Homework 3

Chris Wu

Question 1

For this question, from the class notes, we see that we need only calculate the additional sign information in the form of the σ_{i} 's. Thus we can alter Collins' algorithm with a variable that maintains the current $\prod_{i=1}^{j} s_{2 i-1}$ information as well as another to store information for the odd case. Updating takes constant time since we need only multiply by the new s_{k} of the current iteration.

The number of operations is constant on each iteration and so doesn't not change the complexity. For the bit complexity, we note that the σ_{i} 's just range over the $\operatorname{sign}(x)$ operation and so don't blow up at all. So the bit complexity is also unchanged.

Question 2

If we only want the signs then we need only store the leading term of the polynomials at each step. This saves the computation required in the $\operatorname{prem}(\cdot, \cdot)$ to only $O(m)$. The rest of the Collins' algorithm, specifically steps 4 and 5 are unchanged since these steps are not effected since they already involve only the first terms of the polynomials. Still, this reduced the complexity by a linear factor to $O\left(m^{2}\right)$.

Question 3

Part a)

Considering the case as in the question with A on the positive side and A^{\prime} on the negative of the x -axis and letting our point p be (x, y), we see that

$$
\begin{aligned}
\operatorname{pow}(p, C) & =\left((A-x)^{2}+y^{2}\right)-r^{2} \\
\operatorname{pow}\left(p, C^{\prime}\right) & =\left(\left(x-A^{\prime}\right)^{2}+y^{2}\right)-r^{\prime 2}
\end{aligned}
$$

Subtracting, we get $\operatorname{pow}(p, C)-\operatorname{pow}\left(p, C^{\prime}\right)=(A-x)^{2}-\left(x-A^{\prime}\right)^{2}$. This term in no way involves the coordinate y. Since x was arbitrary, we conclude that along any vertical line, the term $\operatorname{pow}(p, C)-\operatorname{pow}\left(p, C^{\prime}\right)$ is constant.

Part b)

Assume that p_{0} is the point in question with $\operatorname{pow}\left(p_{0}, C\right)=\operatorname{pow}\left(p_{0}, C^{\prime}\right)$. Along the x-axis we have that $y=0$ so we have that

$$
\begin{aligned}
\operatorname{pow}(p, C) & =(A-x)^{2}-r^{2} \\
\operatorname{pow}\left(p, C^{\prime}\right) & =\left(x-A^{\prime}\right)^{2}-r^{\prime 2}
\end{aligned}
$$

Setting them to be equal, we have that $A^{2}-2 A x+x^{2}-r^{2}=A^{\prime 2}-2 A^{\prime} x+x^{2}-r^{2}$. We can solve for x with

$$
x=\frac{\left(A^{2}-r^{2}\right)-\left(A^{\prime 2}-r^{\prime 2}\right)}{2\left(A-A^{\prime}\right)}
$$

which is is well-defined since $A^{\prime}<0$ so the denominator is always non-zero. Also, this is unique.

Consider "moving left" of p_{0}. That is, consider staying on the x-axis but with $x=p_{0}-\epsilon$. Then

$$
\begin{aligned}
\operatorname{pow}(x, C) & =A^{2}-2 A\left(p_{0}-\epsilon\right)+\left(p_{0}-\epsilon\right)^{2}-r^{2} \\
& =\operatorname{pow}\left(p_{0}, C\right)+2 A \epsilon-2 p_{0} \epsilon+\epsilon^{2}
\end{aligned}
$$

Similarly for C^{\prime} we have

$$
\operatorname{pow}\left(x, C^{\prime}\right)=\operatorname{pow}\left(p_{0}, C^{\prime}\right)+2 A^{\prime} \epsilon-2 p_{0} \epsilon+\epsilon^{2}
$$

The difference is in the terms of $2 A \epsilon$ and $2 A^{\prime} \epsilon$. Since $A^{\prime}<0$, we conclude that pow $\left(x, C^{\prime}\right)<$ $\operatorname{pow}(x, C)$. Similarly, "moving right", makes $\operatorname{pow}(x, C)<\operatorname{pow}\left(x, C^{\prime}\right)$.

To help with our analysis, we recall that the difference between powers does not change along vertical lines. Thus, if $\operatorname{pow}(p, C)>\operatorname{pow}\left(p, C^{\prime}\right)$ then this remains true along the horizontal line through p with respect to the circle centers.

Now, let p be any point left of p_{0} (not just along the x -axis). Then p has a horizontal line through it that intersects the x-axis, say p_{x}. From b) we can conclude then that $\operatorname{pow}\left(p_{x}, C^{\prime}\right)<\operatorname{pow}\left(p_{x}, C\right)$ and so too can we conclude that $\operatorname{pow}\left(p, C^{\prime}\right)<\operatorname{pow}(p, C)$

Part c)

Consider a sequence of triangles from a fixed viewpoint q as in Edelsbrunner's book. Then for any two sequential triangles and their circumcircles C_{1}, C_{2}, they share an edge that is perpendicular to the line formed by the two circle centers (explicitly, the Delaunay edge). We recall that this Delaunay edge is a subset of the points that are equidistant from the circle centers thus all points along this line have $\operatorname{pow}\left(p_{0}, C_{1}\right)=\operatorname{pow}\left(p_{0}, C_{2}\right)$. Then from part b) we can also conclude that $\operatorname{pow}\left(p_{0}, C_{1}\right)<\operatorname{pow}\left(p_{0}, C_{2}\right)$. By an inductive argument, we can conclude Edelsbrunner's acyclicity theorem.

