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“It is one of the striking generalizations of biochemistrywhich surprisingly is hardly

ever mentioned in the biochemical text-books — that the tinwamino acids and the four
bases, are, with minor reservations, the same throughotiidaAs far as | am aware the
presently accepted set of twenty amino acids was first drgwioyuVatson and myself in
the summer of 1953 in response to a letter of Gamow’s”

— Francis CrickOn the Genetic Code
Nobel Lecture, 11 December 1962

Lecture VI
DYNAMIC PROGRAMMING

We introduce an algorithmic paradigm calldgnamic programming. It was popularized by
Richard Bellman, circa 1954. The word “programming” herehis same term as found in “linear
programming”, and has the connotation of a systematic nafibrosolving problems. The term is even
identifiedt with the filling-in of entries in a table. The semantic shiforh this to our contemporary
understanding of the word “programming” is an indicatiortaf progress in the field of computation.

91. From Google to Genomics. Dynamic programming techniques are particularly effecfior
problems on strings, i.e., sequences of symbols from soptehbét. Currently, there are two major
consumers of string algorithms: search engines such asl§oagd computational biology. Thus,
if you ask Google to search the wosd r ni gs, it will ask? if you meantst ri ngs. You can be
sure that a slew of string algorithms are at work behind tim®cent response. Or, when | search for
CGTAATCC, Google asketlif | meant CCGTCC. It turns out thatCCGTCC. comis the homepage for
members ofCasino Chip & Gaming Token Collectors CluBut a biologist might submit the sequence
CGTAATCCto a database engine to find the closest match. This is beracgmputational genomics,
a DNA sequence is just a string over the symlgI€, T, G The strings in Google and genomics have
different characteristics: Google strings are words oapbs — these are much shorter than strings in
biology which represent DNA or RNA sequences whose lengthisitp millions. Google strings have
medium size alphabets while strings in genomics have srpdibhet (size 4). If we were looking at
protein sequences, the alphabet size would(beThe corresponding algorithms should try to exploit
such properties.

Whether we are talking about strings in Google search or nmogecs, the ability in both cases to
show you closely related strings meant that these algosithave (1) some measure of similarity or
distance between strings, and (2) some database of stringhkich to look for similar strings. We
shall look at two notions of similarity of strings in this gitar. Computing these similarity measures
efficiently calls for dynamic programming techniques.

In most applications of dynamic programming, the undegyabjects have some kind of linear
structure, much like strings. Other classes of such objecksde polygons and binary trees. Thus, we
will look at corresponding problems of optimal triangudatiof (abstract) polygons, and the constructing
optimal binary search trees.

1 Such tables are sometimes filled out by deploying a row of muopeerators, each assigned to filling in some specific table
entries and to pass on the partially-filled table to the nexsgn.

2 That was in 2008. In 2011, it no longer asks, but lists someipiliies like stri ng cheese, string theory,
stringbui | der, etc.

3 That was in 2008. In 2011, it asked if | want€HEATCC which led to websites with video game cheats, cheat codets, hi
and tips.
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61. First Glimpses of Dynamic Programming

92. Divide and Conquer with a twist. Dynamic programming is a form of divide-and-conquer be-
cause it is based on solving subproblems. But it has somerrdi$tinctive features. A simple illustra-
tion is provided by the computation of Fibonacci numbétsy) = F(n — 1) + F(n — 2). On input

n > 1, the obvious recursive algorithm calls itself twice on thguements: — 1 andn — 2. The returned
results are added together. The running time is given byatherrencd’(n) = T'(n—1)+ T (n—2)+1.
ThusT'(n) is exponential{l11.6, AVL trees). A little reflection shows that linear tinsffices: instead
of computingF'(n), let us define a new functiofz(n) to compute the paifF'(n), F(n — 1)) of con-
secutive Fibonacci numbers. To compétgn), we only need one recursive call i (n — 1):

FQ(TI,):
If (n =1), Return(1,0) < Assume input is > 1
(a,b) «— Fa(n —1) < Recursive call!

Return(a + b, a)

The running time recurrence now satisfies the recurr@a¢e) = T>(n — 1) + 1 = n. Here we see
the seed of the dynamic programming idea — that by keepingrareolutions to subproblems, we can
avoid recomputing them and avoid what would otherwise bexpomential complexity. In the Fibonacci
number computation, we only keep the solution to two sublerob. In this sense, Fibonacci numbers is
not typical of dynamic programming problems, which typigaleed solutions to a polynomial number
of subproblems.

93. Joy Ride, again. Recall the joy ride or linear bin packing problem in ChapterTfhe input are

the weightqw;, . .., w,) of a queue of riders. We want to place these riders into a mimimumber of

cars, where each car has a weight capacity/ofRiders must be placed into cars in their queue order.

The new twist here is that we allow negative weights (cleatly joy ride interpretation is stretched Ah, negative weights
by this generalization). In any case, the greedy algorith@aks down. For instance I8t = 5 and are children with
w = (5,5,5,5,—20). The greedy solution has 4 cai®), (5), (5), (5, —20) but the optimal solution helium balloons!
uses only one car. But to achieve this optimal solution, westrgive up our online requirement (i.e.,

to decide on each rider without looking at what comes aftéhéqueue). In this example, the optimal

solution has to look at the entire queue before it can prgmitide on the second rider (whether this s

rider should be in the first or second car). Thus, we must comterselves with designing asffline Ig
algorithm in which each decisions can be based on the whole input.

We now give arO(n?) solution for the offline linear bin packing problem. But firéte must gen-
eralize the problem so that, instead of just solving theamstP,, = (w1, . .., w, ), we simultaneously
solve a sequend®,, P, ..., P, of subprobleminstances, whefe= (wy, ..., w;). Letb; be the min-
imum number of cars for instande. We also definé, := 0. Now the last car for instancB, has the
form (w;, . .., w,) for some; wherew; + w;4+1 + - - - + w,, < M. This justifies the following formula:

b, =1+ i:qlinn{biil : ij < M} (1)

Assumingby, b1, . . ., b,—1 have been computed, we can compfaising this formula inO(n) time.
For instance, suppose = 5 andw = (1,5,—2,5,1) Thenb; = 1 (obviously),b; = 2, b3 = 1 and
by = 2. Let us computés using the formula):

by — 1+min{b4,b2} =1 +min{2,2} = 3.
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So3 cars is the optimal solution. Observe that if you were alldtigere-arrange the weights, th2cars
would suffice; but that is not allowed in linear bin packinge Wiay program this solution as follows:

LINEAR BIN PACKING WITH NEGATIVE WEIGHTS:
Input: arrayw(1..n] containing weights and/
Output: arrayb|0..n] to store the values of optimal valugs

b[O] — 0.
fork=1,....n
W0
B «— 400 < B is current min value ob,’s
fori=kk—-1,...,2,1
W — W + wi]
If (W < M)then B « min {B,b[i — 1]}
blk] — 1+ B

Lett(k) be the complexity of thé-th iteration of the outer for-loop. Clearl§(k) = ©(k). The overall
complexity isT'(n) = > ,_, t(k) = ©(n?).

This example is more typical of dynamic programming: theugsoh for problem instance’,
can be efficiently computed from the solutions to a polyndmismber of subproblems (in this case,
Py, ..., P,). In constrast, the problems with running times that satiké Master recurrence have a
bounded number of subproblem instances.

94. String Notations. Let us fix some common terminology for strings. Alphabetis just a finite
setY; its elements are callelgtters (or characters or symbols). #tring (or word) is just a finite
sequence of letters. The set of strings oXds denoted>*. Let X = xjz5 - - - x,,, be a string where
x; € ¥. Thelength of X is m, denoted X |. Note that|X| should not be confused with the usual
notation|S| for the cardinality of a sef. Theempty string is denoted and it has lengthe| = 0.
Using an array-like notation, thi¢h letter of X is denotedX [i] = «; (¢ = 1, ..., m). Concatenation of
two stringsX, Y is indicated by juxtapositionXY or sometimesY; Y. Thus| XY | = | X| + |Y].

EXERCISES

Exercise 1.1: Let us probe what Google is doing with strings. The problernarfsposing two consec-
utive letters in a string (i.e., a digraph) is a common huntaorén typing. Let us see if Google
is looking out for this error:
Start with the sequencd r i ng. For each of the 5 digraphs in this sequence, we transpose the
to get another stringt sring, srting, stirng, strnig, strign. Which of these
does Google think is a mistype sf r i ng? Let us do the same experiment, but starting with the
sequencstri ngs. &

Exercise 1.2: Compare the different search engines: Google, Yahoo, Bintgzon.com, eBay, Twit-
ter, Wikipedia(en). &

END EXERCISES
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2. Longest Common Subsequence

Many string problems come down to comparing two strings fimilarity. In this Lecture, we will
look at two such measures. The first of these measures capierélea that two strings are similar if
they have “substantial overlap”. For instance, the twagsnot at i ons andnot i ons clearly have
much overlap. But dmot at i ons andont t oi s have as much overlap? This might be unclear, so
we will introduce the concept of “subsequences” to give jg&meaning to the overlap idea.

A subsequencef X = x4,...,x,, isastringZ = z2s - - - z;; such that for some
1< <ig << <M

we haveZ[¢] = X[is)forall¢ = 1,..., k. Forexamplel n,| g andl og are subsequences of the string
[ ong. A common subsequencef X, Y is a stringZ = z1z3 - - - zx that is a subsequence of bath
andY. We callZ alongest common subsequendgits length|Z| = k is maximum among all common
subsequences df andY'. Since the longest common subsequence may not be uniqui; &tX, Y)
denote the set of longest common subsequences &f. Also, letics(X,Y) denoté any element of
LCS(X,Y): soles(X,Y) € LCS(X,Y). Define the numerical functions(X,Y) :=|les(X,Y)|
(length function) and\(X,Y") :=|LS(X,Y)| (cardinality function). Note thak(X,Y") > 1 since “at
worst”, LC'S(X,Y) is the singleton comprising the empty string

For example, if
X = longest, Y = lengthen (2)
thenLCS(X,Y) = {lngt,1nge}, \(X,Y) =2andL(X,Y) = 4.
Of course, the ultimate in similarity under LCS measure i#wh(X,Y) = min {| X|, [Y|}. We
also mention the related concept of “substring”. A subsaqae€ is called asubstring of X if X =

Z'ZZ" for some stringsz’, Z”. For instancepn andg are substrings dfong butl n, | g andl og
are not. Thus, substrings are subsequences but the convays®ot hold.

95. Versions of LCS Problems. There are several versions of tlmmgest common subsequence
(LCS) problem. Given two strings

X=z122 T, Y =192 Yn,

the problem is to compute (respectively) one of the follayvin

e (Length version) Comput&(X,Y)
e.g.,.L(l ongest | engt hen) = 4.

e (Instance version) Computes(X,Y)
e.g.les(l ongest | engt hen) =1 ngt orl nge.

e (Cardinality version) Computg(X,Y)
e.g.,A(l ongest | engt hen) = 2.

e (Setversion) ComputeCS(X,Y)
e.g.,LCS(l ongest | engt hen) = {I ngt, | nge}.

4 Clearlylcs(X,Y) is not really a functional notation.

© Chee Yap Basic Version November 29, 2011



§2. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 5

We will mainly focus on the first two versions. The last vers@an be exponential if members of the
setLCS(X,Y) are explicitly written out; we may prefer some “reasonabdgliit” representation of
LCS(X,Y). We will consider representations H2.5(X,Y) below. See the Exercise for the multiset
interpretation ofLC'S(X,Y).

96. Exponential nature of A\(X,Y"). A brute force solution to the cardinality version of the LCS
problem would be to list all subsequences of lengffor £ = m,m —1,m —2,...,2,1) of X, and for
each subsequence to check if it is also a subsequence dhis is an exponential algorithm singé
has2™ subsequences. But cafX, Y') be truly exponential? Indeed, here is an example: let

X, =01a0la0la...= (0la)", Y,, = 10a10al0a ... = (10a)". 3

We claim thatZ(X,,,Y,,) = 2n. It follows that the followings strings belong td.C'S(X3, ¥2): 0a0a,
Oala, Oala, lala. More generally, we havg(X,,,Y,) > 2™ since we can match all thes in X,, and
Y,,, and in eacl91-block of X,,, we have2 choices for matching the correspondirtgblock of Y,,. But
we do not claim thah(X,,, Y,,) = 2™. Indeed \(X,,,Y,,) = ©(4™//n) (see Exercise).

97. The Dynamic Programming Principle for LCS. The following is a crucial observation. Let us
write X' for the prefix of X obtained by dropping the last symbol &f. This notation assumeX| > 0
so that| X’| = | X| — 1. Itis easy to verify the following formula fof. (X, Y):

0 if mn=20
L(X,)Y)=< 14+ L(X"Y" if 2 =yn (4)
max{L(X"Y),L(X,Y")} if m # yn

There is a subtlety in this formula whet, = y,,. The “obvious” formula for this case is
L(X,Y)=max{l + L(X",Y"), L(X",Y), L(X,Y")}. (5)
The right hand side ing) simplifies to the form in4) because of
L(X'Y) <1+ L(X"Y'), (6)

and a similar inequality involvind.(X, Y”). Formula @) constitutes the “dynamic programming prin-
ciple” for the LCS problem — it expresses the solution fonitgof sizeNV = | X |+ |Y'| in terms of the
solution for inputs of sizes. N — 1. We will discuss the dynamic programming principleh

For any stringX and natural number > 0, let X; denote the prefix oKX of lengthi (if ¢ > | X]|,
let X; = X). The dynamic programming principle fdr(X,Y’) suggests the following collection of
subproblem instances:

L(X;,Y;), (t=0,...,m;j=0,...,n).

There areD(mn) such subproblems. Note th&j, is the empty string, so that

LOS(Xo.Y) = {e},  L(X0,Y;) =0, @)

There are dynamic principles fées(X,Y) and LCS(X,Y) that are analogous tel), Here we
present the recursive formula faIC'S(X,Y), leavinglcs(X,Y') as an exercise.

5 See§14 for what this means.
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{e} if mn=20
LCS(X', Y )m it Zm = yn

LCS(X,)Y) = LCS(X')Y) if Tm #yn, L(X',Y)>L(X,Y') (8)
LCS(X,Y) if 2 # Y, L(X,Y') > L(X',Y)
LOS(X,Y'YULCS(X',Y) if xm #yn, L(X,Y')=L(X",Y).

