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Lecture |
OUTLINE OF ALGORITHMICS

We assume the student is familiar with computer programraimgj has a course in data struc-
tures and some background in discrete mathematics. Prelseived using computers can be roughly
classified into problems-in-the-large and problems-gr¢mall. The former is associated with large
software systems such as an airline reservation systenpitmor text editors. The latteis iden-
tified with mathematically well-defined problems such agisgr multiplying two matrices or solving
a linear program. The methodology for studying such “larged “small” problems are quite distinct:
Algorithmics is the study of the small problems and theiroaitnmic solution. In this introductory
lecture, we present an outline of this enterprise. Througtus book,computational problems (or
simply “problems”) refer to problems-in-the-small. It iset only kind of problem we address. This
chapter presents a broad but systematic account of the fialgarithmics.

Algorithmics is about
“small” problems

READING GUIDE: The chapters in this book are organized indot®ns
denoted; 1, §2, §3, etc. Occasionally, we have subsections suctBas §3.2,
etc. But independent of the sections and subsections, welabeled parg
graphs, denotefl1, 2. €3, etc. We indicate advanced sections or paragraphs
by an asterisk, as ifi"2 or §°37. These are meant to be skipped on a first
reading. Note that hyperlinks and color fonts are used irptifeversion of
this book.
This first chapter is mostly informal. The rest of this bools me de
pendency on this chapter, save the definition§7rconcerning asymptot
notations. Hence a light reading may be sufficient. We recendme-readin
this chapter after finishing the rest of the book, when manthefremarks
here may take on more concrete meaning.

0

1. What is Algorithmics?

Algorithmics is the systematic study of efficient algorithms for compotal problems; it includes
techniques of algorithm design, data structures, and mradtieal tools for analyzing algorithms.

Why is algorithmics important? Because algorithms is aftcitve of all applications of computers.
These algorithms are the “computational engines” thatedidavger software systems. Hence it is im-
portant to learn how to construct algorithms and to analigent Although algorithmics provide the
building blocks for large application systems, the coregttam of such systems usually require additional
non-algorithmic techniques (e.g., database theory) wéieloutside our scope.

We can classify algorithmics according to its applicationsubfields of the sciences and mathe-
matics: thus we have computational geometry, computdtiopalogy, computational number theory,
computer algebra, computational statistics, computatifimance, computational physics, and compu-
tational biology, etc. More generally, we have “computaéibX” where X can be any discipline. But
another way to classify algorithmics is to look at the gen@wdls and techniques that are largely in-
dependent any discipline. Thus, we have sorting technjgiraph searching, string algorithms, string
algorithms, dynamic programming, numerical techniqués, that cuts across individual disciplines.
Thus we have identified two dimensions along which the fieldlgbrithmics can be classified. Let us
represent these two orthogonal classification schemeg asimatrix:

1 If problems-in-the-large is macro-economics, then thélems-in-the-small is micro-economics.
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Computer Science is
row-oriented

So each computational X is represented by a column in thisixnand each computational tech-
nigue is represented by a row. Each check mark indicatesatipatticular computational technique
is used in a particular discipline X. Individual scientifitsciplines take a column-oriented view, but
Computer Science (and also this book) takes the row-oderigav. These row labels can be grouped
into four basic themes:

(a) data-structures (e.qg, linked lists, stacks, search trees)
(b) algorithmic techniques (e.qg., divide-and-conquer, dyicgrogramming)
(c) basic computational problems (e.g., sorting, graph-$e@ant location)

(d) analysis techniques (e.g., recurrences, amortizatiodoraized analysis)

These themes interplay with each other. For instance, s@taestructures naturally suggest certain
algorithmic techniques (e.g., graphs requires graphebe@chniques). Or, an algorithmic technique
may entail certain analysis methods (e.g., divide-andyaenalgorithms require recurrence solving).
The field of complexity theory in computer science providasie unifying concepts for algorithmics;
but complexity theory is too abstract to capture many finstimitions we wish to make. Thus algorith-
mics often makes domain-dependentassumptions. For egaimthe subfield of computer algebra, the
complexity model takes each algebraic operation as a pvanithile in the subfield of computational
number theory, these algebraic operations are reducedre bit-complexity model primitives. In this
sense, algorithmics is more like combinatorics (which Is@tc) than group theory (which has a unified
framework). Students may initially find this eclectic nawf algorithmics confusing. But ultimately,
we hope the student will develop an “algorithmic frame of diithat sees an over-arching unity in this
jumble of topics.

52. What are Computational Problems?

Despite its name, the starting point for algorithmics isadgbrithms, butomputational problems
But what are “computational problems”? We mention threemcategories.

91. (A) Input-output problems.  Such problems are the simplest to understand:ofputational

problem is a precise specification of input-and-output (1/0) forspand for each input instande

a description of the set of possible output instanGes= O(I). The word “formats” emphasizes Standard 1/O problems
the fact the input and output representation is part andepaicthe problem. In practice, standard

representations may be taken for granted (e.g., numbesatened to be in binary and set elements
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are arbitrarily listed without repetition). Note that tmput-output relationship need not be functional:
a given input may have several acceptable outputs.

(A1) Sorting Problem. The input is a sequence of numbéss, . . ., a,,) and output is a rearrange-
ment of these numbers,...,a’) in non-decreasing order. An input instance2s5, 2,1, 7), with

r'n

corresponding output instan¢g 2,2, 5, 7).

(A2) Primality Testing. Input is a natural number and output is either YES (if is prime) or NO
(if n is composite). Numbers are assumed to be encoded in dediwp).if the input is123 then the
output is NO. But for the inpu23, the output is YES. This is an exampleaécision or recognition
problem, where the output have only two possible answers (YESINO, Accept/Reject). One can
generalize this to problems whose output comes from a fietteF®r instance, in computational geom-
etry, the decision problems tend to have three possibleenss\Wwositive/Negative/Zero or INNOUT/ON.

Simplest imaginable
type of problem?

For instance, thpoint classification problemis where we are given a point and some geometric object

such as a triangle or a cell. The point is either inside thi cetside the cell or on the boundary of the
cell.

92. (B) Preprocessing problems. A generalization of input-output problems is what we gaéipro-
cessing problem given a setS of objects, construct a data structufe(S) such that for an arbitrary
‘query’ (of a suitable type) abouf, we can usé(.S) to efficiently answer the queryhere are two dis-
tinct stages in such problems: preprocessing stage and&itne” stage. Usually, the sétis “static”
meaning that membership does not change under querying.

(B1) Ranking Problem. preprocessing input is a s&tof numbers. A query o1 is a number, for
which we like to determine its rank ifi. The rank ofg in S is the number of items i§ that are smaller
than or equal tg. E.g., if S = {2,3,5, 7} then the rank of = 6 in S is 3. A standard solution to this
problem is thebinary search treelata structuré(.S) and the binary search algorithm @n5).

(B2) Post Office Problem.Many problems in computational geometry and databaselsaeagche
preprocessing type. The following is a geometric-dataliasgration: given a seb of points in the
plane, find a data structuge(S) such that for any query poipt we find an element i that is closest
to p. (Think of S as a set of post offices and we want to know the nearest post tdfeny positiorp).
Note that the 1-dimensional version of this problem is dipaélied to the ranking problem.

Two algorithms are needed to solve a preprocessing probdeto construcD(S) and another
to answer queries. They correspond to the two stages of datiu an initialpreprocessing stage
to constructD(.S), and a subsequeqterying stagein which the data structur®(S) is used. There
may be a tradeoff between tipeeprocessing complexityand thequery complexity: D;(S) may be
faster to construct than an alternatitdg(.S), but answering queries usirg, (S) may be less efficient
thanD4(S). But our general attitude to prefér, (S) over D, (S) in this case: we prefer data structures
D(S) that support the fastest possible query complexity. Outudt is often justified because the
preprocessing complexity is a one-time cost, but query dexity is a recurring cost.

Preprocessing problems are a special cagmdfal evaluation problems. In such problems, we

construct partial answers or intermediate structurescbasgart of the inputs; these partial answers or

intermediate structures must somehow anticipate all ptessiktensions of the partial inputs.

9* 3. (C) Dynamization and Online problems. Now assume the input is a set of objects. For

Two-staged problems

example, a database might be regarded as a sét.cé#n be modified under queries, then we have a
dynamization problem: with .S and D(S) as above, we must now design our solution with an eye to
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the possibility of modifyingS (and henceD(5)). Typically, we want to insert and delete elements§'in
while at the same time, answer queriesioft) as before. A se$' whose members can vary over time
is called adynamic setand hence the name for this class of problems.

Here is another formulationwe are given a sequenéey, o, ..., r,) of requests where a request
is one of two types: either ampdate or a query. We want to ‘preprocess’ the requests in an online
fashion, while maintaining a time-varying data structupe for each update request, we modifyand
for each query request, we ugkto compute and retrieve an answdp fnay be modified as a result).

In the simplest case, updates are either “insert an objectlalete an object” while queries are “is
objectz in S?”. This is sometimes called ttset maintenance problem The preprocessing problems
can be viewed as a set maintenance problem in which we firsepsa sequence of insertions (to build
up the set5), followed by a sequence of queries.

(C1) Dynamic Ranking Problem. Any preprocessing problem can be systematically convénted
a set maintenance problem. For instance, the ranking profid) turns into thedynamic ranking
problem in which we dynamically maintain the sétsubject to intermittent rank queries. The data
structures in solutions to this problem are usually catlgdamic search trees

(C2) Graph Maintenance Problems. Dynamization problems on graphs are more complicated
than set maintenance problems (though one can still view ihaintaining a set of edges). One such
problem is thedynamic connected component problemupdates are insertion or deletion of edges
and/or vertices. Queries are pairs of vertices in the ctigexph, and we want to know if they are in the
same component. The graphs can be directed or undirected.

94. (D) Pseudo-problems. Let us illustrate what we regard to be a pseudo-problem floenview-
point of our subject. Suppose your boss asks your IT depaitttoe'build an integrated accounting
system-cum-employee database”. This may be a real wortthsioebut it is not a legitimate topic for
algorithmics because part of the task is to figure out whairthat and output of the system should
be, and there are probably other implicit non-quantifiabieda (such as available technology and
economic realities).

63. Computational Model: How do we solve problems?

Once we agree on the computational problem to be solved, vat chwose the tools for solving
it. This is given by thecomputational model Any conventional programming languages suclCas
or Java (suitably abstracted, so that it does not have finite spaceds) etc) can be regarded as a
computational model. A computational model is specified by

(a) the kind of data objects that it deals with
(b) the primitive operations to operate on these objects

(c) rules for composing primitive operations into larger ucigdledprograms.

Programs can be viewed as individual instances of a compngtmodel. For instance, the Turing
model of computation is an important model in complexitydtyeand the programs here are called
Turing machines.
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95. Models for Comparison-based Problems. The sorting problem has been extensively studied
since the beginning of Computer Science (from the 19508jtilg) is just a representative of a whole
class of problems that can be solved using the primitive lgiiipaof comparing two elements. It turns
out that there are several distinct computational modelsifoh problems. We will next describe three
of them: thecomparison tree mode] the comparator circuit model, and thetape model In each
model, the data objects are elements from a linear order.

The first model, comparison trees, has only one primitiver@jien, viz., comparing the two ele-
mentsz, y resulting in one of two outcomes < y or x > y. Such a comparison is usually denoted
“x : y". We compose these primitive comparisons intivege program by putting them at the internal
nodes of binary tree. Tree programs represent flow of coatrdlare more generally calletcision
trees Figurel(a) illustrates a comparison tree on inputy, z.

max max_ ,
T x
min min_
X
z 7
(a) Comparison Tree (b) Comparator Circuit

Figure 1: Two programs to find the maximumaafy, .

To use a comparison tree, we begin at the root, and perforindi@ated comparison, say: y. If
x < y, we proceed to the left child; otherwise, we proceed to thletrchild. We continue recursively in
this manner until we reach a leaf, and stop. Let us illustizEtewith the comparison tree in Figuiéa)
(follow the thick path from root to a leaf). Suppose our inmx =7,y =9,z = 3}. Then the
comparisonz : y at the root tells us to compafe: 9. Since7 < 9, we move to the left child. The
comparison at the left child ig: z,i.e.,9 : 3. Since9 > 3, we move to the right child. We have reached
a leaf. This leaf specifies the elementi.e., 9) which is our output. The reason for this output is that
our comparison tree is supposed to be an algorithm to find annuew of x, y, z.

