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Lecture II

Approximate Newton and Evaluation of Elementary Functions

THIS IS A SUPPLEMENT TO LECTURE II OF THE BOOK OF Mehlhorn-Yap.
This note is an elaboration of Brent’s work on the complexity of approximating

elementary functions such as exp x, log x, sin x, arcsin x, etc. Algebraic functions such as√
x and zeros of polynomials can be included among these elementary functions. The

key to these results lie in the use of Newton iteration.
The main restriction of Brent’s work is that the argument x of functions are required

to lie in some fixed but arbitrary range [a, b]. Removing this restriction may sometimes
require non-trivial techniques. If this can be done, then Brent’s approach appears to
yield the fastest method available for such functions.

§1. Introduction

In a series of papers from the 1970’s, Richard Brent has demonstrated the effectiveness of
Newton-type methods for approximating various elementary functions. We shall mainly review his
results in [3]. The basic conclusion is that all the common elementary functions can be evaluated at
arguments in some fixed but arbitrary range 0 6∈ [a, b] to s precisions in time O(M(s) log s) where
M(s) is the complexity of multiplying two s-bit integers. The class of “elementary functions” is
usually not a precise notion. Following Shanks [5], we may define an elementary function if as a
complex function that can be built up by a finite composition of constant functions, field operations,
algebraic functions, exponential and logarithmic functions. An algebraic function f(x) is one that
satisfies an equation A(f(x)) = 0 for some integer polynomial A(X). E.g., f(x) =

√
x. We need to

treat these functions as complex functions so that trigonometric functions and their inverses can
be captured as well. However, in our treatment below, we restrict our elementary functions to real
arguments.

In [2], Brent discussed the inherent complexity of evaluating such functions. In particular, it can
be shown exp(x) and sin(x) can simulate multiplication, and hence must have complexity at least
M(s) for evaluation to precision s. In other words, the O(M(n) log n) upper bound for evaluating
elementary functions is tight to a factor of log s.

It is highly desirable to extend Brent’s results to unrestricted range. It would also be nice to
general the results to hypergeometric functions, as the evaluation of elementary functions can be
reduced to evaluation of hypergeometric functions. The basic approach to achieving unrestricted
range is to reduce the computation of f(x) to a computation of f(x/2n) such that x/2n lies in
some fixed range [a, b]. This could be done for particular functions such as log(x) or exp(x). See
[4, Appendix]. For the trigonometric functions, this requires approximating x mod π, a problem
known as “argument reduction”. But it is not clear how to do this reduction in general, or say, for
the hypergeometric functions.

§2. Complexity Model for Bigfloats

The arithmetic model of Brent [2] is variable precision floating point numbers (which we simply
call “bigfloats”). This is a very natural extension of the “fixed precision” arithmetic normally used
in numerical analysis. In this section, we describe this model in some detail.
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Let M(n) denote the complexity of multiplying two n-bit binary integers on multitape Turing
machines. This definition of M(n) applies only to positive integers n. To simplify our statements,
we shall define M(x) for any real number x: if x ≤ 0, M(x) = 0 and otherwise let M(x) = M(⌈x⌉).
The Schönhage-Strassen bound says that M(n) = O(n log n log log n). This bound can be achieved
in the (multitape) Turing machine model. In general, our complexity bounds will be in this
Turing model, but such bounds can be tedious to show directly. So what we normally show is a
weaker result: we simply count the number of bit operations and this established the complexity
in the the so-call : Boolean Circuit model. These two models are closely related: in particular, if
a problem has time complexity T (n) in the Turing model, then it has T (n) in the Boolean in the
Boolean model.

