
G22.3033 Computational Geometry
Chris Logie
Homework #4

Problem 1: Let S be a finite set of spheres (or weighted points). Define the Voronoi diagram as usual.

(a) Give an explicit (numerical) example where a sphere p̂ ∈ S is redundant. Recall that Edelsbrunner
defines a point to be redundant if its Voronoi region is empty.

(b) Let p̂ = (p, P 2). If p is a vertex of the convex hull of the centers in S, then p̂ is not redundant.

Solution:

(a) Let S be a the following set of points:

p̂0 ((1, 1, 1), 25)
p̂1 ((1, 1, -1), 25)
p̂2 ((1, -1, 1), 25)
p̂3 ((1, -1, -1), 25)
p̂4 ((-1, 1, 1), 25)
p̂5 ((-1, 1, -1), 25)
p̂6 ((-1, -1, 1), 25)
p̂7 ((-1, -1, -1), 25)
p̂8 ((0, 0, 0), 1)

p̂0 . . . p̂7 are points of weight 25 on the verticies of an axis aligned cube that extends from -1 to 1
on each axis and p̂8 is a point of weight 1 at the origin. Consider any point q = (x, y, z). Let p̂ be
the closest point among p̂0 . . . p̂7 to q. The weighted distance function (or power) from p̂ to q is as
follows:

πp̂(q) = ||q − p||
2
− P 2

= ((|x| − 1)2 + (|y| − 1)2 + (|z| − 1)2) − 25

The weighted distance function from x to p̂8 is:

πp̂8
(q) = ||q − p8||

2
− P 2

8

= x2 + y2 + z2 − 1

Now look at two cases. In the first case, |x| ≥ 1, |y| ≥ 1, |z| ≥ 1. The following inequalities are
trivially true:

(|x| − 1)2 < x2

(|y| − 1)2 < y2

(|z| − 1)2 < z2

−25 < −1

Therefore πp̂(x) < πp̂8
(x). Now examine the case where one or more of x, y, z is less than or equal

to one. The following inequality is true because each term on the left hand side of the equation
may be at most one larger than the corresponding term on the right hand side of the equation.

((|x| − 1)2 + (|y| − 1)2 + (|z| − 1)2) ≤ x2 + y2 + z2 + 3

Substituting into the weighted distance equations:

((|x| − 1)2 + (|y| − 1)2 + (|z| − 1)2) − 25 < x2 + y2 + z2 − 1

πp̂(x) < πp̂8
(x)



We now see that every point q is closer to one of p̂0 . . . p̂7 than it is to p̂8. The Voronoi region of
p̂8 is empty. p̂8 is redundant.

(b) Lemma: Given two non-coincident weighted points:

p̂ = (p, P 2)

q̂ = (q, Q2)

−→r ∈ R
3, r · −→pq 6= 0, and a point s on p + −→r the difference:

‖s − p‖2 − ‖s − q‖2

increases linearly with the distace ‖s − p‖2.

Proof: In homework 3, exercise 3(a), we saw that this is not true for a line perpendicular to the
segment connecting p̂ and q̂. We also saw that:

‖s − p‖2 − ‖s − q‖2 = 2x(xq − xp) + 2y(yq − yp) + 2z(yq − yp)

Assuming this quantity is varying with ‖s− p‖2, it can only vary lineraly. Homework 3(b) showed
that this quantity must vary if −→r is not perpendicular to −→pq

�

Lemma: Given the same two non-coincident weighted points as the previous lemma, and a half-line
p+−→r , there exists some finite distance R2 such that all points on the half-line p+−→r at a distance
of R2 or greater from p are closer to the same point (p or q) under both the standard distance
function and the weighted distance function.

Proof: Assume ‖s − p‖2 − ‖s − q‖2 is increasing linearly with R2. At some radius, ‖s − p‖2 −
‖s− q‖2 will equal than P 2 −Q2. Greater than this radius, ‖s− p‖2 −‖s− q‖2 will be positive iff
‖s− p‖2 − ‖s− q‖2 − P 2 + Q2 is positive. This means that the distance from p̂ is the same under
both distance measures.

�

Assume S is non-degenerate. Let p̂ = (p, P 2) be a point where p is on the convex hull of the
centers of S. Let v be a half line starting at p and heading toward infinity located entirely within
the Voronoi region of p. All points on v are closer to p than they are to any other point in the
centers of S. By the Lemma above, there is some R2

i where for each pi such that points on v are
closer to p̂ than they are to p̂i under the weighted distance measure. All points on v at a radius of
max(Ri) or greater are in the weighted Voronoi region of p̂. p̂’s weighted Voronoi cell is not empty.
Therefore it is not redundant.



Problem 2: From the problems on the homework sheet.

(a) (PROBLEM 1) Show that t(n) = Ω(n2). HINT: Give a tetrahedralization of Sn with t(K) =
Ω(n2).

