
Lecture VII Page 1

“It is one of the striking generalizations of biochemistry –which surprisingly is hardly
ever mentioned in the biochemical text-books – that the twenty amino acids and the four
bases, are, with minor reservations, the same throughout Nature. As far as I am aware the
presently accepted set of twenty amino acids was first drawn up by Watson and myself in
the summer of 1953 in response to a letter of Gamow’s.”

— Francis Crick,On the Genetic Code
Nobel Lecture, 11 December 1962

Lecture VII
DYNAMIC PROGRAMMING

We introduce an algorithmic paradigm calleddynamic programming. It was popularized by
Richard Bellman, circa 1954. The word “programming” here isthe same term as found in “linear
programming”, and has the connotation of a systematic method for solving problems. The term is even
identified1 with the filling-in of entries in a table. The semantic shift from this to our contemporary
understanding of the word “programming” is an indication ofthe progress in the field of computation.

¶1. From Google to Genomics. Dynamic programming techniques are particularly effective for
problems on strings, i.e., sequences of symbols from some alphabet. Currently, there are two major
consumers of string algorithms: search engines such as Google, and computational biology. Thus,
if you ask Google to search the wordstrnigs, it will ask2 if you meantstrings. You can be
sure that a slew of string algorithms are at work behind this innocent response. Or, when I search for
CGTAATCC, Google asked3 if I meantCCGTCC. It turns out thatCCGTCC.com is the homepage for
members ofCasino Chip & Gaming Token Collectors Club. But a biologist might submit the sequence
CGTAATCC to a database engine to find the closest match. This is becausein computational genomics,
a DNA sequence is just a string over the symbolsA,C,T,G. The strings in Google and genomics have
different characteristics: Google strings are words or phrases – these are much shorter than strings in
biology which represent DNA or RNA sequences whose lengths go into millions. Google strings have
medium size alphabets while strings in genomics have small alphabet (size 4). If we were looking at
protein sequences, the alphabet size would be20. The corresponding algorithms should try to exploit
such properties.

Whether we are talking about strings in Google search or in genomics, the ability in both cases to
show you closely related strings meant that these algorithms have (1) some measure of similarity or
distance between strings, and (2) some database of strings in which to look for similar strings. We
shall look at two notions of similarity of strings in this chapter. Computing these similarity measures
efficiently calls for dynamic programming techniques.

In most applications of dynamic programming, the underlying objects have some kind of linear
structure, much like strings. Other classes of such objectsinclude polygons and binary trees. Thus, we
will look at corresponding problems of optimal triangulation of (abstract) polygons, and the constructing
optimal binary search trees.

1 Such tables are sometimes filled out by deploying a row of human operators, each assigned to filling in some specific table
entries and to pass on the partially-filled table to the next person.

2 That was in 2008. In 2011, it no longer asks, but lists some possibilities like string cheese, string theory,
stringbuilder, etc.

3 That was in 2008. In 2011, it asked if I wantedCHEATCC which led to websites with video game cheats, cheat codes, hints
and tips.

c© Chee Yap Basic Version November 29, 2011

§1. FIRST GLIMPSES OFDYNAMIC PROGRAMMING Lecture VII Page 2

§1. First Glimpses of Dynamic Programming

¶2. Divide and Conquer with a twist. Dynamic programming is a form of divide-and-conquer be-
cause it is based on solving subproblems. But it has some rather distinctive features. A simple illustra-
tion is provided by the computation of Fibonacci numbers,F (n) = F (n − 1) + F (n − 2). On input
n > 1, the obvious recursive algorithm calls itself twice on the argumentsn−1 andn−2. The returned
results are added together. The running time is given by the recurrenceT (n) = T (n−1)+T (n−2)+1.
ThusT (n) is exponential (§III.6, AVL trees). A little reflection shows that linear timesuffices: instead
of computingF (n), let us define a new functionF2(n) to compute the pair(F (n), F (n − 1)) of con-
secutive Fibonacci numbers. To computeF2(n), we only need one recursive call toF2(n− 1):

F2(n):
If (n = 1), Return(1, 0) ⊳ Assume inputn is≥ 1
(a, b)← F2(n− 1) ⊳ Recursive call!
Return(a + b, a)

The running time recurrence now satisfies the recurrenceT2(n) = T2(n − 1) + 1 = n. Here we see
the seed of the dynamic programming idea — that by keeping around solutions to subproblems, we can
avoid recomputing them and avoid what would otherwise be an exponential complexity. In the Fibonacci
number computation, we only keep the solution to two subproblems. In this sense, Fibonacci numbers is
not typical of dynamic programming problems, which typically need solutions to a polynomial number
of subproblems.

¶3. Joy Ride, again. Recall the joy ride or linear bin packing problem in Chapter V. The input are
the weights(w1, . . . , wn) of a queue of riders. We want to place these riders into a minimum number of
cars, where each car has a weight capacity ofM . Riders must be placed into cars in their queue order.
The new twist here is that we allow negative weights (clearlyour joy ride interpretation is stretched
by this generalization). In any case, the greedy algorithm breaks down. For instance letM = 5 and

Ah, negative weights
are children with
helium balloons!w = (5, 5, 5, 5,−20). The greedy solution has 4 cars(5), (5), (5), (5,−20) but the optimal solution

uses only one car. But to achieve this optimal solution, we must give up our online requirement (i.e.,
to decide on each rider without looking at what comes after inthe queue). In this example, the optimal
solution has to look at the entire queue before it can properly decide on the second rider (whether this
rider should be in the first or second car). Thus, we must content ourselves with designing anoffline
algorithm in which each decisions can be based on the whole input.

We now give anO(n2) solution for the offline linear bin packing problem. But first, we must gen-
eralize the problem so that, instead of just solving the instancePn = (w1, . . . , wn), we simultaneously
solve a sequenceP1, P2, . . . , Pn of subproblem instances, wherePi = (w1, . . . , wi). Let bi be the min-
imum number of cars for instancePi. We also defineb0 := 0. Now the last car for instancePn has the
form (wi, . . . , wn) for somei wherewi + wi+1 + · · ·+ wn ≤M . This justifies the following formula:

bn = 1 + min
i=1,...,n

{bi−1 :

n∑

j=i

wj ≤M}. (1)

Assumingb0, b1, . . . , bn−1 have been computed, we can computebn using this formula inO(n) time.
For instance, supposeM = 5 andw = (1, 5,−2, 5, 1) Thenb1 = 1 (obviously),b2 = 2, b3 = 1 and
b4 = 2. Let us computeb5 using the formula (1):

b5 ← 1 + min {b4, b2} = 1 + min {2, 2} = 3.

c© Chee Yap Basic Version November 29, 2011

§2. FIRST GLIMPSES OFDYNAMIC PROGRAMMING Lecture VII Page 3

So3 cars is the optimal solution. Observe that if you were allowed to re-arrange the weights, then2 cars
would suffice; but that is not allowed in linear bin packing. We may program this solution as follows:

L INEAR BIN PACKING WITH NEGATIVE WEIGHTS:
Input: arrayw[1..n] containing weights andM
Output: arrayb[0..n] to store the values of optimal valuesbi

b[0]← 0.
for k = 1, . . . , n

W ← 0
B ← +∞ ⊳ B is current min value ofbk’s
for i = k, k − 1, . . . , 2, 1

W ←W + w[i]
If (W ≤M) then B ← min {B, b[i− 1]}

b[k]← 1 + B

Let t(k) be the complexity of thek-th iteration of the outer for-loop. Clearly,t(k) = Θ(k). The overall
complexity isT (n) =

∑n
k=1 t(k) = Θ(n2).

This example is more typical of dynamic programming: the solution for problem instancePn

can be efficiently computed from the solutions to a polynomial number of subproblems (in this case,
P1, . . . , Pn). In constrast, the problems with running times that satisfy the Master recurrence have a
bounded number of subproblem instances.

¶4. String Notations. Let us fix some common terminology for strings. Analphabet is just a finite
setΣ; its elements are calledletters (or characters or symbols). Astring (or word) is just a finite
sequence of letters. The set of strings overΣ is denotedΣ∗. Let X = x1x2 · · ·xm be a string where
xi ∈ Σ. The length of X is m, denoted|X |. Note that|X | should not be confused with the usual
notation|S| for the cardinality of a setS. Theempty string is denotedǫ and it has length|ǫ| = 0.
Using an array-like notation, theith letter ofX is denotedX [i] = xi (i = 1, . . . , m). Concatenation of
two stringsX, Y is indicated by juxtaposition,XY or sometimesX ; Y . Thus|XY | = |X |+ |Y |.

EXERCISES

Exercise 1.1: Let us probe what Google is doing with strings. The problem oftransposing two consec-
utive letters in a string (i.e., a digraph) is a common human error in typing. Let us see if Google
is looking out for this error:

Start with the sequencestring. For each of the 5 digraphs in this sequence, we transpose them
to get another string:tsring, srting, stirng, strnig, strign. Which of these
does Google think is a mistype ofstring? Let us do the same experiment, but starting with the
sequencestrings. ♦

Exercise 1.2: Compare the different search engines: Google, Yahoo, Bing,Amazon.com, eBay, Twit-
ter, Wikipedia(en). ♦

END EXERCISES

c© Chee Yap Basic Version November 29, 2011

§2. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 4

§2. Longest Common Subsequence

Many string problems come down to comparing two strings for similarity. In this Lecture, we will
look at two such measures. The first of these measures captures the idea that two strings are similar if
they have “substantial overlap”. For instance, the two stringsnotations andnotions clearly have
much overlap. But donotations andonttois have as much overlap? This might be unclear, so
we will introduce the concept of “subsequences” to give precise meaning to the overlap idea.

A subsequenceof X = x1, . . . , xm is a stringZ = z1z2 · · · zk such that for some

1 ≤ i1 < i2 < · · · < ik ≤ m

we haveZ[ℓ] = X [iℓ] for all ℓ = 1, . . . , k. For example,ln, lg andlog are subsequences of the string
long. A common subsequenceof X, Y is a stringZ = z1z2 · · · zk that is a subsequence of bothX
andY . We callZ a longest common subsequenceif its length|Z| = k is maximum among all common
subsequences ofX andY . Since the longest common subsequence may not be unique, letLCS(X, Y)
denote the set of longest common subsequences ofX, Y . Also, let lcs(X, Y) denote4 any element of
LCS(X, Y): so lcs(X, Y) ∈ LCS(X, Y). Define the numerical functionsL(X, Y) := |lcs(X, Y)|
(length function) andλ(X, Y) := |LS(X, Y)| (cardinality function). Note thatλ(X, Y) ≥ 1 since “at
worst”, LCS(X, Y) is the singleton comprising the empty stringǫ.

For example, if
X = longest, Y = lengthen (2)

thenLCS(X, Y) = {lngt, lnge}, λ(X, Y) = 2 andL(X, Y) = 4.

