
Geometric Modeling: HW 4

Chris Wu

Question 1

Part a)

Consider the set of 3 circles v̂ = ((0, 0), 0), û1 = ((−1, 0), 22) and û2 = ((1, 0), 22). Consult
Fig. 1 for a sketch. Notice that the “circle” v̂ is, in fact, just the point v. We claim that no
point of R2 belongs to v̂’s voronoi cell.

Now, consider a point of R2 that lies in û1 ∪ û2 (like p1). Then for at least one of the
ûi’s, πui(p) < 0. Since v̂ has radius 0, for all points q ∈ R2 we have that πv(q) ≥ 0. Thus
none of these points belong to v’s voronoi region. In particular, this include the point v itself.

Next, consider a point of the form p = (0, y) like p2 in the figure. Then πv(p) = y2.
We also have that πu1(p) = ‖(0, y)− (−1, 0)‖2 − 4 = y2 − 3 which is certainly less than y2.

Finally, let p = (x, y) with p /∈ û1 and p /∈ û2. Further, assume with loss of generality
that x > 0.

πu2(p) = ‖(x, y)− (1, 0)‖2 − 4

= x2 + y2 − 2x− 3

< x2 + y2

= πv(p)

Part b)

If v lies on the convex hull of centers of the circles, then the normal cone at v is non-empty.
Let w be the vector that maximizes the minimum dot product value between itself and any
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Figure 1: The pi’s correspond to the 3 combinatorial cases for points.
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vector formed by v and a neighboring voronoi center. Basically, I just want the “middle”
vector from the normal cone. Assuming that w is of unit length, I define w(t) to be v+ t∗w.
Explicitly, it is the point of distance t from v in the direction of w.

By definition of w, we can draw a line L, perpendicular to w, such that all other circles
centers lie below L with respect to w(t). This assumes that v is not a convex combination
of other vertices of the hull, otherwise, other points could lie on L.

Examine what happens as we increase the value of t. With respect to v we have that
πv(w(t)) = ‖w(t)− v‖2 − V 2 = t2 − V 2. This means that

πv(w(t + 1))− πv(w(t)) = (‖w(t)− v‖2 − V 2)− (‖w(t)− v‖2 − V 2)

= (t + 1)2 − t2

= 2t + 1

This value is the increase in πv(·) when we move one unit. Now we calculate the same for
any other circle center, say v′. Since my latex alignment skills are quite poor, let’s do some
calculations so it doesn’t get too long later.

πv′(w(t)) = ‖w(t)− v′‖ − V ′2

= (t + d · sin(α))2 + d · cos(α)2 − V ′2

= t2 + 2td · sin(α) + d− V ′2

The change is therefore

πv′(w(t + 1))− πv′(w(t)) = 2t + 1 + 2d · sin(α)

So we see that as t is increased, the weighted distance from w(t) to v′ grows faster than
that of w(t) to v. Thus we can keep increasing t until we reach a value t∗ for which
πv(w(t∗)) < πv′(w(t∗)). Since v′ was arbitrary, we can do this for any other circle center as
well. If we move beyond the maximal such t∗ then we have a point that lies in v’s voronoi
region.
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Figure 3: View of the xy-plane from the positive z side. The labels inside the triangles
correspond to the vertex with which that triangle is paired to make a tetrahedron. The zi

refers to all remaining z points.

Question 2

For the sake of sanity label the z-axis points z1, z2, . . . , zn/4 in increasing z value. Consider
the following tetrahedralization: start z1 and z2. Create tetrahedra with those two points
and every two adjacent points in the xy-plane. This creates n/2 − 1 tetrahedra. Do the
same with z2 and z3. This will create (n/2 − 1)(n/4 − 1) = n2

8 − 3n
4 + 1 tetrahedra. We

can do the same with the negative points on the z-axis for a total of n2

4 − 3n
2 + 2 tetrahedra

which is O(n2) tetrahedra.

Question 3

The answer is no. We change our notation and label the z-axis points z1, z2, . . . , zn/4 in
decreasing z coordinate value. Now consider the following: starting from z1, we create
tetrahedra with z1 and as many consecutive non-overlapping (except at endpoints) triplets
of xy-plane points as possible. Consult figure 3 for a view of the xy-plane during this pro-
cess. What remains now are the points z2, . . . , zn/4 and dn

2 /2e points in the xy-plane. We
continue the same process for z2 and so on. This process is always safe since the points in
the xy-plane are in convex position and we only take “ears” of their convex hull.