(b) (PROBLEM 2) Is it true that every tetrahedralization of Sn has t(K) ≥ Ω(n2)?

(c) (PROBLEM 3) Prove the relationships from Lemma 1.

(d) (PROBLEM 5) Show that the Delaunay triangulation of S5 does not satisfy the maxmin solid
angle criterion.

Solution:

(a) Label the points as follows: Points on the circle in the x-y plane are labeled C0, C1, . . . , Cn/2.
Points on the z-axis are labeled A0, A1, . . . , An/2. The following is a tetrahedralization:

A0, A1, C0, C1

A0, A1, C1, C2

. . .
A0, A1, Cn/2, C0

A1, A2, C0, C1

A1, A2, C1, C2

. . .
An/2−1, An/2, Cn/2−1, Cn/2

An/2−1, An/2, Cn/2, C1

The total number of tetrahedra in this tetrahedralization is:

t(n) =
(n

2

) (n

2
− 1

)

t(n) = Ω(n2).

(b) Begin by observing Lemma 1(e). vB is obviously n/2 + 2 and vI is obviously n/2 − 2. Now lets
look at eI . All of the verticies on the z-axis are colinear. No three of them may be part of the same
tetrahedron. This means there must be at “column” of n/2− 1 interior edges down the z-axis. All
of the verticies in the x-y plane are coplanar. No 4 of them may be part of the same tetrahedron.
Any tetrahedron therefore, must contain at least one edge from the column on the z-axis, and one
edge from the circle on the x-y plane. Now, in order to fill all of the space in the convex hull of
S, we must have (n/2− 2) ∗ (n/2) internal edges – one from each internal point on the z axis to a
point on the cicle. t(n) = Ω(n2).

(c) (a) Induction on t. By inspection, the relation holds when t = 1. Assume that the relation
holds for a certain t, and look at what happens when we begin adding tetrahedra. If the new
tetrahedron shares one face with the existing tetrahedra, f I → f I + 1, fB → fB + 3 − 1 =
fB + 2, eI → eI , eB → eB + 3, vI → vI , vB → vB + 1, and t → t + 1.

4t = fB + 2f I

4(t + 1) = (fB + 3 − 1) + 2(f I + 1)

4t + 4 = fB + 2f I + 4

The relation still holds. If the new tetrahedron shares two faces with the existing tetrahedra,
f I → f I +2, fB → fB +2− 2 = fB , eI → eI +1, eB → eB +1− 1 = eB , vI → vI , vB → vB ,



and t → t + 1.

4t = fB + 2f I

4(t + 1) = (fB + 2 − 2) + 2(f I + 2)

4t + 4 = fB + 2f I + 4

The relation still holds. If the new tetrahedron shares three faces with the existing tetrahedra,
f I → f I +3, fB → fB +1−3 = fB −2, eI → eI +3, eB → eB −3, vI → vI +1, vB → vB −1,
and t → t + 1.

4t = fB + 2f I

4(t + 1) = (fB + 1 − 3) + 2(f I + 3)

4t + 4 = fB + 2f I + 4

The relation still holds. Finally, If the new tetrahedron shares four faces with the existing
tetrahedra, f I → f I + 4, fB → fB − 4, eI → eI + 6, eB → eB − 6, vI → vI + 4, vI → vI − 4,
and t → t + 1.

4t = fB + 2f I

4(t + 1) = (fB + 1 − 4) + 2(f I + 4)

4t + 4 = fB + 2f I + 4

These are the four possible ways to add a connected tetrahedron to an existing tetrahedral-
ization, therefore this relation holds for all t ≥ 1.

(b) Assume the relationship fB = 2vB − 4 holds for a simplicial complex K. We will show three
transformations (all removing tetrahedra) which maintain this relationship.

Removing a tetrahedron with three boundary faces and one internal face: f I → f I − 1,
fB → fB − 3 + 1 = fB − 2, eI → eI , eB → eB − 3, vI → vI , vB → vB − 1, and t → t − 1.

fB = 2vB − 4

fB − 3 + 1 = 2(vB − 1) − 4

fB − 2 = (2vB − 4) − 2

Removing a tetrahedron with two boundary faces and two internal faces: f I → f I − 2,
fB → fB −2+2−fB, eI → eI −2, eB → eB −1+1 = eB , vI → vI , vB → vB , and t → t−1.

fB = 2vB − 4

fB + 2 − 2 = 2(vB + 0) − 4

fB = 2vB − 4

Removing a tetrahedron with one boundary face and three internal faces: f I → f I − 3,
fB → fB − 1 + 3 = fB + 2, eI → eI − 3, eB → eB + 3, vI → vI − 1, vB → vB + 1, and
t → t − 1.

fB = 2vB − 4

fB + 3 − 1 = 2(vB + 1) − 4

fB + 2 = (2vB − 4) + 2

Now, starting with K, remove tetrahedra with these transformations until only one tetrahe-
dron remains. The relationship (fB = 2vB − 4) is observed to be true for this case, therefore
it is true for all of the previous cases.