In our applications, we do not explicitly use the Schönhage-Strassen bound, but leaves M(n) as
a parameter in our the complexity statements. We only appeal only to some general assumptions
on M(n):
1. Superlinear: M(n) ≥ n.
2. Monotone: M(n) is monotone nondecreasing.
3. Regularity: M(n) satisfies the “regularity condition” that for all α ∈ (0, 1),

α2M(n) ≤M(αn) ≤ αM(n) (ev. n). (1)

where “· · · (ev. n)” means that condition “· · · ” will eventually hold, i.e., when n is sufficiently
large.

This regularity condition is from [1] and is slightly different then Brent. These assumptions
are satisfied by the Schönhage-Strassen bounds for M(n), but is also satisfied by the naive bound
M(n) = O(n2) or the Karatsuba bound M(n) = O(nlg 3). In this way, the complexity bound we
derive can be used even if we use the alternative algorithms.

We need to explicitly discuss how to represent bigfloats. A (binary) bigfloat is a rational
number of the form n2m where n,m ∈ Z. We call it bigfloat to distinguish it from the usual
programming concept of a “float” which has fixed precision (typically, this means |n| < 2t where
t is the precision). If f is an integer, we write 〈f〉 for the value f2−⌊lg |f |⌋. We may call 〈f〉 the
“normalized value” of f . E.g., 〈1〉 = 〈2〉 = 〈4〉 = 1, 〈3〉 = 〈6〉 = 1.5, 〈5〉 = 1.25, 〈7〉 = 1.75, etc. In
general, for f 6= 0, we have |〈f〉| ∈ [1, 2). and 〈2kf〉 = 〈f〉 for all k ∈ N.

Let the binary representation of an integer f 6= 0 can be written as f = σ(b0, b1, . . . , bt)2 where
bi ∈ {0, 1}, b0 6= 0 and σ ∈ {+,−}. A bigfloat can then be denoted by a sequence of bits with
a binary point somewhere in this sequence: σ(b0b1 · · · bi.bi+1 · · · bt), and this represents the value
σ(b0, . . . , bt)22

t−i. In this notation, 〈f〉 is equal to σ(b0.b1b2 · · · bt)2. In other words, the binary
point in 〈f〉 is placed just to the right of the most significant bit, b0. Thus 〈f〉 ∈ [1, 2).

A bigfloat representation x is a pair of binary integers, written 〈e, f〉 or bigf loat(e, f). This
representation has value equal to f2e−⌊lg |f |⌋ = 〈f〉2e. E.g., the value of 〈⌊lg |f |⌋ , f〉 is f . We say
〈e, f〉 is normalized if e = f = 0 or if f is odd. Clearly every bigfloat has a unique normalized
representation.

When there is no confusion, it is convenient to treat x and its value interchangeably. For any
real number, define the most significant bit position of x to be msb(x) := 1 + ⌊lg(|x|)⌋. By
definition, let msb(0) = 0. When n is an integer, msb(n) is the length of the binary representation
of n. For instance, msb(n) = n for n = 0, 1, 2 and msb(2k − 1) = k. msb(2k) = k + 1. Roughly
speaking, msb(x) is the number of bits to the left of the most significant bit before we reach the
binary point. Thus msb((11.111)2) = 2 If f = σ(b0b1 · · · bi.bi+1 · · · bt)2 then msb(f) = i + 1.
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Let [a, b] be a fixed but arbitrary range where 0 < a < b. We shall be considering
bigfloats in [a, b] ∪ [−b,−a]. Such bigfloats are called “bounded” bigfloats.

Note that we may be able to assume that b = 1/a then c ∈ [a, b] iff 1/c ∈ [a, b].

Some Error Notations. For x, x̃, ℓ ∈ R, then we say x̃ is a ℓ-bit absolute approximation to
x if |x− x̃| ≤ 2−ℓ, and x̃ is a ℓ-bit relative approximation to x if |x− x̃| ≤ 2−ℓ|x|.