Of course, the ultimate in similarity under LCS measure is whenL(X, Y) = min {|X |, |Y |}. We
also mention the related concept of “substring”. A subsequenceZ is called asubstring of X if X =
Z ′ZZ ′′ for some stringsZ ′, Z ′′. For instance,on andg are substrings oflong butln, lg andlog
are not. Thus, substrings are subsequences but the conversemay not hold.

¶5. Versions of LCS Problems. There are several versions of thelongest common subsequence
(LCS) problem. Given two strings

X = x1x2 · · ·xm, Y = y1y2 · · · yn,

the problem is to compute (respectively) one of the following:

• (Length version) ComputeL(X, Y)
e.g.,L(longest,lengthen) = 4.

• (Instance version) Computelcs(X, Y)
e.g.,lcs(longest,lengthen) = lngt orlnge.

• (Cardinality version) Computeλ(X, Y)
e.g.,λ(longest,lengthen) = 2.

• (Set version) ComputeLCS(X, Y)
e.g.,LCS(longest,lengthen) = {lngt, lnge}.

4 Clearly lcs(X, Y) is not really a functional notation.

c© Chee Yap Basic Version November 29, 2011

§2. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 5

We will mainly focus on the first two versions. The last version can be exponential if members of the
setLCS(X, Y) are explicitly written out; we may prefer some “reasonably explicit” representation5 of
LCS(X, Y). We will consider representations ofLCS(X, Y) below. See the Exercise for the multiset
interpretation ofLCS(X, Y).

¶6. Exponential nature of λ(X, Y). A brute force solution to the cardinality version of the LCS
problem would be to list all subsequences of lengthℓ (for ℓ = m, m− 1, m− 2, . . . , 2, 1) of X , and for
each subsequence to check if it is also a subsequence ofY . This is an exponential algorithm sinceX
has2m subsequences. But canλ(X, Y) be truly exponential? Indeed, here is an example: let

Xn = 01a01a01a . . . = (01a)n, Yn = 10a10a10a . . . = (10a)n. (3)

We claim thatL(Xn, Yn) = 2n. It follows that the following4 strings belong toLCS(X2, Y2): 0a0a,
0a1a, 0a1a, 1a1a. More generally, we haveλ(Xn, Yn) ≥ 2n since we can match all thea’s in Xn and
Yn, and in each01-block ofXn, we have2 choices for matching the corresponding10-block ofYn. But
we do not claim thatλ(Xn, Yn) = 2n. Indeed,λ(Xn, Yn) = Θ(4n/

√
n) (see Exercise).

¶7. The Dynamic Programming Principle for LCS. The following is a crucial observation. Let us
write X ′ for the prefix ofX obtained by dropping the last symbol ofX . This notation assumes|X | > 0
so that|X ′| = |X | − 1. It is easy to verify the following formula forL(X, Y):

L(X, Y) =






0 if mn = 0
1 + L(X ′, Y ′) if xm = yn

max{L(X ′, Y), L(X, Y ′)} if xm 6= yn

(4)

There is a subtlety in this formula whenxm = yn. The “obvious” formula for this case is

L(X, Y) = max{1 + L(X ′, Y ′), L(X ′, Y), L(X, Y ′)}. (5)

The right hand side in (5) simplifies to the form in (4) because of

L(X ′, Y) ≤ 1 + L(X ′, Y ′), (6)

and a similar inequality involvingL(X, Y ′). Formula (4) constitutes the “dynamic programming prin-
ciple” for the LCS problem — it expresses the solution for inputs of sizeN = |X |+ |Y | in terms of the
solution for inputs of sizes≤ N − 1. We will discuss the dynamic programming principle in§4.

For any stringX and natural numberi ≥ 0, let Xi denote the prefix ofX of lengthi (if i > |X |,
let Xi = X). The dynamic programming principle forL(X, Y) suggests the following collection of
subproblem instances:

L(Xi, Yj), (i = 0, . . . , m; j = 0, . . . , n).

There areO(mn) such subproblems. Note thatX0 is the empty stringǫ, so that

LCS(X0, Yj) = {ǫ}, L(X0, Yj) = 0. (7)

There are dynamic principles forlcs(X, Y) andLCS(X, Y) that are analogous to (4). Here we
present the recursive formula forLCS(X, Y), leavinglcs(X, Y) as an exercise.

5 See§14 for what this means.

c© Chee Yap Basic Version November 29, 2011

§2. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 6

LCS(X, Y) =

8

>

>

>

>

<

>

>

>

>

:

{ǫ} if mn = 0
LCS(X ′, Y ′)xm if xm = yn

LCS(X ′, Y) if xm 6= yn, L(X ′, Y) > L(X, Y ′)
LCS(X, Y ′) if xm 6= yn, L(X, Y ′) > L(X ′, Y)
LCS(X, Y ′) ∪ LCS(X ′, Y) if xm 6= yn, L(X, Y ′) = L(X ′, Y).

(8)

This formula can be viewed as an expansion of the three cases in the recursive formula forL(X, Y) in
(4). In particular, the casexm 6= yn has been expanded into three subcases. Moreover, each of these
subcases are clearly necessary. But the casexm = yn (= b, say) is not entirely obvious. At a first
glance, it seems that this case should be split into four subcases (in analogy to (5)):

LCS(X ′b, Y ′b) =





LCS(X ′, Y ′)b if L(X, Y) > max{L(X ′, Y), L(X, Y ′)}
LCS(X ′, Y ′)b ∪ LCS(X ′, Y) if L(X, Y) = L(X ′, Y) > L(X, Y ′)
LCS(X ′, Y ′)b ∪ LCS(X, Y ′) if L(X, Y) = L(X, Y ′) > L(X ′, Y)
LCS(X ′, Y ′)b ∪ LCS(X, Y ′) ∪ LCS(X ′, Y) if L(X, Y) = L(X, Y ′) = L(X ′, Y)

To prove that these subcases are unnecessary, we claim:

LCS(X ′b, Y ′b) = LCS(X ′, Y ′)b. (9)

One direction of this proof is easy: clearly,LCS(X ′b, Y ′b) containsLCS(X ′, Y ′)b. Conversely,
supposew ∈ LCS(X ′b, Y ′b). We must show thatw ∈ LCS(X ′, Y ′)b. Write w = w′c for some
c ∈ Σ. We have two possibilities: (1) Supposec 6= b. Thenw′c is a common subsequence ofX ′

andY ′. Thenw′cb is a common subsequence ofX ′b andY ′b. This contradicts the assumption that
w = w′c ∈ LCS(X ′b, Y ′b). (2) Supposec = b. Thenw′ is a common subseqeunce ofX ′ andY ′.
Sincew′c is the longest common subseqeunce ofX ′b andY ′b, we conclude thatw′ must be the longest
common subseqeunce ofX ′ andY ′. This impliesw ∈ LCS(X ′, Y ′)b, as desired.

Simplification: The student should compare Equations (4) and (8) to see the
relative simplicity of the former equation. Also the recurrence (8) tells us
that the flow of control in the algorithm forLCS(X, Y) is determined by the
functionL(X, Y). In particular, we need to computeL(X, Y) if we want to
computeLCS(X, Y). In fact, equations (4) and (8) share a common flow of
control, with some refinements forLCS(X, Y). Our strategy is to develop an
algorithm forL(X, Y) first. Then we indicate the necessary modifications to
yield an algorithm forLCS(X, Y). Such a modification is usually straight-
forward although we will see exceptions: see thelcs(X, Y) in small space
solution below.

¶8. Matrix encoding of subsolutions. To organize the dynamic programming solution forL(X, Y),
we use an(1 + m) × (1 + n) matrix L[0..m, 0..n] where the(i, j)th entryL[i, j] stores the value
L(Xi, Yj). We fill in the entries of this matrix as follows. First fill in the0th column and0th row with
zeros, as noted in (7). Now fill in successive rows, from left to right, using (4) above.

In illustration, we extend6 the example (2) to the stringsX = lengthen andY = elongate:

6 No pun in-tended.

c© Chee Yap Basic Version November 29, 2011

§2. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 7

1 2 3 4 5 6 7 8
e l o n g a t e

0 0 0 0 0 0 0 0 0
1 l 0 0 1 1 1 1 1 1 1
2 e 0 1 1 1 1 1 1 1 2
3 n 0 1 1 1 2 2 2 2 2
4 g 0 1 1 1 2 3 3 3 3

5 t 0 1 1 1 2 3 3 4 4
6 h 0 1 1 1 2 3 3 4 4
7 e 0 1 1 1 2 3 3 4 5
8 n 0 1 1 1 2 3 3 4 5

Table 1: Recovery oflcs(X, Y)

e l o n g a t e

0 0 0 0 0 0 0 0 0
l 0
e 0
n 0 x
g 0 1 + x
t 0
h 0
e 0 u
n 0 v max(u, v)

To see the formula (4) in action, we consider two entries. The entry corresponding to the ‘g’-row
and ‘g’-column is filled with 1 + x wherex is the entry in the previous row and column. The entry
corresponding to last row and last column ismax(u, v) whereu andv are the two adjacent entries. The

Actually,
x = 2, u = 5, v = 4.

reader may verify thatL(X, Y) = 5 andLCS(X, Y) = {lngte, engte} in this example. We leave as
an exercise to program this algorithm in your favorite language.

¶9. Complexity Analysis. Each entry is filled in constant time. Thus the overall time complexity is
Θ(mn). The space is alsoΘ(mn).

¶10. Recovery of Optimal Instance. Given the full matrixL[0..m, 0..n], we can recover an optimal
instancelcs(X, Y). We now describe a simple way to constructlcs(X, Y) in reverse order.

We will illustrate the reconstruction process using our example of X = lengthen and Y =
elongate, whose matrixL[0..8, 0..8]:

We begin with the entryL[m, n]. It should contain the valueL(X, Y). In general, suppose we are
at some entryL[i, j] of the matrix holding the valueℓ = L(Xi, Yj). If ℓ = 0, we are done. Assume
ℓ > 0. If xi = yj , then we can outputxi and move to the entryL[i − 1, j − 1] containingℓ − 1. If
xi 6= yj , then eitherL[i− 1, j] or L[i, j − 1] containsℓ. We move to any cell that containsℓ. Repeat

c© Chee Yap Basic Version November 29, 2011

§2. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 8

this procedure. If we want to recover the entire setLCS(X, Y), we will need to follow all the possible
paths.

Following this prescription, we can start tracing fromL[8, 8] in Table . This will trace a unique path
until L[2, 3] at which point we branch. This results in two maximal paths, corresponding to the two
strings inLCS(X, Y).

¶11. Small Space Solution. The above algorithm usesO(mn) space. For Google applications, this
may be acceptable becausem, n is typically small (how long a search string would you type?). In
computational genomics, this is not acceptable because of long gene sequences. We note that to fill in
any row, we just need the values from two rows. In fact the space for one row is all that we need: as
new entries are filled in, it can overwrite the correspondingentry of the previous row. Since a row has
n entries, we just needO(n) space. As rows and columns are interchangeable, we can also work with
columns, soO(min {m, n}) space suffices.