This formula can be viewed as an expansion of the three caske recursive formula foE(X,Y) in

(4). In particular, the case,, # vy, has been expanded into three subcases. Moreover, eacltsef the
subcases are clearly necessary. But the ease= y, (= b, say) is not entirely obvious. At a first
glance, it seems that this case should be split into fourasgsc(in analogy td}):

LCS(X",Y'")b if L(X,Y)>max{L(X"Y),L(X,Y")}
sty =) EOIT YIS R
LOS(X',Y)bULCS(X,Y')ULCS(X',Y) if L(X,Y)=L(X,Y')=L(X'Y)
To prove that these subcases are unnecessary, we claim:
LCS(X'b,Y'b) = LCS(X',Y')b. 9)

One direction of this proof is easy: clearlfC'S(X’b, Y'b) containsLC'S(X',Y’)b. Conversely,
supposew € LCS(X'b,Y’'b). We must show thaty € LCS(X',Y")b. Write w = w’c for some

¢ € X. We have two possibilities: (1) Suppose# b. Thenw’c is a common subsequence &f
andY’. Thenw'cb is a common subsequence &fb andY’b. This contradicts the assumption that
w = w'c € LCS(X'b,Y'd). (2) Suppose = b. Thenw’ is a common subseqeunce &f andY”.
Sincew’c is the longest common subseqgeunce&®dd andY’b, we conclude that’ must be the longest
common subseqeunce & andY”. This impliesw € LC'S(X’,Y")b, as desired.

Simplification: The student should compare Equatiofisand @) to see the
relative simplicity of the former equation. Also the reance 8) tells us
that the flow of control in the algorithm fatC'S(X,Y") is determined by the
function L(X,Y"). In particular, we need to compufg X, Y") if we want to
computeLCS(X,Y). In fact, equations4) and @) share a common flow ¢f
control, with some refinements f&C'S(X,Y"). Our strategy is to develop an
algorithm forL(X,Y") first. Then we indicate the necessary modifications to
yield an algorithm forLC'S(X,Y’). Such a maodification is usually straight-
forward although we will see exceptions: see thg X,Y) in small space
solution below.

98. Matrix encoding of subsolutions. To organize the dynamic programming solution fqrX, V),
we use an(l + m) x (1 + n) matrix L[0..m,0..n] where the(s, j)th entry L[i, j] stores the value
L(X;,Y;). We fill in the entries of this matrix as follows. First fill itn¢ Oth column and)th row with
zeros, as noted irv]. Now fill in successive rows, from left to right, using) @bove.

In illustration, we extentithe exampleZ) to the stringsX = lengthen andY = elongate:

6 No pun in-tended.
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Table 1: Recovery dfcs(X,Y)

D
(@)
>
«

lajt] e |
0]0[0]0] 0 0|0 0

1+

u
v | mazx(u,v)

O OO0O|O|ojo|o|olo

S| S| FQ| S| 0|

To see the formula4] in action, we consider two entries. The entry correspagttinthe ‘g’-row
and ‘g’-column is filled with 1 + = wherez is the entry in the previous row and column. The entry
corresponding to last row and last colummisx(u, v) whereu andv are the two adjacent entries. The
reader may verify thak(X,Y) = 5andLCS(X,Y) = {1ngte, engte} in this example. We leave as
an exercise to program this algorithm in your favorite laageL

99. Complexity Analysis. Each entry is filled in constant time. Thus the overall timenptexity is
©(mn). The space is als®(mn).

910. Recovery of Optimal Instance. Given the full matrixL[0..m, 0..n], we can recover an optimal
instancdcs(X,Y’). We now describe a simple way to constrlici{ X, Y') in reverse order.

We will illustrate the reconstruction process using ourregke of X = lengthen andY =
elongate, whose matrix[0..8, 0..8]:

We begin with the entrf.[m, n]. It should contain the valugé(X,Y"). In general, suppose we are
at some entryL[i, j] of the matrix holding the valué = L(X,,Y;). If £ = 0, we are done. Assume
¢ > 0. If z; = y;, then we can output; and move to the entrf.[i — 1, — 1] containing? — 1. If
x; # y;, then eitherL[i — 1, j] or L[i, j — 1] containst. We move to any cell that contairis Repeat
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this procedure. If we want to recover the entire BEtS(X, Y'), we will need to follow all the possible
paths.

Following this prescription, we can start tracing frdif8, 8] in Table . This will trace a unique path
until L[2, 3] at which point we branch. This results in two maximal patfsresponding to the two
strings inLCS(X,Y).

911. Small Space Solution. The above algorithm us&3(mn) space. For Google applications, this
may be acceptable becausen is typically small (how long a search string would you type®)
computational genomics, this is not acceptable becausmgfdene sequences. We note that to fill in
any row, we just need the values from two rows. In fact the sgacone row is all that we need: as
new entries are filled in, it can overwrite the correspondintyy of the previous row. Since a row has
n entries, we just nee@(n) space. As rows and columns are interchangeable, we can atkonith
columns, s@(min {m, n}) space suffices.

We said it is usually easy to modify the code for computiid(, Y") to compute eitheics(X,Y)
or some representation 8C'S(X,Y'). But this is not always true — for instance, you could not veco
les(X,Y) using the small space solutionqi 1.

912. Backward Equation. We exploit another symmetry in strings. We had been devetppur
equations using prefixes of andY. We could have equally worked with suffixes. Xf# denote the
suffix of X obtained by omitting the first letter, then the analoguelpf:

0 if mn=20
LIX,)Y)={ 1+ L(X# Y¥) if 21 =1 (10)
max{L(X#,Y),L(X,Y#)} if 1 #wy

Let X* denote the suffix of( lengthi, so|X?| = i. If we use the same matrik as before, we now Neat! X; X™ i = X
need to fill in the entries in reverse order as follows:

Let L[i, j] denoteL(X™~¢ Y"~J). Thus, we could fill in the last row and last column wills
immediately. If we work in row order, we can next fill in raix 1 using (L0), assuming row is already
filled in. The final entry to be filled in.[0, 0], contains our answet(X,Y).

So far, we have not gained anything new by looking at this vac# approach. But we will next
see that, when combined with the forward approach, we obtairething new.

913. Recovery of Optimal Instance in Small Space. Now we address the possibility of computing
les(X,Y) in small space. Note that the small space solution[fgK, Y") does not easily extend to
recovery of an optimal instanées(X, Y'). We now describe a solution from Hirshberg (1973) Bee,
e.g., P2, for similar space efficient methods for geometric protdem

The solution uses an interesting divide-and-conquer igolen For simplicity, assume thatis a
power of two. Observe that

L(X,Y) = L(Xs+, Y o) + L(X™ 0, Y72 (11)
for somei* =0, ..., m. Indeed,

L(X,Y) = max {L(Xi,Yn/Q) n L(Xm*i,Y"/Q)} : (12)

1=0,...,n
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How can we compute th& such that {1) holds? We use the usual (forward) recurrence to compute
{L(Xi,Yy2):i=0,...,m}.
We use the backward recurrendé€)to compute
{L(Xm*i,ynﬂ) =0, ,m}.

This takesO(m) space and)(mn) time. Then usingX2), we can determing* as the value that
maximizes the functiod (X, Y,, ») + L(X™~%, Y"/?).

Knowing thei* in (11), we could divide outcs problem recursively into two subproblems. The key
observation is thatl(l) can be extended into an equation for the optimal instance:

€ if L(X,Y)=0,
les(X,Y)=( Y[1] if n=1and L(X,Y) =1,
les(Xi, Yo 2);les(X™™Y™2) if n>2and L(X,Y) = L(X;, Y, 2) + L(X™, Y"/?),

(13)
where “” denotes concatenation of strings.

The space complexity of this solution is easily shown té}je:). What about the time complexity?
We have
T(m,n)=T(i,n/2)+T(m —i,n/2) + mn.

Itis easy to verify by induction thaf (m, n) < 2mn: if n = 1, this is true. Otherwise,
T(m,n) = T(i,n/2)+T(m—1i,n/2)+mn
n N
2 (25) +2 ((m - 2)5) + mn = 2mn.

IN

914. Efficient Representation of LC'S(X,Y). We now address the problem of representing the
setLCS(X,Y). There are two extremes: The péX,Y) itself would be a representation, but it is
“too implicit”. An explicit list of the strings inLC'S(X,Y) is “too explicit” (with exponential size).

A “reasonably explicit” representation should have threapprties: it is polynomial in size, we can
enumerate (without repetition) the stringsfi’'S(X,Y’) in linear time per element, and for any given
string s, we can check it € LCS(X,Y) in linear time.

Indeed, the matrix{.[0..m, 0..n] can be viewed as such a representation. It is best intedpasta
digraphG(X,Y") as follows. The node set 6#(X,Y)isV = {0,1,...,m} x {0,1,...,n}. For each
node(i, j) € V, there are betweehto 3 edges issuing frorty, j):

(i) Matching edge: ift; = y; andL[i,j] = 1 + L[ — 1,j — 1], then we have an edge frofs j) to
(i—1,5—1).

(i) Non-matching edges: IL.[i, j] = L[i — 1, 7] (resp.,L[i, j] = L[i, 7 — 1]), we have an edge from
(4,7)to (i — 1,7) (resp.,(4,j — 1)). Each maximal path i6/(X,Y") represents a string ihC'S(X,Y)

— the string corresponds to the sequence of symldls= Y'[j] encountered in at node, j) along the
path. Conversely, each stringIiC'S(X,Y) is represented by at least one path.

But this graph is quite wasteful, and we will define a compedsgersion denote@* (X, Y"). For
illustration, we use the pair of strinds(,Y) = (X3,Y3) = (01a01a0la, 10a10a10a) as defined in
(3). The graphG(Xs, Y3) has100 nodes, but the compressed vers@h(Xs, Y3) shown in Figurel
with only 15 nodes.

The idea is retain those nod@sj) of G(X,Y') corresponding to matcheés[i] = Y'[j]. Also, the
node(0, 0) is retained, and is called tl#nk. We introduce two kinds of edges: (1) Normal edges are
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Figure 1. Representation &fC'S(X3,Y3)

(1,7)—(¢,7") whereL[i, j] = L[i’, j'] + 1 and there is a path froifi, j) to (i/, /) in G(X,Y’). Note
that in such a path, every nod#’, ;) except the last will satisi.[i”, ;] = Lli, j]. (2) Sink edges
from (4, j) to (0,0) whenevetL[i, j] = 1. As we see in Figuré, the result is a level graph in the sense
that each nodéi, j) has a level > 0, corresponding to the length of the longest path fi@mj) to the
sink, and edges can only go from a le¥db level/ — 1.

In Figurel, the namd3, j) of a node is not explicitly given, but we have labelled the@uwadth the  External to each node

letter X [:] = Y'[j] corresponding to the match. By reading this sequence ofdalbeng a maximal in Figure 1, a
path, you get a string ohC'S(X3, Y3). numerical value is
indicated: what are
these?

915. Other Improvements. We can exploit knowledge about the alphabet. For instanarson
and Masek gave an algorithm with(mn/ log(min(m, n))) time when the alphabet of the strings is
bounded.

Our algorithm fills in the entries of the matrik in a bottom-up fashion. We can also fill them in
a top-down fashion. Namely, we begin by trying to fill the gnfm, n]. There are 2 possibilities: (i)
If 2, = yn, we must recursively fill inL.[m — 1,n — 1] and then use this value to fill ififm, n]. (ii)
Otherwise, we must recursively fill ih[m — 1,n] and L[m, n — 1] first. In general, while trying to fill
in L[i, 7] we must first check if the entry is already filled in (why?). & sve can return the value at
once. Clearly, this approach may lead to much fewer thanentries being looked at. We leave the
details to an exercise.

916. Applications. Computational problems on strings has been studied simceattly days of com-
puter science. One motivation is their application in tedit@s. For instance, the problem of finding
a pattern in a larger string is a basic task in text editorsotAer interesting application is in computer
virus detection. The growth of the world wide web has beemaxganied by the proliferation of com-
puter viruses. It turns out that each virus will send messagé&” which are rather similar to each other.
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We useL(X,Y) as a measure of similarity. If it is known thgtis from a virus, and.(X,Y") exceeds
some threshold, we infer that is probably from the same virus. See Exercise below.

The advent of computational genomics in the 1990’s has Wrongw attention to problems on
strings. The fundamental unit of study here is the DNA, wheefl@NA can be regarded as a string
over an alphabet of four letterd\, C, G, T These correspond to the four bases: adenine, cytosine,
guanine and thymine. DNA's can be used to identify speciegaisas individuals. More generally, the
variations across species can be used as a basis for megthaiirgenetic similarity. The LCS problem
is one of many that have been formulated to measure sinyilarit

EXERCISES

Exercise 2.1: Extending our running example, computéX, Y) whereX = lengtheningandY =

elongation. &
Exercise 2.2: Compute lcs(X,Y) for X = AATTCCCCGACTGCAATTCACGCACC and Y =

GGCTTTTATTCTCCCTGTAAGT. These are parts of DNA sequences from a modern human and a

Neanderthal, respectively. &
Exercise 2.3: Show ). &

Exercise 2.4: Give a direct recursive algorithm for computifigX, Y') based on equatiod)and show
that it takes exponential time. (In other words, equatiynafone does not ensure efficiency of
solution.) &

Exercise 2.5: Let lcs(X,Y) denote any member of.CS(X,Y). Give the analogue of8] for
les(X,Y). ¢

Exercise 2.6: (V.Sharma and Yap) Consider the exampledh (
(a) ComputeL (X, Y>) by filling in the the usual matrix. Moreover, determinéXs, Ys) =
|LCS(X5,Y>)| by counting the number of maximum paths in the matrix.
(b) Prove that(X,,,Y,,) = 2n.
(c) We indicated thak(X,,,Y,,) = |[LCS(X,,Y,)| > 2". Prove that\(X,,,Y;) = Q(+/6").
(d) Construct the grapti; (X3, Y3) as described in the text. Use this graph to coydYs, Y3).
What does this imply abowt(X,,, Y,,)?
(e) Write H,, for the graph71(X,,, Y,,). Give a simple description dff; up to isomorphism.
(f) Based on this description, provide an exact closed féanfr A(X,,,Y,,). ASIDE: Can you
also show that this number is equald9;_, (’;)2? &

Exercise 2.7:Let S = {X;,..., X} } be a set of strings whereis not fixed. Wlog assume that 0%;
is a substring of anothe¥ ; (i # j). A string Z such that eaclX; is a substring (not subsequence)
of Z is called asuperstring of S. Let SC'S(S) denote theshortest common superstringof S.
We are interested in computirfC'S(.S). In some sense, this is the dual of the LCS problem. It
is quite important in DNA sequencing where a long DNA segeanght be chemically cut into
short substrings, and we want to reconstruct the origirgieece as a shortest superstring.
(a) Is there a dynamic programming principle for this gehgrablem?
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(b) Give an efficient algorithm fok = 2.

(c) Letmerge(X,Y) denote the shortest string of the fouh= UVW whereX = UV and
Y = VW whereU andW are non-empty. Lel/ theoverlap of X, Y denotedv(X,Y’). We are
interested in choosing, Y where the overlap lengthv(X, Y')| is maximum. Consider a simple
greedy algorithm in which, at each iteration, we pick twangts X, Y € S with the maximum
overlap lengthouv(X,Y)|, and replaceX,Y by merge(X,Y). When there is only one string
left, we output this as an approximation$@'S(S). Let G(S) denote the output of the greedy
algorithm. Show thaG(S)| < 4/SCS(S)|.