So the outputs of a comparison tree are specified at eachHeainstance, if the tree is meant for
sorting, each leaf will output the sorted order of the inpit §hese examples of output only begs the
guestion: what exactly is the nature of the output at eadt? |&aere is a precise answerhe output
at each leaf must be determined from the set of relationgcialtl along the edges of the path to the
leaf. In other words, each edge of the comparison tree represaetatoonship of the forme < y
or x > y. The set of all these relationships along a path to adefasfrms a partial orde(v) on
the input set. Then the answer to our problem must be detethiig P(v). For the comparison tree
Figurel(a), you may verify that the path taken by the input= 7,y = 9, z = 3} collected the partial
orderP(v) = {z < y,y > z} which does determing (the output) as a maximum. The output at the
remaining three leaves of the tree is likewise verified.

We come to the second computational model for sorting-likablems: in the comparator circuit
model, we also have one primitive operation which takes i elements:, y and returns two out-
puts: one output isnax{x,y}, the othermin{z,y}. These are composed intircuits which are
directed acyclic graphs with input nodes (in-degre@® andn output nodes (out-degré® and some
number of comparator nodes (in-degree and out-degjredn contrast to tree programs, the edges
(calledwires) in such circuits represent actual data movement. Fi@(beshows a comparator circuit
on inputsz, y, z. Depending on the problem, the output of the comparatouitincay be the set of all
output lines ¢’, 4/, 2’ in Figurel(b)) or perhaps some subset of these lines.
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The third model for sorting is the tape model, studieddh [In this model, we assume a fixed
number of sequential tapes, where each tape can store anseqpfatems. At any moment, each tape
has a head position, and is in one of two modes, either theareadte modes. If in read (write) mode,
then the contents at the head position is read (over-wyittad we advance to the next position. We
call this read/write operations auvance operation There is one other operation on a tape, called
thereset operation This puts the tape head in the initial position, and we dmevald to change the
mode to any desired mode. Of these two primitive tape opars{it is important to understand that the
advance operation is cheap, but a reset operation is expemdeset is expensive because to get to the
beginning of a physical tape, you need to unwind the entpe ta to another initially empty spool.

One model of how tapes work is the audio cassette tape (resreimise?).
Each end of the cassette tape is attached to a separateasmbtile two spool
are positioned at a fixed distance apart. The tape is wounah @ach spoql
so that “free tape” between the two spools is held taut: tteelhposition ig
placed somewhere on the free tape. Unwinding the tape onpood iequires
a corresponding unwinding on the other spool to keep thetépe taut. Tq
“reset” means to completely unwind one of the spools. Urdikassette tape
a computer tape is wound up on one spool only. So to read/amiteuch 4
tape, we need to first physically attach the free end of thepcten tape to
another spool, and operate it like a cassette tape.

()

For the sorting problem, we initially storeitem in one tape. At the end, we expect the items to
be in sorted order, on some designated output tape. Besigdeimput and output tapes, we may use
additional tapes for intermediate operations. We have a m@mory that can only stor@ of these
items. Typically,m < n (m may even be fixed). The reading and writing on each tape casepdd
independently. We can detect the condition of reading padeist item in a tape. The sorting algorithm
dictates the input and output behavior on each tape, inojudihen to reset each tape for reading or
writing. In the Exercise, we ask you to design algorithmdwgitich tapes, minimizing the number of
passes.

The tape model was important in the early days of computingnanain memory was expensive
and physical tapes is the standard medium for storing laatghdses. Interestingly, with the advent of
the web-age, a variant of this model calltdeaming data modelis coming back. Now we are faced
with huge amounts of real time data, and instead of sortirgeften need to compute some function of
the data. Because of the large volume of data, we do not wastbte this information but allow only
one pass over the data. For more information about the tagelnwee refer to Knuthd, Chap. 5.4],
under external sorting.

96. From Programs to Algorithms. We start with a problen? that we want to solve. Lefl be

a program in a moded . To useA to solve P, we must make sure there is a match between the
data objects in the problem specification and the data abjesmddled by moded. If not, we can
often specify some suitable encoding of the former objegthb latter. Similarly, the input and output
formats of the problem must be encoded in some way. After nga&uch encoding conventions, we
may call A analgorithm for P if, for each legal input of?, the program4 indeed computes a correct
output. Thus the term “algorithm” is a semantic concephigygng a programA in its relation to some
problemP. The program itself is a purely syntactic object, capable of more thanioterpretation.
E.g., the two programs in figuf€a,b) are interpreted as algorithms to compute the maxinfurmg z;

but it is also possible to view them as algorithms for othehbems (see Exercise).
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97. Uniform versus Non-uniform Models. While problems generally admit inputs of arbitrarily
large sizes (see discussion of size below), some compuéghtizodels define programs that admit inputs
of a fixed size only. This is true of the comparison tree ancuéirmodels of computation. In order to
solve problems of infinite sizes, we must take a sequenceagframsP = (P, P», Ps,...) where

P; admits inputs of sizé. We call such a progran®? a non-uniform program since we have néa
priori relation among the differer®;’s. For this reason, we call the models whose programs adrhit o
finite size inputsnon-uniform models. The next section will introduce aniform model called the
RAM Model. Pointer machines (see Chapter 6) and Turing nmeshare other examples of uniform
models. The relationship between complexity in uniform glednd in non-uniform models is studied
in complexity theory.

8. Problem of Merging Two Lists. Let us illustrate the difference between uniform and non-
uniform algorithms. A subproblem that arises in sorting lig mmerge problem where we are
given two sorted listSz1, 22, ...,2,) and (y1,y2,...,y,) and we want to produce a sorted list

(21,22, Zm4n) Where{z1, ..., zmin} = {21, .., Zm, Y1, .., yn }. ASSumMe these sorted lists are
non-decreasing.

The ideais as follows: what should the first output elemeftWell, it is the minimum of:; andy; .
Assume this output is;. What is the next one? Well, it must be eitheror y;. So the general picture
is that, for some, j > 1, we have already output;, . .., z;_1, and we have output;, ..., y;—1. The
next output element is eithe, or y;, and this is determined by a comparisop; y;. This invariant is
easy to maintain. When one list is exhausted, we simply ddiy@remaining elements in the other list.
Here then is our algorithm, written in a non-specific psepdogramming language:

MERGEALGORITHM
Input: (x1,...,x,)and(y,...,yn), sorted in non-decreasing order.
Output: The mergelzy, ..., zm+n) Of these two lists, in non-decreasing order.
> Initialize:
i— 1,51,k 1.
> Loop:
If (x; <y;)
2 — T t—i+1,k—k+1.
else
2y — Y, J—J+1LkE—kE+1
> Terminate:
If  >m) < Thex's are exhausted, output the remainip'g
(Zks s Zman) < (Wi, Yn)-
else <« They's are exhausted, output the remaining
(Zhs v oy Zman) — (Tiye ooy Tin)-

The student should note the conventions used in our proggarols as illustrated here. First, we like
to use pseudo-code which explains in English what is inténdkhis improves understanding (exploits
what humans understand). In particular, we prefer to usdenaatical notations over programming
notations: the former is more compact and more flexible. @f®®, computers are not smart enough x <« 1, notz = 1.
to compile our programs. That is alright because our program@intended for human consumption, not z < 4, notz <= y.
computers. Second, we use indentation for program blockis+dduces clutter, improves readability. etc.
Third, like scripting languages, we do not declare our \@eis. Developmentin the text will usually tell
you how to interpret these variables, which include thgiety: Finally, we use two kinds of comments:

(> forward commenjsto describe what is coming up next, and (backward commenkdo briefly
explain the code just preceded (usually on the same line).

Pseudo-programming
language:

Chee-Keng Yap  Fundamental Algorithms, Spring 2011: Basic &rsion  September 6, 2011



§3. COMPUTATIONAL MODEL Lecture | Page 8

This Merge Algorithm is a uniform algorithm for merging twists. For eachn,n, this algo-
rithm can be “unwounded” into a comparison trgg ,, for merging two sorted lists of sizes and
n (Exercise). Hence the uniform Merge Algorithm uniquelyetatines a non-uniform algorithm
{Ty,n : m,n € N} for merging two lists.

99. Program Correctness. Recall our distinction between a “program” and an “algarith By
definition, an algorithm is a program thatderrectfor a given problem. There is an area of computer
science that formally studies program correctness, fradgical analysis of correctness concepts, to
the introduction of tools to prove correctness. Corredngslso central for us, but we are less formal
in our approach. It is usual to divide correctness into twdpaartial correctnessandhalting. The
partial correctness part says that the algorithm gives d¢inegect outputprovided it halts The halting
part simply asserts that the program always halt. Haltinghtrsometimes be trivial (e.g., in our Merge
algorithm above) but it can sometimes be highly nontriwek should say that there are some programs
in which the “halting part” requires that the program nevalt lte.g., if the program is an operating
system). But our definition of “computational problem” pikede such kinds of algorithms.

EXERCISES

Exercise 3.1: We had interpreted the programs in Figur@) and (b) as algorithms for finding the
maximum of{z, y, z}. But, the notion of an “algorithm” is a semantical concejpigl 8o can be
given differentinterpretations. Can you give a differemérpretation to these two programs? l.e.,
view them as solving a probleother thanfinding the maximum.

NOTE: For this question, we regard the output at each leafoofnaparison tree as an “interpre-
tation”. So we allow you to change the output at each leaftfieitree program and comparisons
at each internal node is unchanged). &

Exercise 3.2: (a) Extend the comparison tree program in Figl(ad so that it sorts three input elements

{z,y, 2}

(b) Extend the comparator circuit program in Figui(@) so that it sorts three input elements
{z.y, 2}

(c) In general, define what it means to say that a comparigerptogram sorts a set1, ..., x, }

of elements. &

Exercise 3.3: Design a tree program to find the second largest of the elemehtc, d. The height of
your tree should bé (the optimum). &

Exercise 3.4: Design a tree program to merge two sorted liatsy, z) and(a, b, ¢, d). The height of
your tree should bé (the optimum). &

Exercise 3.5: It is important to understand what we mean by “unwinding” &odthm into a com-
parison tree: draw the tree program corresponding to uringnithe Merge Algorithm on input
(1, x2) and(y1,y2,ys, y4). Thisis calledl: 4 in the text. O

Exercise 3.6: We consider the tape model for sorting. Design an algoritlsmgifour tapes to sort
n items inO(log n) passes. Let the four tapes be dendfedls, T3, 7y. The input is initially
in tape Ty, and your algorithm must end with the sorted iteiis You must show that your
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algorithm use(log n) passes. HINT: think of the contents of a tape as having a sequef
“runs” where each run is a maximal subsequence of non-deiagiems. If7; and7» both have
an equal number of runs, you can do a merge of correspondisgmd; and7s, and distribute
the merged runs into the other two tafggsand7}. &

Exercise 3.7:In the tape model, it is non-trivial to reverse the contetiita tape. For instance, if the
input tape containa, b, ¢, d), we want the output tape to cont&id, c, b, a). Give anO(logn)
pass algorithm to reverse a listoitems in a tape. HINT: the idea is to use the sorting scheme of
the last section, and reduce the reversal of a list to relvensaller lists, and then merge them in
reverse order: to reverde= L Lo, we recursively reversg; andLs. If the results are denoted
L} andL}, thenL’ = L, L. O

END EXERCISES

64. Complexity Model: How to assess algorithms?

We now have a suitable computational model for solving oabfam. What is the criteria to choose
among different algorithms within a model? For this, we nteidtroduce acomplexity model

In most computational models, there are usually naturabnstof time andspace These are
two examples otomputational resources Naturally, resources are scarce and algorithms consume
resources when they run. We want to choose algorithms thamizie the use of resources. For this
purpose, we shall focus on an algorithm’s usage of only os@uiee, ignoring its behavior on the other
resources. This resource is usually the time (occasiosalie) resource. Thus we avoid studying
the simultaneous usage of two or more resources, as thiv@s/the more delicate issues of trade-offs
between resources.