We said it is usually easy to modify the code for computingL(X, Y) to compute eitherlcs(X, Y)
or some representation ofLCS(X, Y). But this is not always true – for instance, you could not recover
lcs(X, Y) using the small space solution in¶11.

¶12. Backward Equation. We exploit another symmetry in strings. We had been developing our
equations using prefixes ofX andY . We could have equally worked with suffixes. IfX# denote the
suffix of X obtained by omitting the first letter, then the analogue of (4) is:

L(X, Y) =





0 if mn = 0
1 + L(X#, Y #) if x1 = y1

max{L(X#, Y), L(X, Y #)} if x1 6= y1

(10)

Let X i denote the suffix ofX lengthi, so |X i| = i. If we use the same matrixL as before, we now Neat!XiX
m−i = X

need to fill in the entries in reverse order as follows:

Let L[i, j] denoteL(Xm−i, Y n−j). Thus, we could fill in the last row and last column with0’s
immediately. If we work in row order, we can next fill in rowi−1 using (10), assuming rowi is already
filled in. The final entry to be filled in,L[0, 0], contains our answerL(X, Y).

So far, we have not gained anything new by looking at this backward approach. But we will next
see that, when combined with the forward approach, we obtainsomething new.

¶13. Recovery of Optimal Instance in Small Space. Now we address the possibility of computing
lcs(X, Y) in small space. Note that the small space solution forL(X, Y) does not easily extend to
recovery of an optimal instancelcs(X, Y). We now describe a solution from Hirshberg (1975) [5]. See,
e.g., [2], for similar space efficient methods for geometric problems.

The solution uses an interesting divide-and-conquer technique. For simplicity, assume thatn is a
power of two. Observe that

L(X, Y) = L(Xi∗ , Yn/2) + L(Xm−i∗ , Y n/2) (11)

for somei∗ = 0, . . . , m. Indeed,

L(X, Y) = max
i=0,...,n

{
L(Xi, Yn/2) + L(Xm−i, Y n/2)

}
. (12)

c© Chee Yap Basic Version November 29, 2011

§2. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 9

How can we compute thei∗ such that (11) holds? We use the usual (forward) recurrence to compute
{
L(Xi, Yn/2) : i = 0, . . . , m

}
.

We use the backward recurrence (10) to compute
{

L(Xm−i, Y n/2) : i = 0, . . . , m
}

.

This takesO(m) space andO(mn) time. Then using (12), we can determinei∗ as the value that
maximizes the functionL(Xi, Yn/2) + L(Xm−i, Y n/2).

Knowing thei∗ in (11), we could divide ourlcs problem recursively into two subproblems. The key
observation is that (11) can be extended into an equation for the optimal instance:

lcs(X, Y) =






ǫ if L(X, Y) = 0,
Y [1] if n = 1 and L(X, Y) = 1,

lcs(Xi, Yn/2); lcs(X
m−i, Y n/2) if n ≥ 2 and L(X, Y) = L(Xi, Yn/2) + L(Xm−i, Y n/2).

(13)
where “;” denotes concatenation of strings.

The space complexity of this solution is easily shown to beO(m). What about the time complexity?
We have

T (m, n) = T (i, n/2) + T (m− i, n/2) + mn.

It is easy to verify by induction thatT (m, n) ≤ 2mn: if n = 1, this is true. Otherwise,

T (m, n) = T (i, n/2) + T (m− i, n/2) + mn

≤ 2
(
i
n

2

)
+ 2

(
(m− i)

n

2

)
+ mn = 2mn.

¶14. Efficient Representation ofLCS(X, Y). We now address the problem of representing the
setLCS(X, Y). There are two extremes: The pair(X, Y) itself would be a representation, but it is
“too implicit”. An explicit list of the strings inLCS(X, Y) is “too explicit” (with exponential size).
A “reasonably explicit” representation should have three properties: it is polynomial in size, we can
enumerate (without repetition) the strings inLCS(X, Y) in linear time per element, and for any given
strings, we can check ifs ∈ LCS(X, Y) in linear time.

Indeed, the matrixL[0..m, 0..n] can be viewed as such a representation. It is best interpreted as a
digraphG(X, Y) as follows. The node set ofG(X, Y) is V = {0, 1, . . . , m} × {0, 1, . . . , n}. For each
node(i, j) ∈ V , there are between1 to 3 edges issuing from(i, j):
(i) Matching edge: ifxi = yj andL[i, j] = 1 + L[i − 1, j − 1], then we have an edge from(i, j) to
(i− 1, j − 1).
(ii) Non-matching edges: IfL[i, j] = L[i − 1, j] (resp.,L[i, j] = L[i, j − 1]), we have an edge from
(i, j) to (i− 1, j) (resp.,(i, j − 1)). Each maximal path inG(X, Y) represents a string inLCS(X, Y)
– the string corresponds to the sequence of symbolsX [i] = Y [j] encountered in at node(i, j) along the
path. Conversely, each string inLCS(X, Y) is represented by at least one path.

But this graph is quite wasteful, and we will define a compressed version denotedG∗(X, Y). For
illustration, we use the pair of strings(X, Y) = (X3, Y3) = (01a01a01a, 10a10a10a) as defined in
(3). The graphG(X3, Y3) has100 nodes, but the compressed versionG∗(X3, Y3) shown in Figure1
with only 15 nodes.

The idea is retain those nodes(i, j) of G(X, Y) corresponding to matchesX [i] = Y [j]. Also, the
node(0, 0) is retained, and is called thesink. We introduce two kinds of edges: (1) Normal edges are

c© Chee Yap Basic Version November 29, 2011

§2. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 10

ǫ

0

0

1

1

1

a

2

11 0 1

a

2

03 1 3

a

6

15 0 5

011 1 11

a

22

Figure 1: Representation ofLCS(X3, Y3)

(i, j)−(i′, j′) whereL[i, j] = L[i′, j′] + 1 and there is a path from(i, j) to (i′, j′) in G(X, Y). Note
that in such a path, every node(i′′, j′′) except the last will satisfyL[i′′, j′′] = L[i, j]. (2) Sink edges
from (i, j) to (0, 0) wheneverL[i, j] = 1. As we see in Figure1, the result is a level graph in the sense
that each node(i, j) has a levelℓ ≥ 0, corresponding to the length of the longest path from(i, j) to the
sink, and edges can only go from a levelℓ to levelℓ− 1.

In Figure1, the name(i, j) of a node is not explicitly given, but we have labelled the node with the
letter X [i] = Y [j] corresponding to the match. By reading this sequence of labels along a maximal
path, you get a string onLCS(X3, Y3).

External to each node
in Figure1, a

numerical value is
indicated: what are

these?

¶15. Other Improvements. We can exploit knowledge about the alphabet. For instance, Paterson
and Masek gave an algorithm withΘ(mn/ log(min(m, n))) time when the alphabet of the strings is
bounded.

Our algorithm fills in the entries of the matrixL in a bottom-up fashion. We can also fill them in
a top-down fashion. Namely, we begin by trying to fill the entry L[m, n]. There are 2 possibilities: (i)
If xm = yn, we must recursively fill inL[m − 1, n − 1] and then use this value to fill inL[m, n]. (ii)
Otherwise, we must recursively fill inL[m− 1, n] andL[m, n− 1] first. In general, while trying to fill
in L[i, j] we must first check if the entry is already filled in (why?). If so, we can return the value at
once. Clearly, this approach may lead to much fewer thanmn entries being looked at. We leave the
details to an exercise.

¶16. Applications. Computational problems on strings has been studied since the early days of com-
puter science. One motivation is their application in text editors. For instance, the problem of finding
a pattern in a larger string is a basic task in text editors. Another interesting application is in computer
virus detection. The growth of the world wide web has been accompanied by the proliferation of com-
puter viruses. It turns out that each virus will send messagesX, Y which are rather similar to each other.

c© Chee Yap Basic Version November 29, 2011

§2. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 11

We useL(X, Y) as a measure of similarity. If it is known thatY is from a virus, andL(X, Y) exceeds
some threshold, we infer thatX is probably from the same virus. See Exercise below.

The advent of computational genomics in the 1990’s has brought new attention to problems on
strings. The fundamental unit of study here is the DNA, wherea DNA can be regarded as a string
over an alphabet of four letters:A, C, G, T. These correspond to the four bases: adenine, cytosine,
guanine and thymine. DNA’s can be used to identify species aswell as individuals. More generally, the
variations across species can be used as a basis for measuring their genetic similarity. The LCS problem
is one of many that have been formulated to measure similarity.

EXERCISES

Exercise 2.1: Extending our running example, computeL(X, Y) whereX = lengthening andY =
elongation. ♦

Exercise 2.2: Compute lcs(X, Y) for X = AATTCCCCGACTGCAATTCACGCACC and Y =
GGCTTTTATTCTCCCTGTAAGT. These are parts of DNA sequences from a modern human and a
Neanderthal, respectively. ♦

Exercise 2.3: Show (6). ♦

Exercise 2.4: Give a direct recursive algorithm for computingL(X, Y) based on equation (4) and show
that it takes exponential time. (In other words, equation (4) alone does not ensure efficiency of
solution.) ♦

Exercise 2.5: Let lcs(X, Y) denote any member ofLCS(X, Y). Give the analogue of (8) for
lcs(X, Y). ♦

Exercise 2.6: (V.Sharma and Yap) Consider the example in (3).
(a) ComputeL(X2, Y2) by filling in the the usual matrix. Moreover, determineλ(X2, Y2) =
|LCS(X2, Y2)| by counting the number of maximum paths in the matrix.
(b) Prove thatL(Xn, Yn) = 2n.
(c) We indicated thatλ(Xn, Yn) = |LCS(Xn, Yn)| ≥ 2n. Prove thatλ(Xn, Yn) = Ω(

√
6

n
).