Exercise 2.8: Joe Quick observed that the recurren¢efor computingZ (X, Y") would work just as
well if we look at suffixes ofX, Y (i.e., by omitting prefixes). On further reflection, Joe concluded
that we could double the speed of our algorithm if we work fleoth endsof our strings! That
is, for0 < i < j, let X; ; denote the substring;z;41 ---x;_12;. Similarly for Y} , where
0 < k < ¢. Derive an equation corresponding &) &nd describe the corresponding algorithm.
Perform an analysis of your new algorithm, to confirm and @atehe Quick Hypothesis. <

Exercise 2.9: Suppose we have a parallel computer with unlimited numbpratessors.
(a) How many parallel steps would you need to solveib&, Y') problem using our recurrence
4
(b) Give a solution to Joe Quick’s idea (previous exerciddlawving an algorithm that runs twice
as fast on our parallel computer. Hint: work the last two spiaipf each input string’, Y in one
step. &

Exercise 2.10: What are the forbidden configurations in the mafrixused for computind.(X,Y)?
(a) Supposé/]i, j| = 89, what are the possible valuesif[i — 1, — 1]?
(b) For instance, we have the following constraimis< M{i, j] — M[i — 1,5] < 1 and0 <
Mli,j] — M[i,j — 1] < 1. Also, M[i,j] = M[i —1,5] = M[i,j — 1] = M[i — 1,5 — 1] is
impossible. Note that these constraints are based onlyjanextty matrix entries. Is it possible
to exactly characterize the set of all allowable configoratiof A/ based on such adjacency
constraints? &

Exercise 2.11:
(a) Write the code in your favorite programming languageltdhfe above table fol (X, Y).
(b) Modify the code so that the program retrieves some mewhe€'S(X,Y).
(c) Madify (b) so that the program also reports whetief'S(X,Y)| > 1. Remember that we
do not count duplicates IhC'S(X,Y). &

Exercise 2.12:Let X, Y be strings.
(@) Provethal,(X X, Y) < 2L(X,Y).
(b) Show that for every, there areX, Y with L(X,Y) = n and inequality in (b) is an equality.
(c) Prove thal.(X X, YY) < 3L(X,Y).
(d) Similar to part (b) but for the inequality of (c). &

Exercise 2.13:Let A(X,Y) denote size of the sefC'S(X,Y) and A(m,n) be the maximum of
AX,Y) when|X| = m,|Y| = n. Finally letA(n) = A(n, n).
(a) Compute\(n) forn =1,2,3, 4.
(b) Give upper and lower bounds fafn). &
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Exercise 2.14:Let LCS'(X,Y) be themultisetof all the longest common subsequenceXoéndY .
That is, for each longest common subsequefice LCS(X,Y), we sayZ has multiplicity k¢
whereZ occursk (resp. ) times as a subsequenceXf(resp.,Y). Let X' (n,m) and X (n) be
defined as in the previous exercise. Re-do the previousisrdor \' (n). &

Exercise 2.15: Modify the algorithm forL (X, Y’) to compute the following functions:
(@N(X,Y)
(b) A(X,Y) &

Exercise 2.16: Instead of the bottom-up filling of tables, let us do a reaer$dp-down approach. That
is, we begin by trying to fill in the entrf.[m,n]. If z,, = y., we recursively try to fill in the
entries forL[m — 1,n — 1]; otherwise, recursively solve fdr[m — 1,n] andL[m,n — 1]. Can
you quantify the improvements in this approach? &

Exercise 2.17: (a) Solve the problem of computing the lendthX, Y, Z) of the longest common sub-
sequence of three string§ Y, Z.
(b) What can you say about the complexity of the further gelimation to computing
L(X1,...,X.) (form > 3). %

Exercise 2.18: A common subsequence &f, Y is said to bemaximal if it is not the proper subse-
guence of another common subsequenc& gf'. For examplelet is a maximal subsequence of
longest andlength. Let LC'S*(X,Y) denotes the set of maximal common subsequencés of
andY. Design an algorithm to compufe”'S*(X,Y). &

Exercise 2.19:Researchers are using LCS computation to fight computesestuA virus that is at-
tacking a machine has a predictable pattern of messagesds $e the machine. We view the
concatenation of all these messages that a potential \@ngssas a single string. Call the first
1000 bytes than from any source (i.e., potential virus) sfgmature of that source. LeKX be the
signature of an unknown source arids the signature of a known virus. It is known empirically
that if L(X,Y") > 500, thenX is from the same virus, and (X, Y") < 200, it is different.

(a) Design a practical and efficient algorithm for the degigiroblemL(X, Y, k) which outputs
“PROBABLY VIRUS" if L(X,Y) > k and “PROBABLY NOT VIRUS” otherwise. Give the
pseudo-code for an efficient practical algorithm. NOTE: ©beious algorithm is to use the stan-
dard algorithm to computd (X, Y) and then compare to k. But we want you to do better than
this. HINT: There are two ideas we want you to exploit — mostietts only think of one idea.

(b) Quantify the complexity of your algorithm, and compaieperformance to the obvious al-
gorithm (which first compute& (X,Y)). First do your analysis using the general complexity
parameters ofn = | X|,n = |Y| andk, and alst/ = L(X,Y). Also discuss this for the special
case ofm = n = 1000 andk = 500. &

Exercise 2.20: A Davenport-Schinzel sequence on symbols(or, n-sequencefor short) is a string
X =uxz1,...,70 € {a1,...,a,}" suchthaty; # x;, ;. Theorder of X is the smallest integer
such that there does not exist a subsequence of léngth of the form

Q;Q;a;05 -+ AiQ;Q; or a;aja;a;---a;a;a;

whereq; anda; alternate and,; # a;. Define),(n) to be the maximum length ofiasequence
of order at most.
(@) Show that\; (n) = n andXz2(n) = 2n — 1. NOTE: for an orde® string, a symbol may:
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times.
(b) SupposeX is ann-sequence of orde} in which a,, appears at mosts(n)/n times. After
erasing all occurrences of,, we may have to erase occurrenagé = 1,...,n — 1) in case two

copies ofa; becomes adjacent. We erase as few of thg'seas necessary so that the resxiltis
a(n — 1)-sequence. Show thaX | — | X'| < Az(n)/n + 2.

(c) Show that\s(n) = O(nlogn) by solving a recurrence foxs (n) implied by (b).

(d) Give an algorithm to determine the order ofraisequence. Bound the complexiyn, k) of
your algorithm wherer is the length input sequence ahd n the number of symbols. &

Exercise 2.21:(Hirshberg and Larmore, 1987.) A concept of “Set LCS” quitdidct from our defini-
tion goes as follows. We want to compute the “LCS"Xf= x1,...,z,, andY = y1,...,y,
wherez; € ¥ (for some alphabet as before) bug,; € 2*. We viewY as a set of strings ovet,
Y = {7, -- -y, } where eacly, is a permutation of the sgt C ¥. An elementy, ---3,, € Y'is
called aflattening of Y. A SLCSof X andY is defined to be a common &f and any flattening
of Y of maximum length. Give a®(mN) algorithm for SLCS whereV = 37, |y;|. N.B.
The motivation comes from computer-driven music where dyiploonic score” Is defined to be
a sequence of sets of notes (representeti pyEachy; C ¥ may be viewed as a chord is a
solo score that is to be played to accompany the polyphobniesc &

Exercise 2.22: Consider the generalization of LCS in which we want to coraplné LCS for any input
set of strings.
(a) If the input set have bounded size, give a polynomial Swiation.
(b) (Maier, 1978) If the input set is unbounded, show thatgtablem isN P-complete. &

END EXERCISES

3. Edit Distance

In the previous section, we tried to capture similarity begw two strings by the amount of overlap.
In this section, we look at a different view of similaritywhat is the minimal amount of change nec-
essary to make the two strings equa®r instance, two identical strings are most similar beedhs
amount of change necessary to make them equal is zero. Té@ssent opposite views of similarity:
in one case we try to maximize the overlap, and in the other eastry to minimize the amount of
change.

what is our favorite
editor? the “vi”

derivative called
“gvim”

But first we need a way to measure change. It is based on theofdediting a string in a text
editor on a modern computer. Text editors has a repertoibasit operations, and we we just count
the number of basic operations necessary to convert omg sirito anotherY”. The minimum such
numberD(X,Y") is called theedit distancebetweenX andY. A “complete” repertoire for any editor
may comprise just two types of operations: the insertiondeidtion of a single character into a string.
This allows us to transform an¥ into any otherY. We also need to associate a positive cost with
each operation: the simplest model is to charge one unitpamation. Under this unit cost model, if
X = cat andY = dog, and we only have insertion and deletion operations thendtsy to see that
D(X,Y) = 6 (we need to delete 3 letters and to insert 3 letters). On therdtand, if we have the
operation to replace any letter in a string by another lettem D(X,Y) = 3 as three replacement
operations suffice. One could also gi#¢ X, Y') a computational biology interpretation, by postulating
editing operations that are apropos of genetic modification
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Here is one application of thB (X, Y') measure: in looking up strings in a database, a query string
X can be used to find the that is closest td{, i.e., which minimizes the edit distané® X,Y"). The
ultimate in similarity betweerX andY” is then captured by the relatidn(X,Y) = 0. Itis interesting
to comparel.(X,Y") in the LCS problem with the edit distand® X, Y"): In the LCS problemX and
Y are more similar for larger values é@f{ X, Y’). But in edit distanceX andY are more similar for
smaller values oD (X, Y"). We explore some connection betweR(X,Y) andL(X,Y") below.

917. The Standard Edit Distance. We now specify the standard repertoire of edit operationsaiiy
alphabet.. For any index > 1 and lettera € 3, define the following threstandard edit operations

Ins(iya), Del(i), Rep(i,a).

When applied to a string(, these operations will (respectiveiyisert the lettera so that it appears in
positioni, deletetheith letter, andeplacetheith letter bya. Let

Ins(i,a,X), Del(i,X), Rep(i,a,X) (24)

denote the strings that are produced by these respectivatapes. For example, ik = AATCGAthen
Ins(3,G, X) = AAGTCGA Del(5, X) = AATCAandRep(5, T, X) = AATCTA

The operations in1(4) assume that is in the “proper range”: For insertion, this means< ¢ <
|X| + 1, but for deletion and replacement, this means ¢ < |X|. When: is not in the proper range,
we simply declare such operations to be undefined. The operafieng) andIns(i,a) are inverses
of each other in the following sense:

X = Del(i, Ins(i,a, X)), X = Ins(i, b, Del(i, X)), (15)
for someb € ¥. In general, ift’ = Ins(i,a, X ), then|Y| =1+ | X|and

XT[j] it j=1,...,i—1
Y[jl={ a it =i
X[j—1] if j=i+1,...|X]|

The other operations can be similarly characterized.

We defineD(X,Y") be the minimum number of standard edit operations that vetigformX to

Y. For exampleD(TAG, CAT) < 2 since Definition of edit

distanceD(X,Y")
TAG= Rep(3,G Rep(1, T, CAT)).

Moreover,D(TAG, CAT) > 2 since a single edit operation cannot make these two strimgs €There-

fore we conclude thab(TAG CAT) = 2.

Our immediate goal is devise an efficient algorithm to coregfX,Y") for any X, Y. But first,
let us explore some simple properties. The first remark isttreaset>>* of strings, together with the
edit distance functiol® : ¥* x ¥* — R, constitutes anetric space This amounts to satisfying the
following natural properties:

(i) (Non-negativity)D(X,Y) > 0 with equality iff X =Y.
(i) (Reflexivity) D(X,Y) = D(Y, X).

(iii) (Triangular Inequality)
D(X,Z)< DX, Y)+ DY, Z2). (16)

7 Itis also easy to introduce conventions for interpretifig) 6o that these operations are well-defined foi.all
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We also have the following bounds:
[X| - Y] < D(X,Y) < [X] (17)

where|X| > |Y| (this assumption is without loss of generality becauseidf (In proof, the lower
bound onD(X,Y) is necessary because we need at |gg@st- |Y'| delete operation just to decrease the
length of X to that ofY". The upper bound is sufficient because, by usingreplacement operations,
we can make modifyX so that it hag” as a prefix, and this can be followed by | — |Y'| deletions.
These bounds are achievable. E.g., the upper bound iseattaith D(googl e,sear ch) = 6.

918. An Infinite Edit Distance Graph. Itis interesting to view the sét* of all strings over a fixed
alphabet: as vertices of an infinite bigrapH(X) in which X, Y € ¥* are connected by an edge iff
there exists an operation of the forfyj that transformsX to Y. Paths inG(X) are callededit paths
and edit distances has the following interpretation:

D(X,Y)is the length of the shortest (link-distance) path frdnto Y in G(X).  (18)

In analogy to §), we have the following recursive formula:

max{|X|,|Y|} if mn=20
D(X,Y)=4 DX Y’) if 2=y,  (19)
1+ min{D(X",Y),D(X,Y"),D(X",) Y} if 2 # yn

It is a simple exercise to prove the correctness of this féamit follows thatD(X,Y") can also be
computed inD(mn) time by the technique d§8, by filling in entries in an x n matrix M.

Suppose we want to compute, not just the numbéK,Y"), but the sequence dP(X,Y) edit
operations to converk to Y. We have seen this idea before — we expect to be able to aenotat
the matrix M with some additional information to help us do this. For thigpose, let us decode
equation {9 a little. There are four cases:

(a) In caser,,, = y,, the edit operation is a no-op.

(b) If D(X,Y) =1+ D(X',Y), the edit operation i®el(m, X).

() f D(X,Y) =1+ D(X,Y"), the edit operation igns(m + 1, y,, X).

(d)If D(X,Y) =1+ D(X',Y’), the edit operation iRep(m, yn, X).

Hence it is enough to store two additional bits per matrixyetd reconstrucbnepossible sequence of
D(X,Y) edit operation.

919. Connection to LCS Problem. We had alluded to a connection betwdeiX,Y) andD(X,Y).
Here are some inequalities:

LEMMA 1. Let X andY have lengthsn andn. Then
D(X,Y)<m+n-2L(X,Y).

and
D(X,Y) > max{m,n} — L(X,Y).
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Proof.Upper bound: ifZ € LCS(X,Y) thenwe haveD(X,Z) < m — L(X,Y)andD(Z,Y) <
n— L(X,Y),HenceD(X,Y) < D(X,Z)+ D(Z,Y) < m+n—2L(X,Y).

Lower bound: assumen > n, so it suffices to showL(X,Y) > m — D(X,Y). Suppose we
transformX to Y in a sequence aD(X,Y") edit steps. ClearlyD(X,Y) < m. Butin D(X,Y) steps,
there is a subsequengeof X of lengthm — D(X,Y) thatis unaffected. Hencg s also a subsequence
of V,ie.,L(X,Y) > |Z| =m — D(X,Y). Q.E.D.

These bounds are essentially the best possible: assumne:. Then for eachn/2 < ¢ < n, there
are stringsX, Y such thatD(X,Y) = m +n — 2¢ whereL(X,Y) = £. E.g., X = a™ ‘"’ andY =
b*c"~*. For the lower bound, for eadh< ¢ < m, there are stringX’, Y such thatD(X,Y) = m — £.
E.g.,.X = a™ %" andY = b’.