Next, for each primitive operation executing on a particdigta, we need to know how much of the
resource is consumed. For instance]ava, we could define each execution of the addition operation
on two numbers, b to use timelog(|a| + |b]). Or again, the comparisan: b of two integers in the
comparison tree model may be chardegl|a|+ |b|). Butit would be simpler to say that these operation
takes unit time, independent @fb. This simpler version is our choice throughout these lesigach
primitive operation takes unit time, independent of theiatarguments to the operation.

After assigning a cost to each primitive operation, for ealgiorithm A, and for each input instance
I, we could now assign a numbgr (1) which is the complexity of algorithm on input!. If X is the
input domain, then
Th: X —-R (1)

is the corresponding complexity function. K is another algorithm, we havEg : X — R. Thus
allows us to compard by comparindl’4 andT's. But we still have no way to discuss their complexity
of algorithmsA independent of other algorithms. The key is to introducetéonmf sizeon the input
domain:

size : X — N. (2)

If X,, denotes the set of all inputs of sinethen we can now measure resource usage as a function of
input size. We make a general assumption about the sizeiduntihiere are inputs of arbitrarily large

size That s, for everyr € N, there existsn > n such thatX,,, is non-empty. Note thaX,, might be
empty for arbitrarily large value af. For instance, if our input are square matrices, and we measu
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size of a matrix by the number of entries, it follows tiat is empty unless is a square (i.en = m?
for somem).

For our running example of the sorting problem, it may seetumahto define the size of an input
(a1,...,a,) to ben. But actually, this is only natural because we usually usemaational models
that compares a pair of numbers in unit time. For instanageimust encode the input as binary strings
(as in the Turing machine model), then input size is bettezrido be) ;" | (1 + log(1 + |a,|)).

Supposed is an algorithm for our problen®. For any input instancé, let 74 (I) be the total time
used byA on inputl. Naturally,T4(I) = oo if A does not halt od. Then we define theorst case
running time of A to be the functior?’4 (n) where

Ta(n) := max{Ta(I) : size(I) =n}

Using “max” here illustrates one way to “aggregate” the set of numH&rs(l) : size(l) = n}.
Another possibility is to take the average. In general, wg agply some functioid,

Ta(n) = G{Ta(I) : size(I) =n})

For instance, if7 is the average function and we gefterage time complexity

To summarize: @omplexity modelis a specification of
(a) The computational resource (e.g., time),
(b) The cost (in terms of the computational resource) of fimoperations (e.g., unit cost),
(b) The input size functiorgize : X — N), and
(b) The method~ of aggregating (e.g., worst case).
Once the complexity model is fixed, we can associate to egadritiim A a complexity function

Ts:N—R. (3

We cannot overstate the theoretical advantage of the fam¢®) over (1). Complexity theory is
founded on functions such asS]. Moreover, B) is possible thanks to the size functid?).(

910. Example (T1). Complexity of Sorting. Consider the comparison tree model for sortingAIf
is a tree program to sort elements, then the worst case complexity of just the heifthietreeA,
i.e., T4 is the height ofA. From the definition ofl’4, we can define a very interesting function: let
S(n) := inf 4 T4 whereA ranges over all comparison trees that soelements. For instance, it is easy
to see thaS(1) = 0 and.S(2) = 1. The functionS(n) captures thénherent complexity of sorting in
our computational model. It is “inherent” because it is néwaction of a single algorithm, but speaks
to all possible algorithms for sorting.

We now prove our first non-trivial result. Start with the simpbservationaany tree programA
to sortn elements must have at leadtleaves.This is becausel must have at least one leaf for each
possible sorting outcome, and there ateoutcomes when the input elements are all distinct. Buta Fraleigh’s bookA

binary treeA of heighth has at mose” leaves. Hence” > n! or b > Ig(n!). This proves: First Course in

LEMMA 1 (Information-Theoretic Bound)Every tree program for sorting. elements has height at Abstract Algebra

leastlg(n!), i.e., (Addison-Wesley
S(n) > [lg(n)]. () 1969), contain these

wise words:“Never

underestimate a

This lower bound is called thinformation Theoretic Bound (ITB) for sorting. For instance, theorem that counts
S(3) > [lg(3h)] = 3 andS(4) > [lg(4!)] = 5. This deceptively simple result is quite deep: to something”(p. 93).

2 |n situations where there is no suitable size functions, éog X = R, only an impoverished complexity theory can be . Thl.s ex_tends to
developed. inequalities like ITB.
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appreciate this fact, try to prove by direct arguments thabuld be impossible to sort four elements
with only four comparisons in the worst case.

How good is the ITB lower bound ofi(n)? Let us check this for the simplest case, where 3.
It is easy to see that you can sort three elements in at mostnPangsons: if you are given distinct
x,y, z then you can begin by comparing: y andzx : z. If you are lucky, this might end up sorting the
elements (eithey > = > z orz > = > y). Otherwise one more comparisgn z will sort the input.
This provesS(3) < 3. Combined with the ITB, we conclude th&f3) = 3.

Note carefully how the proof of (3) = 3 requires two distinct arguments: an upper bound argument
S(3) < 3 amounts to providing an algorithm. The lower bound argun$f) > 3 comes from ITB.
In a small way, this is what complexity theory is all about ttigg) good upper (by studying algorithms)
and lower bounds (by devising impossibility arguments) omputational problems.

911. Example (T2). In our RAM model (real or integer version), let the compwaél resource be
time, where each primitive operation takes unit time. Thauirsize function is the number of registers
used for encoding the input. The aggregation method is thistwase (for any fixed input size). This is
called theunit time complexity model.

9" 12. Complexity of Merging. We had just introduced the functidi{n) to capture the complexity
of sorting. We now do the same for the complexity of mergingfirte M (m, n) to be the minimum
height of any comparison tree for merging two sorted listsinésm andn, respectively. Let us prove
the following upper and lower bounds:

M(m,n)
M(m,n)

< m4+n-1 5)

> 2min{m,n} — é(m,n) (6)
whered(m,n) = 1if m = n andd(m,n) = 0 otherwise. The upper bound comes from the algorithm
for merging described ifi3. The proofideas is that each comparison results in atdeesbutput. More
formally, we devise a simpleharging schemewhereby each comparison that the algorithm makes is
“charged” to the element that is output as a result of the @ispn. But you cannot charge more than
the number of output elements. This gives an upper bourdef + n comparisons. We improve this
bound by observing that the last element can be output withiopcomparison. Hence we obtain the
sharper upper bound ef + n — 1. This charging argument is a very elementary example of wieat
call anamortized analysisin Chapter 6.

The lower bound comes from the following input instanceuassthe inputis; < zo < - -+ < x,,
andy; < --- <y, wherem > n and

1 <Y1 <2 <Y <3 < - < Ty < Yn-
Let us rename thess: elements as
21 <2< 23< 24 <25< < 2op-1< Zop

wherezo; 1 = x; andzy; = y; (i = 1,...,n). Note that the comparison : z;; must be made for
eachi=1,...,2n—1.
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Why? Because these relationships< z;, are primitive relationships. This |s
based on an important fact about partial orders (see Appdaddefinition). A
relationshipr < y in a partial orderP is primitive if it cannot be deduced from
other relationships i#. In the comparison model, every primitive relation must be
determined by a comparison.
These primitive relationships constitute the edges of actiéd graph called the
Hasse diagramof P. In practice, it is very helpful to draw such diagrams to
represenf’ for small examples.

This yields a lower bound o2n — 1 comparisons. In caser > n, there is at least one more
comparison to be made, betweghandz,, 1. So if m > n, we need at leastn comparisons. This
provesM (m,n) > 2n — §(m,n), wheren = min{m,n}. This method of proving lower bounds is
simple form of what are calleddversary argumentsin Lecture 12, where you imagine a 2-player
game between the algorithm and an adversary.

As corollary of the upper and lower bounds, we obtain sometdsaunds for the complexity of
merging:
M(m,m)=2m—1

and
M(m,m+ 1) =2m.

Thus the uniform algorithm is optimal in these cases. Momegally, M (m,m + k) = 2m + k — 1
fork = 0,...,4andm > 6 (see B] and Exercise). These bounds are for inputs where- n| is a
small constant. Now consider the other extreme situatioerafiv. — n| are large as possibléZ (1, n).
In this case, the information theoretic bound says @1, n) > [lg(n + 1)] (why?). Also, by binary
search, this lower bound is tight. Hence we now know anotkactevalue:

M(1,n) = Ng(n +1)].
A non-trivial result from Hwang and Lin says
M(2,n) = [lg7(n +1)/12] + [Ig14(n + 1)/17] .

In analogy to §), we have thénformation-theoretic bound (ITB) for merging:

M(m,n) > g <an; ") (7)

In proof, there are(m:”) ways of merging the two sorted lists, and any To see this, iingatpat we
already have the sorted list of + n elements: but which of these elements come from the listzef si
m? There are{m;") ways of choosing these elements.

Thus we have two distinct methods for proving lower boundd&mn, n): the adversary method is
better wherjm — n| is small, and the information theoretic bound is better witésgap is large. The
exact value of\f (m, n) is known for several other cases, but a complete descripfitiis complexity
function remains an open problem.

9 13. Other Complexity Measures. We briefly look at some other kinds of complexity measures.

¢ In computational geometry, it is often useful to take theaotisize into account. The complexity
function would now take at least two argumenfsn, k&) wheren is the input size, buk is the
output size. This is theutput-sensitive complexity model
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e Another kind of complexity measure is tls&ze of a program. In the RAM model, this can be
the number of primitive instructions. We can measure theptexity of a problemP in terms of
the sizes(P) of the smallest program that solvés This complexity measure assigns a single
numbers(P), not a complexity function, t@®. This program size measureis an instance of
static complexity measure in contrast, time and space are examplesiyofamic complexity
measures Here “dynamic” (“static”) refers to fact that the measuspdnds (does not depend)
on the running of a program. Complexity theory is mostly deped for dynamic complexity
measures.

e The comparison tree complexity model ignores all the otbemgutational costs except compar-
isons. In most situations this is well-justified. But it isgsibl€ to create conjure up ridiculous
algorithms which minimize the comparison cost, at an exarticost in other operations.

e The size measure is relative to representation. Perhap®yheroperty of size measures is that
there are only finitely many objects up to any given.siéthout this, we cannot develop any
complexity theory. If the input set are real numbésthen it is very hard to give a suitable size
function with this property. This is the puzzle of real cortgtion.

EXERCISES

Exercise 4.1: How many comparisons are required in the worst case td 8@fements in the compar-
ison tree model? In other words, give a lower bound@h0). HINT: to do this computation by
hand, it is handy to know thaon! = 3, 628, 800 and22° = 1,048, 576. O

Exercise 4.2: How good is the information theoretic lower bound? In otheras, can we find upper
bounds that matches the information-theoretic lower b8uA& know it is tight forS(3). What
aboutS(4)? What ofS(5)? O

Exercise 4.3: The following is a variant of the previous exercise. |s itaj\s possible to sortelements
using a comparison tree wittl leaves? Check this out far= 3, 4, 5. &

Exercise 4.4: (a) Consider a variant of the unit time complexity model foe integer RAM model,
called thelogarithmic time complexity model. Each operand takes time that is logarithmic in
the address of the register and logarithmic in the size @jdiesands. What is the relation between
the logarithmic time and the unit time models?