(d) Construct the graphG1(X3, Y3) as described in the text. Use this graph to countλ(X3, Y3).
What does this imply aboutλ(Xn, Yn)?
(e) WriteHn for the graphG1(Xn, Yn). Give a simple description ofH1 up to isomorphism.
(f) Based on this description, provide an exact closed formula for λ(Xn, Yn). ASIDE: Can you

also show that this number is equal to
∑n

i=0

(
n
i

)2
? ♦

Exercise 2.7: Let S = {X1, . . . , Xk} be a set of strings wherek is not fixed. Wlog assume that noXi

is a substring of anotherXj (i 6= j). A stringZ such that eachXi is a substring (not subsequence)
of Z is called asuperstring of S. Let SCS(S) denote theshortest common superstringof S.
We are interested in computingSCS(S). In some sense, this is the dual of the LCS problem. It
is quite important in DNA sequencing where a long DNA sequence might be chemically cut into
short substrings, and we want to reconstruct the original sequence as a shortest superstring.
(a) Is there a dynamic programming principle for this general problem?

c© Chee Yap Basic Version November 29, 2011

§2. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 12

(b) Give an efficient algorithm fork = 2.
(c) Let merge(X, Y) denote the shortest string of the formZ = UV W whereX = UV and
Y = V W whereU andW are non-empty. LetU theoverlap of X, Y denotedov(X, Y). We are
interested in choosingX, Y where the overlap length|ov(X, Y)| is maximum. Consider a simple
greedy algorithm in which, at each iteration, we pick two stringsX, Y ∈ S with the maximum
overlap length|ov(X, Y)|, and replaceX, Y by merge(X, Y). When there is only one string
left, we output this as an approximation toSCS(S). Let G(S) denote the output of the greedy
algorithm. Show that|G(S)| ≤ 4|SCS(S)|. ♦

Exercise 2.8: Joe Quick observed that the recurrence (4) for computingL(X, Y) would work just as
well if we look at suffixes ofX, Y (i.e., by omitting prefixes). On further reflection, Joe concluded
that we could double the speed of our algorithm if we work fromboth endsof our strings! That
is, for 0 ≤ i < j, let Xi,j denote the substringxixi+1 · · ·xj−1xj . Similarly for Yk,ℓ where
0 ≤ k < ℓ. Derive an equation corresponding to (4) and describe the corresponding algorithm.
Perform an analysis of your new algorithm, to confirm and or reject the Quick Hypothesis. ♦

Exercise 2.9: Suppose we have a parallel computer with unlimited number ofprocessors.
(a) How many parallel steps would you need to solve theL(X, Y) problem using our recurrence
(4)?
(b) Give a solution to Joe Quick’s idea (previous exercise) of having an algorithm that runs twice
as fast on our parallel computer. Hint: work the last two symbols of each input stringX, Y in one
step. ♦

Exercise 2.10:What are the forbidden configurations in the matrixM used for computingL(X, Y)?
(a) SupposeM [i, j] = 89, what are the possible values ofM [i− 1, j − 1]?
(b) For instance, we have the following constraints:0 ≤ M [i, j] − M [i − 1, j] ≤ 1 and0 ≤
M [i, j] −M [i, j − 1] ≤ 1. Also, M [i, j] = M [i − 1, j] = M [i, j − 1] = M [i − 1, j − 1] is
impossible. Note that these constraints are based only on adjacency matrix entries. Is it possible
to exactly characterize the set of all allowable configurations of M based on such adjacency
constraints? ♦

Exercise 2.11:
(a) Write the code in your favorite programming language to fill the above table forL(X, Y).
(b) Modify the code so that the program retrieves some memberof LCS(X, Y).
(c) Modify (b) so that the program also reports whether|LCS(X, Y)| > 1. Remember that we
do not count duplicates inLCS(X, Y). ♦

Exercise 2.12:Let X, Y be strings.
(a) Prove thatL(XX, Y) ≤ 2L(X, Y).
(b) Show that for everyn, there areX, Y with L(X, Y) = n and inequality in (b) is an equality.
(c) Prove thatL(XX, Y Y) ≤ 3L(X, Y).
(d) Similar to part (b) but for the inequality of (c). ♦

Exercise 2.13:Let λ(X, Y) denote size of the setLCS(X, Y) and λ(m, n) be the maximum of
λ(X, Y) when|X | = m, |Y | = n. Finally letλ(n) = λ(n, n).
(a) Computeλ(n) for n = 1, 2, 3, 4.
(b) Give upper and lower bounds forλ(n). ♦

c© Chee Yap Basic Version November 29, 2011

§2. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 13

Exercise 2.14:Let LCS′(X, Y) be themultisetof all the longest common subsequences ofX andY .
That is, for each longest common subsequenceZ ∈ LCS(X, Y), we sayZ has multiplicitykℓ
whereZ occursk (resp.,ℓ) times as a subsequence ofX (resp.,Y). Let λ′(n, m) andλ′(n) be
defined as in the previous exercise. Re-do the previous exercise forλ′(n). ♦

Exercise 2.15:Modify the algorithm forL(X, Y) to compute the following functions:
(a)λ′(X, Y)
(b) λ(X, Y) ♦

Exercise 2.16: Instead of the bottom-up filling of tables, let us do a recursive top-down approach. That
is, we begin by trying to fill in the entryL[m, n]. If xm = yn, we recursively try to fill in the
entries forL[m − 1, n− 1]; otherwise, recursively solve forL[m − 1, n] andL[m, n− 1]. Can
you quantify the improvements in this approach? ♦

Exercise 2.17: (a) Solve the problem of computing the lengthL(X, Y, Z) of the longest common sub-
sequence of three stringsX, Y, Z.
(b) What can you say about the complexity of the further generalization to computing
L(X1, . . . , Xm) (for m ≥ 3). ♦

Exercise 2.18:A common subsequence ofX, Y is said to bemaximal if it is not the proper subse-
quence of another common subsequence ofX, Y . For example,let is a maximal subsequence of
longest andlength. Let LCS∗(X, Y) denotes the set of maximal common subsequences ofX
andY . Design an algorithm to computeLCS∗(X, Y). ♦

Exercise 2.19:Researchers are using LCS computation to fight computer viruses. A virus that is at-
tacking a machine has a predictable pattern of messages it sends to the machine. We view the
concatenation of all these messages that a potential virus sends as a single string. Call the first
1000 bytes than from any source (i.e., potential virus) thesignatureof that source. LetX be the
signature of an unknown source andY is the signature of a known virus. It is known empirically
that if L(X, Y) > 500, thenX is from the same virus, and ifL(X, Y) < 200, it is different.
(a) Design a practical and efficient algorithm for the decision problemL(X, Y, k) which outputs
“PROBABLY VIRUS” if L(X, Y) > k and “PROBABLY NOT VIRUS” otherwise. Give the
pseudo-code for an efficient practical algorithm. NOTE: Theobvious algorithm is to use the stan-
dard algorithm to computeL(X, Y) and then comparen to k. But we want you to do better than
this. HINT: There are two ideas we want you to exploit – most students only think of one idea.
(b) Quantify the complexity of your algorithm, and compare its performance to the obvious al-
gorithm (which first computesL(X, Y)). First do your analysis using the general complexity
parameters ofm = |X |, n = |Y | andk, and alsoℓ = L(X, Y). Also discuss this for the special
case ofm = n = 1000 andk = 500. ♦

Exercise 2.20:A Davenport-Schinzel sequence onn symbols(or, n-sequencefor short) is a string
X = x1, . . . , xℓ ∈ {a1, . . . , an}∗ such thatxi 6= xi+1. Theorder of X is the smallest integerk
such that there does not exist a subsequence of lengthk + 2 of the form

aiajaiaj · · · aiajai or aiajaiaj · · · ajaiaj

whereai andaj alternate andai 6= aj . Defineλk(n) to be the maximum length of an-sequence
of order at mostk.
(a) Show thatλ1(n) = n andλ2(n) = 2n − 1. NOTE: for an order2 string, a symbol mayn

c© Chee Yap Basic Version November 29, 2011

§3. EDIT DISTANCE Lecture VII Page 14

times.
(b) SupposeX is ann-sequence of order3 in which an appears at mostλ3(n)/n times. After
erasing all occurrences ofan, we may have to erase occurrencesai (i = 1, . . . , n−1) in case two
copies ofai becomes adjacent. We erase as few of theseai’s as necessary so that the resultX ′ is
a (n− 1)-sequence. Show that|X | − |X ′| ≤ λ3(n)/n + 2.
(c) Show thatλ3(n) = O(n log n) by solving a recurrence forλ3(n) implied by (b).
(d) Give an algorithm to determine the order of ann-sequence. Bound the complexityT (n, k) of
your algorithm wheren is the length input sequence andk ≤ n the number of symbols. ♦

Exercise 2.21: (Hirshberg and Larmore, 1987.) A concept of “Set LCS” quite distinct from our defini-
tion goes as follows. We want to compute the “LCS” ofX = x1, . . . , xm andY = y1, . . . , yn

wherexi ∈ Σ (for some alphabetΣ as before) butyj ∈ 2Σ. We viewY as a set of strings overΣ,
Y = {y1 · · · yn} where eachyi is a permutation of the setyi ⊆ Σ. An elementy1 · · · yn ∈ Y is
called aflattening of Y . A SLCSof X andY is defined to be a common ofX and any flattening
of Y of maximum length. Give anO(mN) algorithm for SLCS whereN =

∑n
j=1 |yj |. N.B.

The motivation comes from computer-driven music where a “polyphonic score” is defined to be
a sequence of sets of notes (represented byY). Eachyj ⊆ Σ may be viewed as a chord.X is a
solo score that is to be played to accompany the polyphonic score. ♦

Exercise 2.22:Consider the generalization of LCS in which we want to compute the LCS for any input
set of strings.
(a) If the input set have bounded size, give a polynomial timesolution.
(b) (Maier, 1978) If the input set is unbounded, show that theproblem isNP -complete. ♦

END EXERCISES

§3. Edit Distance

In the previous section, we tried to capture similarity between two strings by the amount of overlap.
In this section, we look at a different view of similarity –what is the minimal amount of change nec-
essary to make the two strings equal?For instance, two identical strings are most similar because the
amount of change necessary to make them equal is zero. These represent opposite views of similarity:
in one case we try to maximize the overlap, and in the other case we try to minimize the amount of
change.

But first we need a way to measure change. It is based on the ideaof editing a string in a text
editor on a modern computer. Text editors has a repertoire ofbasic operations, and we we just count

what is our favorite
editor? the “vi”
derivative called

“gvim”
the number of basic operations necessary to convert one string X to anotherY . The minimum such
numberD(X, Y) is called theedit distancebetweenX andY . A “complete” repertoire for any editor
may comprise just two types of operations: the insertion anddeletion of a single character into a string.
This allows us to transform anyX into any otherY . We also need to associate a positive cost with
each operation: the simplest model is to charge one unit per operation. Under this unit cost model, if
X = cat andY = dog, and we only have insertion and deletion operations then it is easy to see that
D(X, Y) = 6 (we need to delete 3 letters and to insert 3 letters). On the other hand, if we have the
operation to replace any letter in a string by another letter, thenD(X, Y) = 3 as three replacement
operations suffice. One could also giveD(X, Y) a computational biology interpretation, by postulating
editing operations that are apropos of genetic modification.

c© Chee Yap Basic Version November 29, 2011

§3. EDIT DISTANCE Lecture VII Page 15

Here is one application of theD(X, Y) measure: in looking up strings in a database, a query string
X can be used to find theY that is closest toX , i.e., which minimizes the edit distanceD(X, Y). The
ultimate in similarity betweenX andY is then captured by the relationD(X, Y) = 0. It is interesting
to compareL(X, Y) in the LCS problem with the edit distanceD(X, Y): In the LCS problem,X and
Y are more similar for larger values ofL(X, Y). But in edit distance,X andY are more similar for
smaller values ofD(X, Y). We explore some connection betweenD(X, Y) andL(X, Y) below.