920. Edit distance under general cost function. Our edit distance was based on unit cost for every
operation. We now generalize this by allowing differenttsder different types of operations. The
“type” of an operation is determined, not only by its natunsért/delete/replace) but also by the letters
that are operated upon.

An alignment cost functionis given by
A:(ZU{x})* =R

wherex is a symbol not in the alphab®&t Forz,y € X, we interpretA(z, y) as the cost to replace
by y. Also, forb € 3, we interpretA(x, b) as the cost of inserting andA (b, x) as the cost of deleting
b. Under this interpretation, it is natural to impose thedaling requirement or\:

A(x, %) > 0. (20)

Thealignment distancebetween string&, Y under this cost function is denoteth (X, Y), or simply  Informal definition of
A(X,Y), if Aisunderstood. I is non-negative, then the definition dfx (X,Y") is easy to define, alignment distance
and corresponds to our intuition coming from edit distafie&X, Y'). So for the time being, we assume AX,Y)
A > 0.

The terminology “alignment” is new and needs some motivatithe concept comes from genomics
where we think of computingia (X, Y") as an issue of “aligningX with Y so that there is a one-one
correspondence between lettersXdfandY’, and all we do is to replace corresponding letters that are
mismatched (i.e., different). Of course, letter-foréetteplacements alone will not be enough, so we
need to generalize this notion to include insertions andtiels (i.e., by aligning letters with). For
instance, ifX = ACT andY = CAT then a possible alignment of these two strings can be remexse
by the pair(X.,Y.) = (AC+ T, * CAT), which can be visualized as follows:

X.:|A C * T
Y: | * C AT

The cost of this alignment is then taken to be
A(A *)+ A(C, C) + A(x, AA(T, T).
We will shortly give a formal model of this alignment.
It is an easy observation that our original edit distafgX,Y) amounts to the alignment cost

function whereA(z,y) = 1 if  # y andA(z,y) = 0 otherwise. But in general, the ability df to
assign cost based on the letters is rather useful:
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¢ In genomics, it appears that that replachkby Cis less likely than replacing by T. This can be
modeled using a cost function whetdA, C) > A(A, T).

e Consider the string edit problem over the alphalaetb, ¢, ..., X, y, z}: in many keyboard
layouts, the key fob is adjacent to that fov, but relatively far from keya. Since it is easy to
confuse two adjacent keys on a keyboard, we may model typiogsewith a cost function where
A(a, b) > A(v, b).

For example, consider the alignment cost function

2 if x=x%xory=x
Alz,y) =< 0 fz=y (21)
1 else

Thus we charge two units for insertion or deletion, but oriefanreplacement. There is no charge when
x = y since, intuitively, this is a null operation. Suppo$e= bulk andY = ucky. Inthe uniform cost
model, we havéD(X,Y") = 3, obtained by the following sequence of delete, insertaepbperations:

bulk ° ulk = ulky % ucky.

With the cost model ofZ1), these operations have a total cos§ef 2 + 2 + 1. This cost is suboptimal
because we can achieve a costef 1 + 1 + 1 + 1 by a straightforward sequence of replacements:

bulk — uulk — uclk — uckk — ucky.

Itis also easy to see that the cost cannot be lesst¢h&p we conclude thad (bulk, ucky) = 4.

So far, we have only looked at non-negative costs. But sangttjuite interesting arises if we
allow negative costs. To focus on this issue, let us intredusimple class of cost functions. In general,
the cost functiomA requires specifying almogt>| + 1)? numbers. But consider the following cost
function,

o— if =y,
Alz,y)=9q 02 if zy (22)
0, If x=x% or y=x.

which is completely specified by three parametersi andd... The valuél. is called thegap penalty.
We shall assume that
0= <0< 6z <y (23)

This is well-motivated in genomics where an insertion oetleh in a DNA sequence is a significant
change and relatively rare. Here is one set of such parasneter

§.=3, 6-=-2 0bi=1. (24)

Let us note that the triangular inequality (ct6) fails under the cost functior2f). Let X = a,
Y = aa, andZ = aaa. Under the alignment cost specified [34), we haveA(a, aa) =3 — 2 = 1,
A(aa, aaa) =3—4=—1,andA(a, aaa) =6 —2 = 4. Thus

A(a, aa) + A(aa, aaa) < A(a, aaa).

Another example where triangular inequality failsis= ab, Y = bb andZ = ba.
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921. What is missing in the editing model? We have motivated the need for a cost model based on
the letters operated upon. But why do we need negative costa? simplified cost functionZ2), we
might think that a non-zero value fér. is most curious. Shouldnd- always be)? In other words, if
there is no need to replaae then no cost should be associated. First of all, it seenas that there is
little point in makingd— positive. On the other hand, there is a strong case for aligpwegativei—. In
terms of minimizing cost, a negative value is actually a gthag.

Imagine that the FBI has a DNA bank containing the DNA segasrml-
lected at crime scenes. To correlate these crimes, the FBpetes the align
ment costs of pairs of DNA's coming from different crime seen Let ug
define the correlation between two crime scenes to be themomiA(X,Y)
whereX occurs at one scene afidat the second scene. With this definitipn,
we would like our alignment cost to exhibit the following Kiof inequality:

A(C, ©) > A(CC, CC) > A(CCC, CCO).

In other words, a matching pair in the alignment should besitipe factor,
not neutral, for crime correlation. This amountsito < 0, notj—- = 0.
Similarly, we want the inequality

A(CG, CGG) > A(CGAAA, CGGAAA)

even though a single insertion suffice to align both pairgraigs.

922. Algorithm to compute alignment cost. We now give a dynamic programming method to com-
pute Ax(X,Y). The method is reminiscent of the LCS problem. Supplise- z; ... Zp—1Zy =
X'z, andY =y ...yn_1y» = Y'y,. Then we have the recursive rule:

dx(m +mn) if mn =0,
B min{ A(X",)Y") + A, Yn),
) = AXY) + Az, *),
AX,Y') 4+ A, yn)} else

AX,Y (25)

Note that for simplicity, 25) assumes that all deletion and insertion have the same €ast oTo

systematically carry out the computation, we set ymat 1) x (n + 1) matrix M. The first row and
first column corresponds the the base case, and can be fillgdtinsing the base case ¢f5). The

remaining entries of\/ is filled in a row by row fashion, using the general case2d)( The desired
valueA(X,Y) is found in the(m + 1,n + 1)-entry of M.

Example. Assume thak in (22) is given by

bo=—-1, dx=1, 6,=2. (26)
For X = GCAT andY = AATTC, our matrix computation yields:
e AATTZC
e|l0 2 4 6 8 10
G|2 1 3 5 7 9
M= Cil4 3 2 4 6 6
Al6 3 2 3 5 7
TI8 5 4 1 2 4
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This proves thatd(X,Y) = 4.

The original alignment problem came from S. Needleman anW@sch
“A general method applicable to the search for similarititethe amino acid
sequence of two proteinsJ.Molecular Biology 48(3):443-53, 1970. It is
the first application of dynamic programming to computadidriology. The
cost functionA is represented by a so-callsimilarity matrix . A typical
similarity matrix is
AlA G C
Al-3 2 3
G|l 2 -3 2
C| 3 2 -3
TI1 1 1 -3

where the negative scores along the diagonal corresponds to —3. The
gap penalty, separately given.

(27)

e e B |

923. Model of Alignment. The above algorithm for computing(X,Y") using @5) follows the
LCS model and standard edit distance model. But the judiificaf its correctness in the presence of
negative costs requires a new model of what we are minimizing

Recall that we previously interpreted(X,Y) as a minimum cost path problem in the infinite
graphG(X) defined in§18. We could extend this interpretation tba (X, Y’), where we now attach
appropriate costs for edges@fX). This model works well as long as we do not have negative costs
But suppose\(a, a) is negative. Ifa occurs in any string\, then the grapldz(X) will have an edge
from X to itself (i.e., a self-loop) with cosA(a,a). Then we must conclude that(X, X) = —oo
since we can replace by itself as many times as we wish and induce an arbitraribatiee cost. It
is easily seen that this implie$(X,Y) = —oc for all X, Y € ¥*. Something is clearly wrong with
this interpretation. This problem will arise as long as ¢hisra cycle inG(X) with negative cost. So
in order to defined(X,Y") properly, we must restrict the possible paths frénto Y (in particular, we
must not re-use edges). We introduce an “alignment modealapaure this.

The issue of negative

cycles in shortest path
is a well-known
phenomenon

To compute the alignment distance f&t Y, we first inserting zero or mor€s into X andY so
that the resulting stringX., Y. have the same length. Such a p@¥,, Y,) is called armalignment of
X,Y. Thus theith characterX.[i] in X, is aligned with theith characte’,[i] in Y, if we placeX.
aboveY.. The cost of this alignment is the sum of the cost of “replgteachX.[i] by Y.[i]. We may
extend the original cost functiofs to alignments as follows:

4
A(X,,Ya) = A(X,[i], Yali])

i=1

wherel = | X,|. Of course, this “replacement” covers insertion and detetias well. Finally, define
thealignment costfor X, Y to be the minimum ofA (X, Y.) over all alignment$X., Y. ), and denote
this minimum byA, (X, Y):

A (X,Y):= min A(X,,Y, 28

(X,Y) (i ( ) (28)

where (X.,Y,) ranges over all alignments oK,Y. Call (X,,Y.) an optimal alignment if
A(X,,Y,) = A«(X,Y). Under assumption2Q), an optimal alignment must satisfy.[i] # * or
Y. [i] # = for eachi. Thus, welX,| = |Yi| < | X|+|Y].

E.g., LetX = AATTCandY = GCAT, as in a previous example. X, = AATTCandY, =
GCAT*, thenA(X.,,Y,) =1+1+1—1+ 2 =4. Ifthe alignment cost oX, Y is equal toA(X,Y)
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as we have been trying to suggest, then this particular mkgn (X, Y.) must be optimal. That is
because we have previously computgd{, V) = 4. This is the result to be shown next.

924. Correctness of the Dynamic Programming Solution. We formally defined the alignment cost
to beA,(X,Y)in (28). In 922, we described a dynamic programming algorithm to computgsatty
that we will define (by fiat!) to beda (X, Y). The correctness of the dynamic programming algorithm
amounts to the equalitla (X,Y) = A, (X,Y) for all stringsX,Y. Unfortunately, this is not true
without further restrictions orh. We sayA is well-founded if

Afa, ) + Ax,a) = 0
for all a € 3. To see why this is necessary, suppase, ) + A(x,a) < 0 for somea. Then
Ale e) = —0

wheree is the empty string. To see this, note that,, Y, ) := (a”*™, =*"a")is an alignment fofe, ¢)
for anyn > 0. The cost of this alignment is(A(a, *) + A(*, a)), which can be arbitrarily negative.
This argument can be extended to showing thatX,Y) = —oo for all X, Y.

THEOREM2 (Correctness).
A is well-founded iff for allX, Y € ¥*, A (X,Y) is finite. WhemA,(X,Y) is finite, it is equal to
AA(XY).

Proof. To show thatA, (X, Y) is finite, we show that if X, Y,) is an alignment of X, Y), and if
|X.«| > | X| + |Y] then the cost of X, Y.) is not minimal. ... Q.E.D.

An alternative to the preceding alignment model is the feifg “marking model”. Initially, we
“mark” each letter inX. Each replacement or deletion operation is applicable tmiparked letters.
The result of a replacement or insertion operation is an ukeaddetter. At the end of our sequence of
operations, we must obtain a copy¥fwith only unmarked letters. We leave it as an Exercise to show
that this is equivalent to our alignment model.

Above we have noted that with negative costs, we may nofgdltis triangular inequality. We now
prove a positive result in the other direction:

LEMMA 3. Suppose the alignment cost functidnis “triangular” in the sense that for allz,y, z €
SU{x}, we haveA(z, z) < A(z,y)+A(y, z). Then the alignment distanck satisfies the triangular
inequality: A(X, Z) < A(X,Y) + A(Y, Z).

Proof. Suppose X, Y,) and (Y., Z..) are the optimal alignments fofa (X,Y) and Aa (Y, Z),
respectively. Then we claim th&t(X,Y) + A(Y, Z) > A(X, Z). This can be shown by constructing
an alignment X, Z) that has alignment cost at mas$k (X,Y) + Aa(Y, Z). ... incomplete Q.E.D.

925. Example. Let us give a non-biological example, motivated by stringtieg. Let ¥ =
{a,b,c, ...,X,YV, z} bethe letters of the English alphabet. Define

0 if x=x or y==x,

I | T

Alz,y) = 01 if x,y are both consonants or both vowels,
0o else

(29)
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This cost function generalizes the editing distance costhicth we take into account the nature of
letters that cause mismatch. For instance, with the choice

5, =3, 0_=0, 01=1, 6,=2, (30)

then A(t her e, t hei r) = 4 since we can replace the last two letters in the first word bir torre-
sponding letter in the second word. This has dosince usingA(r, i ) = A(e, r) = 2. There is no
cheaper way to effect this transformation.

926. Generalizations. There are many possible generalizations of the above girisigjems.

e We can introduce cost models that are “context sensitivet. iftstance, transformingaby to
XbaY can be viewed as two replacements (with total cos24fa, b)). But if we look at the
context of these two replacements, and realize that thebearewed as a transposition, then we
might want to assign a smaller cost.

e The fundamental primitive in these problems is the comparéf two letters: is letteX [¢] equal
to letterY[j] (a “match”) or not (a “non-match”)? We can generalize thisaigwing “approxi-
mate” matching (allowing some amount of non-match) or ali@meralized “patterns” (e.g., wild
card letters or regular expressions).

e We can also generalize the notion of strings. Thus “multatisional strings” is just an arrays of
letters, where the array has some fixed dimension. Thusgstare just 1-dimensional arrays. It
is natural to view 2-dimensional arrays as raster images.

e Another generalization of strings is based on treesstrig tree is a rooted tred” in which
each node is labeled with a lettei(v) (from some fixed alphabet). The tree may be ordered or
unordered. In a natural way, represents a collection (order or unordered) of strings.A.and
T be two string trees. We say tha&tis a(string) subtree of T if there is 1-1 mag: from the
nodes ofP to the nodes of” such that

— pis label-preservings € P andu(v) € T has the same label.

— v is “parent preserving”: if: is the parent ob in P thenp(u) is the parent ofy(v) in T'.
For ordered trees, we further insist thelbe order preserving.

