 # O is when K contains

all tetrahedral of ‘T and thus is a triangulation of S3. If

K is imbeddable in R3 then K # T and we can drop b3
from the algorithm.

The analysis. The vertices, edges, triangles, and

tetrahedral in ‘T cause different actions in the algo-

rithm. Let vk be the number of k-simplices in T, for

0< k <3. Observe that 2U3 = V2 > vi > 2V0. Since

n=vo+vl+ v2+u3 we have n<3v2andn<6v3,

that is, at least one third of all simplices are triangles

and at least one sixth of them are tetrahedral.

It is clear that step 2 of the algorithm takes only

O(n) time. Similarly, the vertices and the last tetrahe-

dron can be marked in time O(n). The forward process

that marks the edges executes a sequence of V. ADD

operations, 2V1 FIND operations, and at most V. – 1

UNION operations. Using a standard implementation

of the union-find structure, see e.g. [3], this takes time

O((vo + Vl)a(vo, VI)), where a(z, y) is the extremely

slowly growing inverse of Ackermann’s function. Sim-

ilarly, the backwards process that marks the triangles

executes V3 ADD operations, 2VZ FIND operations, and

at most V3 – 1 UNION operations, This takes time

0((v3 + ~2)cx(~3, V2)). Recall the customary notation
a(z) = CY(z,z).

5.1 Let X be a sub complex of a triangulation T of S3,

with 171 = n. The possibly non-vanishing betti

numbers of K, PO, PI, ~z, P3, can be computed in

time O(mr(n)) and storage O(n).

Remark. If K is a subcomplex of a triangulation of !$2

then no backwards computation is necessary. Hence,

there is no need to consider any of the simplices that

do not belong to K. The result can then be improved

to time O(riaa(rn)) and storage O(m).

Using depth-first search. Consider the case where

the complex is represented by a data structure so that

for a given u the simplices incident to u can be accessed

in constant time. An example of such a data structure

is the adjacency-list representation which is common for

graphs. The nodes are elements of a linear array. An

arc is given as an index pair, so the incident nodes Ciin

be found in constant time by array look-up. The arcs

incident to a node are represented by a linear list whose

address is stored with the node. Given a node it is thus

possible to access the incident arcs in constant time per

arc.

For our purpose it will be sufficient to have iin

adjacency-list represent ation for T(lJ, the l-skeleton of

T, and for f70, the dual graph of ~. = T. Depth-first

search is a standard graph search method that takes

constant time per arc (edge or triangle) and can distin-
guish between arcs that complete a cycle and arcs that

connect to a new node, see e.g. [3]. Using the data struc-

ture for T(l) we can use depth-first search to properly

mark the edges of T. Using the data structures for go

we can use depth-first search to properly mark its trian-

gles. It is important to notice that the two depth-first

searches are not coordinated with each other. Indeed,

to achieve O(n) running time the search of T(l) needs

the freedom to visit the edges in any order it pleases.

Similar for go. Fortunately, every sequence in which

vertices precede edges, edges precede triangles, and tri-

angles precede tetrahedral has the prefix property. In

particular such a sequence in which the edges are or-

dered how they are visited by the search ci T(l) and

the triangles are ordered in reverse how they are vis-

ited by the search of go has the prefix property. The

betti numbers can now be computed by traversing this

sequence and counting marked and unmarked simplices

as before. This leads to the following improvement of

5.1,

5.2 Let K.’ be a subcomplex of a triangulation T of S3,

with ITI = n, and assume the l-skeleton and the

dual graph of T are given by their adjacency-list

represent ations. Then the betti numbers of K can

be computed in time and storage O(n).

Remark. The improvement with depth-first search sacri-

fices the ability to prescribe the order of the simplices.

This ability is crucial for our application to a-shapes

discussed in the next section.

6 Signatures for Alpha Shapes

A comprehensive discussion of the family c)f a-shapes

of a finite point set is beyond the scope of this paper.

As a substitute we refer the reader to papers on two-

dimensional [7], three-dimensional [8], and weighted as

well as higher-dimensional a-shapes [6]. (Computing

betti numbers for a-shapes is what really motivates us

to develop the algorithm in this paper.

A brief description of a-shapes. Let S be a finite

point set in W’, with /S/ > d + 1, and let 9 = 0(S)

be its Delaunay triangulation, see e.g. [5]. Provided the

points are in general position, ~ is indeed a simplicial

complex. Commonly, it is defined so that its underlying

space, IPI, is the convex hull of S. It is more convenient

for us to add a point “at infinity” and connect it to

all simplices on the boundary of the convex hull of S.

The resulting complex is a triangulation of S*, which

we denote by T.