(b) Is this model realistic in the presence of the arithmefierators (ADD, SUB, MUL, DIV).
Discuss. &

Exercise 4.5: Describe suitable complexity models for the “space” reseun integer RAM models.
Give two versions, analogous to the unit time and logarithtime versions. What about real
RAM models? &

Exercise 4.6: Justify the claim thab/ (1, n) = [lg(n + 1)]. &

3 My colleague, Professor Robert Dewar gives the followingregle: givenn numbers to be sorted, we first search for all
potential comparison trees for sortimgelements. To make this search finite, we only evaluate casguatrees of height at
mostn [lgn]. Among those trees that we have determined to be able torg®gick one of minimum height. Now we run this
comparison tree on the given input.
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Exercise 4.7: Give your best upper and lower bounds fai(2, 10). For upper bound, please give an
explicit method. &

Exercise 4.8: Prove thatM (m,m + i) = 2m +1i — 1 fori = 2,3,4form > 6. &

Exercise 4.9: Prove thatV/ (k, m) > klg,(m/k) for k < m. HINT: split the list of lengthmn into three
sublists of roughly equal sizes. &

Exercise 4.10: Open problem: determin&/ (m, 3) andM (m, m + 5) for all m. o

Exercise 4.11: With respect to the comparator circuit and tree program risade3, describe suitable

complexity models for each. &
Exercise 4.12: SupposeXy, .. ., X,, aren sorted lists, each with elements. Show that the complexity
of sorting the seiX = |J!"_; X; is ©(nklogn). O

END EXERCISES

65. Algorithmic Techniques: How to design efficient algorithms

Now that we have some criteria to judge algorithms, we begimdsign algorithms that are
“efficient” according to such criteria. There emerges somreegal paradigms of algorithms design:
(i) Divide-and-conquer (e.g., merge sort)
(ii) Greedy method (e.qg., Kruskal’s algorithm for minimugesining tree)
(iii) Dynamic programming (e.g., multiplying a sequencetdtrices)
(iv) Incremental method (e.g., insertion sort)

Let us briefly outline the merge sort algorithm to illustrétie divide-and-conquer paradigm: Sup-
pose you want to sort an array of n elements. Here is thiglerge Sort (or Mergesort) algorithm on
input A:

MERGE SORT ALGORITHM

Input: An array A with n > 1 numbers.

Output: The sorted arrayl containing these numbers, but in non-decreasing order.

0. (Basis) Ifn = 1, return the arrayl.

1. (Divide) Divide the elements of into two subarray$3 andC of sizes|n/2] and[n/2] each,
2. (Recurse) Recursively, call the Merge Sort algorithnBorDo the same fo€'.

3. (Conquer) Merge the sorted arraysandC into the arrayA

It is important to note that this is a recursive algorithme #igorithm calls itself on smaller size
inputs. E.g., to Merge Sofu, b, ¢, d), you have to recursively Merge Sqt, b) and (¢, d). Besides
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recursion, there is only one non-trivial step in this algor, the Conquer Step which merges two
sorted arrays. The subalgorithm for merging was alreadygorane8.

There are many variations or refinements of these paradigms.Kirkpatrick and Seidel] intro-
duced a form of divide-and-conquer (called “marriage-befdividing”) that leads to an output-sensitive
convex hull algorithm. There may be domain specific versfithese methods. E.g., plane sweep is
an incremental method suitable for problems on points ifiliean space.

Closely allied with the choice of algorithmic techniquetie thoice oflata structuresA data struc-
ture is a representation of a complex mathematical stra¢guch as sets, graphs or matrices), together
with algorithms to support certain querying or updatingragiens. For instance, to implement recursive
algorithms such as Merge Sort above, we will need the use stfa&K” to organize the recursive calls.
A stack is an example of a basic data structure. The followiega list of such basic data structures.

(a) Linked lists: each list stores a sequence of objects together with opasator (i) accessing the
first object, (ii) accessing the next object, (iii) insegtia new object after a given object, and (iv)
deleting any object.

(b) LIFO, FIFO queues: each queue stores a set of objects under operations fotiamsand deletion
of objects. The queue discipline specifies which object ibetaleleted. There are tdibasic
disciplines: last-in first-out (LIFO) or first-in first-ouE(FO). Note that recursion is intimately
related to LIFO.

(c) Binary search trees: each tree stores a set of elements from a linear orderinghegeith the
operations to determine the smallest element in the set¢fdingn a given element. A dynamic
binary search tree supports, in addition, the insertiondsietion of elements.

(d) Dictionaries: each dictionary stores a set of elements and supports thatmpes of (i) inserting a
new element into the set, (ii) deleting an element, andtég}ing if a given element is a member
of the set.

(e) Priority queues: each queue stores a set of elements from a linear orderiethergwith the oper-
ations to (i) insert a new element, (ii) delete the minimuen&nt, and (iii) return the minimum
element (without removing it from the set).

EXERCISES

Exercise 5.1: (a) Design an incremental sorting algorithm based on tHewirhg principle: assuming
that the firstn elements have been sorted, try to add (“insert"ythe- 1st element into the first
m elements to extend the inductive hypothesis. Moreovenmasghat you do all these operations
using only the space in the original input array.

(b) If the numbem of elements to be sorted is small (say< C), this approach can lead to a
sorting algorithm that is faster than Merge Sort. Intuiieis because Merge Sort uses recursion
that has non-trivial overhead cost. So a practical impleatem of Merge Sort might switch an
incremental sorting method as in part(a) when< C. Design such a hybrid algorithm that
combines the Merge Sort algorithm with your solution in (a).

(c) Implement the Merge Sort Algorithm, your incrementattisg algorithm of part(a), and the
hybrid algorithm in part(b). Try to see if you can experinalytverify our remarks in (b), and
determine the constant. &

4 A discipline of a different sort is called GIGO, or, garbagegarbage-out. This is really a law of nature.
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END EXERCISES

66. Analysis: How to estimate complexity

We have now a measufg, of the complexity of our algorithmi, relative to some complexity
model. Unfortunately, the functiofi, is generally too complex to admit a simple description, doe¢o
expressed in terms of familiar mathematical functionstdad, we aim to give upper and lower bounds
onT4. This constitutes the subject afgorithmic analysis which is a major part of this book. The
tools for this analysis depends to a large extent on the idihgoic paradigm or data structure used by
A. We give two examples.

914. Example (D1) Divide-and-Conquer. If we use divide-and-conquer then it is likely we need to
solve some recurrence equations. In our Merge Sort algorilssuming: is a power of2, we obtain
the following recurrence:

T(n)=2T(n/2)+ Cn

forn > 2and7(1) = 1, andC > 1 is some constant determined by the complexity of merging.
HereT'(n) = Ta(n) is the (worst case) number of comparisons needed by ourithigoA to sortn
elements. The solution iB(n) = ©(nlogn). In the next chapter, we study techniques to obtain such
solutions.

915. Example (D2) Amortization. If we employ certain data-structures that might be desdrimee
“lazy” then amortization analysis might be needed. Letlusitate this with the problem of maintaining
a binary search tree under repeated insertion and deldtielerments. Ideally, we want the binary tree
to have heighO(log n) if there aren elements in the tree. There are a number of known solutians fo
this problem (see Chapter 3). Such a solution achieves thmalpgogarithmic complexity foreach
insertion/deletion operation. But it may be advantageousetlazy about maintaining this logarithmic
depth property: such laziness may be rewarded by a simptingor programming effort. The price
for laziness is that our complexity may be linear for indivéd operations, but we may still hope to
achieve logarithmic cost in an “amortized” sense (thoudlasoa kind of averaging). To illustrate this
idea, suppose we allow the tree to grow to non-logarithmgtllas long as it does not cost us anything
(i.e., there are no queries on a leaf with big depth). But when we haanswer a query on a “deep
leaf”, we take this opportunity to restructure the tree s the depth of this leaf is now reduced (say
halved). Thus repeated queries to this leaf will make itlshal The cost of a single query could be
linear time, but we hope that over a long sequence of suchegjehe cost is amortized (averaged)
to something small (say logarithmic). This technique pnés@n adversary from repeated querying of
a “deep leaf”. But how do we account for the first few querigs isome “deep leaves” which have
linear costs? To anticipate such expenses, the idea is¢ecimarge” those initial insertions that lead to
this inordinate depth. Using a financial paradigm, we puptteepaid charges into some bank account.
Then the “deep queries” can be paid off by withdrawing frons #iccount. Amortization is both an
algorithmic paradigm as well as an analysis technique. Whidbe treated in Chapter 6.

67. Asymptotics: How robust is the model?

This section contains important definitions for the reshefibook. ‘
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We started with a problent?), selected a computational mod&8) and an associated complexity
model ¢4), designed an algorithn§g) and managed to analyze its complexigg), Looking back
at this process, we are certain to find some arbitrarinesarictoices. For instance, would a simple
change in the set of primitive operations change the conitglekyour solution? Or what if we charge
two units of time for some of the operations? Of course, tieene end to such revisionist afterthoughts.
What we are really seeking is a certain robustness or invegian our results.

916. Partial and total functions. Let f : D — R be a function, wher® is called thedomain andR

therange. In ordinary discourse, this is understood to mean thatfener € D, the functionf returns

avaluef(z) € R. We are now going to consider a slightly more general cond#ptcallf : D — R

a partial function if for all x € D, either f(z) is eitherdefined in which casef(z) represents an 1 could be viewed as a
element ofR, or elsef (x) is undefined and does not represent anything. We shall write wfite) =1 special value, buf

if f(x) is undefined, and writ¢ (z) =] if it is defined. The partial functiorf is said to be aotal cannot be viewed this
function if for all = € D, f(x) is defined (and hencgz) € R). In other words, total functions are the way: it is a surrogate
kind of functions we ordinarily assume. But in the presérafepartial functions, we need to give it a for all other values
name.

917. What is a complexity function? In this book, we call a partial function of the form
f:R" =R

a complexity function. Usually, we haver = 1. We use complexity functions to quantify the com-
plexity of algorithms. Why do we consideartial functions for complexity functions? For one thing,
many functions of interest are only defined on positive iateg For example, the running tirdg (n)

of an algorithmA that takes discrete inputs is a partial real function (ndlsndefined only whem: is

a natural number). Of course, if the domairiiof is taken to beN, thenT'4 (n) might perhaps be total.
So we prefer to usk as the domain df’4 (n). This is because we often use functions sfigh) = n/2

or f(n) = v/n, to bound our complexity functions, and these are natudfjned on the real domain;
all the tools of analysis and calculus becomes available&tyae such functions. Many common real
functions such ag(n) = 1/n or f(n) = logn are partial functions becausén is undefined at. = 0
andlog n is undefined fon < 0.

We have to be careful about operations on partial functiang,when they are used to define predi-
cates. We have a general rule for composition of two pauiatfionsf, ¢ : R — R:

g(x) =T implies f(g(z)) =T . (8)

More generally, if any argument of a function is undefinedntkthe value of the function is undefined.

918. Partial Predicates. For any setD, a partial functionP : D — {0,1} is called apartial
predicate over D. We say the predicat® holds atz € D if P(z) = 1. Sol is the “true” value and
0 is the “false” value. The partial predicateis valid if for all € D, eitherP(x) =1 or P(z) = 1.

If P(z) =1 forall z € D, then we sayP is vacuouslyvalid. Partial predicates arise naturally from
relations among partial functions. ff g are complexity functions, then the relatiofi < ¢” represents
the partial predicaté® : R — {0,1} whereP(z) =1 if f(x) =7 or g(x) =7; otherwise,P(z) =|.
Naturally, whenP(z) =], we haveP(z) = 1iff f(x) < g(z).

Quantification over partial predicates is defined as foltollee sentence(Vx € D)P(x)” holds iff
forall z € D, eitherP(z) =1 or P(x) = 1. Similarly “(3z € D)P(x)” holds iff there is some: € D

5 We remark that the literature sometimes use the notatiornD --> R to indicate thatf is a partial function. However, we
shall not use this ““»" notation.
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such thatP(z) = 1. This can be generalized to nested quantifiers. Note thhtavibtal predicaté”,
we have the property that eithéfz € D)P(z) holds or or(3z € D)P(z) holds. This property fails
whenP is a partial predicate that is vacuously valid.

919. Designated variable and Anonymous functions. In general, we will write 12" and “log «” to
refer to the functiong (n) = n? or g(z) = log z, respectively. Thus, the functions denotedor log =
areanonymous(or self-naming). This convention is very convenient, buelies on an understanding
that “n” in n? or “z” in log « is thedesignated variablein the expression. For instance, the anonymous
complexity functior2®n is a linear function ifn is the designated variable, but an exponential function
if 2 is the designated variabl€he designated variable in complexity functions, by défimjrange over
real numbers.This may be a bit confusing when the designated variable’isihce in mathematical
literature,n is usually a natural number.