In particular, ifvg is the root of P thenp(P) is a subtree (in the usual sense of rooted trees) of
T rooted au(vg). We say there is a “match” ai(vy). Hence a basic problem is, givéhandT,
find a match ofP in T, if any. Consider the edit distance problem for string tr8és following
edit operations may be considered: (1) Relabeling a nodéng2rting a new child to a nodeu,
and making some subset of the children:dd be children of. In the case of ordered trees, this
subset must form a consecutive subsequence of the ordatédenlof «. (3) Deleting a childy

of a nodeu. This is the inverse of the insertion operation. We nextggssome cost to each of
these operations, and define the edit distaR¢#, 7") between two string treeE and7” to be
the minimum cost of a sequence of operations that transf@ras?”. A natural requirement is
hatD(T,T") is a metric: soD(T,T") > 0 with equality iff T’ = 7", D(T,T7") = D(T',T) and
the triangular inequality be satisfied.

e Let D = {Y1,...,Y,} be a fixed set of strings, called the dictionary. DefiteX, D) =
min{A(X,Y;):i=1,...,n}. We would like to preproces® so that for any giverX, we can
quickly compute the set of words in the dictionary that isselst toX according to the alignment
distance.

Remarks: Levenshtein (1966) introduce the editing metric for stsingthe context of binary codes.
Needleman and Wunsch (1970), “A general method applicalitetsearch for similarities in the amino
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acid sequence of two proteins” (J.Mol.Biol., 48(3)443-58)considered to be the first application of
dynamic programming to biological sequence comparisonsithSand Waterman (1981) proposed
a variation of the Needleman-Wunsch algorithm to findi@tial alignments between two sequences.
In contrast, the Needleman-Wunsch algorithm addressegldal alignment problem. Sankoff and
Kruskal (1983) considered the LCS problem in computatidmallogy applications. Applications of
string tree matching problems arise in term-rewriting ey, logic programming and evolutionary bi-
ology. The volume by Apostolico and Galil][contains a state-of-the-art overview for pattern matghin
algorithms, circa 1997.

EXERCISES

Exercise 3.1: Compute the edit distancé¥( X, Y) whereX,Y are given:
(8) X = 00110011 andY = 10100101.
(b) X = AGACGTTCGTTAGCA andY = CGACTGCTGTATGGA.
(c) X = CGTAATCC andY = CCGTCC. Recall that Google thought these two strings are similar,
and may refer t&€CGTCC. com &

Exercise 3.2: Compute the alignment distandg, (X, Y') for the examples (a)-(c) in the previous ques-
tion. LetA be specified by the parametérs= —1, 6, = 1,6, = 2. &

Exercise 3.3: Compute the alignment distancg X,Y) betweenX = googl e andY = yahoo
using the alignment cos2f) and and 80). For this purpose, assunyeis a consonant. Also,
expressA(X,Y') as a direct alignment cost. &

Exercise 3.4: Suppose we compute optimal alignme#(X,Y) by filling a matrix M[0..m,0..n]
where|X| = m,|Y| = n. Let M[i, j] be the optimal cost to aligiX; with Y; whereX; is
the prefix ofX of lengthi and similarly forY;. Assume the alignment cost function of the previ-
ous google-yahoo question. Suppd$@, j| = k. What are the possible values fof[i — 1, j —1]
as a function ok? What abouf//[i — 1, j + 1] as a function of? Justify your answer. &

Exercise 3.5: ComputeA(X,Y) whereX, Y are the string®ATTCCCGA andGCATATT. AssumeA
has gap penalty, A(x,2) = —2 andA(z,y) = 1 if = # y. You must organize this computation
systematically as in the LCS problem. &

Exercise 3.6: Prove (L9). This is an instructive exercise. &

Exercise 3.7: Letz, y, z be distinct letters, and < m < n.
(a) Prove thaD(X,Y) = m 4+ n — 20 wherem > £ > m/2, X = 2™ ‘2* andY = 2"~
(b) Let X = 2™ 2% andY = y" ¢z (0 < ¢ < n) Prove thatD(X,Y) = n — . %

Exercise 3.8: Let X, Y be strings. ClearlyL.(X X,YY) > 2L(X,Y).
(a) Give an example where the inequality is strict.
(b) Prove thafl (X X,Y) < 2L(X,Y) and this is the best possible.
(c) Prove thalL,(X X, YY) < 3L(X,Y).
(d) We know from (a) and (c) that(X X, YY) = ¢L(X,Y) where2 < ¢ < 3. Give sharper
bounds forc. &
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Exercise 3.9: You work for Typing-R-Us, a company that produces smart woracessing editors.
When the user mistypes a word, you want to lookup the dictipfaa the set of closest matching
words.

(a) Design an alignment cost functidnwhich takes into account the keyboard layout. Assuming
the QWERTY layout, you would like to defin&(z, y) to be small when, y are close to each
other in this layout. Also, row distance is much smaller tikatumn distance. Assumg =

There are 3 rows of
letters in this layout:
The first row is
QNERTYUI OP. The

{A,B, C X, Y, Z} next two rows are
Co ey o ok ASDFGHIKL and
(b) Using yourA function, computed(QAERTY, QUI ET) andA(QNERTY, QUI CKLY). ¢ % CVBNM

Exercise 3.10:In the text, we described a "marking model” to formalize tHevaable sequence of op-
erations to transfornX to Y (andA(X,Y) is the minimum cost of such an allowable sequence).
Prove that this model is equivalent to our alignment model. &

Exercise 3.11:Let D = {Y1,...,Y,} be a fixed set of strings, called the dictionary. &tX, D) =

min {A(X,Y;) : i =1,...,n} be the minimum alignment distance between a stithgnd any
stringY in D. How can you preproced3 so thatA(X, D) can be computed in faster than the
obvious method? &

Exercise 3.12:Let X** denote strings of strings. A natural language text can baghbof as an

element ofS**. If v,w € ¥*, let A(v,w) = \ifiﬁ)\' ForX,Y € ¥*, let A(X,Y) be the
alignment distance using the aba¥dunction. Also, the gap penalty. is some arbitrary positive

value. &

Exercise 3.13: Suppose we allow the operationtofnspose ...ab... — ...ba.... LetT(X,Y) be
the minimum number of operations to convértto Y, where the operations are the usual string
edit operations plus transpose.

(i) ComputeT' (X, Y) for the following inputs:(X,Y) = (ab,¢), (X,Y) = (abe,¢), (X,Y) =
(ab, ca) and(X,Y") = (abe, ca).

(i) Show thatT'(X,Y) > 1 + min{T(X",Y), T(X,Y"), T(X",Y')}.

(ii) In what sense can you say th@(X,Y) cannot be reduced to some simple function of
T(X'Y), T(X,Y')andT (X', Y")?

(iv) Derive a recursive formula fdF (X, Y'). O

Exercise 3.14:1n computational biology applications, there is interasamother kind of edit operation:
namely, you are allowed to reverse a substring{jfY, Z are strings, then we can transform the
XY Z to XYRZ in one step wher&  is the reverse of2. Assume that substring reversal is
added to our insert, delete and replace operations. Givéfieieet solution to this version of the
edit distance problem. &

END EXERCISES

4. Polygon Triangulation

We now address a different family of problems amenable tadth@amic programming approach.
These problems have an abstract structure that is bestimaglasing the notion of convex polygons.
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The standard notion of a polygah is a geometric one, and may be represented by a sequence
(v1,...,v,) of verticeswherev; € R? is a point in the Euclidean plane. We sRyis convexif no v;
in contained in the interior of the triangl&(v;, vx, v¢) formed by any other triple of points. Figuge
shows a convex polygon with = 7 vertices. Anedgeof P is a line segmenlv;, v;11] between two
consecutive vertices (the subscript arithmetic+“1”, is modulon). Thus[vy, v,] is also an edge. A
chord is an line segmerju;, v;] that is not an edge.

Figure 2: A triangulated 7-gon

927. Abstract Polygons. We now give an abstract, purely combinatorial version oéierms. Let
P = (v1,...,v,),n > 1, be asequence afdistinct symbols, called @mbinatorial convex polygon

or an(abstract) n-gonfor short. We call each; avertex of P. Since the vertices are merely symbols
(only the underlying linear ordering matters), it is oftemgenient to identify; with the integer. In
this case, we callvy,...,v,) = (1,...,n) the standard n-gon. Henceforth, we assume > 3 to
avoid trivial considerations.

AssumeP is a standarch-gon. By asegmentof P we mean an ordered pair of vertic€s, j)
wherel < ¢ < j < n. This is sometimes written;j”. We classify a segmeny as anedgeof P if
j = i+ 1(modn); otherwise the segment is callecthord. Thus,1n is an edge. I > 3, there are
exactlyn edges anc@”;l) = (n—1)(n—2)/2 chords (why?). We say two segmefiteandk/ intersect
if

i<k<j<dt or k<i<{l<y;

otherwise they ardisjoint. Note that an edge is disjoint from any other segmerit of

928. Triangulations. It is not hard to show by induction thatmaaximalsetT" of pairwise disjoint
chords ofP has size exactly — 3. If n > 3, a setl” with exactlyn — 3 pairwise disjoint chords is called
atriangulation of P. In the following, it is convenient to consider the degeterase of 2-gon; the
empty set is, by definition, the unique triangulation @gon. E.g., figure® shows a triangulation

T = {14, 24, 47,57}

of the standard-gon. Atriangle of P is a triple (i, j, k) (or simply,ijk) wherel <i < j < k <mn;
its three edges arg, jk andik. E.g., the set of all triangles of the stand&rdon are

123,124, 125,134, 135, 145, 234, 235, 245, 345.

We sayijk belongs toa triangulatioril” if each edge of the triangle is either a chordiror an edge of
P. Thus the triangles of th€ in figure2 are

{124,234, 147,457, 567}.

Every triangulatioril” has exactlyn — 2 triangles belonging to it, and each edgefofppears as the
edge of exactly one triangle and each chor@’iappears as the edge of exactly two triangles [Check:
n — 2 triangles has a combined total ®fn — 3) + n edges.] In particular, there is a unique triangle
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belonging tol" which contains the edge:. This triangle is(1,i,n) for somei = 2,...,n — 1. Then
the setl’ can be partitioned into three disjoint subsets

TZTiL'UTZ-IL‘HSi

where S; = T n {(1,9),(i,n)}, and T;, T} are (respectively) triangulations of thegon P, =
(1,2,...,i) and the(n — i + 1)-gon P} = (i,i + 1,...,n). E.g., the triangulatiod” in figure 2
has the partition

T=T44 Ti W Sy

whereSy = {14,47}, Ty = {24} andT; = {57}. Note thatS; = {(1,7), (i,n)} iff 2 <i < n —1,
Sy = {(2,n)} andS,—1 = {(1,n—1)}. Also, our convention about the triangulationfons is
assumed whenh=2o0ri=n — 1.

Thus triangulations can be viewed recursively. This is et our ability to decompose problems
based on triangulations.

929. Weight functions and optimum triangulations. A (triangular) weight function onn vertices
is a non-negative real functidi” such that¥ (i, j, k) is defined for each trianglgk of an abstract-
gon. ThelW-costof a triangulatiorl” is the sum of the weightd’ (i, j, k) of the triangles jk belonging
to T. Theoptimal triangulation problem asks for a minimuni?’-cost triangulation ofP, given its
weight functioniV.

930. Example: Suppose a carpenter has to saw a bdarthat is shaped as a convexgon into
n — 2 triangles. He wants to minimize the amount of sawing to beeddu can interpret this to mean
minimizing the amount of sawdust produced. How should beipuhe board?

In caseP = (v1,...,v,) iS @ geometric convex polygon in the plane, a natural costtfon is
W (i,j, k) is the perimetet|v; — v;|| + ||vi — vk|| + ||v; — vg|| of the triangle(v;, v;, vx), where
| - || denotes the Euclidean length function. It is easy to cheak#his optimal iff it minimizes the
SUM>_ ., »er llvi — v;| of the lengths of the chords ifi. Thus, this provides the solution to our
carpenter’s the sawdust problem.

In specifyingl¥, we generally expected the “specification size” tod@?>). However, in many
applications, the functiof¥ is implicitly defined by fewer parameters, typicaty(n) or ©(n?). Here
are some examples.

1. Metric Sawdust Problem: this is a generalization of the “sawdust example”. Supp@ad e
vertexi of P is associated with a poipf of some metric space. Thé# (i, j, k) = d(p;, p,;) +
d(pj, px) + d(pk, pi) whered(p, q) is the metric between two pointsg in the space.

2. Generalized Perimeter Problem: W is defined by a symmetric matrifa;;);;_; such that
W (i, j,k) = aij + ajx + aix. We can viewa; ; as the “distance” from nodéto node; and
W (i, 4, k) is thus the perimeter of the trianglgk. This is another generalization of “metric
sawdust”. HerelV is specified byd(n?) parameters. More generally, we might have

W (i, j, k) = f(aij, ajk, air)
wheref(-, -, -) is some function.

3. Weight functions induced by vertex weights: W is defined by a sequendes,...,a,) of
objects where
W(iaj7 k) = f(aia aj, ak)-
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for some functionf (-, -, -). If a; is @ number, we can view; as the weight of théth vertex. Two
examples arg(z,y, z) = « + y + z (sum) andf (z,y, z) = xyz (product). The case of product
corresponds to the matrix chain product problem studiééin

4. Weight functions from differences of vertex weights:W is defined by an increasing sequence
a <ag < -+ < a,andW (i, j, k) = ar — a;. Note that the indey is not used iV (¢, j, k). In
85, we will see an example (optimum search trees) of such ahtiigction.

931. A dynamic programming solution. The cost of the optimal triangulation can be determined
using the following recursive formula: 1€t(, j) be the optimal cost of triangulating the subpolygon
(i,i+1,...,5)forl <i< j<n.Then

C(i,5) = (31)
mlnl<k<]{W(Zak7])+C(lvk) +C(k7])} else

The desired optimal triangulation has c64tl, n). Assuming that the valud/ (4, j, k) can be obtained

in constant time, and the size of the inputigsit is not hard to implement this outline to give a cubic
time algorithm. We say more about this in the next section.

EXERCISES

Exercise 4.1: Find an optimal triangulation of the abstract pentagon whasgight functioni is
parametrized bya,, ..., as) = (4,1,3,2,2,3):
(a) The weight function is given by (i, j, k) = a;a;jax.
(b) The weight function is given bW (i, 7, k) = |a; — a;| + |a; — ax| + |aj; — ax|. &

Exercise 4.2: SupposeP is a geometric simple polygon, not necessarily convex. Wedwefine chords
of P to comprise those segments that do not intersect the exédrie. A triangulation is as usual
a set ofn — 3 chords. Lefi¥ be a weight function on the vertices Bf Give an efficient method
for computing the minimum weight triangulation &% The goal here is to give a solution that is
O(k) wherek is the number of chords d?. &

Exercise 4.3: A more profound generalization of triangulation comes froonsidering the triangula-
tion (tetrahedralization) of convex polytope 3adimensions. Now, the number of tetrahedra is
not unique. Give an abstract formulation of this problemNTI certain subsets of the vertices
are said to be “convex”. &

Exercise 4.4: (T. Shermer) LetP be a simple (geometric) polygon (so it need not be convexjinBe
the “bushinessb(P) of P to be the minimum number of degr8evertices in the dual graph of
a triangulation ofP. A triangulation is “thin” if it achieves b(P). Give af(n?) algorithm for
computing a thin triangulation. &

Exercise 4.5: Suppose that we want tmaximize the “triangulation cost” (we should really interpret
“cost” as “reward”) for a given weight functioi (4, j, k). Does the same dynamic programming
method solve this problem? &
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Exercise 4.6: (Multidimensional Dynamic Programming?)