We stop when there are three points left. This happens after at most log n − 2 levels.
If there are any zi left, we tetrahedralize as in question 2 (pair consecutive zi’s with the 3
remaining points in the xy-plane). This means at most 3 tetrahedra for each remaining zi

point.

How many tetrahedra does this have? We have an upper bound of dn/4e + dn/8e + . . . +
dn/2log n−1e which is certainly less than n + log n − 1 which is O(n). The remaining zi, if
any, will be tetrahedralized with 3(n− log n + 1) tetrahedra which is also O(n). We can do
the same to the bottom so that the entire tetrahedralization is also linear.
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Question 4

a) 4t = fB + 2f I . Notice that every tetrahedron has four faces, so the left hand side counts
the number of incidences of a face to a tetrahedron. Each face is either internal to K or on
the boundary. If it is internal, it is incident to two tetrahedra which is counted by 2f I . If
it is on the boundary, then it is only incident to one; the other term counts this. This is
equivalent to the Handshaking Lemma for graphs but with simplicial complexes.

b) Since the terms only involve the boundary, we can consider the boundary as a graph
on a sphere. The explicit transformation can be done by surrounding the complex with
a ball and choosing an internal point of the complex and ray shooting all vertices to the
surface of the ball maintaining adjacency.

Since we have a graph on a sphere, we invoke Euler’s formula v − e + f = 2. Further,
from part d) we know that 3f = 2e in this graph (all faces are triangular). By substitution
we have that v − ( 3f

2 ) + f = 2 which implies that f = 2v − 4.

c) We again use Euler’s formula, this time on complexes equivalent to the 3-dimensional
ball which gives v − e + f − t = 1. We first rearrange the equation then we use d), a) and
finally b)

f I = −v + e− fB + t + 1

= −v + eI + fB/2 + t + 1

= −v + eI + fB/2 + fB/4 + f I/2 + 1

= −2v + 2eI +
3fB

2
+ 2

= vB − 2vI + 2eI − 4

d) Much like the argument for a), 3fB counts the number of face-edge incidences from
the face point of view. Each boundary edge contributes to two faces, so 2eB counts the
edge-face incidence. Thus, we have that 3fB = 2eB .

e) Using the formulas from a), b) and c) we have that

t =
fB

4
+

f I

2

=
2vB − 4

4
+

vB + 2(eI − vI)− 4
2

= vB − vI + eI − 3

Question 5

We denote the circumsphere of the point set {a, b, c, d} by o(a, b, c, d). For this question,
we focus on the two tetrahedralizations in the figure. The left uses the tetrahedra T1 =
{abcd, abce} and the second consists of T2{abde, acde, bcde}. First, we show that T1 is
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Figure 4: Two tetrahedralizations. T1 has 2 tetrahedra, T2 has 3

not the Delaunay one. Using the determinant formulas for circumspheres, we have that
o(a, b, c, d) is defined by (x − 1)2 + (y − 1)2 + (z − 0.625)2 = 2.391. Plugging in the point
e = (1.5, 0.5,−0.5) we have that

(1.5− 1)2 + (0.5− 1)2 + (−0.5− 0.625)2 = 0.25 + 0.25 + 1.265
= 1.765
< 2.391

This means that T1 is not Delaunay since it does not satisfy the empty circumspheres prop-
erty.

Moving on to T2 we have the following equations for the tetrahedra

o(abde) → (x− 1)2 + (y − 0.5)2 + (z − 0.75)2 = 1.813

o(acde) → (x− 0.75)2 + (y − 1.25)2 + (z − 0.75)2 = 2.688

o(bcde) → (x− 1.5)2 + (y − 1)2 + (z − 0.75)2 = 1.813

For each tetrahedron, we plug in the point that does not belong to it

o(abde) & c → (2− 1)2 + (2− 0.5)2 + (0− 0.75)2 = 3.813 > 1.813

o(acde) & b → (2− 0.75)2 + (0− 1.25)2 + (0− 0.75)2 = 3.688 > 2.688

o(bcde) & a → (0− 1.5)2 + (0− 1)2 + (0− 0.75)2 = 3.813 > 1.813

We conclude that all the circumspheres of the tetrahedra are empty of other points of the
set. So the latter is the Delaunay tetrahedralization.

Moving on to the maxmin solid angle property, we have the minimum solid angle of 0.1229
steradians in T1 achieved at the vertices a and c in the tetrahedron {bcde}. In T2, the solid
angle at d in tetrahedron {abde} is only 0.1095 steradians. Thus T2 does not satisfy the
maxmin solid angle property.
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