920. Robustness or Invariance issue. Let us return to the robustness issue which motivated this
section. The motivation was to state complexity results ttzve general validity, or independent of
many apparently arbitrary choices in the process of degioimr results. There are many ways to achieve
this: for instance, we can specify complexity functions aggolynomial smearing”. More precisely,
two real functionsf, g,are polynomially equivalent if for somec > 0, f(n) < cg(n)¢ andg(n) <
cf(n)¢ for all n large enough. Thus/n andn? are polynomially equivalent according to this definition.
This isextremelyrobust but alas, too coarse for most purposes. The mostyagdekpted procedure is
to take two smaller steps:

e Step 1: We are interested in the eventual behavior of funsti&.g., if7’(n) = 2™ for n < 1000
andT'(n) = n for n > 1000, then we want to regarfi(n) as a linear function.

e Step 2: We distinguish functions only up to multiplicativenstants. E.gx/2, n and10n are
indistinguishable,

These two decisions give us most of the robustness proparéelesire, and are captured in the follow-
ing language of asymptotics.

921. Eventuality. This is Step 1 in our search for invariance. Given two funwjove say f < g

eventually’, written
f<gl(ev), 9)

if f(z) < g(x) holds for allz large enough. More precisely, this means there is segreaich that the

following statement is valid:
(Va)[z = 2o = f(z) < g(a)]. (10)

The meaning of10) is a bit subtle becausgandg are only partial functions. The universal quantifier
“(Vx)” should be modified into: (vx such thatf(z) =] andg(x) =[)". Likewise, if we have an
existential quantifier,(3x)”, it should be modified into: (3z such thatf (x) =| andg(z) =])".

By not caring about the behavior of complexity function ogeme initial values, our complexity
bounds becomes robust against the followtalgle-lookup trick. If A is any algorithm, relative to to
any given finite sef of inputs, we can modifyl so that ifz € S, then the answer for is obtained by a
table lookup; otherwise, the answer is computed by rundirmg . The modified algorithmd’ might
be much faster thad for all x € S, but it will have the same “eventual” complexity as Thus, the
complexity of A and A’ are indistinguishable using our eventuality criterion.
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To explicitly show the role of the variable we may also writeq) as

f(z) < g(z) (ev.x).

Arelated notion is this: say < g infinitely often, written “f (z) < g(x) (i.0.z)", if there are infinitely
manyz such thatf(x) =, g(z) =], andf(x) < g(z). If ¢ < f (ev) andf < g (ev.), then clearly
g = f (ev.). Most natural functiong in complexity satisfy some rather natural properties:

e fis eventually definedf(z) =] (ev.).

e f is eventually non-negative, > 0 (ev.).

When these properties fail, our intuitions about compieftinctions may go wrong.

922. Domination. We now take Step 2 towards invariance. We gaipminates f, written

[ =g,

if there exista” > 0 such thatf < C'-g¢ (ev.). The symbol <’ is intended to evoke the<’ connection.
In particular, it should suggest the transitivity properfy< g andg < h implies f < h. Of course, the
reflexivity property holds;f < f. We can also write f > ¢” instead ofg < f. If f < gandg < f
then we write

f=g.

Clearly = is an equivalence relation. The equivalence classesisf(essentially) thé-order of f;
more on this below. Iff < g but notg < f then we write

[ =g

E.g., 1+ % < n < n?. Thus the triplet of notation, <, < for real functions correspond to the
binary relations<, <, = for real numbers. The basic properties of domination argasigd by this
correspondence: sinee< y andy < z impliesz < z, we might expecf < g andg =< h to imply

f = h (this is true).

Domination provides “implementation platform indepenckehfor our complexity results: it does
not matter whether you implement a given algorithm in a higtel program language likéava or
in assembly language. The complexity of your algorithm iestlhimplementations (if done correctly) One form of Moore’s
will be dominated by each other (i.e., safmeorder). This also insulates our complexity results agains law predicts that the
Moore’s Law: over a limited time period, the timing of our atfhms keeps the sant@-order. Of speed of hardware will
course, Moore’s law cannot hold indefinitely because of aydimits, but the end is not in sight yet. keep doubling every 18
months.

923. The Big-Oh Notation. We write
o(/f) .
(and readbrder of f or big-Oh of f) to denote the set of all complexity functiopsuch that The key asymptotic

notation to know!
0=xg=/.

Note that each function i@ (f) dominated, i.e, is eventually non-negative. Thus, restricted to func-
tions that are eventually non-negative, the big-Oh notafieewed as a binary relation) is equivalent to

domination. big-Oh is almost the

same as domination
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We can unroll the big-Oh notation as follows: To praye= O(f), you
need to show som@ > 0 andz, such that for allz > z, if g(z) =]
and f(z) =] then0 < g(z) < Cf(x). Remember your epsilon-delta
argumentin Calculus? Well, the Computer Science analogtreeC'-z
argument.

E.g., The selO(1) comprises all functiong that is bounded and eventually non-negative. The
function1 + 1 is a member o®(1).

The simplest usage of thi8-notation is as follows: we write

9 =0(f)

(and read ¢ is big-Oh of f* or * g is order of f’) to meang is a member of the s€?( f). The equality
symbol ‘=" here is “uni-directional”.g = O(f) does not mean the same thing@a&f) = g. Below, we
will see how to interpret the latter expression. The equalimbol in this context is called @ne-way
equality. Why not just use¢’ for the one-way equality? A partial explanation is that @eenmon use
of the equality symbol has a uni-directional flavor where r@@s$form a formula from an unknown form
into a known form, separated by an equality symbol. Our oag-@quality symbol fo)-expressions
lends itself to a similar manipulation. For example, thédiwing sequence of one-way equalities

Fm) =3+ = (z ) + (Z %) = O(n) + O(nlogn) = O(n?)

i=1 i=1 i=1

may be viewed as a derivation to shgvis at most quadratic.

9" 24. Big-Oh Expressions. The expression®(f(n))" is an example of ar®¥-expression, which
we now define. In any-expression, there is designated variablewhich is the real variable that
goes$ to infinity. For instance, th€-expressiorO(n*) would be ambiguous were it not for the tacit
convention that#’ is normally the designated variable. Hencés assumed to be constant. We shall
defineO-expressionsas follows:

(Basis) If f is the symbol for a function, thefiis anO-expression. If is the designated variable for
O-expressions anda real constant, then bothand ‘¢’ are alsoO-expressions.

(Induction) If E, F' are O-expressions ang is a symbol denoting a complexity function then the
following areO-expressions:

O(E), f(E), E+F, FEF, —E, 1/E, EF.

EachO-expressiorty denotes a set of partigl real functions in the obvious manner: in the baaise,
a function symbolf denotes the singleton sgt= { f}. Inductively, the expressiof + F' (for instance)

denotes the se?f:—/F of all functionsf + g wheref < E andg € F. Similarly for

—

[(E), EF, —E, EF

The setlA/E is defined a{l/g LgeB) &0 = g} . The most interesting case is the expressiji),
called a “simple big-Oh expression”. In this case,

O(B)={f:(Gge B0 = f=g)}.

SMore generally, we can considerapproaching some other limit, suchs
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Examples of0-expressions:

2" — O(n?logn), pntOogn) J(+0(1/n)) —g(n).

Note that in general, the set of functions denoted byaexpression need not dominatelf £, F’
are two(-expressions, we may write
E=F

to denoteF’ C F, i.e, the equality symbol stands for set inclusion! This gerieealour earlier f =
O(g)” interpretation. Some examples of this usage:

O(?’L2) _ 5O(logn) _ (/)(nlogn)7 n —+ (logn)O(\/ﬁ) _ nloglogn’ on — O(l)n—O(l).

An ambiguity arises from the fact that@ does not occur in atD-expression, it is indistinguishable
from an ordinary expression. We must be explicit about oterition, or else rely on the context in
such cases. Normally, at least one side of the one-sidediequa’ = F’ contains an occurrence of
‘O’, in which case, the other side is automatically assumedetarO-expression. Some common
O-expressions are:

e (O(1), the bounded functions.

e 1+ O(1/n), aset of functions that tends tg.

O(n), the linearly bounded functions.
e n°W the functions bounded by polynomials.

e O(1)™ or2°(, the functions bounded by simple exponentials.

O(logn), the functions bounded by some multiple of the logarithm.

9* 25. Extensions of Big-Oh Notations. We note some simple extensions of thenotation:

(1) Inequality interpretation: For O-expressiongr, F', we may writeEl # F' to mean that the set of
functions denoted by is not contained in the set denoted By For instancef(n) # O(n?) means
that for allC' > 0, there are infinitely many such thatf (n) > Cn?.

(2) Subscripting convention: We can subscript the big-Oh’s in &hexpression. For example,

Oa(n), O1(n*) + Oz(nlogn). (11)

The intent is that each subscript,(1, 2) picks out a specific but anonymous function in (the set de-
noted by) the unsubscript&@-notation. Furthermore, within a given context, two oceuges of an
identically subscripted-notation are meant to refer to the same function. For siisdrexpressions,

it now makes sense to use inequalities, asfi’* O4(g)" or“ f < O1(g)".

For instance, ifA is a linear time algorithm, we may say that funs in timeO 4 (n)” to indicate
that the choice of the functio® 4 (n) depends om. Further, all occurrences of?4(n)” in the same
discussion will refer to the same anonymous function. Agammay write

n2% = Or(n), n2*=0,(2%)

depending on one’s viewpoint. Especially useful is theigbtb do “in-line calculations”. As an
example, we may write
g(n) = Ox(nlogn) = Oa(n?)

where, it should be noted, the equalities here are true iggalf functions.
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(3) Another possible extension is to multivariate real tiots. For instance consider the notation
“f(z,y) = O(g(x,y))” where we view bothr andy are designated variables. I.e., there exist constants
C > 0,z0,yo such that for ale > z¢,y > vo, f(z,y) > Cg(z,y). In practice, such extension is
seldom needed.

9 26. Related Asymptotic Notations. We now introduce several other related asymptotic notation
besides big-OlD( ), we have big-Omegf(f), Theta®(f), small-oho(f), and small-omega( f).
Before formally defining them, we give provide an initialiitton using the following correspondences:

| Notation [ Symbol | Rough Meaning
big-Oh g=0(f) g<f
big-Omega || g = Q(f) g>f
Theta g=0(f) g=1r
small-oh g=0o(f) g f
small-omegal| g = w(f) g>f

Big-Omega notation: Q(f) is the set of all complexity functionssuch that for some constafit> 0,
C-g>f>0(ev).

Of course, this can be compactly written@s- f > 0. Note thatQ)(f) is empty unless it is
eventually non-negative. Clearly, big-Omega is just theerse of the big-Oh relationg is in

Q(f) iff f = O(g).
Theta notation: O(f) is the intersection of the se€3(f) andQ(f). Sogisin©(f)iff g < f.

Small-oh notation: o(f) is the set of all complexity functionssuch that for al”' > 0, SoC can be arbitrarily

small!
C-f>g>0(ev,).

As usual, we writgy = o(f) to meang € o(f). For instance, witlf (x) = 1/x andg(z) = 1,
we conclude that /= = o(1). Also, we have the relation(f) C O(f). Itis sometimes useful to
have the a binary relation symbol for Small-oh that is thd@gaus to< for Big-Oh. Thus, let
us define

g==f
to mean that foralC' > 0, C - f > g (ev.). =< corresponds tok’
An alternative definition of small-oh found in the literaguis this: ‘g = o(f)” (in quotes) if
g(x)/f(z) — 0 asxz — oo. This definition is equivalent to ours ff(x) > 0 (ev.). Our definition
avoids the use of limits and seems easier to use. A relatediois this: we say

f~yg
if f=gxo0(g)orf(x)=g(x)[l=£o(1)]. This says thaf andg approximates each other with
relative error ofo(1). Son ~n+ Ign.

Small-omega notation: w( f) is the set of all functiong such that for allC' > 0,
C-g>f>0(ev).

Clearlyw(f) C Q(f). Again, the usual limit-based definition of “= w(f)” (in quotes) is that
g(x)/f(z) = oo asz — oo.
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For each of these notations, we again definestiestpressionsdq € {2, ©, 0,w}), use the one-way
inequality instead of set-membership or set-inclusiom, @mploy the subscripting convention. Thus,
we write “g = Q(f)” instead of saying § is in Q(f)”. We call the seb(f) theo-order of f. Here are
some immediate relationships among these notations:

o [=0(g)iff g =Q(f).

o [=0(g)iff f=0(g)andf = Q(g).
e f=0(f)andO(0O(f)) = O(f).

o f+o(f)=0(f)

e o(f) € O(f).

o g=w(f)iff f=o(g).