(a) Give a dynamic programming algorithm to optimally pi#oti ann-gon into a collection of
3- or 4-gons. Assume we are given a non-negative real fumétidi, j, k,!), defined for all
1<i<j<k<Il<nsuchthal{i,jk,l} > 3. The valueW (i, j, k,1) should depend
only onthe sefi, j, k, 1} if {i,5,k, 1} ={d, 5 K, U'}, thenW (i, 4,k, 1) = W (', 5/, k', I"). For
exampleW(2,2,4,7) = W(2,4,4,7). The weight of a partitioning is equal to the sum of the
weights over all 3- or 4-gons in the partition. Analyze thering time of your algorithm. NOTE:
this problem has a 2-dimensional structure on its subpnedldut it can be generalized to any

dimensions.
(b) Solve a variant of part (a), namely, the partition shaeddlusively be composed of 4-gons
whenn — 4 is even, and has exactly one 3-gon when 4 is odd. &

END EXERCISES

5. The Dynamic Programming Method

Let us note the three ingredients necessary for a succelysfaimic programming solution. We use
the triangulation problem for illustration.

e There are a small number of subproblems We interpret “small” to mean a polynomial number.
In the weight functior’V on then-gon(1,...,n), each contiguous subsequence

(i+1i+2,...,5-1,7), (I1<i<j<n)

induces a weight functioi; ; onthe(j —i+1)-gon(i,i+1,...,5—1,4). This gives rise to the
subproblem P, ; of optimal triangulation ofi, 7 + 1,.. ., 7). The original problem is jusp ,,.
There ared(n?) subproblems. The “wrong” formulation can violate this simess requirement
(see Exercise).

e An optimal solution of a problem induces optimal solutions @ certain subproblems. If T
is an optimal triangulation o4, . .., a,), then we have noted thdt = 71 W T, W S; where
S; C {1i,in} and Ty, T are triangulations of subpolygons &f. In fact, 77, 7> are optimal
solutions to subproblem, ; andP; ,, for somel < i < n. This property is called thdynamic
programming principle , namely, an optimal solution to a problem induces optimhltsns on
certain subproblems.

e The optimal solution of a problem is easily constructed fromthe optimal solutions of sub-
problems. If we have already found the cost of optimal triangulaticorsal smaller subproblems
of P; ; then we can easily solvg; ; using equation31).

The reader may verify that the same ingredients were pras#ime LCS and edit distance problems.

932. Mechanics of the algorithm. To organize the computation embodied in equati®),(we use
an upper triangulat x n matrix A to store the values af (i, j),

Ali, j] = C(,5),  (1<J)

See Figure.
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S S S5 S5

NN\

1 0 [c(1,2) C(1,4)
2 0 [c(2,3)

3 0 [C(3,4)
4 0

5

1 2 3 4 5

Figure 3: Filling in of a upper triangular matrix

We view the algorithm as a systematic filling in of the mattixNote that filling in the entried[i, ;]
can be viewed as solving a subproblem of gize- i + 1). We proceed im — 1 stages, where stagg
(t = 2,...,n) corresponds to solving all subproblems of siz&here are exactly — ¢ + 1 problems
of sizet. Note that to solve a problem of siz¢t > 2) we need to minimize over a setof 2 numbers
(see equation31)), and this takes timé@(t). Thus stage takesO((t — 2)(n — t + 1)) = O(n?) time.
Summed over all stages, the timedén?). The space requirement@(n?), because of the matrix.

The algorithm is easy to implement in any conventional paaogning language: it has a triply-
nested “for-loop”, with the outermost loop-counter coliing the stage numbet, The following gives
a bottom-up implementation of equatiosil:

DYNAMIC PROGRAMMING FOROPTIMAL TRIANGULATION
fort — 1ton—1 < doproblems of siz2
Alt,t+ 1] < 0.
fort —2ton—1 < ¢+ 1isproblem size
fori — 1ton—t¢ < computeC[i, i+ t]
Aliyi+t] — Aliyi+ 0+ Ali+ 1, i+t + Wi, i+ 1,0+ t)
fork—i+2toi+¢t—1
Aliyi+t] — min{Afi, i + ], Ali, k] + Alk, i +t] + W (i, k,i+ 1)}

The algorithm lends itself to hand simulation, a processtti@student should become familiar with.

In general, we would be filling entries of a rakktensor (matrices are rarikk = 2 tensors). It is
harder to visualize this process, but in terms a computerigfgn this presents no extra difficulty: we
would just have &k + 1)-ply nested for-loop.

933. Splitters and the construction of Optimal Solutions. Suppose we want to find the actual
optimal triangulation, not just its cost. Let us call anyeésd: that minimizes the second expression
on the right-hand side of equatiof1) an (i, j)-splitter. If we can keep track of all the splitters, we
can clearly construct the optimal triangulation. For thisgose, we employ an upper triangutax n
matrix K whereK i, j] stores ar(i, j)-splitter. It is easy to see that the enfifi, j] can be filled in

at the same time that[i, j] is filled in. Hence, finding optimal solutions is asymptoligshe same as
finding the cost of optimal solutions.
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934. Top-down versus bottom-up dynamic programming. The above triply nested loop algorithm
is a bottom-up design. However, it is not hard to constructpedown design recursive algorithm:
simply implement 1) by a recursion. However, it is important to maintain the mecas A (and K if
desired) as global shared space. This technique has béath‘taémo-izing”. Without memo-izing, the
top-down solution can take exponential time, simply beedhsre are exponentially many subproblems
(see next section). A simple memoization does not speedaipl¢forithm. But we can, by computing
bounds, avoid certain branches of the recursion. This cea patential speedup — see Exercise.

935. Space-Efficient Solutions. We can usually reduce the space usage by a linear factorr@iicad
to linear, cubic to quadratic, etc). For instance, in the LjE&blem, it is sufficient to keep at most
two rows (or two columns) of the matrix in memory. That is besmthe solution for row depends
only on the solutions of rowg — 1) and rowi. Indeed, space for only one row (or column) is already
sufficient — as new entries are produced for ipthey overwrite the corresponding entries or riow1.
However, such space efficient solutions are not so easy tneéjhto solutions that reconstruct the
optimal solutions. For instance, how do we compute a LCSguSifn) space? To do this, we need a
kind of divide and conquer technique: which we explore indRercises.

REMARK: The abstract triangulation problem has a “lineausture” on the subproblems. This
linear structure can sometimes be artificially imposed omadblem in order to exploit the dynamic
programming framework (see Exercise on hypercube veriextaan).

EXERCISES

Exercise 5.1: Jane Sharp noted an alternative to equatiii. (
(a) Jane observed that every triangulatfomust contain a triangle of the forfa, i + 1,¢ + 2).
Such a triangle is called an “ear”. Prove this claim of JaiMau(may also prove the stronger
claim that there are at least two ears.)
(b) Suppose we remove an ear fromsagon. The result is aiin — 1)-gon. If we knew an
ear which appears in an optimum triangulation ofragon, we could recursively triangular the
smaller(n — 1)-gon. But since we do not know, we can try all possiple- 1)-gons obtained by
removing an ear. What is wrong with this approach? (Try tdenthie analogue of equatio),
and think of the 3 ingredients needed for a dynamic progrargrapproach.) &

Exercise 5.2: Consider the linear bin packing problem where itheitem is not a single weight, but a
pair of non-negative weightséy;, w;). If we put theith to jth items into a bin, then we require
7_; v andd>_7 _. wy, to be each bounded by. Again the goal to use the minimum number of
bins. &

Exercise 5.3: Let (ng,n1,...,n5) = (2,1,4,1,2,3). We want to multiply a sequence of matrices,
Ay x Ay x -+ x As where A; is n;_1 x n; for eachi. Please fill in matrices (a) and (b) in
Figure4. Then write the optimal order of multiplyingi, ..., As.

&

Exercise 5.4: (Google Interview Problem, Feb 2009) You are playing a garitle an opponent. Both
of you are looking at a list of numbers. The players moves alternately. To make a move, the
player must remove either the head or tail element flarithe score of a player is the sum of all
the numbers that the player removes. Your goal is to maxigoze score. Construct a dynamic
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0 1 2 3 4 5 0 1 2 3 4 5

(a) Optimum Cost Matrix(' (b) Splitter Matrix

Figure 4: (a)C[i, 5] is optimal cost to multiplyingd; x - - - x A;. (b) K[¢, j] indicates the optimal split,

(Ai X

X A1) (Akigle X oo X Aj)

programming algorithm that maximizes your score againgogponent (the opponent might not
be as interested in maximizing her own score as in minimigmg's). &

Exercise 5.5: The following problem is motivated by computations in watdgheory. We are given

three real non-negative coefficients, c and a real function (the “barrier”)

1 i |zl <1
h(z) = { 0 else

Define the functiory (z,¢) (wherei > 0 is integer) as follows:

N h(z) if i=0
f(IaZ)—{a.f(2;y—1,i—1)—|—b-f(2x,i—1)—|—c-f(2:v+1,i—1) else

Let f(z) = lim;— f(x,7). We call f(x, ) thei-th approximation tof (z). Assume that each
arithmetic operation takes unit time.

(a) Whatisf(0), f(1/2) andf(—1/2)?

(b) The functionf («, i) has support contained in the open interfral , 1) (for fixed ).

(c) Prove thatf () is well-defined (possibly infinite) for alt.

(d) Determine the time to compute a single valfiec, n) if we implement a straightforward
recursion (each call t¢(y, ¢) is independent).

(e) We want an efficient solution for the following probleniven n, m, we want to compute the
valuesf (i/m, n) for all

1 €Dy ={-m+1,-m+2,...,—-1,0,1,...,m—2,m— 1}.

Show that this can be computed@{mn) time andO(m) space.
(f) Strengthen (e) to show we can compute a single valagm, n) in O(n) time andO(1) space.

O

Exercise 5.6: (Recursive Dynamic Programming) The “bottom-up” solutafithe optimal triangula-

tion problem is represented by a triply-nested for-loophie text. Now we want to consider a
“top-down” solution, by using recursion. As usual, the Wit/ (i, j, k) is easily computed for
anyl <i<j<k<n.
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(a) Give a naive recursive algorithm for optimal triangidat Briefly explain how this algorithm
is exponential.

(b) Describe an efficient recursive algorithm. You will néedise some global data structure for
sharing information across subproblems.

(c) Briefly analyze the complexity of your solution.

(d) Does your algorithm ever run faster than the bottom-ypémentation? Can you make it run
faster on some inputs? HINT: for subprobldni, j), we can try to compute upper and lower
bounds orC(i, j). Use this to “prune” the search. &

Exercise 5.7: Give a linear spac®(n) solution to problem of optimal triangulation. Write the vec
rence for the space and time complexity of your algorithmv&éor the running time. &

Exercise 5.8: Consider the problem of evaluating the determinant ofiat n matrix. The obvious
co-factor expansion takeé(n - n!) arithmetic operations. Gaussian elimination taR¢s?). But
for smalln and under certain circumstances, the co-factor method magter. In this question,
we want you to improve the co-factor expansion method bygudimamic programming. What
is the number of arithmetic operations if you use dynamigpamming? Please illustrate your
result forn = 3.

HINT: We suggest you just count the number of multiplicatiomhen argue separately that the

number of additions is of the same order. &
Exercise 5.9: Generalize the previous exercise. Let the set of real cotssfa; : « = —N,—-N +
1,...,-1,0,1,..., N} be fixed. Suppose that

[ h if i=0
f(x,i) = { SN vai-fRr—1,i—1) else

Re-do parts (a)—(c) in the last exercise. &

Exercise 5.10: (Hypercube vertex selection) Bypercube or n-cubeis the setd,, = {0,1}". Each
z = (x1,...,2,) € H, is called a vertex of the hypercube. Let= (m,...,7,) andp =
(p1,--.,pn) be two positive integer vectors. Tipeice andreliability of a vertexx is given by
m(x) = 3=, xim andp(x) = [[;L,.,,_, pi- Thehypercube vertex selection problenis this:
givenm, p and a positive bound,, find x € H,, which maximizes(z) subject tor(z) < By.
Solve this problem in timé&(nBy) (notO(n log By)).
HINT: View H,, = H;, ® H,_; foranyk = 1,...,n — 1 andy ® z denotes concatenation of
vectorsy € Hy, z € H,_j. Solve subproblems of; and H,,_; with varying values ofB
(B=1,2,...,By). The choice of is arbitrary, but what is the best choicek# O

Exercise 5.11:Let S C R? be a set of: points. Partially order the poings = (p.x,p.y) € R? as

follows: p < qiff p.x < gz andp.y < q.y. If p # ¢ andp < ¢, we writep < ¢. A pointp is
S-minimal if p € S and there does not exigte S such thay < p. Letmin(S) denote the set of
S-minimal points.
(@ For ¢ € R, let S(¢) denote the set{pe S:p.a>c}| E.g., let S =
{r(1,3),4q(2,1),7(3,4),s(4,2)} as shown in figuré. Thenmin(S(c)) is equal to{p, ¢} if
c<1;{q}ifl <e<2{rs}tif 2 <c<3;{s}if 3 <c. Design a data structu®@(S) with
two properties:

1. Foranye € R (“the query” is specified by), you can usé(.5) to output the setin(S(c))
in time
O(logn + k)
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=3

o3

Figure 5: Set of 4 points.

wherek is the size ofnin(S(c)).
2. The data structur®(S) usesO(n) space.

(b) For anyg € R?, let S(q) denote the sefp € S : p.x > q.x, p.y > ¢.y}. Design a data struc-
ture D’(S) such that for any; € R?, you can useD”(S) to output the setnin(S(q)) in time
O(logn + k) wherek is the size ofnin(S(q)), andD"”(S) usesO(n?) space. &

Exercise 5.12: (Knapsack) In this problem, you are given + 1 positive integers,
W, wi,vi(t =1,...,n).

Intuitively, 1 is the size of your knapsack and there arigems where théth item has sizev;
and valuey;. You want to choose a subset of the items of maximum valugesuto the total size
of the selected items being at md&t. Precisely, you are to compute a subset {1,...,n}
which maximizes the sum Z

v

i€l
subject to the constraipt,, ., w; < W.

(a) Give a dynamic programming solution that runs in tiéhg V).
(b) Improve the running time tO(n, min{W, 2"}). O

Exercise 5.13: (Optimal line breaking) This book (and most technical pageday) is typeset using
Donald Knuth’s computer system known gsXT This remarkable system produces very high
quality output because of its sophisticated algorithmse €uch algorithm is the way in which it
breaks a paragraph into individual lines.