It is said that the art of error analysis consists of a good notation:

• First, a meta-notation: whenever we use the symbol “±”, it is to be rewritten as “+θ” where
θ is a new variable satisfying |θ| ≤ 1. E.g., x± u is rewritten as x + θu. Each occurence of ±
in a single expression will have a different implicit θ variable: (x ± u)(y ± u) is the same as
(x + θu)(y + θ′u) where |θ| ≤ 1 and |θ′| ≤ 1.

• Second, let “[x]n” be a short hand for “x(1 ± 2−n)”. By our meta-notation, this refers to
a number of the form x(1 + θ2−n). Thus, this number is an an approximation to x with n
relative bits of precision. As an application, we write

[x + y]n, [x− y]n, [xy]n, . . .

for the truncated relative precision arithmetic with n-bit relative precision. For any
binary operation ◦ ∈ {+,−,×, . . .}, we have the equation

[x ◦ y]n = (x ◦ y)(1± 2−n).

There are corresponding truncated unary operations.

• In addition to the notation [x]n for relative error, we have a similar notation for absolute
error,

{x}n = x± 2−n = x + θ2−n

and the corresponding truncated absolute error arithmetic,

{x + y}n , {x− y}n , {xy}n , . . . .

Theorem 1 Let x, y be bounded bigfloats, and n be a positive natural number.

1. We can compute [x]n in O(n) time.

2. We can compute [xy]n in O(M(n)) time.

3. We can compute [x + y]n in O(n) time provided xy ≥ 0 or |x| > 2|y| or |x| < |y|/2. In

general, [x + y]n only has the bound O(nx + ny) where nx, ny are the respective precision of

x, y.

4. An analogous statement holds for [x− y], where we replace xy ≥ 0 by xy ≤ 0.
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Proof. Let x = 〈ex, fx〉.
1. To compute [x]n, we just have just have to truncate fx to at most (n + 1)-bits. This is done

by repeated decrements of a binary counter whose initial value is n. With each decrement, we copy
the next bit of fx. The bits are copied starting from the most significant bit. We stop when we
reach the least significant bit of fx or when the counter reaches 0. The complexity of decrementing
a binary counter from n to 0 is well-known to be O(n) time (the obvious upper bound is O(n lg n)).
We return at most n + 1 bits of fx that have been copied.

2. To compute [xy]n, we compute compute [x]n+2 and [y]n+2 and multiply their factional
parts together in O(M(n)) time. To see that this is correct, let x̃ = [x]n+2 = x(1 + θ2−n−2) and
ỹ = [y]n+2 = y(1 + θ′2−n−2) where |θ| ≤ 1 and |θ′| ≤ 1. Then x̃ · ỹ = xy(1 + θ2−n−2)(1 + θ′2−n−2)
which is easily seen to be equal to xy(1 + θ′′2−n) for some |θ′′| ≤ 1.

3. To compute [x + y]n, we first compute [x]n+1 and [y]n+1. This takes O(n) time. We now
compare ex : ey in O(1) time. Without loss of generally, assume ex ≥ ey We now align the two
n + 1-bit fractional parts so that their binary points coincide and carry out the standard addition.
This amounts to computing ex − ey, and putting this into a binary counter. Now, as above, we
decrement this counter to get to the bit in [y]n+1 that corresponds to the least significant bit of
[x]n+1. Now we can begin the addition of these two aligned fractional parts.

Under the assumption that xy ≥ 0 or msb(x) 6= msb(y), we are guaranteed that msb(x + y) is
To compute [xy]n, we first compute [x]2n and [y]2n and then apply the algorithm for integer

multiplication to the fractional parts. Q.E.D.

There are two notable facts about this lemma:
1. The actual precision of x and y does not figure into the complexity except for one case. As
usual, the above are only shown in Boolean complexity model. To achieve such sublinear bounds
on a Turing machine requires care, for instance, we should ensure that the the tape head for
each input bigfloat representation (sign, exponent, faction) is positioned at the beginning of the
representation.
2. We cannot generally achieve precision n in addition or substraction in O(n) time, because of the
possibility of cancellation. In the worst case, we may have to look at all the bits of the fractional
part in x and y.