9 27. Varieties of Lower Bounds. It is instructive to explore the notions of a lower bound — one
motivation is that lower bounds concepts are often misusdtie literature. In the following, let us
assume that, ¢ > 0 (ev.). How can we express lower bounds on a complexity fongt

e One way is to say thatis a lower bound orf is f = Q(g). This translates into

(3C > 0)(3no)(Yn > ng)[f(n) > Cg(n)]. (12)

e But we could also negate the upper bound statenfieatO(g). Thus the statement # O(g)
gives another kind of lower bound gh

(VC > 0)(Vno)(3n > no)[f(n) > Cg(n)]. (13)

e Using the small-omega and small-oh notations, we have teratays to state lower bounds.
Thusf = w(g) translates into

(VC > 0)(3no)(Vn > no)[f(n) > Cg(n)]. (14)
e And finally f # o(g) translates into
(3C > 0)(¥no)(In > no)[f(n) > Cg(n)]. (15)

Notice that the matrix[/f (n) > Cg(n)]" is common to all the lower bound statemernt&)~(15). These
four lower bound notations are related as follows:

f=Q(g) = f #o(g) (16)
and

f=wlg) = f+#0(9) (7)

See Exercises to see how these are used in practice. For lexéehps prove that for alt < &/,
n* £ 0nk).

Supposer*’ = O(n*). Then thereis & > 0 such that* < Cn* (ev.). That means” % < C (ev.).
This is a contradiction becaugé is unbounded for any > 0.

We remark that we could likewise introduce four ways of sigtipper bounds.
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9 28. Discussion of asymptotic notations. There is some debate over the best way to define the
asymptotic concepts in computer science. So it is not singrithat there is considerable divergence
on the details in the literature (be warned!). Here we natetjuo alternatives:

e Perhaps the most common definition follows Knuthg. 104] who defines¢' = O(f)” to mean
there is som& > 0 such that f(z)| dominateg”|g(z)|. Using this definition, bott®(— f) and
—O(f) would mean the same thing éX f). But our definition allows us to distinguiébetween
14+ 0O(1/n)andl — O(1/n). Note thaty = 1 — O(f) amountstal — C'f < f <1 (ev.). When
an big-Oh expression appears in negated form as®i1/n), it is really a lower bound

e Again, we could have defined?(f)” more simply, as comprising thosg such thaty < f.
That is, we omit the requiremefit=< ¢ from our original definition. This alternative definition
is attractive for its simplicity. But the drawback of thiggilified “O(f)” is that it contains
arbitrarily negative functions. The expressiba O(1/n) is useful as an upper and lower bound
under our official notation. But with the simplified definiticthe expressionl“— O(1/n)” has no
value as an upper bound. Our official definition opted for sihing that is intermediate between
this simplified version and Knuth’s.

We are following Cormen et all] in restricting the elements & (f) to complexity functions that
dominate0. This approach has its own burden: thus whenever we gay ©O(f)”, we have to check
thatg dominated) (cf. exercise 1 below). In practice, this requirement ismatch of a burden, and is
silently passed over.

A common abuse is to use hig-Oh notations in conjunction thighinequality symbol<). Itis very
tempting to write '/ (n) < O(g)” instead of the correctf(n) = O(g)". At best, this is redundant. The
problem is that, once this notation is admitted, one may éndburse of a long derivation eventually
write “ f(n) > O(FE)” which is not very meaningful. Hence we regard any usecadr > symbols in
O-notations as illegitimate (but this is legitimate agaimlenthe subscripting conventiohl)).

Perhaps most confusion (and abuse) in the literature drisasthe variant definitions of the-
notation. For instance, one may have only shown a lower bofitide form f # O(g) or f # o(g)
result, but this this viewed as a proof f= Q(g) or g = w(g). We see from16) and (L7) that these
are quite different.

Evidently, these asymptotic notations can be intermixed.,B(n®(°¢™) — Q(n). However, they
can be tricky to understand and there seems to be little reetthém. Another generalization with
some applications are multivariate complexity functionstsasf (x,y). They do arise in discussing
tradeoffs between two or more computational resources asigpace-time, area-time, etc. In recently
years, the study of “parametrized complexity” has givernepia of multivariate complexity functions
where some of the size variables controls the “parametéitsieqproblem.

EXERCISES

Exercise 7.1: Our asymptotic notations falls under two grous; 2, © ando,w. In the first group,
we haved(f) = O(f) N Q(f). This suggests the “small-theta” analogue for the secoadgr
“O(f) = o(f) Nw(f)". Why was this not done? O

Exercise 7.2: Assumef(n) > 1 (ev.,).
(a) Show thatf (n) = n®() iff there existsk > 0 such thatf(n) = O(n*). This is mainly an

7 On the other hand, there is no easy way to recover Knuth'sitiefirusing our definitions. It may be useful to retain Knsth’
definition by introducing a special notatioh®|(f(n))”, etc.
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exercise in unraveling our notations!
(b) Show a counter example to (a) in cg¥e) > 1 (ev.) is false. &

Exercise 7.3: Prove or disprovef = O(1)" iff f = 29, o

Exercise 7.4:1f P, : S — {0,1} are partial predicate§ = 0, 1) over some domaity, then so are
-P;, Py vV P, andPy A P, where we use the rule thatPy (x), Py(x) V Pi(z), Po(z) A Py (x) are
all undefined wherPy(z) =1. Show that de Morgan’s law for quantifiers hold(Vz) P(z) is
equivalent toq3xz)—-P(z) and—(3z) P(z) is equivalent tqVz)—P(x).

Exercise 7.5: Unravel the meaning of th@-expression:l — O(1/n) + O(1/n?) — O(1/n?). Does
the O-expression have any meaning if we extend this into an iefiexipression with alternating
signs? &

Exercise 7.6: For basic properties of the logarithm and exponential fionst see the appendix in the
next lecture. Show the following (remember thais the designated variable). In each case, you
must explicitly specify the constantsg, C, etc, implicit in the asymptotic notations.

(@) (n + ¢)¥ = ©(n*). Note thate, k can be negative.

(b) log(n!) = ©(nlogn).

(c)n! = o(n™).

(d) [logn]! = Q(n*) for anyk > 0.

(e) [loglogn]! < n (ev.). O

Exercise 7.7: Provide either a counter-example when false or a proof when {The basé of loga-
rithms is arbitrary but fixed, andl > 1. Assume the functiong, ¢ are arbitrary (do not assume
that f andg are> 0 eventually).

(2) f = O(g) impliesg = O(f).

(b) max{f, g} = O(f +g).

(©)If g > 1andf = O(g) thenln f = O(ln g). HINT: careful!

(d) f = O(g) implies f o log = O(g o log). Assume thay o log and f o log are complexity
functions.

(e) f = O(g) implies2f = O(29).

(f) f = o(g) implies2f = O(29).

@) f =0O(f?).
(h) f(n) = ©(f(n/2)). o
Exercise 7.8: Re-solve the previous exercise, assuming fhat> 2 (ev.). &

Exercise 7.9: Let f(x) = sinz andg(z) = 1.
(i) Prove f < g or its negation.
(ii) Proveg < f or its negation.

HINT: To prove thatf £ g, you need to show that fall choices ofC' > 0 andzy > 0, some
relationship betweerf andg fails. &

Exercise 7.10: This exercise shows three (increasingly strong) notionfower bounds. Suppose
T'a(n) is the running time of an algorithm.
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(a) Suppose you have constructed an infinite sequence dbifpus, . . . of sizesn; < ny < ---
such thatA on I; takes time more thafi(n;). How can you express this lower bound result using
our asymptotic notations?

(b) In the spirit of (a), what would it take to prove a lower Ingiof the formT4 (n) # O(f(n))?
What must you show about of your constructed inplytds, . . ..

(c) What does it take to prove a lower bound of the fara(n) = Q(f(n))?

O

Exercise 7.11: Show some examples where you might want to use “mixed” asyticpexpressions.

&

Exercise 7.12:Discuss the meaning of the expressians O(logn) andn + O(log n) under (1) our
definition, (2) Knuth'’s definition and (3) the “simplified defion” in the discussion. &

END EXERCISES

6"8. Two Dictums of Algorithmics

We discuss two principles in algorithmics. They justify ipari our procedures and motivate some
of the fundamental questions we ask.

(A) Complexity functions are determined only ugterder. This recalls our motivation for intro-
ducing asymptotic notations, namely, concern for robustfexity results. For instance, we might
prove a theorem that the running tirfi&n) of an algorithm is “linear time”T'(n) = ©(n). Then
simple and local modifications to the algorithm, or reast@mabplementations on different platforms,
should not affect the validity of this theorem.

There are of course several caveats: A consequence of thisrdis that a “new” algorithm is not
considered significant unless its asymptotic order is leas previous known algorithms. This attitude
could be counter-productive if it is abused. Often, an agpitigally superior algorithm may be inferior
when compared to another slower algorithm on all inputs afisgc sizes. For special problems, we
might be interested in constant multiplicative factors.

(B) Problems with complexity that are polynomial-boundeel feasible. Moreover, there is an
unbridgeable gap between polynomial-bounded problemsfamsk that are not polynomial-bounded.
This principle goes back to Cobham and Edmonds in the latesiand relates to the versusN P
guestion. Hence, the first question we ask concerning anglgmois whether it is polynomially-
bounded. The answer may depend on the particular complexgel. E.g., a problem may be
polynomial-bounded in space-resource but not in timeresg although at this moment it is unknown
if this possibility can arise. Of course, polynomial-boedccomplexityT’(n) = n€ is not practical
except for smalk (typically less thar6). In many applications, even = 2 is not practical. So the
“practically feasible class” is a rather small slicefof

Despite the caveats, these two dictums turn out to be extyamseful. The landscape of compu-
tational problems is thereby simplified and made “undedsate”. The quest for asymptotically good
algorithms helps us understand the nature of the probletenCdfter a complicated but asymptotically
good algorithm has been discovered, we find ways to achievedme asymptotic result in a simpler
(practical) way.
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SA. APPENDIX: General Notations

We gather some general notations used throughout this bdsé&.this as reference. If there is a Bookmark this
notation you do not understand from elsewhere in the bodkigta first place to look. appendix to come back
often!

§A.0 Definitions.
We use the symbok= to indicate the definition of a term: we will writ& := ... Y ... when defining
atermX intermsof...Y .... For example, we define the sign function as follows:

1 iff >0
sign(z) =4 0 iff x=0
-1 iff x<0

Or, to define the special symbol for logarithm to baseve writelg = := log, x.

8A.1 Numbers.
Denote the set of natural numbély N = {0,1,2,...}, integers byZ = {0,4+1,+2,...}, rational
numbers bYQ = {p/q : p,q € Z, q # 0}, the realR and complex numberS. Thus we have

NCZCQCcRcC

The positive and non-negative reals are denéted andR >, respectively. The set of integefs i +
1,...,5— 1,7} wherei, j € Nis denoted:..j]. So the size ofi..j] ismax{0,j — i + 1}. If risareal
number, let itxeiling [r] be the smallest integer greater than or equal ®imilarly, itsfloor || is the
largest integer less than or equabtoClearly,|r] < r < [r]. Forinstance|0.5] =0, |-0.5| = —1
and[—-2.3] = —2.

8A.2 Sets.
The sizeor cardinality of a setS is the number of elements it and denotedS|. The empty set is
(. A set of size one is called singleton The disjoint union of two sets is denotédw Y. Thus,
X = X; WX, 4--- ¥ X, to denote a partition ok into n subsets. IfX is a set, theX denotes the
set of all subsets oK. TheCartesian product X; x --- x X,, of the setsX;, ..., X,, is the set of all
n-tuples of the form(xy, ..., z,) wherez; € X;. If X; = --. = X,, then we simply write this aX™.
If n € N then an-set refers to one with cardinality, and(f) denotes the set of-subsets ofX .