A paragraph can be regarded as a sequence of words. Suppose thenevarels, and their
lengths arezq, ..., a,. The problem is to break the paragraph into lines, no linerftalength
more thanm. Between 2 words in a line we introduce one space; there ipaces after the last
word in a line. If a line has length, then we assesspenalty of m — &k on that line. The penalty
for a particular method of breaking up a paragraph is the sutheopenalty over all lines. The
last line of a paragraph, by definition, suffers no penalty.

(a) Consider the obvious greedy method to solve this prolfbesically fill in each line until the
next word will cause an overflow). Give an example to show thistdoes not always give the
minimum penalty solution.

(b) Give a dynamic programming solution to finding the opfitha., minimal penalty) solution.
(c) lllustrate your method with Lincoln’s Gettysburg adsseassuming that = 80. In the case
of a terminal word (which is followed by a full-stop), we caaher the full stop as part of the word.
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(d) Suppose we assume that there are 2 spaces separatihgtagudnd the following word (if
any) in the line. Modify your solution in (a) to handle this.

(e) Now introduce optional hyphenation into the words. Romdicity, assume that every word
has zero or one potential place for hyphenation (the algworis told where this hyphen can be
placed). If an input word of length can be broken into two half-words of lengths and /s,
respectively, it is assumed th@t > 2 and/, > 1. Furthermore, we must include an extra unit
(for the placement of the hyphen character) in the lengtthefline that contains the first half.
Can you modify the above algorithm further? &

END EXERCISES

6. Optimal Parenthesization

We can view a triangulation of &m + 1)-gon to be a “parenthesized expression’osymbols. Let
us clarify this connection.

Let (e1,eq,...,¢e,), n > 1, be a sequence of symbols. A(fully) parenthesized expression
on (ey,...,e,) is one whose atoms aeg (for i = 1,...,n), eache; occurring exactly once and in
this order left-to-right, and where each matched pair oeptresis encloses exactly two non-empty
subexpressions. E.g., there are exactly two parenthesigedssions ofll, 2, 3):

((12)3),  (1(23)).

The reader may verify that there are 5 parenthesized expnassn(1, 2, 3,4).

A parenthesized expression dny,...,e,) corresponds bijectively to parenthesis treeon
(e1,...,en). Such atree is a fdllbinary treeT on n leaves, where théh leaf in symmetric order
is associated witl;. If n = 1, then the tree has only one node. Otherwise, the left and sightrees
are (respectively) parenthesized expression&en .., ¢;) and(e;41, ..., e,) forsomei =1,... n.

&C\O
" db |

Figure 6: The parenthesis tree and triangulation corredipgrio ((e; (ezes))eyq).

Vo

€4

U2

There s a slightly more involved bijective correspondemetveen parenthesis trees(en, . . . , e,,)
and triangulations of an abstragt + 1)-gon. See Figuré for an illustration. If the(n + 1)-gon is
(vo,v1,...,vn), thenthe edge®;_1,v;) is mappedte; (i = 1, ..., n) under this correspondence, but
the “distinguished edgevg, v,,) is not mapped. We leave the details for an exercise.

If we associate a cod¥ (4, j, k) for forming a parenthesis of the forniE,, E»)” where E; (resp.,
E,) is a parenthesized expression @, ..., e;) (resp.,(e;+1,...,ex), then we may speak of the

8 A node of a binary tree iull if it has two children. A binary tree ifull if every internal node is full.
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costof a parenthesized expression — it is the same as the cost obthesponding triangulation &f.
Finding such an optimal parenthesized expressiofiegn . ., e,,) is clearly equivalent to finding an
optimal triangulation ofP.

936. Encoding parenthesis trees as permutations.We can encode this parenthesis tree on
(e1,...,en) by aunigue permutation

7T:(7T1,...,7Tn_1) (32)
of {1,2,...,n — 1}. Before explaining this in full generality, consider alkth possible parenthesis
trees orey, es, e3, e4:

ei(e2(eses)),  er((ezes)ea), (ere2)(eseq), ((ere2)es)eq, (e1(e2es))ea.

These are represented, respectively, by the permutations
(123), (132), (213), (321), (312).

If n =1, the permutation is the empty sequence: (), and ifn = 2, the permutation is just = (1).
Forn = 3, there are two permutations= (12) or = = (21).

Let us now explain how the permutatioB2) encodes a parenthesis tree:nif= 1, thenw =
() is the empty string. the first entry; tells us that the last multiplication is to form the product
Al x, - Aigr, n Where we writed; ; for Hfg:i Ag. Recursively, the next; — 1 entries inr represents
a parenthesis tree ofy, . . ., A, and the remaining — 7; — 1 entries inw representsa parenthesis
treeondiir,,...,A,. Thus we have demonstrated:

LEMMA 4. There exists an injection from the set of parenthesis traesleaves to the set of permuta-
tions onn — 1 symbols.

It is clear that the firstr; entries in 82) must therefore be a permutation 6h 2, ... 7 }. There-
fore, not all permutations ofil, ..., n — 1} correspond to a permutation tree. Foe 4, we see that
7 = (2, 3,1) does not represent any parenthesis tree.

937. Catalan numbers. It is instructive to count the numbé?(n) of parenthesis trees an > 1
leaves. In the literature?(n) is also denoted’(n — 1), in which case it is called €atalan number.
The indexn — 1 of the Catalan numbers is the number of pairs of parenthesided to parenthesize
symbols. Here&'(n) = 1,1,2,5forn = 0, 1, 2, 3. Note thatC'(0) = 1, not0.

From the injection of Lemm4, we conclude thaP(n) = C'(n — 1) < (n — 1)!. Our current goal
is to give a more precise census of parenthesis trees. Ingjefogn > 1, the following recurrence is
evident:

C(n) =) Ci—1)C(n—1-1). (33)
i=1

We can interpre€’(n) as the number of binary trees with exaatlyodes (Exercise). In terms &f(n),
we get a similar recurrence:

n—1
P(n) =Y P(i)P(n—1-1) (34)
i=1
9 Strictly speaking, the last — w1 — 1 entries represent a parenthesis treedan ., ..., Ay in this senseif we subtract
w1 from each of these entries, we would obtain (recursivelygrnuitation representing a permutation tree dn, ..., A, _x, .
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where we defing?(0) = 0. ThusP(1) = P(2) =1,P(3) = 2.

This recurrence has an elegant solution using generatirgifuns (segVI11.9),

Clm) = —— <2HT>

() =o (&)

SoC(m) = ©(4™m~3/2) grows exponentially and there is no hope to find the optimedmqthesis tree
by enumerating all parenthesis trees.

By Stirling’s approximation,

938. Matrix Chain Product. An instance of the parenthesis problem is thatrix chain product
problem: given a sequence
A, .. A,

of rectangular matrices wherg isa;—1 x a; (i = 1,...,n), we want to compute the chain product
AjAy--- A,
in the cheapest way. The sequefag, a1, ..., a,) Of numbers is called thdimension of this chain

product expression.

To be clear about what we mean by “cheapest way”, we musfycthe cost model. Using associa-
tivity of matrix products, each method of computing this gwot corresponds to a distinct parenthesis
tree on(4,, ..., 4,). For instance,

((A142)A3),  (A1(A243)) (35)

are the two ways of multiplying 3 matrices. L&{p, ¢, r) be the cost to to multiply @ x ¢ matrix
by ag x r matrix. For simplicity, assume the straightforward altfum for matrix multiplication, so
T(p,q,7) = pgr. Then, if the dimension of the chain produét As As is (ao, a1, az, as3), the first
method in 85) to multiply these three matrices costs

apa1az + apazaz = apaz(a + as)
while the second method i) costs
agaiasz + ai1asa3 = alag(ao + ag).

Letting (ao, . .., a3) = (1,d, 1,d), these two methods coat and2d?, respectively. Hence the second
method may be arbitrarily more expensive than the first.

Hence the key problem is this: given the dimensfag, . .., a,) of a chain product instance, de-
termine the optimal cosi,:(ao, - - ., an) to compute such a product. We can solve this problem by
reducing it to to the optimal parenthesis tree problem: @edim triangular weight functiot’ (i, j, k)
for0 <i < j < k < ntoreflect our complexity model:

W (i, j, k) = a;a;ar.

This is what we called the “product weight function”§a.

CLAIM: T, (ao,- - . ,a,) is the minimumi¥/-cost triangulation of the abstra@t + 1)-gon on the
vertex se{0,1,...,n}.
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We have seen a@(n?) dynamic programming solution to compute this minimuicost trian-
gulation (or equivalently, the corresponding parenthesig). The original problem of matrix chain
product can be solved in two stages: first find the optimalmthesis tree, based on just the dimension
of the chain. Then use the parenthesis tree to order thel acaigx multiplications. The only creative
part of this solution is the determination of the optimalgahesization.

Remark: 1. Chandr&’ has shown a simple method of multiplying matrices that isinia factor
of 2 fromT,,,. Consider the permutatian= (1,2,...,n — 1): according to encoding scheme 68},
this corresponds to the following parenthesis treeden. . ., A,;:

(- ((A1A2)A3z) - -+ ) Ay, (36)

This is essentially the left-to-right multiplication ofdlsequence of matrices. It can be shown that the
cost of this method of multiplication i©(77;.,;), and this is tight (Exercise). But suppose we chagse
such thati;, = min {ag, a1,...,a,}. Now consider the parenthesis tree represented by the pesioru

™= (io—1,i0—2,...,1,i0+1,i0+2,...,n—1,i0)
where the last, is omitted ifioc = 0 oriy = n. This corresponds to the parenthesis structure
(A1 (Aig—2(Aig—14i0)) =)+ (Aigt14ig12) - A). (37)

Then the cost of this computation is at mo%t,,.(ao, - - . , an).

2. For the product weight functiofV (a;, a;, ax) = a;a;ax, the optimal triangulation problem can be
solved inO(n log n) time, using a sophisticated algorithm due to Hu and ShifigRamanan{] gave
an exposition of this algorithm, and presented¥n log ) lower bound in an algebraic decision tree.

EXERCISES

Exercise 6.1: Show that”(n) is the number of binary trees ennodes. HINT: Use the recurrenc&sj
and structural induction on the definition of a binary tree. &

Exercise 6.2: Work out the bijective correspondence between trianguiatiand parenthesis trees
stated above. &

Exercise 6.3: Verify by induction that”(m) has the claimed solution. &

Exercise 6.4: Solve the recurrence&) for C(n) by using the following observation: consider gener-
ating function

G(z) :ZC’(i)Ii =14+ax+222 +52°+---.
1=0
HINT: What can you say about the coefficient:df in the squared generating functict{z)??
Write this down as a recurrence equation involvi#ge) Solve this quadratic equation.

&

10 “Computing Matrix Chain Products in Near-Optimal Time”,lak K. Chandra, IBM Research Report RC 5625 (#24393),
10/6/75.
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Exercise 6.5: (Chandra)
(i) Show that the methodg) for multiplying the matrix chaimd,, ..., A, is O(Tfpt) whereTy,,;
is the optimal cost of multiplying the chain.
(ii) Show that the bound)(Tfpt) is asymptotically tight.
(iii) Show that the method3(7) has cost at moXT,,,;. &

Exercise 6.6: (i) Consider an abstraet-gon whose weight function is a product functid¥ (i, j, k) =
w;wjwy, for some sequencey, . . ., w, of non-negative numbers. Cal; the “weight” of vertex
i. Let(my,ma, ..., ) be a permutation of1, ..., n} such that

Wiy Swﬂ'z <. Swﬂ'n'

Show that there exists an optimal triangulatibof P such that vertexr; of least weight is
connected tore and also tars in T'. [We say vertex is connected toj in T if eitherij or ji is

in T or is an edge of tha-gon.]

HINT: Use induction om. Call a vertex: isolatedif it is not connected to another vertex by a
chord inT. Consider two cases, depending on whetheis isolated inl" or not.

(ii) (Open) Can you exploit this result to obtairén?) algorithm for the matrix chain product
problem? &

END EXERCISES

7. Optimal Binary Trees

Suppose we stone keys
Ki<Ky<--- <K,

in a binary search tree. The probability that a K€yto be searched is equél; is p; > 0, and the
probability thatK falls betweenk; and K1 is ¢; > 0. Naturally,

n n
Zpi + qu' =1
=1 j=0

In our formulation, we do not restrict the sum of this andg’s to bel, since we can simply interpret
these numbers to be “relative weights”. But we do requiregthe;’s to be non-negative.

We want to construct an fufl binary search tre& whose nodes are labeled by

qo0,P1,491,P25---54n—1,Pn;s4n (38)

in symmetric order. Note that thg’s label the internal nodes ang's label the leaves.
[FIGURE]

In a natural way,I" corresponds to a binary search tree in which the interna¢sage labeled by
Ki,...,K,. Butfor our purposes, the actual ke are irrelevant: only the probabilitigs, ¢; are

11 This amounts to an extended binary search tree, as desanihedture 3.
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of interest. Each subtreE ; (1 < ¢ < j < n) of T' corresponds to a binary search tree on the keys
K;, ..., K;. We define the followingveight function:

W(i—1,7) = q-1+pitda+ - pit+g

J
= g1+ Y _(qk+pr)
k=i

forall0 <i < j <n.ThusW(i,i) = q;. Thecostof T is given by
C(T)=W(0,n)+C(Tr) + C(Tr)

whereT;, and Ty are the left and right subtrees @f. If T' has only one node, the@(T) = 0,
corresponding to the case where the node is labeled by gpm#/e sayT is optimal if its cost is
minimum. So the problem adptimal search treesis that of computing an optimdl, given the data
in (38). Why is this definition of “cost” reasonable? Let us chargené cost to each node we visit
when we lookup a keys. If K has the frequency distribution given by the probabilifigs;;, then the
expected charge to the rootBfis preciselyiV (i — 1, j) if the leaves of" are K, . .., K;. SoC(T) is
the expected cost of looking Ug in the search tre@'.

939. Application. In constructing compilers for programming languages, wedreesearch structure
for looking up if a given identifiet is a key word. Suppos&, ..., K,, are the key words of our
programming language and we have statistics telling usahatentifier X' in a typical program is
equal tok; with probabilityp; and lies betweerk’; and K ;. with probabilityg;. One solution to this
compiler problem is to construct an optimal search treelferkey words with these probabilities.

940. Example. Assume thatp1, p2, p3) = (6,1, 3) and they;’s are zero. There are 5 possible search
trees here (see figum®. The optimal search tree has root labebgdgiving a cost o6 + 2(3) + 3(1) =
15. Note that the structurally “balanced tree” with at the root has a bigger cost t. Intuitively, we
understand why it is better to hape at the root — it has a much larger frequency than the othersiode

® n /@m
ps@ ® \@
@, P2 P3
Cost =15 Cost =9
Figure 7: The 5 possible binary search treeg@nps, p3).
Let us observe that theynamic programming principle holds,i.e., every subtree df; ; (1 < ¢ <

n) is optimal for its associated relative weights

qi—1,Piy4qiy---,495—-1,P5,945-

Hence an obvious dynamic programming algorithm can be dévsfind optimal search trees@n(n?)
time. Exploiting additional properties of the cost funeti&Knuth shows this can be doned@{n?) time.
The key to the improvement is due to a general inequalitgfadi by the cost function, first clarified
by F. Yao, which we treat next.