EXERCISE:
(1) Verify the regularity condition when M(n) = Cn lg n lg lg n, and when M(n) = Cnc (you must
determine the range of the constant c in the later case).
(2) Redo the above theorem for unbounded bigfloats.

§3. Reciprocal

To warm up, we consider how to efficiently compute the reciprocal of a bigfloat number c 6= 0.

Lemma 2 For α ∈ (0, 1), we have

∞∑

j=0

M(αjn) = O(M(n)).

c© Chee-Keng Yap February 3, 2005



§3. Reciprocal Lecture II Page 5

Proof. By regularity, we have M(αjn) ≤ αjM(n) and so

∑

j≥0

M(αjn) ≤ M(n)
∑

j≥0

αj

=
M(n)

1− α
.

Q.E.D.

The infinite summation in this lemma has only O(lg n) non-zero terms. Naively, the sum is
upper bounded by O(M(n) lg n), but regularity of M(n) allows us to remove the lg n factor.

Lemma 3 For a bounded bigfloat c, we can compute 1/c to precision n in time O(M(n)).

Proof. Let f(x) = 1
x − c. Then Newton’s iterator for this function is N(x) = x − f(x)/f ′(x) =

x(2− cx). Thus our iteration is
xi+1 = xi(2− cxi). (2)

If xi = (1−εi)/c or cxi = 1−εi then substituting into (2) gives xi+1 = (1−ε2
i )/c. Hence εi+1 = ε2

i .

Assuming |ε0| < 1/2, we conclude that |εi| < 2−2i

for all i ≥ 0. Let y = 1/c and ỹ = xk where
k = ⌈lg n⌉. Then |y − c̃| = εk/c < 2−n/c = O(2−n) (since c is bounded).

The above analysis assumes error-free computation (in fact, we even have εi ≥ 0 for i > 0).
To extend this analysis to include error in each iteration, we must ensure (at least) that the last
step is done with precision n. Now, it turns out that Newton iteration is self-correcting so that the
previous step only requires about precision n/2, etc. Suppose that the i-th iteration (2) is carried
out with precision 2i+1. The algorithm has lg n iterations. Then the complexity of our algorithm
is bounded by

∑lg n
i=0 M(n2−i) = O(M(n)), by the Lemma 2.

The details could be slightly messy, so to see the big outline, you could initially only pay
attention to the first order terms (we underline the second order terms). Let cx̃i = 1− δi where

δi = 22i−13−2i

θi =
1

2
(2/3)2

i

θi, (for some |θi| ≤ 1). (3)

Suppose we compute the operations in (2) to precision 2−2i+1
. For our analysis, let us break (2)

into three steps:

Iteration x̃i → x̃i+1:
1. yi ← [cx̃i]2i+1

2. zi ← 2− yi

3. x̃i+1 ← [x̃izi]2i+1

Note that we assume Step 2 is error-free. It is possible to do this without affecting our basic premise
that the ith iteration in (2) takes time O(M(2i)). Step 1 gives

yi = cx̃i(1 + 2−2i+1
θ), |θ| ≤ 1.

= (1− δi)(1 + 2−2i+1
θ)

= 1− δi + 2−2i+1
θ(1− δi).
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Thus zi = 1 + δi − 2−2i+1
θ(1− δi). Note that

|1− yi| =
∣∣∣δi − 2−2i+1

θ(1− δi)
∣∣∣ ≤ |δi|+ 21−2i+1 ≤ 1

2

(
2

3

)2i

+ 2(1/4)2
i

< 1.

Hence

cx̃i+1 = cx̃izi(1 + 2−2i+1
θ′), |θ′| ≤ 1.