Sometimes, we need to considaultisets. These are sets whose elements need not be distinct.
E.g., the multisetS = {a,a,b,c,c,c} has6 elements but only three of them are distinct. There are
two copies ofu and three copies afin S. Note thatS is distinct from the sefa, b, ¢}, and we use set
notations for multisets. Alternatively, a multiset can iewed as a functiop : S — N whose domain
is a standard sef. Intuitively, n(a) is the multiplicity of eachu € S.

8A.3 Relations and Order.
An n-ary relation on a seX is a set of the fornR C X™. The most important casesis= 2, when we
have binary relations. Instead of sayifigb) € R, we like to writeaRb, read as & is R-related toh”.

Leta,b,c € X. A binary relationR is reflexive if aRa, transitive if aRb andbRc impliesaRc,
symmetric if aRb impliesbRa, anti-symmetric if aRb andbRa impliesa = b. A pre-order R is a
reflexive and transitive binary relation. A pre-ordethat is alssymmetric is anequivalencerelation.
Equivalence relations is extremely important concept imfamathematics, and it induces a partition
of X into disjoint subsets, called equivalence classes. A pderdr that isanti-symmetric (aRb and
bRa impliesa = b) is anpartial order relation.

8 Zero is considered natural here, although the ancients teomsider it so. The symb@ comes from the German ‘zahlen’,
to count.

Chee-Keng Yap  Fundamental Algorithms, Spring 2011: Basic &rsion  September 6, 2011



§A. APPENDIX: GENERAL NOTATIONS Lecture | Page 28

LEMMA 2. LetR C X2 be a preorder.
() The setX := {7 : x € X} wherez = {y € X : xRy, yRx} forms a partition ofX.

(i) The relation® C X~ wherez Ry if Ry is a partial order onX.

Proof. (i) Supposer N 7 is non-empty for some,y € X. Then thereisa € z N7y. We prove
thatz C 7. for u € T impliesuRz. ButzRz andz Ry, so by transitivityu Rz Rz Ry or uRy. \We can
similarly showyRu. Thusu € 7. This provest C 3. Again by symmetry, we can show thatC 7.
Thusz = 7. This proves that the seisin X are pairwise disjoint. Moreover, everyc X belongs to
7 € X. This concludes our proof tha is a partition ofX.

(i) We must prove reflexivity, antisymmetry and transitywof R. Reflexivity comes fronkRZ since
xRz holds in a pre-order. Antisymmetry comes framky andy Rz impliesy € 7 and hencej = 7.
Transitivity of R follows easily from the transitivity of. Q.E.D.

§A.4 Functions.
If f: X — Y is a partial function, then writ¢(x) =1 if f(z) is undefined and'(z) =| otherwise. If
forall z, f(z) |, thenf atotal function. Some authors uge X -->Y to indicate partial functions, and
reserve f : X — Y for total functions. Function composition will be denotge g : X — Z where
g: X —>Yandf:Y — Z. Thus(f o g)(z) = f(g9(z)). We need the special rule that whefx) =1
then f(g(x)) =1. We say a total functiorf is injective or 1 — 1if f(x) = f(y) impliesz = y; itis
surjective orontoif f(X) =Y itis bijective if it is both injective and surjective.

The special functions of exponentiatietp, (z:) and logarithmog, (z) to baseh > 0 are more fully
described in the Appendix of Chapter 2. Although these fonstcan be viewed as complex functions,
we will exclusively treat them as real functions in this botrkparticular, it meankg, (x) is undefined
for x < 0. When the basé is not explicitly specified, it is assumed to be some condgtantl. Two
special basésdeserve their own notationdg = andln x refer to logarithms to baske = 2 and base
b= e = 2.718..., respectively. In computer sciendg is immensely useful. For any real we write
log® z as short hand foflog z)*. E.g.,log? = = (log z)2. For any natural number letlog(” = denote
thei-fold application of thdog-function. E.g.Jog® z = log(log z)) = loglog z andlog® z = z. In
fact, this notation can be extended to any integemhere; < 0 indicates théi|-fold application ofexp.

8A.5 Logic.
We assume the student is familiar with Boolean (or propmsdt) logic. In Boolean logic, each variable
A, B stands for a proposition that is either true or false. Bawolegic deals with Boolean combinations
of such variables=A, A v B, A A B. Note thatA = B is logical implication, and is equivalent to
-AV B.

But mathematical facts goes beyond propositional logicreHg an examplé of a mathematical
assertionP(z, y) wherex, y are real variables:

P(z,y) : There exists a real such that either > yorz < z < y. (18)

The student should know how to parse such assertions. Theiass”(z,y) happens to be true. This
is logically equivalent to
(Vz,y € R)[P(z,y)]. (19)

All mathematical assertions are of this nature. Note thahewe passed from propositional logic to
quantifier (first order) logic. It is said that mathematicaths are universal: truthhood does not allow
exceptions. If an assertioR(z,y) has exceptions, and we can explicitly characterize theptiares
E(z,y): then the new statemei(x, y) V F(x,y) constitute a true assertion.

9 Of courseln z has the (well-deserved) appellation “natural logarithmitlg = has no special name. But it could be called
the “computer science logarithm”.
10when we formalize the logical language of discussion, whatlled “assertion” here is often called “formula”.
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Assertions contain variables: for example(z, y) in (18) containsz, y, 2. Each variable has an
implied or explicit range £, y, z range over “real numbers”), and each variable is eithentified
(either by “for all” or “there exists”) ounquantified. Alternatively, they are eithdsounded or free.

In our exampleP(x, y), z is bounded whilex, y are free. Itis conventional to display the free variables
as functional parameters of an assertion. The symilsdands for “for all” and is called theniversal
quantifier. Likewise, the symboB stands for “there exists” and is called thgistential quantifier.
Assertions with no free variables are callgiétements We can always convert an assertion into a
statement by adding some prefix to quantify each of the freables. ThusP(z,y) can be converted
into statements such as i9) or as in(3z € R)(Vy € R)[P(z,y)]. In general, ifA and B are
statements, so is any Boolean combinationd ehd B, such asA A B and—A or AV B. However, all
statements can be transformed into the form

(Q1)(Q2) - (Qn) [...predicate . . |

where(); is theith quantifier part. Such a form, where all the quantifiers appefore the predicate
part, is said to be iprenex form.

In the above discussion, we make the conventional assumihizd when the variables in an asser-
tions are instantiated, then the assertion is either tré@®e. But in our discussion of partial functions,
we need to generalize this to the setting that for some instafz, y, the assertio(z, y) might be
undefined (neither true nor false). We cBlla partial assertion (or partial predicate). The quantified
form (Va) P(x) is then true if for allz in the domain, eitheP(z) is undefined o (x) is true; similarly,
(3z)P(x) is true if there is some: in the domain such thaP(z) is defined and true. This extends
naturally to predicates with more than one free variable.

8A.6 Proofs and Induction.
Constructing proofs or providing counter examples to mathtecal statements is a basic skill to culti-
vate. Three kinds of proofs are widely used: (i) case amgly®) induction, and (iii) contradiction.

A proof by case analysis is often a matter of patience. Butetiones a straightforward enumeration
of the possibilities will yield too many cases; clever irggmay be needed to compress the argument.
Induction is sometimes mechanical as well but very comfditénductions can also arise (Chapter 2
treats induction). Proofs by contradiction usually haseative element: you need to find an assertion
to be contradicted!

In proofs by contradiction, you will need to routinely negatlogical statement. Let us first consider
the simple case of propositional logic. Here, you basicatlgly what is called De Morgan’s Law:
are B are truth values, then(A vV B) = (=A) A (-B) and—(A A B) = (-A) V (=B). For instance
suppose you want to contradict the propositibes B. You need to first know thal = B is the same
as(—A) v B. Negating this by de Morgan’s law gives dsh (—B).

Next consider the case of quantified logic. De Morgan’s lawooees the following=((Vx)P) is
equivalent ta3x)(—P); —((3x)P) is equivalent taVx) (—P). A useful place to exercise these rules is
to do some proofs involving the asymptotic notation (big-8ig-Omega, etc). See Exercise.

§A.7 Formal Languages.
An alphabetis a finite sett of symbols. A finite sequence = zixs - - - 2, of symbols fromX is
called aword or string over ¥; the length of this string isn. and denotett |w|. Whenn = 0, this is
called theempty string or word and denoted with the special symholThe set of all strings ovex. is
denoted-*. A languageovery. is a subset oE*.

11 This notation should not be confused with the absolute vafteenumber or the size of a set. The context will make this
clear.
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§A.8 Graphs.
A hypergraph is a pairG = (V, E) whereV is any set andz C 2V. We call elements of’ vertices
and elements of’ hyper-edges In caseE C (‘2) we callG a k-graph. The casg = 2 is important
and is called aigraph (or more commonlyundirected graph). A digraph or directed graph is
G = (V,E) whereE C V2 =V x V. For any digraplz = (V, E), its reverseis the digrapHV, E’)
where(u,v) € Eiff (v,u) € E’. In this book, the word “graph” shall refer to a bigraph orrdigh;
the context should make the intent clear. The edges of grahsften written (u, v)’ or ‘uv’ where
u,v are vertices. We will preféf to denote edge-hood by the notatierv. Of course, in the case of
bigraphsu—v = v—u.

Often a graphZ = (V, E) comes with auxiliary data, sa¥, do, etc. In this case we denote the
graph by
G = (V,E;dl,dg, .. )

using the semi-colon to mark the presence of auxiliary detaexample:

(i) Often one or two vertices iV are distinguished. 1§,¢t € V' are distinguished, we might write
G = (V, E; s,t). This notation might be used in shortest path problems whésehe source antlis
the target for the class of paths under consideration.

(i) A “weight” function W : V. — R, and we denote the corresponding weighted grapld-by:
(V, E;W).

(iii) Another kind of auxiliary data ivertex coloring of G, i.e., a functionC : V" — S whereS is any
set. TherC'(v) is called thecolor of v € V. If |S| = k, we callC ak-coloring. Thechromatic graph
is therefore given by the triple' = (V, E'; C'). An edge coloringis similarly defined(' : £ — S.

We introduce terminology for some special graphsVlis the empty set, A grapty = (V, E)
is called theempty graph. If F is the empty setG = (V, E) is called thetrivial graph . Hence
empty graphs are necessarily trivial but not vice-vefsa.= (V, (‘;)) denotes theomplete graphon
n = |V| vertices. Abipartite graph G = (V, E) is adigraph such that = V; w15 andE C V; x Vs.
It is common to writeG = (V4, Vs, E) in this case. Thusk,,, = (V41,V2,V1 x V2) denotes the
complete bipartite graph wherem = |V | andn = |V3|.

Two graphsz = (V, E), G’ = (V’, E') areisomorphic if there is some bijectiog : V' — V' such
that¢(E) = E’ (the notationp(E) has the obvious meaning).

If G = (V,E),G' = (V',E’) whereV’ C V andE’ C E then we callG’ asubgraphof G. In
caseF’ is the restriction ofZ to the edgesiv’,i.e, ' = ENV’' x V’, then we say+’ is the subgraph
of G induced by V', or G’ is therestriction of G to V. We may writeG|V” for G’.

A path (from v; to v) is a sequencévy, ve, ..., vy) Of vertices such thafv;, v;+1) is an edge.
Thus, we may also denote this path(ags—vo—--- —vi). A path isclosedif v; = v, andk > 1.
Two closed paths areyclic equivalentif the sequence of edges they pass through are the same up to
cyclic reordering. A cyclic equivalence class of closechgas called aycle The length of a cycle is
just the length of any of its representative closed pathsblgpaphswe further require cycles to have
representative closed paths of the fofth—ve—v3— - - - —v1) Wherevy , vo, v3 are all distinct. Without
this requirement, every edge-v in a bigraph would give us a cycle whose representativés, is, ).
A graphisacyclicif it has no cycles. Sometimes acyclic bigraphs are cdtieests and acyclic digraph
are calleddags(“directed acyclic graph”).

Two verticesu, v areconnectedif there is a path from: to v, and a path from to w. (Note that
in the case of bigraphs, there is a path frarto v iff there is a path fromv to u.) We shall say is
adjacent tou if u—v. Connectivity is a symmetric binary relation for all graphsljacency is also a
symmetric binary relation for bigraphs. It is easily seeat tonnectivity is also reflexive and transitive.