¶17. The Standard Edit Distance. We now specify the standard repertoire of edit operations. Fix any
alphabetΣ. For any indexi ≥ 1 and lettera ∈ Σ, define the following threestandard edit operations:

Ins(i, a), Del(i), Rep(i, a).

When applied to a stringX , these operations will (respectively)insert the lettera so that it appears in
positioni, deletetheith letter, andreplacetheith letter bya. Let

Ins(i, a, X), Del(i, X), Rep(i, a, X) (14)

denote the strings that are produced by these respective operations. For example, ifX = AATCGAthen
Ins(3, G, X) = AAGTCGA, Del(5, X) = AATCAandRep(5, T, X) = AATCTA.

The operations in (14) assume thati is in the “proper range”: For insertion, this means1 ≤ i ≤
|X |+ 1, but for deletion and replacement, this means1 ≤ i ≤ |X |. Wheni is not in the proper range,
we simply7 declare such operations to be undefined. The operationsDel(i) andIns(i, a) are inverses
of each other in the following sense:

X = Del(i, Ins(i, a, X)), X = Ins(i, b, Del(i, X)), (15)

for someb ∈ Σ. In general, ifY = Ins(i, a, X), then|Y | = 1 + |X | and

Y [j] =





X [j] if j = 1, . . . , i− 1
a if j = i
X [j − 1] if j = i + 1, . . . , |X |

The other operations can be similarly characterized.

We defineD(X, Y) be the minimum number of standard edit operations that will transformX to
Y . For example,D(TAG,CAT) ≤ 2 since

Definition of edit
distanceD(X, Y)

TAG = Rep(3,G, Rep(1,T,CAT)).

Moreover,D(TAG,CAT) ≥ 2 since a single edit operation cannot make these two strings equal. There-
fore we conclude thatD(TAG,CAT) = 2.

Our immediate goal is devise an efficient algorithm to compute D(X, Y) for anyX, Y . But first,
let us explore some simple properties. The first remark is that the setΣ∗ of strings, together with the
edit distance functionD : Σ∗ × Σ∗ → R≥0, constitutes ametric space. This amounts to satisfying the
following natural properties:

(i) (Non-negativity)D(X, Y) ≥ 0 with equality iff X = Y .

(ii) (Reflexivity) D(X, Y) = D(Y, X).

(iii) (Triangular Inequality)
D(X, Z) ≤ D(X, Y) + D(Y, Z). (16)

7 It is also easy to introduce conventions for interpreting (14) so that these operations are well-defined for alli.

c© Chee Yap Basic Version November 29, 2011

§3. EDIT DISTANCE Lecture VII Page 16

We also have the following bounds:

|X | − |Y | ≤ D(X, Y) ≤ |X | (17)

where|X | ≥ |Y | (this assumption is without loss of generality because of (ii)). In proof, the lower
bound onD(X, Y) is necessary because we need at least|X |− |Y | delete operation just to decrease the
length ofX to that ofY . The upper bound is sufficient because, by using|Y | replacement operations,
we can make modifyX so that it hasY as a prefix, and this can be followed by|X | − |Y | deletions.
These bounds are achievable. E.g., the upper bound is attained withD(google,search) = 6.

¶18. An Infinite Edit Distance Graph. It is interesting to view the setΣ∗ of all strings over a fixed
alphabetΣ as vertices of an infinite bigraphG(Σ) in which X, Y ∈ Σ∗ are connected by an edge iff
there exists an operation of the form (14) that transformsX to Y . Paths inG(Σ) are callededit paths
and edit distances has the following interpretation:

D(X, Y)is the length of the shortest (link-distance) path fromX to Y in G(Σ). (18)

In analogy to (4), we have the following recursive formula:

D(X, Y) =





max{|X |, |Y |} if mn = 0
D(X ′, Y ′) if xm = yn

1 + min{D(X ′, Y), D(X, Y ′), D(X ′, Y ′)} if xm 6= yn

(19)

It is a simple exercise to prove the correctness of this formula. It follows thatD(X, Y) can also be
computed inO(mn) time by the technique of¶8, by filling in entries in am× n matrixM .

Suppose we want to compute, not just the numberD(X, Y), but the sequence ofD(X, Y) edit
operations to convertX to Y . We have seen this idea before — we expect to be able to annotate
the matrixM with some additional information to help us do this. For thispurpose, let us decode
equation (19) a little. There are four cases:
(a) In casexm = yn, the edit operation is a no-op.
(b) If D(X, Y) = 1 + D(X ′, Y), the edit operation isDel(m, X).
(c) If D(X, Y) = 1 + D(X, Y ′), the edit operation isIns(m + 1, yn, X).
(d) If D(X, Y) = 1 + D(X ′, Y ′), the edit operation isRep(m, yn, X).
Hence it is enough to store two additional bits per matrix entry to reconstructonepossible sequence of
D(X, Y) edit operation.

¶19. Connection to LCS Problem. We had alluded to a connection betweenL(X, Y) andD(X, Y).
Here are some inequalities:

LEMMA 1. LetX andY have lengthsm andn. Then

D(X, Y) ≤ m + n− 2L(X, Y).

and
D(X, Y) ≥ max{m, n} − L(X, Y).

c© Chee Yap Basic Version November 29, 2011

§3. EDIT DISTANCE Lecture VII Page 17

Proof.Upper bound: ifZ ∈ LCS(X, Y) then we haveD(X, Z) ≤ m− L(X, Y) andD(Z, Y) ≤
n− L(X, Y), HenceD(X, Y) ≤ D(X, Z) + D(Z, Y) ≤ m + n− 2L(X, Y).

Lower bound: assumem ≥ n, so it suffices to showL(X, Y) ≥ m − D(X, Y). Suppose we
transformX to Y in a sequence ofD(X, Y) edit steps. Clearly,D(X, Y) ≤ m. But in D(X, Y) steps,
there is a subsequenceZ of X of lengthm−D(X, Y) that is unaffected. HenceZ is also a subsequence
of Y , i.e.,L(X, Y) ≥ |Z| = m−D(X, Y). Q.E.D.

These bounds are essentially the best possible: assumem ≥ n. Then for eachn/2 ≤ ℓ ≤ n, there
are stringsX, Y such thatD(X, Y) = m + n− 2ℓ whereL(X, Y) = ℓ. E.g.,X = am−ℓbℓ andY =
bℓcn−ℓ. For the lower bound, for each0 ≤ ℓ ≤ m, there are stringsX, Y such thatD(X, Y) = m− ℓ.
E.g.,X = am−ℓbℓ andY = bℓ.

¶20. Edit distance under general cost function. Our edit distance was based on unit cost for every
operation. We now generalize this by allowing different costs for different types of operations. The
“type” of an operation is determined, not only by its nature (insert/delete/replace) but also by the letters
that are operated upon.

An alignment cost functionis given by

∆ : (Σ ∪ {∗})2 → R

where∗ is a symbol not in the alphabetΣ. Forx, y ∈ Σ, we interpret∆(x, y) as the cost to replacex
by y. Also, for b ∈ Σ, we interpret∆(∗, b) as the cost of insertingb, and∆(b, ∗) as the cost of deleting
b. Under this interpretation, it is natural to impose the following requirement on∆:

∆(∗, ∗) ≥ 0. (20)

Thealignment distancebetween stringsX, Y under this cost function is denotedA∆(X, Y), or simply
A(X, Y), if ∆ is understood. If∆ is non-negative, then the definition ofA∆(X, Y) is easy to define,

Informal definition of
alignment distance

A(X, Y)and corresponds to our intuition coming from edit distanceD(X, Y). So for the time being, we assume
∆ ≥ 0.

The terminology “alignment” is new and needs some motivation. The concept comes from genomics
where we think of computingA∆(X, Y) as an issue of “aligning”X with Y so that there is a one-one
correspondence between letters ofX andY , and all we do is to replace corresponding letters that are
mismatched (i.e., different). Of course, letter-for-letter replacements alone will not be enough, so we
need to generalize this notion to include insertions and deletions (i.e., by aligning letters with∗). For
instance, ifX = ACT andY = CAT then a possible alignment of these two strings can be represented
by the pair(X∗, Y∗) = (AC*T,*CAT), which can be visualized as follows:

X∗ : A C * T
Y∗ : * C A T

The cost of this alignment is then taken to be

∆(A,*) + ∆(C,C) + ∆(*,A)∆(T,T).

We will shortly give a formal model of this alignment.

It is an easy observation that our original edit distanceD(X, Y) amounts to the alignment cost
function where∆(x, y) = 1 if x 6= y and∆(x, y) = 0 otherwise. But in general, the ability of∆ to
assign cost based on the letters is rather useful:

c© Chee Yap Basic Version November 29, 2011

§3. EDIT DISTANCE Lecture VII Page 18

• In genomics, it appears that that replacingA byC is less likely than replacingA byT. This can be
modeled using a cost function where∆(A,C) > ∆(A,T).

• Consider the string edit problem over the alphabet{a,b,c, ...,x,y,z}: in many keyboard
layouts, the key forb is adjacent to that forv, but relatively far from keya. Since it is easy to
confuse two adjacent keys on a keyboard, we may model typing errors with a cost function where
∆(a,b) > ∆(v,b).

For example, consider the alignment cost function

∆(x, y) =






2 if x = ∗ or y = ∗
0 if x = y
1 else.

(21)

Thus we charge two units for insertion or deletion, but one unit for replacement. There is no charge when
x = y since, intuitively, this is a null operation. SupposeX = bulk andY = ucky. In the uniform cost
model, we haveD(X, Y) = 3, obtained by the following sequence of delete, insert, replace operations:

bulk
Del→ ulk

Ins→ ulky
Rep→ ucky.

With the cost model of (21), these operations have a total cost of5 = 2+ 2 + 1. This cost is suboptimal
because we can achieve a cost of4 = 1 + 1 + 1 + 1 by a straightforward sequence of replacements:

bulk→ uulk→ uclk→ uckk→ ucky.

It is also easy to see that the cost cannot be less than4. So we conclude thatA(bulk, ucky) = 4.

So far, we have only looked at non-negative costs. But something quite interesting arises if we
allow negative costs. To focus on this issue, let us introduce a simple class of cost functions. In general,
the cost function∆ requires specifying almost(|Σ| + 1)2 numbers. But consider the following cost
function,

∆(x, y) =






δ= if x = y,
δ 6= if x 6= y
δ∗ if x = ∗ or y = ∗.

(22)

which is completely specified by three parametersδ=, δ 6= andδ∗. The valueδ∗ is called thegap penalty.
We shall assume that

δ= ≤ 0 < δ 6= < δ∗ (23)

This is well-motivated in genomics where an insertion or deletion in a DNA sequence is a significant
change and relatively rare. Here is one set of such parameters:

δ∗ = 3, δ= = −2, δ 6= = 1. (24)

Let us note that the triangular inequality (cf. (16)) fails under the cost function (24). Let X = a,
Y = aa, andZ = aaa. Under the alignment cost specified by (24), we haveA(a,aa) = 3 − 2 = 1,
A(aa,aaa) = 3− 4 = −1, andA(a,aaa) = 6− 2 = 4. Thus

A(a,aa) + A(aa,aaa) < A(a,aaa).