= (1− δi)(1 + δi − 2−2i+1
θ(1− δi))(1 + 2−2i+1

θ′)

= (1− δ2
i − (1− δi)

2θ2−2i+1
)(1 + 2−2i+1

θ′)

= 1− δi+1

where

δi+1 = δ2
i + (1− δi)

2θ2−2i+1
+ 2−2i+1

θ
(
δ2
i + θ′(1− δi)

22−2i+1
)

|δi+1| ≤
1

4

(
2

3

)2i+1

+

(
1

2

)2i+1

≤ 1

2

(
2

3

)2i+1

for i ≥ 1. Since this last inequality requires i ≥ 1, we must start this algorithm with an approximate
value x satisfying |x− (1/c)| ≤ |δ1| ≤ 1

2 (2/3)2
1

= 2/9. Q.E.D.

Corollary 4 Computing by x/c for a bounded c to precision n has complexity O(M(n)).

Proof. We compute [x/c]n using the steps

0. z0 ← [x]n+2

1. z1 ← [1/c]n+2

2. z2 ← z0z1

3. Return(z2)

Each step takes O(M(n)). The result is seen to have precision n. Q.E.D.

EXERCISE:

(1) Extend the above result to an unbounded bigfloat c.
(2) Give an analogous analysis for the quadratic convergence of Newton’s iteration for square root
of a bounded bigfloat c.
(3) Extend question (2) to unbounded c.
(4) We said that to implement the approximate Newton iteration for computing [1/c]n, we must
begin with x0 such that |x0 − (1/c)| < 2/9. How to you achieve this in practice.

§4. Contraction Maps
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The Newton iterator is basically a contraction map. Let us investigate some basic properties of
contractions.

Let
f : S → S

be any continuous function where S ⊆ C is any closed set.
We say f is Lipschitz if there is a constant K > 0 such that for all x, y ∈ S, |f(x) − f(y)| ≤

K|x− y|. K is called a Lipschitz constant. When K < 1, then f is called a contraction map.

Lemma 5 If f : S → S is a contraction map with Lipschitz constant K < 1 then there is a unique

fixed point x∗ ∈ S such that for all x ∈ S, fn(x)→ x∗ as n→∞. Moreover, f(x∗) = x∗ and

|f(x)− x|
1 + K

≤ |x− x∗| ≤ |f(x)− x|
1−K

. (4)

Proof. We have

|fn+1(x)− fn(x)| ≤ K|fn(x)− fn−1(x)| ≤ · · · ≤ Kn|f(x)− x|.

Then

|fm+n(x)− fn(x)| ≤
m−1∑

i=0

|f i+1+n(x)− f i+n(x)|

≤
m−1∑

i=0

Ki+n|f(x)− x|

<
Kn

1−K
|f(x)− x|.

Thus the sequence x, f(x), f2(x), . . . is a Cauchy sequence with a limit x∗ ∈ S. By continuity, we
know that f(x∗) = x∗.

We must show that if y ∈ S, then y, f(y), f2(y), . . . also converge to x∗. That is because
|fn(y)− fn(x)| ≤ Kn|y − x|.

To show the first inequality in (4), we note that

|f(x)− x| ≤ |f(x)− x∗|+ |x∗ − x|
≤ |f(x)− f(x∗)|+ |x∗ − x|
≤ (K + 1)|x∗ − x|.

The second inequality follows from the above bound |fm(x)− x| < 1
1−K |f(x)− x|. In other words,

fm(x) lies in the ball Br(x) where r = 1
1−K |f(x) − x|. Thus x∗ = limm→∞ fm(x) lies in Br(x),

which proves |x∗ − x| ≤ 1
1−K |f(x)− x|. Q.E.D.

Let us relate the Lipschitz constant to derivatives:

Lemma 6 Suppose S is convex and |f ′(x)| ≤ K for all x ∈ S. Then f is Lipschitz with constant

K.
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Proof. We use the fact that for x 6= y,

f(x)− f(y)

x− y
= f ′(θ)

where θ ∈ [x, y]. Since S is convex, θ ∈ S and so |f ′(θ)| ≤ K. Q.E.D.