(c) Assume the relationship f I = vB + 2(eI − vI )− 4 holds true for a simplicial complex K. We
will show three transformations (all removing tetrahedra) which maintain this relationship.

Removing a tetrahedron with three boundary faces and one internal face: f I → f I − 1,
fB → fB − 3 + 1 = fB − 2, eI → eI , eB → eB − 3, vI → vI , vB → vB − 1, and t → t − 1.

f I = vB + 2(eI − vI ) − 4

F I − 1 = (vB − 1) + 2(eI − vI) − 4

= (vB + 2(eI − vI) − 4) − 1

Removing a tetrahdedron with two boundary faces and two internal faces: f I → f I − 2,
fB → fB −2+2−fB, eI → eI −2, eB → eB −1+1 = eB , vI → vI , vB → vB , and t → t−1.

f I = vB + 2(eI − vI) − 4

f I − 2 = vB + 2((eI − 1) − vI) − 4

f I − 2 = vB + 2(eI − vI) − 4 − 2

Removing a tetrahedron with one boundary face and three internal faces: f I → f I − 3,
fB → fB − 1 + 3 = fB + 2, eI → eI − 3, eB → eB + 3, vI → vI − 1, vB → vB + 1, and
t → t − 1.

f I = vB + 2(eI − vI) − 4

f I − 3 = (vB + 1) + 2((eI − 3) − (vI − 1)) − 4

f I − 3 = (vB + 2(eI − vI ) − 4) + 1 − 6 + 2

f I − 3 = (vB + 2(eI − vI ) − 4) − 3

From here the argument is the same as in part 2(c)(b).

(d) Induction on the number of tetrahedra t. A single tetrahedron has 6 boundary edges and 4
boundary faces. The relationship 2eB = 3fB is true by inspection. Now we add tetrahedra
as in part 2(c)(a).

Add a tetrahedron with one internal face and three external faces: f I → f I + 1, fB →
fB + 3 − 1 = fB + 2, eI → eI , eB → eB + 3, vI tovI , vB → vB + 1, and t → t + 1.

2eB = 3fB

2(eB + 3) = 3(fB + 2)

2eB + 6 = 3fB + 6

Add a tetrahedron with two internal faces and two external faces: f I → f I + 2, fB →
fB + 2 − 2 = fB, eI → eI + 1, eB → eB + 1 − 1 = eB , vI → vI , vB → vB , and t → t + 1.

2eB = 3fB

2(eB + 1 − 1) = 3(fB + 2 − 2)

2eB = 3fB

Add a tetrahedron with three internal faces and one external face: f I → f I + 3, fB →
fB + 1 − 3 = fB − 2, eI → eI + 3, eB → eB − 3, vI → vI + 1, vB → vB − 1, and t → t + 1.

2eB = 3fB

2(eB − 3) = 3(fB + 1 − 3)

2eB − 6 = 3fB − 6



Add a tetrahedron with four internal faces: f I → f I + 4, fB → fB − 4, eI → eI + 6,
eB → eB − 6, vI → vI + 4, vI → vI − 4, and t → t + 1.

2eB = 3fB

2(eB − 6) = 3(fB − 4)

2eB − 12 = 3fB − 12

These are the four possible ways to add a connected tetrahedron to an existing tetrahedral-
ization, therefore this relation holds for all t ≥ 1.

(e) Start with (a):

4t = fB + 2f I

t =
fB

4
+

f I

2

Substitute (b) and (c) into this equation:

t =
2vB − 4

4
+

vB + 2(eI − vI) − 4

2

=
vB

2
− 1 +

vB

2
+ eI − vI − 2

= vB + eI − vI − 3

(d) Start with the triangulation: abcd, abce. The circumcirle of abcd is ((1, 1, 5/8), 1.546162). The
circumcircle of abce is ((1, 1, 5/4), 1.887452). The distance from the point d to the circumcircle of
abce is .52 + .52 + .752 = 1.0625. We must flip triangle abc to obtain a Delaunay triangulation.

Let (x, yzw) denote the solid angle between the point x and the triangle yzw. We can get the
following intuition:

In the first triangulation, (d, abc) < (e, abc). Why? d is farther from abc than e is, and both points
are at the same angle to abc.

(d, abe) + (d, ace) + (d, bce) = (d, abc). This is a geometric intuition we gain from “splitting” abc.

(a, bce)+(a, bcd) = (a, bde)+(a, cde), (b, acd)+(b, ace) = (b, ade)+(b, cde), and (c, abd)+(c, abe) =
(c, ade) + (c, bde). This is also geometric intuition from splitting abc.

(d, abe) < (c, abe). Why?