Another example where triangular inequality fails isX = ab, Y = bb andZ = ba.

c© Chee Yap Basic Version November 29, 2011

§3. EDIT DISTANCE Lecture VII Page 19

¶21. What is missing in the editing model? We have motivated the need for a cost model based on
the letters operated upon. But why do we need negative costs?In our simplified cost function (22), we
might think that a non-zero value forδ= is most curious. Shouldn’tδ= always be0? In other words, if
there is no need to replacex, then no cost should be associated. First of all, it seems clear that there is
little point in makingδ= positive. On the other hand, there is a strong case for allowing negativeδ=. In
terms of minimizing cost, a negative value is actually a goodthing.

Imagine that the FBI has a DNA bank containing the DNA sequences col-
lected at crime scenes. To correlate these crimes, the FBI computes the align-
ment costs of pairs of DNA’s coming from different crime scenes. Let us
define the correlation between two crime scenes to be the minimumA(X, Y)
whereX occurs at one scene andY at the second scene. With this definition,
we would like our alignment cost to exhibit the following kind of inequality:

A(C,C) > A(CC,CC) > A(CCC,CCC).

In other words, a matching pair in the alignment should be a positive factor,
not neutral, for crime correlation. This amounts toδ= < 0, not δ= = 0.
Similarly, we want the inequality

A(CG,CGG) > A(CGAAA,CGGAAA)

even though a single insertion suffice to align both pairs of strings.

¶22. Algorithm to compute alignment cost. We now give a dynamic programming method to com-
puteA∆(X, Y). The method is reminiscent of the LCS problem. SupposeX = x1 . . . xm−1xm =
X ′xm andY = y1 . . . yn−1yn = Y ′yn. Then we have the recursive rule:

A(X, Y) =






δ∗(m + n) if mn = 0,
min{A(X ′, Y ′) + ∆(xm, yn),

A(X ′, Y) + ∆(xm, ∗),
A(X, Y ′) + ∆(∗, yn)} else.

(25)

Note that for simplicity, (25) assumes that all deletion and insertion have the same cost of δ∗. To
systematically carry out the computation, we set up a(m + 1) × (n + 1) matrixM . The first row and
first column corresponds the the base case, and can be filled infirst using the base case of (25). The
remaining entries ofM is filled in a row by row fashion, using the general case of (25). The desired
valueA(X, Y) is found in the(m + 1, n + 1)-entry ofM .

Example. Assume that∆ in (22) is given by

δ= = −1, δ 6= = 1, δ∗ = 2. (26)

ForX = GCAT andY = AATTC, our matrix computation yields:

M =

ε A A T T C
ε 0 2 4 6 8 10
G 2 1 3 5 7 9
C 4 3 2 4 6 6
A 6 3 2 3 5 7
T 8 5 4 1 2 4

c© Chee Yap Basic Version November 29, 2011

§3. EDIT DISTANCE Lecture VII Page 20

This proves thatA(X, Y) = 4.

The original alignment problem came from S. Needleman and C.Wunsch,
“A general method applicable to the search for similaritiesin the amino acid
sequence of two proteins”,J.Molecular Biology, 48(3):443-53, 1970. It is
the first application of dynamic programming to computational biology. The
cost function∆ is represented by a so-calledsimilarity matrix . A typical
similarity matrix is

∆ A G C T
A −3 2 3 1
G 2 −3 2 1
C 3 2 −3 1
T 1 1 1 −3

. (27)

where the negative scores along the diagonal corresponds toδ= = −3. The
gap penaltyδ∗ separately given.

¶23. Model of Alignment. The above algorithm for computingA(X, Y) using (25) follows the
LCS model and standard edit distance model. But the justification of its correctness in the presence of
negative costs requires a new model of what we are minimizing.

Recall that we previously interpretedD(X, Y) as a minimum cost path problem in the infinite
graphG(Σ) defined in¶18. We could extend this interpretation toA∆(X, Y), where we now attach
appropriate costs for edges ofG(Σ). This model works well as long as we do not have negative costs.
But suppose∆(a,a) is negative. Ifa occurs in any stringX , then the graphG(Σ) will have an edge
from X to itself (i.e., a self-loop) with cost∆(a,a). Then we must conclude thatA(X, X) = −∞
since we can replacea by itself as many times as we wish and induce an arbitrarily negative cost. It
is easily seen that this impliesA(X, Y) = −∞ for all X, Y ∈ Σ∗. Something is clearly wrong with
this interpretation. This problem will arise as long as there is a cycle inG(Σ) with negative cost. So

The issue of negative
cycles in shortest path

is a well-known
phenomenon

in order to defineA(X, Y) properly, we must restrict the possible paths fromX to Y (in particular, we
must not re-use edges). We introduce an “alignment model” tocapture this.

To compute the alignment distance forX, Y , we first inserting zero or more∗’s into X andY so
that the resulting stringsX∗, Y∗ have the same length. Such a pair(X∗, Y∗) is called analignment of
X, Y . Thus theith characterX∗[i] in X∗ is aligned with theith characterY∗[i] in Y∗ if we placeX∗

aboveY∗. The cost of this alignment is the sum of the cost of “replacing” eachX∗[i] by Y∗[i]. We may
extend the original cost function∆ to alignments as follows:

∆(X∗, Y∗) :=

ℓ∑

i=1

∆(X∗[i], Y∗[i])

whereℓ = |X∗|. Of course, this “replacement” covers insertion and deletions as well. Finally, define
thealignment costfor X, Y to be the minimum of∆(X∗, Y∗) over all alignments(X∗, Y∗), and denote
this minimum by∆∗(X, Y):

∆∗(X, Y) := min
(X∗,Y∗)

∆(X∗, Y∗) (28)

where (X∗, Y∗) ranges over all alignments ofX, Y . Call (X∗, Y∗) an optimal alignment if
∆(X∗, Y∗) = ∆∗(X, Y). Under assumption (20), an optimal alignment must satisfyX∗[i] 6= ∗ or
Y∗[i] 6= ∗ for eachi. Thus, we|X∗| = |Y∗| ≤ |X |+ |Y |.

E.g., LetX = AATTC andY = GCAT, as in a previous example. IfX∗ = AATTC andY∗ =
GCAT*, then∆(X∗, Y∗) = 1 + 1 + 1 − 1 + 2 = 4. If the alignment cost ofX, Y is equal toA(X, Y)

c© Chee Yap Basic Version November 29, 2011

§3. EDIT DISTANCE Lecture VII Page 21

as we have been trying to suggest, then this particular alignment(X∗, Y∗) must be optimal. That is
because we have previously computedA(X, Y) = 4. This is the result to be shown next.

¶24. Correctness of the Dynamic Programming Solution. We formally defined the alignment cost
to be∆∗(X, Y) in (28). In ¶22, we described a dynamic programming algorithm to compute a quantity
that we will define (by fiat!) to beA∆(X, Y). The correctness of the dynamic programming algorithm
amounts to the equalityA∆(X, Y) = ∆∗(X, Y) for all stringsX, Y . Unfortunately, this is not true
without further restrictions on∆. We say∆ is well-founded if

∆(a, ∗) + ∆(∗, a) ≥ 0

for all a ∈ Σ. To see why this is necessary, suppose∆(a, ∗) + ∆(∗, a) < 0 for somea. Then

∆(ǫ, ǫ) = −∞

whereǫ is the empty string. To see this, note that(Xn, Yn) := (an
*

n, *
nan) is an alignment for(ǫ, ǫ)

for anyn ≥ 0. The cost of this alignment isn(∆(a, ∗) + ∆(∗, a)), which can be arbitrarily negative.
This argument can be extended to showing that∆∗(X, Y) = −∞ for all X, Y .

THEOREM 2 (Correctness).
∆ is well-founded iff for allX, Y ∈ Σ∗, ∆∗(X, Y) is finite. When∆∗(X, Y) is finite, it is equal to
A∆(X, Y).

Proof.To show that∆∗(X, Y) is finite, we show that if(X∗, Y∗) is an alignment of(X, Y), and if
|X∗| > |X |+ |Y | then the cost of(X∗, Y∗) is not minimal. ... Q.E.D.

An alternative to the preceding alignment model is the following “marking model”. Initially, we
“mark” each letter inX . Each replacement or deletion operation is applicable onlyto marked letters.
The result of a replacement or insertion operation is an unmarked letter. At the end of our sequence of
operations, we must obtain a copy ofY with only unmarked letters. We leave it as an Exercise to show
that this is equivalent to our alignment model.

Above we have noted that with negative costs, we may not satisfy the triangular inequality. We now
prove a positive result in the other direction:

LEMMA 3. Suppose the alignment cost function∆ is “triangular” in the sense that for allx, y, z ∈
Σ∪{∗}, we have∆(x, z) ≤ ∆(x, y)+∆(y, z). Then the alignment distanceA∆ satisfies the triangular
inequality:∆(X, Z) ≤ ∆(X, Y) + ∆(Y, Z).

Proof.Suppose(X∗, Y∗) and(Y∗∗, Z∗∗) are the optimal alignments forA∆(X, Y) andA∆(Y, Z),
respectively. Then we claim that∆(X, Y) + ∆(Y, Z) ≥ ∆(X, Z). This can be shown by constructing
an alignment(X̂, Z̃) that has alignment cost at mostA∆(X, Y) + A∆(Y, Z). ... incomplete Q.E.D.

¶25. Example. Let us give a non-biological example, motivated by string editing. Let Σ =
{a,b,c, ...,x,y,z} be the letters of the English alphabet. Define

∆(x, y) =





δ∗ if x = ∗ or y = ∗,
δ= if x = y,
δ1 if x, y are both consonants or both vowels,
δ2 else.

(29)

c© Chee Yap Basic Version November 29, 2011

§3. EDIT DISTANCE Lecture VII Page 22

This cost function generalizes the editing distance cost inwhich we take into account the nature of
letters that cause mismatch. For instance, with the choice

δ∗ = 3, δ= = 0, δ1 = 1, δ2 = 2, (30)

thenA(there,their) = 4 since we can replace the last two letters in the first word by their corre-
sponding letter in the second word. This has cost4 since using∆(r,i) = ∆(e,r) = 2. There is no
cheaper way to effect this transformation.

¶26. Generalizations. There are many possible generalizations of the above stringproblems.

• We can introduce cost models that are “context sensitive”. For instance, transformingXabY to
XbaY can be viewed as two replacements (with total cost of2∆(a, b)). But if we look at the
context of these two replacements, and realize that they canbe viewed as a transposition, then we
might want to assign a smaller cost.