EXERCISES
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Exercise 7.1: Describe the precise connection between the optimal se@eproblem and the optimal
triangularization problem. &

Exercise 7.2: Suppose the input frequencies dgg, ..., p,) (the ¢;’s are all zero). If thep;’s are
distinct, Joe Quick has a suggestion: why not choose thedargto be the root? Is this true for
n = 3? Find the smallest for which this is false, and provide a counter example fos thi

%

Exercise 7.3: (Project) Collect several programs in your programminglsage X.
(a) Make a sorted list of all the key words in language X. Ifréharen key words, construct a
count of the number of occurrences of these key words in yetwofgprograms. Lepy, po, ..., pn
be these frequencies.
(b) Construct an optimum search tree for these key wordsifaisg ¢;'s are0) these key words
(assumingy;’s are0).
(c) Construct from your programs the frequencies that akeynword falls between the keywords,
and thereby obtain, q1, . . ., g,. Construct an optimum search tree for the'seandg’s. O

Exercise 7.4: The following class of recurrences was investigated by tfriced[3]:

M(n)=g(n)+ Ogingig_l{aM(k) +6M(n—k—-1)}

wherea, 8 > 0 andg(n) are given. This is clearly related to optimal search trees.féus on

g(n) =n.

(a) Supposenin{«, 3} < 1. Show thatM (n) ~ TR

(b) Supposenin{a, 8} > 1,loga/ log B is rational andv— + 3~! = 1. ThenM (n) = ©(n?).
¢

Exercise 7.5: If the p;'s are all zero in the Optimal Search Tree problem, then themigation cri-
teria amounts to minimizing the external path length. Retalt the external path length of a
tree whose leaves are weighted is equa} ig d(u)w(u) whereu ranges over the leaves, with
w(u),d(u) denoting the weight and depth aof Suppose we considerraodified path length
of a leafu to bew(u) Zfi%) 2% (instead ofd(u)w(u)). Solve the Optimal Search Tree under
this criteria. REMARK: This problem is motivated by the pessing of cartographic maps of the
counties in a state. We want to form a hierarchical levetietail map of the state by merging the
counties. After the merge of a pair of maps, we always simphe result by discarding some
details. If the weight of a map is the number of edges or vestin its representation, then after
a simplification step, we are left with half as many edges. &

Exercise 7.6: Consider the following generalization of Optimal Binarye®s. We are given a subdivi-
sion of the plane into simply connected regions. Each regama positive weight. We want to
construct a binary tre€ with these regions as leaves subject to one condition: edeimial node
u of T determines a subregid®,, of the plane, obtained as the union of all the regions below
We requireR,, to be simply-connected. The costBfis as usual the external path length (i.e.,
sum of the weights of each leaf multiplied by its depth).

(a) Show that this problem i P-complete.
(b) Give provably good heuristics for this problem. &

END EXERCISES
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8. Weight Matrices

We reformulate the optimal search tree problem in an aksta@nework.

DEFINITION 1. Letn > 2 be an integer. Ariangular function W (of ordern) is any partial function
with domain|0..n] x [0..n] suchW (i, 5) is defined iffi < j. We calllW a weight matrix if it is a
triangular function whose range is the set of non-negatae numbers. A quadruplg, ', j, ;') is
admissibleif
0<i<i <j<j <n
We sayV is monotoneif
Wi, j) < W(i,j")

for all admissible(i, ', 4, j'). Thequadrangle inequality for W for (i,', j, ') is
W (i, j) + W', j") <W(i,j") + W(, j).

We sayiV is quadrangular if it satisfies the quadrangular inequality for all admisi&ili, i, j, j').

T E N --®

. |

/Ll— ————————— - -

N N monotone:
¢ e <o

guadrangular:
i < et@

Figure 8: Monotone and quadrangular weight matrix.

It is sometimes convenient to writ&;; or W; ; instead ofi¥ (3, j). If we view I;; as the(z, j)-th
entry of ann-square matriXV’, thenW is upper triangular matrix. Note thét, ', j, ;') is admissible
iff the four points(z, ), (¢, 5), (,5'), (', j/) are all on or above the main diagonall®f (see Figures).
Monotonicity and quadrangularity is also best seen viguafl. Figure8):

e Monotonic means that along any north-eastern path in themp@ngular matrix, the matrix
values are non-decreasing.

e Quadrangularity means that for any 4 corner entries of anggte lying on or above the main
diagonal, the south-west plus the north-east entries anesmwthan the sum of the other two.

941. Example: Inthe optimal search tree problem, the weight funcliris implicitly specified by
O(n) parameters{iz., qo, p1,q1, - - - s P, gn, With

J

J
W(i,j) = Z Qk+2pk-
k=i

k=i—1

In this caseJV (i, j) can be computed in linear time from thgs andp;’s. The pointis that, depending
on the representatiofi/ (¢, 7) may not be available in constanttime. The following is lasfaa exercise:

LEMMA 5. The weight matrix for the optimal search tree problem is bntimotone and quadrangular.
In fact, the quadrangular inequality is an equality.
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DEFINITION 2. Given a weight matridV, its derived weight matrix is the triangular function
W* : [0n]2 — Rzo

is defined as follows:
W*(i, i) :=W(i,1).

Assuming thatV* (i, j) has been defined for ajl— i < ¢, define
W*(i,i+£):=W(i,i+£)+ i<I]§1S11;1+Z{W (i, k—1)+W*(k,i+£)}.
Defining
W= (i, js k) =W (i, j) + W*(i, k — 1) + W*(k, j), (39)
we callk an (4, j)-splitter if W* (i, j) = W* (i, j; k).

Note: the literature (especially in operations researd@scdbes the Monge property of matrices.
This turns out to be the quadrangle inequality restricteddmissible quadrupleg, ', j, ;') where
i’ =i+1landj =j+ 1.

EXERCISES

Exercise 8.1: (a) Computer the derived matrix of the following weight nicgs:

T[1][1]1 13123
Wy = 2;3 Wy = 1]0]1
. 112

2

(b) SupposéV (i, j) = a; fori = j andW (i, 5) = 0 for i # j. Thea,’s are arbitrary constants.
Succinctly describe the matriy ™. &

Exercise 8.2: (Lemmab) Verify that the weight matrix for the optimal search treelgem is indeed
monotone and satisfies the quadrangatgrality. &

Exercise 8.3: Write a program to compute the derivative of a matrix. It ddaun in O(n?) time on

ann-square matrix. &
Exercise 8.4:

(a) Interpret the derived matrix for the optimal search pesblem.

(b) Does the derived matrix of a derived matrix have a rdalisterpretation? &

Exercise 8.5: Generalize the concept of a triangular functiéhso that its domain i§0..n]* for any
integerk > 2, andW (iq, ..., i) is defined iffi; <iy <--- <. ThenW is aweight function
(of order n anddimensionk) if it is triangular and has range over the non-negativemaaibers.
Formulate the “optimak-gonalization” problem for an abstragtgon. (This seeks to partition
ann-gon into/-gons where& < ¢ < k. Give a dynamic programming solution. &
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END EXERCISES

9. Quadrangular Inequality

The quadrangular inequality is central in #én?) solution of the optimal search tree problem. We
will show two key lemmas.

LEMMA 6. If W is monotone and quadrangular, then the derived weight mat¥t is also quadran-
gular.

Proof. We must show the quadrangular inequality
W= (i, 4) + W@, j") < W@, 5) +W*(@,5),  (0<i<i'<j<j <n) (40)

First, we make the simple observation whes= i/ or j = j’, the inequality in equatior4() holds
trivially.

The proof is by induction od = j' — i. The basis, whe#é = 1, is immediate from the previous
observation, since we have= ¢/ or j = ;' in this case.

942. Case < i’ = j < j'© Sowe wantto prove thal’*(i, 7) + W*(j,7") < W*(i,5") + W*(4,7)-
LetW*(i,j') = W (i,5'; k) and initially assume < k£ < j. Then

Wi +Wr Wi+ Wiy + Wi+ W7, (expandingV;;)
Wi i + W*,C 1+ [VV,C ;T W* ,] (by monotonicity)
Wi + Wiy + Wil + W’j (by induction)
Wi, + Wi, (by choice ofk).

A IAIA

In casej < k < j’, we would initially expandV;, above.

943. Casei < i/ < j < j: LetW*(i,j") = W(4,j'; k) andW* (', ) = W(¢, j;£) and initially
assume < ¢. Then

Wi+ Wi o Wi+ Wi 1+W,”] (Wir jr + Wi, 1JrWM] (singei<k§j,i’<£§j’)
(Wi + Wl, AW+ Wi+ [W,C ;+ Wil (Wis quadrangular)

(Wijr + Wi gl + Wy + Wiy + [W,” + W] (induction on(k, ¢, j, j'))
[WZJ+W,€1+W,”] (Wi +W,£1+WM]

Wiy + Wi, (by choice ofk, ¢).

IRVANI VAR VARRVAN

In casel < k, we can begin as above with the initial inequality* (i, ) + W*(i’, j') < W*(i, ;) +
W (i, j': k). Q.E.D.

944. Splitting function K. The (i, j)-splitter k is not unique but we make it unique in the next
definition by choosing the largest sukh

DEFINITION 3. Let W be an weight matrix. Define theplitting function Ky, to be a triangular
function
Ky : [0.n]* — [0..n]

defined as followsKyy (i,7) =i and for0 < i < j <n,
Kw(i,5) := max{k : W*(i,5) = W(i, j; k)}.
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We simply writeK (i, 7) for Kw (4, j) whenW is understood. Once the functidfyy is determined,
it is a straightforward matter to compute the derived matfix} The following is the key to a faster
algorithm.

LeEmMA 7. If the derived weight matrix dfV is quadrangular, then forald <i < j < j,

Kw(i,j) < Kw(i,j+1) < Kw(i+1,7+1).

Proof. By symmetry, it suffices to prove that
K(i,j) < K(i,j +1). (41)
This is implied by the following claim: if < k < k' < j then
W*(i,5; k") < W*(i,5;k) implies W*(i,j+ 1;k") < W*(i,5 + 1; k). (42)

To see the implication, suppose equatiéd)(fails, sayK (i,j) = ¥’ > k = K(i,j + 1). Then the
claim impliesK (i, j + 1) > &/, contradiction.

It remains to show the claim. Consider the quadrangularuakity for the admissible quadruple
(k5 kl?j?j + 1)’
W*(k,j) + W*(K',j+1) < W*(k,j + 1) + W (K, ).

AddingW (i, 5) + W(i,j+ 1) + W*(i,k — 1) + W*(i, k' — 1) to both sides, we obtain
W*(i,js k) + W7 (i, 5+ LK) S W™ (0,5 + 1 k) + W (i, j; k).

This implies equation4?). Q.E.D.

945. Main result. The previous lemma gives rise to a faster dynamic programreatution for
monotone quadrangular weight functions.

THEOREM 8. Let W be weight matrix such thdt/ (i, j) can be computed in constant time for all
1 <i < j < n,and its derived matri¥y* is quadrangular. Then its derived matri¥* and the
splitting functionKy, can be computed i®(n?) time and space.

Proof. We proceed in stages. Instaje- 1,...,n—1, we will computeK (i, i+ ¢) andW*(i, i+ ¢)
(foralli = 0,...,n — £). It suffices to show that each stage takes takés) time. We compute
W*(i,4 + ¢) using the minimization

W*(iyi+0) = min{W(i,i+ k) : K(i,i+0—1) <k <K(@+1,i+0)}

This equation is justified by the previous lemma, and it takes O (K (i+1,i+£¢)— K (¢,i+£—1)+1).

Summing overalt = 1,...,n — ¢, we get the telescoping sum
n—~¢
Z[K(i—i—1,i—|—€)—K(i,i+€—1)—|—1] =n—L+Kn—-0+1,n)—K(1,£) =O(n).
=1
Hence stagé takesO(n) time. Q.E.D.
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946. Remarks. We refer to [/] for a history of this problem and related work. The origif@mula-

tion of the optimal search tree problem assumésare zero. For this case, T.C. Hu has an non-obvious
algorithm that Hu and Tucker were able to show runs correatly(n log n) time. Mehlhorn B] con-
siders “approximate” optimal trees and show that these @andnstructed irO(nlogn) time. He
describes a solution to the “approximate search tree” prakih which we dynamically change the
frequencies; see “Dynamic binary searct8IAM J.Comp.,8:2(1979)175-198). M. R. Garey gives an
efficient algorithm when we want the optimal tree subjectdepth bound; see “Optimal Binary Search
Trees with Restricted Maximum DepttgIAM J.Comp.,3:2(1974)101-110).

EXERCISES

Exercise 9.1: (a) Compute the optimal binary tree for the following sequeen
(g0,P1,41,---,P10,910) = (1,2,0,1,1,3,2,0,1,2,4,1,3,3,2,1,2,5,1,0,2).
(b) Compute the optimal binary tree for the case wheregthare the same as in (a), namely,
(g0,q1,---,q10) = (1,0,1,2,1,4,3,2,2,1,2)

and thep's are. &

Exercise 9.2: It is actually easy to give a “graphical” proof of lemaln the figured, this amounts to
showing thatifA + a« > B+bthenA’ +a > B’ + V.

A B C
)]
C/
A | B
a a
b v

Figure 9: Derived weight matrix.

Exercise 9.3: If W is monotone and quadrangular}is* monotone? &
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q0 Q1

Figure 10: Linear list search tree.

Exercise 9.4: Consider a binary search tree that has this shape (esseati@lear list):
Show that the following set of inequalities is necessaryaufticient for the above search tree to
be optimal:
D2 +q2
p3+ a3

> p1tqo (E2)
> peta+pr+q (E3)
pn+Qn 2 Pn—1 +Qn—2 +pn—2++pl+q0 (En)
HINT: use induction to prove sufficiency.
Remark: So search trees with such shapes can be verified to be optitiredar time. In general,
can an search tree be verified to be optimal(in®) time? &

Exercise 9.5: (a) Generalize the above result so that all the internal siamithe left of the root are left-
child of its parent, and all the internal nodes to the righthaf root are right-child of its parent.
(b) Can you generalized this to the case where all the int&xodes lie on one path (ignoring
directions along the tree edges — the path first traversdsaupde to the root and then down the

tree again). &
Exercise 9.6: Given a sequence,, . . ., a,, of real numbers. Lefl;; = Zi:i ag, Bij = min{Ay; :
k=1,...,7} andB; = B;;. Compute the valueBy, ..., B, in O(n) time. O

END EXERCISES

610. Conclusion

This chapter shows the versatility of the on dynamic programg approach to a variety of problems.
A serious drawback of dynamic programming is its high potyia cost: O(n*) for k > 2, in both
time and space may not be practical in some applicationscéirere is interest in exploiting “sparsity
conditions” when they occur. Sometimes, the implicit mato be searched has special properties
(Monge conditions). See the survey of Giancailpfpr such examples.
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