Let Nf (x) = x−f(x)/f ′(x) be the Newton iterator. In order to ensure that Nf is a contraction
map, we what to bound |N ′

f (x)|. The following quantities defined by Smale is useful to this end:

assume f (k)(x) exists for all x ∈ S and k ≥ 0. If f ′(x) 6= 0, we define the quantities:

• γ(f, x) := supk≥1

∣∣∣f(k)(x)
k!f ′(x)

∣∣∣
1/(k−1)

.

• β(f, x) :=
∣∣∣ f(x)
f ′(x)

∣∣∣ .

• α(f, x) := β(f, x)γ(f, x).

It follows that

|Nf (x)| =
∣∣∣∣
f(x)f ′′(x)

f ′(x)2

∣∣∣∣ = 2

∣∣∣∣
f(x)

f ′(x)
· f ′′(x)

2!f ′(x)

∣∣∣∣ ≤ 2α(f, x).

This suggest that if α(f, x) is sufficiently small, then Nf is a contraction map in the neighborhood
of x. But how small? It seems that α(f, x) < 1/2 is a necessary condition.

Smale proves the following stronger statement. Let x0 = x and xi+1 = Nf (xi). We call x a
(relative) approximate zero of f if

|xn − x∗| ≤
(

1

2

)2n−1

|x0 − x∗|, n ≥ 0.

Theorem 7 (Smale) If α(f, x) < 0.04 then x is an approximate zero of f .

This kind of result is called a point estimate because we can predict the convergence of Newton
iteration at x based on a single value α(f, x). Traditional estimates are based on bounds on f or
f ′ over a region (e.g., Lemma 6).

For proof and details, see the Thesis Proposal Survey of Vikram (Dec 2004).
EXERCISE: The following are open problems.

(1) Give a simple proof of Smale’s theorem.
(2) Improve the point estimate of Smale.
(3) Give a point estimate for guaranteeing convergence of x0, x1, . . ., where xi+1 = Nf (xi).

§5. Approximate Newton Iteration

In Newton iteration, we are trying to find a zero x∗ of a function f(x), i.e., f(x∗) = 0. We
convert f(x) to a function F (x) such that f(x∗) = 0 iff x∗ = F (x∗). I.e., we convert a zero of f(x)
to a fixed point of F (x).
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The general problem we face is how to derive F (x) from f(x). The standard transformation is
the Newton iterator

F (x) = x− f(x)

f ′(x)
(5)

where f ′(x) denotes the derivative with respect to x. This iterator is valid provided the zero x∗ we
are looking for is not a critical point of f , i.e., f ′(x∗) 6= 0.

Issues: what if x∗ is a critical point? What if we do not know á priori whether x∗ is critical?
We shall return to some of these issues.

In general, the construction of F (x) is an interesting one. For instance, suppose we want to
compute the reciprocal of a constant c. What f(x) should we pick? If you pick f(x) = x− (1/c),
and apply the Newton transformation, you get F (x) = 1/c. It is the “perfect” iterator, but totally
useless for our intended application! The F (x) we use in the previous section applies the Newton
transformation to the function f(x) = (1/x)− c.

Assuming (5), we may verify that

F (x∗ + h) = F (x∗) + F ′(x∗)h + x∗ + F (2)(x∗)
h2

2!
+ · · · + F (n)(x∗ + θh)

h2

2!
.

= x∗ + F (n)(x∗ + θh)
hn

n!

where θ ∈ [0, 1] and n is the smallest positive integer such that F (n)(x∗) 6= 0. Note that n ≥ 2
because F (x∗) = x∗ and F ′(x) = (ff ′′)/(f ′)2 vanishes at x = x∗.