• The fundamental primitive in these problems is the comparison of two letters: is letterX [i] equal
to letterY [j] (a “match”) or not (a “non-match”)? We can generalize this byallowing “approxi-
mate” matching (allowing some amount of non-match) or allowgeneralized “patterns” (e.g., wild
card letters or regular expressions).

• We can also generalize the notion of strings. Thus “multidimensional strings” is just an arrays of
letters, where the array has some fixed dimension. Thus, strings are just 1-dimensional arrays. It
is natural to view 2-dimensional arrays as raster images.

• Another generalization of strings is based on trees. Astring tree is a rooted treeT in which
each nodev is labeled with a letterλ(v) (from some fixed alphabet). The tree may be ordered or
unordered. In a natural way,T represents a collection (order or unordered) of strings. Let P and
T be two string trees. We say thatP is a (string) subtree of T if there is 1-1 mapµ from the
nodes ofP to the nodes ofT such that

– µ is label-preserving:v ∈ P andµ(v) ∈ T has the same label.

– µ is “parent preserving”: ifu is the parent ofv in P thenµ(u) is the parent ofµ(v) in T .
For ordered trees, we further insist thatµ be order preserving.

In particular, ifv0 is the root ofP thenµ(P) is a subtree (in the usual sense of rooted trees) of
T rooted aµ(v0). We say there is a “match” atµ(v0). Hence a basic problem is, givenP andT ,
find a match ofP in T , if any. Consider the edit distance problem for string trees. The following
edit operations may be considered: (1) Relabeling a node. (2) Inserting a new childv to a nodeu,
and making some subset of the children ofu to be children ofv. In the case of ordered trees, this
subset must form a consecutive subsequence of the ordered children of u. (3) Deleting a childv
of a nodeu. This is the inverse of the insertion operation. We next assign some costγ to each of
these operations, and define the edit distanceD(T, T ′) between two string treesT andT ′ to be
the minimum cost of a sequence of operations that transformsT to T ′. A natural requirement is
hatD(T, T ′) is a metric: so,D(T, T ′) ≥ 0 with equality iff T = T ′, D(T, T ′) = D(T ′, T) and
the triangular inequality be satisfied.

• Let D = {Y1, . . . , Yn} be a fixed set of strings, called the dictionary. DefineA(X, D) =
min {A(X, Yi) : i = 1, . . . , n}. We would like to preprocessD so that for any givenX , we can
quickly compute the set of words in the dictionary that is closest toX according to the alignment
distance.

Remarks: Levenshtein (1966) introduce the editing metric for strings in the context of binary codes.
Needleman and Wunsch (1970), “A general method applicable to the search for similarities in the amino

c© Chee Yap Basic Version November 29, 2011

§3. EDIT DISTANCE Lecture VII Page 23

acid sequence of two proteins” (J.Mol.Biol., 48(3)443-53), is considered to be the first application of
dynamic programming to biological sequence comparisons. Smith and Waterman (1981) proposed
a variation of the Needleman-Wunsch algorithm to find alllocal alignments between two sequences.
In contrast, the Needleman-Wunsch algorithm addresses theglobal alignment problem. Sankoff and
Kruskal (1983) considered the LCS problem in computationalbiology applications. Applications of
string tree matching problems arise in term-rewriting systems, logic programming and evolutionary bi-
ology. The volume by Apostolico and Galil [1] contains a state-of-the-art overview for pattern matching
algorithms, circa 1997.

EXERCISES

Exercise 3.1: Compute the edit distancesD(X, Y) whereX, Y are given:
(a)X = 00110011 andY = 10100101.
(b) X = AGACGTTCGTTAGCA andY = CGACTGCTGTATGGA.
(c) X = CGTAATCC andY = CCGTCC. Recall that Google thought these two strings are similar,
and may refer toCCGTCC.com. ♦

Exercise 3.2: Compute the alignment distanceA∆(X, Y) for the examples (a)-(c) in the previous ques-
tion. Let∆ be specified by the parametersδ= = −1, δ 6= = 1, δ∗ = 2. ♦

Exercise 3.3: Compute the alignment distanceA(X, Y) betweenX = google andY = yahoo
using the alignment cost (29) and and (30). For this purpose, assumey is a consonant. Also,
express∆(X, Y) as a direct alignment cost. ♦

Exercise 3.4: Suppose we compute optimal alignmentA(X, Y) by filling a matrix M [0..m, 0..n]
where|X | = m, |Y | = n. Let M [i, j] be the optimal cost to alignXi with Yj whereXi is
the prefix ofX of lengthi and similarly forYj . Assume the alignment cost function of the previ-
ous google-yahoo question. SupposeM [i, j] = k. What are the possible values forM [i−1, j−1]
as a function ofk? What aboutM [i− 1, j + 1] as a function ofk? Justify your answer. ♦

Exercise 3.5: ComputeA(X, Y) whereX, Y are the stringsAATTCCCGA andGCATATT. Assume∆
has gap penalty2, ∆(x, x) = −2 and∆(x, y) = 1 if x 6= y. You must organize this computation
systematically as in the LCS problem. ♦

Exercise 3.6: Prove (19). This is an instructive exercise. ♦

Exercise 3.7: Let x, y, z be distinct letters, and0 ≤ m ≤ n.
(a) Prove thatD(X, Y) = m + n− 2ℓ wherem ≥ ℓ ≥ m/2, X = xm−ℓzℓ andY = zℓyn−ℓ.
(b) LetX = xm−ℓzℓ andY = yn−ℓzℓ (0 ≤ ℓ ≤ n) Prove thatD(X, Y) = n− ℓ. ♦

Exercise 3.8: Let X, Y be strings. Clearly,L(XX, Y Y) ≥ 2L(X, Y).
(a) Give an example where the inequality is strict.
(b) Prove thatL(XX, Y) ≤ 2L(X, Y) and this is the best possible.
(c) Prove thatL(XX, Y Y) ≤ 3L(X, Y).
(d) We know from (a) and (c) thatL(XX, Y Y) = cL(X, Y) where2 ≤ c ≤ 3. Give sharper
bounds forc. ♦

c© Chee Yap Basic Version November 29, 2011

§4. POLYGON TRIANGULATION Lecture VII Page 24

Exercise 3.9: You work for Typing-R-Us, a company that produces smart wordprocessing editors.
When the user mistypes a word, you want to lookup the dictionary for the set of closest matching
words.
(a) Design an alignment cost function∆ which takes into account the keyboard layout. Assuming
the QWERTY layout, you would like to define∆(x, y) to be small whenx, y are close to each
other in this layout. Also, row distance is much smaller thancolumn distance. AssumeΣ =
{A,B,C ,..., X,Y,Z}.

There are 3 rows of
letters in this layout:

The first row is
QWERTYUIOP. The

next two rows are
ASDFGHJKL and

ZXCVBNM.
(b) Using your∆ function, computeA(QWERTY, QUIET) andA(QWERTY, QUICKLY). ♦

Exercise 3.10: In the text, we described a ”marking model” to formalize the allowable sequence of op-
erations to transformX to Y (andA(X, Y) is the minimum cost of such an allowable sequence).
Prove that this model is equivalent to our alignment model. ♦

Exercise 3.11:Let D = {Y1, . . . , Yn} be a fixed set of strings, called the dictionary. LetA(X, D) =
min {A(X, Yi) : i = 1, . . . , n} be the minimum alignment distance between a stringX and any
stringY in D. How can you preprocessD so thatA(X, D) can be computed in faster than the
obvious method? ♦

Exercise 3.12:Let Σ∗∗ denote strings of strings. A natural language text can be thought of as an
element ofΣ∗∗. If v, w ∈ Σ∗, let ∆(v, w) = L(v,w)

|v|+|w| . For X, Y ∈ Σ∗∗, let A(X, Y) be the
alignment distance using the above∆ function. Also, the gap penaltyδ∗ is some arbitrary positive
value. ♦

Exercise 3.13:Suppose we allow the operation oftranspose, . . . ab . . .→ . . . ba Let T (X, Y) be
the minimum number of operations to convertX to Y , where the operations are the usual string
edit operations plus transpose.
(i) ComputeT (X, Y) for the following inputs:(X, Y) = (ab, c), (X, Y) = (abc, c), (X, Y) =
(ab, ca) and(X, Y) = (abc, ca).
(ii) Show thatT (X, Y) ≥ 1 + min{T (X ′, Y), T (X, Y ′), T (X ′, Y ′)}.
(iii) In what sense can you say thatT (X, Y) cannot be reduced to some simple function of
T (X ′, Y), T (X, Y ′) andT (X ′, Y ′)?
(iv) Derive a recursive formula forT (X, Y). ♦

Exercise 3.14: In computational biology applications, there is interest in another kind of edit operation:
namely, you are allowed to reverse a substring: ifX, Y, Z are strings, then we can transform the
XY Z to XY RZ in one step whereY R is the reverse ofR. Assume that substring reversal is
added to our insert, delete and replace operations. Give an efficient solution to this version of the
edit distance problem. ♦

END EXERCISES

§4. Polygon Triangulation

We now address a different family of problems amenable to thedynamic programming approach.
These problems have an abstract structure that is best explained using the notion of convex polygons.

c© Chee Yap Basic Version November 29, 2011

§4. POLYGON TRIANGULATION Lecture VII Page 25

The standard notion of a polygonP is a geometric one, and may be represented by a sequence
(v1, . . . , vn) of verticeswherevi ∈ R

2 is a point in the Euclidean plane. We sayP is convexif no vi

in contained in the interior of the triangle∆(vj , vk, vℓ) formed by any other triple of points. Figure2
shows a convex polygon withn = 7 vertices. Anedgeof P is a line segment[vi, vi+1] between two
consecutive vertices (the subscript arithmetic, “i + 1”, is modulon). Thus[v1, vn] is also an edge. A
chord is an line segment[vi, vj] that is not an edge.

7

6

5
4

3

2

1

Figure 2: A triangulated 7-gon

¶27. Abstract Polygons. We now give an abstract, purely combinatorial version of these terms. Let
P = (v1, . . . , vn), n ≥ 1, be a sequence ofn distinct symbols, called acombinatorial convex polygon,
or an(abstract) n-gon for short. We call eachvi a vertex of P . Since the vertices are merely symbols
(only the underlying linear ordering matters), it is often convenient to identifyvi with the integeri. In
this case, we call(v1, . . . , vn) = (1, . . . , n) the standard n-gon. Henceforth, we assumen ≥ 3 to
avoid trivial considerations.

AssumeP is a standardn-gon. By asegmentof P we mean an ordered pair of vertices,(i, j)
where1 ≤ i < j ≤ n. This is sometimes written “ij”. We classify a segmentij as anedgeof P if
j = i + 1(modn); otherwise the segment is called achord. Thus,1n is an edge. Ifn ≥ 3, there are
exactlyn edges and

(
n−1

2

)
= (n−1)(n−2)/2 chords (why?). We say two segmentsij andkℓ intersect

if
i < k < j < ℓ or k < i < ℓ < j;

otherwise they aredisjoint . Note that an edge is disjoint from any other segment ofP .