12 When we writeu—w, it is really an assertion that th{e, v) is an edge. So it is redundant to say-“v is an edge”.
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This relation partitions the set of vertices irdonnected components

In a digraph,out-degreeandin-degreeof a vertex is the number of edges issuing (respectively)
from and into that vertex. Theut-degree(resp.,in-degreé of a digraph is the maximum of the out-
degrees (resp., in-degrees) of its vertices. The vertiteatedegred) are calledsinks and the vertices
of in-degred) are calledsources Thedegreeof a vertex in a bigraph is the number of adjacent vertices;
thedegreeof a bigraph is the maximum of degrees of its vertices.

See Chapter 4 for further details on graph-related matters.

8A.9 Trees.
A connected acyclic bigraph is calledrae tree. A digraph such that there is a unique source vertex
(called theroot) and all the other vertices have in-degreeis called® a tree. The sinks in a tree
are calledeavesor external nodesand non-leaves are calléaternal nodes. In general, we prefer a
terminology in which the vertices of trees are calterties Thus there is a unique path from the root
to each node in a tree. f, v are nodes i’ thenwu is adescendantof v if there is a path from to
u. Every nodev is a descendant of itself, called tmeproper descendantof v. All other descendants
of v are callecbroper. We may speak of thehild or grandchild of any node in the obvious manner.
The reverse of the descendant binary relation isatiheestorrelation; thus we havproper ancestors
parent andgrandparent of a node.

Thesubtreeat any node; of 7" is the subgraph df’ obtained by restricting to the descendants of
Thedepth of a nodeu in a treeT" is the length of the path from the rootto So the root is the unique
node of depth). Thedepth of T' is the maximum depth of a node T Theheight of a nodeu is just
the depth of the subtree at alternatively, it is the length of the longest path franto its descendants.
Thuswu has height iff « is a leaf iff u has no children. The collection of all nodes at depih also
called theith level of the tree. Thus level zero is comprised of just the root. \Menally draw a tree
with the root at the top of the figure, and edges are implicitfgction from top to bottom.

See Chapter 3 for further details on binary search trees.

8A.10 Programs.
In this book, we present algorithms in an informal unspegifieogramming language that combines
mathematical notations with standard programming languagstructs. For lack of better name, we pseudo-PL is
call this languag@seudo-PL The basic goal in the presentation of pseudo-PL programaségpose appropriately
the underlying algorithmic logic. It is not to produce cottattcan compile in any conventional pro- amorphous by design
gramming language! And yet, it is often easy to transcrileigs-PL into compilable code in languages
such asC++ orJava. There are two good reasons why we stop short of writing ctaha code — first,
it is easier to understand, and second, it would be progragtanguage-dependent.

Programming languages are harder to understand becasisgdtided for machine consumption,
and that could get in the way of human understanding. A maeauatage of writing compilable code
is that it could be given to a computer for execution. Unfodately, the “half-life” of programming
languages tend to be rather short compared to that of ndamgliages. Informally, say the half-life
of a programming language is the time it takes before mograros in the language will no longer
compile; similarly, the half-life of a natural language @epido-code is the time it takes before most
people find hard to understand algorithmic descriptions.

Here is the quick run-down on pseudo-PL:

13 One can also define trees in which the sense of the edges arsa@vthe root is a sink and all the leaves are sources. We
will often go back and forth between these two view point$witt much warning. E.g., we might speak of the “path from aenod
to the root”. While it is clear what is meant here, but to béntécally correct, we ought to speak awkwardly of the pathhia t
“reverse of the tree”.
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e \We use standard programming constructs such as if-thenveltsle-loop, return statements, etc.
no clutter language

e To reduce clutter, we indicate the structure of programnhiogks by indentation and newlines
only. In particular, we avoid explicit block markers such'bsgin...end”, “...”, etc.

e Single line comments in a program are indicated in two ways:
> This is a forward comment
< This is a backward commeriThese comments either precede (in case of forward comment)
or follows (in case of backward comment) the code that it dees. We have little need for
multiline comments in pseudo-PL because all code is supgiésal by off-line explanations that
serve the same purpose.

e Programming variables are undeclared, and implicitlyodtrced through their first use. They
are not explicitly typed, but the context should make thesacl This is in the spirit of modern
scripting languages such Bsr | , and consistent with our clutter-free spirit.

e Normally, each line is a command, so we need not end it withtrditional semicolon (;) or
a full stop. (We use both semicolon and full stops — if the arption is more “Englishy” we
prefer full stops.) But if we put two or commands on one line,eould still separate them with
semicolons. What if a command needs more than one line? liy c@nputer languages, the
continuation symbol i§. But in our effort to produce more human friendly programs,aguld
use ellipsis ¥..” at the end of a line to indicate its continuation to the nax¢| But if the line is
an English sentence, we can even drop the ellipsis and itidesbntinuation line appropriately. programmers use=”

¢ Informally, the equality symbol=" is often overloaded to indicate the assignment operator g;@j?r assignment and

well as the equality test. We will use- for assignment operator, and preserve for equality 0" eduality test.
test. We opt to preserve the

equality meaning of
e Inthe style ofCor Java, we write “z++" (resp., “++z”) to indicate the increment of an integer ="
variablex. The value of this expression is the valuerdfefore (resp., after) incrementing. There

is an analogous notation for decrementing; and- - x.

Here is a recursive program written in pseudo-PL to comphed-actorial function:

FiB(n):
Input: natural numbern.
Output: n!
> Base Case
1. If n < 1 Return(n)
> General Case
2. Return(n - FIB(n — 1)) < Thisis a recursive call

8A.11 How to answer algorithmic exercises.
In our exercises, whenever we ask you to give an algorithiis, liest to write in pseudo code. We
suggest you emulate our pseudo-PL form of presentatiordests invariably ask about what level of
detail is sufficient. The general answeras much detail as one needs to know how to reduce it to
compilable programs in a conventional programming langaidgdere is a checklist you can use:

Rule 0 Specify your input and outputThis cannot be emphasized enough. We cannot judge your
algorithm if we do not know what to expect from its output! sine qua noh
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Rule 1 Take advantage of well-known algorithmBor instance, if you need to to sort, you should
generally be able to juStinvoke a suitable sorting routine.

Rule 2 Reduce all operations t0(1) time operationsDo this when Rule 1 does not apply. Sometimes,
achievingO(1) time may depend on a suitable choice of data structures, Heseure to explain
this.

Rule 3 Use progressive algorithm developmeBtien pseudo code may be incomprehensible without
a suitable orientation — it is never wrong to precede youug@geeode with some English expla-
nation of what the basic idea is. In more complicated situresti do this in 3 steps: explain basic
ideas, give pseudo code, further explain certain detatlsérpseudo code.

Rule 4 Use standard algorithmic paradigmha this book, we will see well-known paradigms such as
divide-and-conquer, greedy methods, dynamic programyetieg Another important paradigm is
the notion of shell-programming (see tree and graph tralgrsectures Il and V).

Rule 5 Explain and initialize all variables and data structureglost non-trivial algorithms has some
data structures, possibly the humble array. Critical \deis (counters, coloring schemes) ought
to be explained too. You must show how to initialize them.

Rule 6 The control structure of your algorithms should be evideAtl the algorithms you design
should have simple control structures — typically a simpteplor a doubly-nested loops. Triply-
nested loops do arise (e.g., dynamic programming) but deegsting is seldom needed. Each
loop should use standard programming constructs (for;ladyle-loop, do-loop, etc). It is an
axiom'® that if a problem can be solved, then it is solvable by cleap lstructures.

Rule 7 Correctness.This is an implicit requirement of all algorithms. All thegalrithms we study
requires that the algorithm halts on all inputs. Corredridsuch algorithms is traditionally split
into two distinct requirements:

(1) The algorithm halts.

(2) The output is correct when it halts. This part is somesiwedledpartial correctness

Even when we do not ask you to explicitly prove correctness,should check this yourself. A
simple method to prove partial correctness is this: at thggnméng of each iteration of a loop,
you should be able to attach a suitalbleariant (called assertionin standard programming
languages). Partial correctness follows easily if the appate invariants hold.

Rule 8 Analysis and Efficiencylhis is considered a more advance requirement. But sinséstihat
algorithmics is about, we view it as part and parcel of anypatgm in this book. You should
always be able to give a big-Oh analysis of your algorithmmbrst cases, non-polynomial time
solutions are regarded as unnecessarily inefficient.

EXERCISES

Exercise A.1: The following is a useful result about iterated floors andirtgs.
(a) Letn,b be positive integers. LeN, := n and fori > 0, N;41 := | N;/b]. Show that
N; = |n/b*|. Similarly for ceilings. HINT: use the fact tha€; ;1 < N;/b+ (b—1)/b.
(b) Letuy = 1 andwu;+1 = |5u;/2] for i > 0. Show that fori > 4, 0.76(5/2)" < wu; <
0.768(5/2)*. HINT: r; := u;(2/5)" is non-increasing; give a lower bound on(i > 4) based on
T4. <>
14 In computing, this is known as “code reuse”. Others call thist reinventing the wheel”.

15 There are theorems about the universality of loop-progrévieser and McCreight) and the possibility of avoiding “gu-t
statements.
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Exercise A.2: Let z, a, b be positive real numbers. Show that

lz/ab] = |[x/a] /b]. (20)
When is this an equality? &

Exercise A.3: Consider the following sentence:
(Vx € Z)(Fy € R)(3z € R) [(m S0 = (y<ae<y HYA(z<z<2)A(y< z))] (21)

Note that the range of variableis Z, notR. This is called auniversal sentencebecause the
leading quantifier is the universal quantifig).(Similarly, we haveexistential sentence

(i) Negate the sentencel), and then apply De Morgan’s law to rewrite the result as astential
sentence.

(i) Give a counter example t@ ).
(i) By changing the clause€f > 0)”, make the sentence true. Indicate why it would be true.

O

Exercise A.4: Suppose you want to prove that

f(n) # O(f(n/2))

wheref(n) = (logn)'°s™.
(a) Using de Morgan'’s law, show that this amounts to sayiagfibr all C' > 0, ng there exists
such that

(n >ng) A f(n) > Cf(n/2).

(b) Complete the proof by finding a suitabidor any givenC, ng. &

Exercise A.5: The following statement is a fack planar graph om vertices has at most — 6 edges.
Let us restate it as follows:

(G is a planar graph and hasverticeg = (G has< 3n — 6 edges.
(i) State the contra-positive of this statement.

(ii) The complete graph of vertices, denoted b¥’; is shown in Figure. Using the contra-
positive statement in part (i), prove th&y is not planar. &

Figure 2: K5, the complete graph ohvertices
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Exercise A.6: Prove these basic facts about binary trees: assumd.
(a) A full binary tree om leaves has — 1 internal nodes.
(b) Show that every binary tree onnodes has height at leadg;(1 +n)] — 1. HINT: define
M (h) to be the maximum number of nodes in a binary tree of hdight
(c) Show that the bound in (b) is tight for each
(d) Show that a binary tree om > 1 leaves has height at lea8gn|. HINT: use a modified
version of M (h).
(e) Show that the bound in (d) is tight for each &

Exercise A.7: (Erdds-Rado) Show that in any 2-coloring of the edges ottiraplete grapli,,, there
is a monochromatic spanning treefsf,. HINT: use induction. &

Exercise A.8: Let T be a binary tree on nodes.
(a) What is the minimum possible number of leave%'th
(b) Show by strong induction on the structurelothatT has at mosiL”T“J leaves. This is an
exercise in case analysis, so proceed as follows: first ket odd (sayp = 2N + 1) and assume
T hask = 2K + 1 children in the left subtree. There are 3 other cases.
(c) Give an alternative proof of part (b): show the result/idoy a weaker induction on — 1 and

n— 2.

(d) Show that the bound in part (b) is the best possible byrdesg a 7" with L”T“J leaves.

HINT: first show it whemn = 2¢ — 1. Alternatively, consider binary heaps. &
Exercise A.9:

(a) A binary tree with a key associated to each node is a beaych tree iff the in-order listing
of these keys is in non-decreasing order.

(b) Givenboththe post-order and in-order listing of the nodes of a bingeg,twe can reconstruct
the tree. &

END EXERCISES
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