Convergence of the Ideal Newton Iteration. We now show the standard result that Newton
iteration has order 2 convergence. In the derivation, we assume n = 2 for specificity, since the
general case should be clear. Furthermore, we often need temporary constants in the unit interval
[0, 1] or in [−1, 1]; we denote these quantities by some variant of θ such as θ′, θi, etc.

We consider the sequence x0, x1, x2, . . . where

xi+1 = F (xi). (6)

Assume F (x) is a contraction map in the ball Br(x0) of radius r > 0 about x0. Then the sequence
converges to a unique solution x∗. Suppose

xi = x∗ + εi. (7)

Then we see that

xi+1 − x∗ = F (xi)− x∗

= F (2)(x∗ + θεi)(εi)
2/2 for some 0 ≤ θ ≤ 1.

Assuming |ε0| < 1 and |F (2)(x)ε0| < 2 for all x ∈ Bε0(x
∗) (the ball about x∗ of radius ε0, we see

that F (x) is a contraction map in Bε0(x
∗) If |F (2)(x)|/2 ≤ K in this ball, we conclude with the

standard result about convergence of Newton iteration:

Theorem 8 Let xi+1 = F (xi) and xi = x∗ + εi. If |x∗ − x0| < 1 and |F (2)(x)ε0| < 2 for all

x ∈ B(x∗, ε0), then for all i ≥ 1,

0 < εi ≤ Kε2i

0

It is worth nothing that εi is strictly positive for i > 0.
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Convergence of Approximate Newton Iteration. The above iteration assumes exact oper-
ations. In practice, we do not compute the sequence x0, x1, x2, . . ., but some approximation

x̃0, x̃1, x̃2, . . .

where each x̃i+1 is computed as in (6) except that the right-hand side is evaluated to a precision
that depends on i. What is this precision?

It is clear that if we want to compute x∗ to precision n then the last iteration must have at
least precision n. Naively, we may require all previous iterations to also have precision n. This
turns out to be enough, but even the correctness of this is not obvious. But we shall do much
better – it suffices to about cn/2 precision in the computation of the previous iteration, and cn/4
precision in the iteration before that, etc. This remarkable property of the Newton iteration is
usually described as “self-correcting”.

Our plan is to begin with x̃0 sufficiently close to x∗ (to be determined) and in the ith iteration,
compute with precision C2i for some constant C > 1. Let 0 < ε < 1 and 0 < c < 1 be constants to
be determined. Also, let C = lg(1/ε2). Define our iteration by

x̃i+1 = [F (x̃i)]C2i+1 . (8)

In other words, we evaluate F (x̃i) to C2i+1 bits of precision. We may express the error in x̃i as

δi = x̃i − x∗ (i ≥ 0)

= cθiε
2i

(|θi| ≤ 1).

Then we see that

x̃i+1 − x∗ = F (x̃i)(1± 2−C2i+1
)− x∗

= F (x∗ + δi)(1± 2−C2i+1
)− x∗

= F (2)(x∗ ± δi)
(δi)

2

2 ± F (x̃i)2
−C2i+1

= F (2)(x∗ ± δi)
(θic)

2ε2i+1

2 ± F (x̃i)ε
2i+2

(Since 2−C = ε2)

= cε2i+1
[
F (2)(x∗ ± δi)

(θi)2c
2 ± F (exi)

c ε2i+1
]

= cε2i+1
θi+1

where the last equation serves as definition of θi+1.
It remains to choose c so that |θi+1| ≤ 1. Since F (x̃i)→ x∗, we may assume pick c small enough

that |F (x̃i)|/c ≤ 1/2 for all i ≥ 0. Also, F (2)(x∗ + θ′δi)→ F (2)(x∗) as i→∞. So we can start at i

large enough that
∣∣∣F (2)(x∗ + θ′δi)

(θi)2c
2

∣∣∣ ≤ 1/2.

Note that we could choose ε = 1/2 and so C = 1.