For each non-negative real a, the cr-cornplez of S is a

sub complex of D and therefore also of T. The a-shape

of S is the underlying space of the a-complex, It is
defined so that for a = O we get the point set S itself

and for CY= +W we get the convex hull of S, see [6, 8].
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Although an cr-shapeis defined forevery non-negative

real a, there are only finitely many different subcom-

plexes of V and therefore only finitely many different

a-shapes. It is convenient to index the a-shapes and

a-complexes by position. Let s be the number of differ-

ent a-complexes, denoted Cl, C2, . . . . Cs. For 1 < ~S S,
the a-shape that corresponds to the i-th cwomplex is

S~ = lCil. With increasing index the corresponding a-
value also grows. For convenience, define Co = 0 and

C.+1 = T. An important property of the resulting se-

quence of complexes is that each is a proper subcomplex

of the next one, that is,

COCC1CC2C . .. CCSCC.+1,

see [6, 8]. It follows that s + 1 ~ n, the number of

simplices in T.

For each simplex ui c T, let A(i) be the smallest
index 1 so that ui c Ct. We order and reindex the

simplices of T as U1, az, ..., Cn so that if i < j then

(i) J(i) < A(j) or

(ii) A(i) = A(j) and dimoi s dimoj.

As before we define tCi = {ul, u2, . . .,u~} for O ~ i ~

n. Clearly, )CO = CO and X. = C,+I. Property (i)

implies that the seque~ce of a-complexes is a scattered

subsequence of the sequence of Xi. Indeed, CA(i) is the

smallest a-complex that contains Xi, and CJ(i) = KJ iff

~(i) # A(i + 1). Property (ii) and the fact that each

%(i) is a complex imply that each Xi is a complex. In

other words, the ordering of the simplices haa the prefix

property.

Computing Signatures. The implementation of

three-dimensional a-shapes reported in [8] includes a

small number of signature functions that follow the evo-

lution of the a-shape as a increases from O to +w. Let

[s] denote the set {1, 2 ,. ... s}. By a signature function

we mean a function f : [s] + R that maps each index

t 6 [s] to a value f(l) in some range R. For reasons of

usefulness the function should be defined so that f(l)

expresses some property of the a-shape St. For exam-

ple, ~(.t) could express a combinatorial property, such

as the number of triangles bounding Sl, or a metric

property, such as the surface area of S!.

In this section we are interested in three topologi-

cal signature functions that count the number of com-
ponents, independent tunnels, and holes of St. For

0~k~2deilne
/3k:[s]-z

so that ~h (1) is the k-th betti number of S1. The homol-

ogy groups of St and CZ are the same, so @h(t) = @(H~)
where Hh is the k-th homology group of Cz. Each sig-

nature function, ~k, is represented by a linear array,

bh[l..s].

We can now modify the algorithm of section 5 to

compute the signature functions PO, jll, and & of all

a-shapes of S. Step 1, which marks the simplices, is

exactly the same as in section 5. The only change in

step 2 is that for some values of i the computed betti

numbers need to be stored in the appropriate elements

of the three arrays.

bO[l] := bl[l] := b2~l] := O; -?:= 1;

fori:=ltwndo

k := dim ui;

:if ~J is marked then bk [~ := bh[~ + 1

else bk-l[.tl := bk-~[tl – 1

.endif;

if 1< s and ~(i) # ~(i + 1) then

Z@[l+ 1] := bo[~; bl[-1+ I] := bl[.ll;

b2[Z+l] := bz[.t?j;l:=t?+l

endif

endfor.

Clearly the asymptotic complexity of this algorithm is

the same .ss of the algorithm in section 5. We thus

obtain the. main result of this section.

6.1

We

The signature functions that map ./ G [s] to the

O-th, l-st, and 2-rid betti numbers of St can be

computed in time O(ncr(n)) and storage O(n).

note that everything said about three-dimensional

a-shapes also applies to

shapes [6].

7 Discussion

weighted three-dimensional a-

This paper presents an incremental algorithm for com-

puting the betti numbers of a topological space rep-

resented by a simplicial complex. It haa an efficient

implementation for complexes imbeddable in R3 or S3.

The algorithm is an example of how algorithmic tech-

niques developed for graphs can be applied and ex-

tended to complexes of dimension higher than one. It

is to be hoped that this is a step towards a revived

interest in. algorithmic problems in algebraic topology.

As demonstrated in this paper, these algorithms do not
necessarily have algebraic flavor. Indeed, we see our

algorithm ss evidence that combinatorial algorithms

can outperform algebraic methods designed to solve the

same problems.

The most interesting unanswered question concerns

data structures that give an efficient implementation of

our incremental method for complexes. not imbeddable

in fi3.
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