EXERCISE:
(1) Implement this algorithm in Core Library where F (x) = x− f(x)/f ′(x) and f(x) is any integer
polynomial.
(2) Suppose f(x) is a polynomial of degree d and coefficients are m-bit integers. What is the
complexity of computing an n-bit relative approximation to a root of f(x), assuming you can get
an good enough initial approximation in constant time.
(3) Give a one-point estimate analogous to Smale in the case of approximate Newton iteration.
More precisely, determine a global constant C0 such that for α(f, x) < C0, the approximate Newton
iteration starting at x yields quadratic convergence.
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§6. Approximate Discrete Newton Iteration.

We make two extensions of the above analysis. The first is that we want to replace the com-
putation of f ′(x) by the discretized approximation, f ′(x) ≈ (f(x + h) − f(x))/h for small |h|.
Second, we want to replace f(x) by its absolute approximation f̃(x; ℓ) that satisfies the bound
|f̃(x; ℓ)− f(x)| ≤ 2−ℓ.

First we consider the discretized version of Newton,

xi+1 = xi −
hif(xi)

f(xi + hi)− f(xi)
(9)

where
hi = c2−2i+1

(10)

for some c > 0. We shall determine how small c needs to be. Assuming that f ′(x) is Lipschitz with
constant K, we obtain

f ′(x + h)− f ′(x) = Khθ, |θ| ≤ 1.

Therefore

f(x + h)− f(x)

h
= f ′(x + θh)

= f ′(x) + Kθ′h, (|θ′| ≤ 1).

xi+1 = xi −
f(xi)

f ′(xi) + Kθ′hi
.

Suppose
xi = x∗ ± 2−2i+1

.

Then

f ′(xi) + Kθ′hi = f ′(xi)

[
1 +

1

2
θ′′2−2i+1

]

provided cK ≤ |f ′(xi)|/2. So

xi+1 = xi −
f(xi)

f ′(xi)
(
1 + θ′′2−1−2i+1

)

= xi −
f(xi)

f ′(xi)

(
1 + θ′′2−2i+1

)
.

Assume x∗ 6= 0, and as f(xi)/f
′(xi) → 0, we can make |xi| ≥ |x∗|/2 and |x∗|/2 ≥ 2|f(xi)/f

′(xi)|.
Hence

xi+1 =
(
xi − f(xi)

f ′(xi))

) [
1 + θ′′2−2i+1

]
for some |θ′′| ≤ 1.

= [F (xi)]2i+1 .

But this is just the iteration we analyzed under approximate Newton, and it has quadratic conver-
gence.

Our final step is to replace the assumption that f(x) and the operations of F (x) is exact. We
leave this as an exercise.
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EXERCISE:
Provide the approximate version of the discretized Newton iteration (9). You must explicitly give
the precision for evaluating each f(x) and for performing each arithmetic operation. Prove a
quadratic convergence using your iteration.
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Added Notes

• There are 2 views of bigfloats: so far, they are viewed as exact numbers. In the exact view,
the equation 〈e, f〉 = 〈e, 2f〉 makes sense. On the other hand, we can view a bigfloat as
implicitly representing an number whose list significant bit may off by 1/2. For instance,
the bigfloat number (1.010)2 represents the “implicit interval” [(1.0011)2 , (1.0101)2 ]. The size
of this interval is 2−3. On the other hand, the value (1.01)2 represents the implicit interval
[(1.001)2 , (1.011)2 whose size is 2−2. Thus 〈e, f〉 and 〈e, 2f〉 represents different implicit
intervals. In general, the size of the implicit interval is equal to 21−msb(f). Hence we define
the precision of a bigfloat representation 〈e, f〉 to be msb(x) − 1. In other words, to have
precision n, the fractional part f needs n + 1 bits. Thus “precision” here refers to relative
precision.

• In Sutherland and Kim (2001), the current best bounds for finding the zeros of an integer
polynomial are surveyed. But Brent’s bounds, suitably generalized, appear to beat some of
the newer bounds.
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