¶28. Triangulations. It is not hard to show by induction that amaximalsetT of pairwise disjoint
chords ofP has size exactlyn−3. If n ≥ 3, a setT with exactlyn−3 pairwise disjoint chords is called
a triangulation of P . In the following, it is convenient to consider the degenerate case of a2-gon; the
empty set is, by definition, the unique triangulation of a2-gon. E.g., figure2 shows a triangulation

T = {14, 24, 47, 57}

of the standard7-gon. A triangle of P is a triple(i, j, k) (or simply,ijk) where1 ≤ i < j < k ≤ n;
its three edges areij, jk andik. E.g., the set of all triangles of the standard5-gon are

123, 124, 125, 134, 135, 145, 234, 235, 245, 345.

We sayijk belongs toa triangulationT if each edge of the triangle is either a chord inT or an edge of
P . Thus the triangles of theT in figure2 are

{124, 234, 147, 457, 567}.

Every triangulationT has exactlyn − 2 triangles belonging to it, and each edge ofP appears as the
edge of exactly one triangle and each chord inT appears as the edge of exactly two triangles [Check:
n − 2 triangles has a combined total of2(n − 3) + n edges.] In particular, there is a unique triangle

c© Chee Yap Basic Version November 29, 2011

§4. POLYGON TRIANGULATION Lecture VII Page 26

belonging toT which contains the edge1n. This triangle is(1, i, n) for somei = 2, . . . , n − 1. Then
the setT can be partitioned into three disjoint subsets

T = Ti ⊎ T ′
i ⊎ Si

where Si = T ∩ {(1, i), (i, n)}, and Ti, T
′
i are (respectively) triangulations of thei-gon Pi =

(1, 2, . . . , i) and the(n − i + 1)-gon P ′
i = (i, i + 1, . . . , n). E.g., the triangulationT in figure 2

has the partition
T = T4 ⊎ T ′

4 ⊎ S4

whereS4 = {14, 47}, T4 = {24} andT ′
4 = {57}. Note thatSi = {(1, i), (i, n)} iff 2 < i < n − 1,

S2 = {(2, n)} andSn−1 = {(1, n− 1)}. Also, our convention about the triangulation of2-gons is
assumed wheni = 2 or i = n− 1.

Thus triangulations can be viewed recursively. This is the key to our ability to decompose problems
based on triangulations.

¶29. Weight functions and optimum triangulations. A (triangular) weight function onn vertices
is a non-negative real functionW such thatW (i, j, k) is defined for each triangleijk of an abstractn-
gon. TheW -costof a triangulationT is the sum of the weightsW (i, j, k) of the trianglesijk belonging
to T . Theoptimal triangulation problem asks for a minimumW -cost triangulation ofP , given its
weight functionW .

¶30. Example: Suppose a carpenter has to saw a boardP that is shaped as a convexn-gon into
n− 2 triangles. He wants to minimize the amount of sawing to be done. You can interpret this to mean
minimizing the amount of sawdust produced. How should be cutup the board?

In caseP = (v1, . . . , vn) is a geometric convex polygon in the plane, a natural cost function is
W (i, j, k) is the perimeter‖vi − vj‖ + ‖vi − vk‖ + ‖vj − vk‖ of the triangle(vi, vj , vk), where
‖ · ‖ denotes the Euclidean length function. It is easy to check that T is optimal iff it minimizes the
sum

∑
(vi,vj)∈T ‖vi − vj‖ of the lengths of the chords inT . Thus, this provides the solution to our

carpenter’s the sawdust problem.

In specifyingW , we generally expected the “specification size” to beΘ(n3). However, in many
applications, the functionW is implicitly defined by fewer parameters, typicallyΘ(n) or Θ(n2). Here
are some examples.

1. Metric Sawdust Problem: this is a generalization of the “sawdust example”. Suppose each
vertexi of P is associated with a pointpi of some metric space. ThenW (i, j, k) = d(pi, pj) +
d(pj , pk) + d(pk, pi) whered(p, q) is the metric between two pointsp, q in the space.

2. Generalized Perimeter Problem: W is defined by a symmetric matrix(aij)
n
i,j=1 such that

W (i, j, k) = aij + ajk + aik. We can viewai,j as the “distance” from nodei to nodej and
W (i, j, k) is thus the perimeter of the triangleijk. This is another generalization of “metric
sawdust”. Here,W is specified byΘ(n2) parameters. More generally, we might have

W (i, j, k) = f(aij , ajk, aik)

wheref(·, ·, ·) is some function.

3. Weight functions induced by vertex weights: W is defined by a sequence(a1, . . . , an) of
objects where

W (i, j, k) = f(ai, aj , ak).

c© Chee Yap Basic Version November 29, 2011

§4. POLYGON TRIANGULATION Lecture VII Page 27

for some functionf(·, ·, ·). If ai is a number, we can viewai as the weight of theith vertex. Two
examples aref(x, y, z) = x + y + z (sum) andf(x, y, z) = xyz (product). The case of product
corresponds to the matrix chain product problem studied in§5.

4. Weight functions from differences of vertex weights:W is defined by an increasing sequence
a1 ≤ a2 ≤ · · · ≤ an andW (i, j, k) = ak − ai. Note that the indexj is not used inW (i, j, k). In
§5, we will see an example (optimum search trees) of such a weight function.

¶31. A dynamic programming solution. The cost of the optimal triangulation can be determined
using the following recursive formula: letC(i, j) be the optimal cost of triangulating the subpolygon
(i, i + 1, . . . , j) for 1 ≤ i < j ≤ n. Then

C(i, j) =





0 if j = i + 1,

mini<k<j{W (i, k, j) + C(i, k) + C(k, j)} else.
(31)

The desired optimal triangulation has costC(1, n). Assuming that the valueW (i, j, k) can be obtained
in constant time, and the size of the input isn, it is not hard to implement this outline to give a cubic
time algorithm. We say more about this in the next section.

EXERCISES

Exercise 4.1: Find an optimal triangulation of the abstract pentagon whose weight functionW is
parametrized by(a1, . . . , a6) = (4, 1, 3, 2, 2, 3):
(a) The weight function is given byW (i, j, k) = aiajak.
(b) The weight function is given byW (i, j, k) = |ai − aj |+ |ai − ak|+ |aj − ak|. ♦

Exercise 4.2: SupposeP is a geometric simple polygon, not necessarily convex. We now define chords
of P to comprise those segments that do not intersect the exterior of P . A triangulation is as usual
a set ofn− 3 chords. LetW be a weight function on the vertices ofP . Give an efficient method
for computing the minimum weight triangulation ofP . The goal here is to give a solution that is
O(k) wherek is the number of chords ofP . ♦

Exercise 4.3: A more profound generalization of triangulation comes fromconsidering the triangula-
tion (tetrahedralization) of convex polytope in3-dimensions. Now, the number of tetrahedra is
not unique. Give an abstract formulation of this problem. HINT: certain subsets of the vertices
are said to be “convex”. ♦

Exercise 4.4: (T. Shermer) LetP be a simple (geometric) polygon (so it need not be convex). Define
the “bushiness”b(P) of P to be the minimum number of degree3 vertices in the dual graph of
a triangulation ofP . A triangulation is “thin” if it achieves b(P). Give anO(n3) algorithm for
computing a thin triangulation. ♦

Exercise 4.5: Suppose that we want tomaximize the “triangulation cost” (we should really interpret
“cost” as “reward”) for a given weight functionW (i, j, k). Does the same dynamic programming
method solve this problem? ♦

c© Chee Yap Basic Version November 29, 2011

§5. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 28

Exercise 4.6: (Multidimensional Dynamic Programming?)
(a) Give a dynamic programming algorithm to optimally partition ann-gon into a collection of
3- or 4-gons. Assume we are given a non-negative real function W (i, j, k, l), defined for all
1 ≤ i ≤ j ≤ k ≤ l ≤ n such that|{i, j, k, l}| ≥ 3. The valueW (i, j, k, l) should depend
only on the set{i, j, k, l}: if {i, j, k, l} = {i′, j′, k′, l′}, thenW (i, j, k, l) = W (i′, j′, k′, l′). For
example,W (2, 2, 4, 7) = W (2, 4, 4, 7). The weight of a partitioning is equal to the sum of the
weights over all 3- or 4-gons in the partition. Analyze the running time of your algorithm. NOTE:
this problem has a 2-dimensional structure on its subproblems, but it can be generalized to any
dimensions.
(b) Solve a variant of part (a), namely, the partition shouldexclusively be composed of 4-gons
whenn− 4 is even, and has exactly one 3-gon whenn− 4 is odd. ♦

END EXERCISES

§5. The Dynamic Programming Method

Let us note the three ingredients necessary for a successfuldynamic programming solution. We use
the triangulation problem for illustration.

• There are a small number of subproblems. We interpret “small” to mean a polynomial number.
In the weight functionW on then-gon(1, . . . , n), each contiguous subsequence

(i, i + 1, i + 2, . . . , j − 1, j), (1 ≤ i < j ≤ n)

induces a weight functionWi,j on the(j− i+1)-gon(i, i+1, . . . , j−1, j). This gives rise to the
subproblemPi,j of optimal triangulation of(i, i + 1, . . . , j). The original problem is justP1,n.
There areΘ(n2) subproblems. The “wrong” formulation can violate this smallness requirement
(see Exercise).

• An optimal solution of a problem induces optimal solutions on certain subproblems. If T
is an optimal triangulation on(a1, . . . , an), then we have noted thatT = T1 ⊎ T2 ⊎ Si where
Si ⊆ {1i, in} andT1, T2 are triangulations of subpolygons ofP . In fact, T1, T2 are optimal
solutions to subproblemsP1,i andPi,n for some1 < i < n. This property is called thedynamic
programming principle , namely, an optimal solution to a problem induces optimal solutions on
certain subproblems.

• The optimal solution of a problem is easily constructed fromthe optimal solutions of sub-
problems. If we have already found the cost of optimal triangulations for all smaller subproblems
of Pi,j then we can easily solvePi,j using equation (31).

The reader may verify that the same ingredients were presentin the LCS and edit distance problems.

¶32. Mechanics of the algorithm. To organize the computation embodied in equation (31), we use
an upper triangularn× n matrixA to store the values ofC(i, j),

A[i, j] = C(i, j), (i < j)

See Figure3.

c© Chee Yap Basic Version November 29, 2011

§5. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 29

0

0

0

0

1

2

4

1 2 3 4 5

3

5

S2 S3 S4S1

C(1, 2)

C(2, 3)

C(3, 4)

C(1, 4)

Figure 3: Filling in of a upper triangular matrix

We view the algorithm as a systematic filling in of the matrixA. Note that filling in the entriesA[i, j]
can be viewed as solving a subproblem of size(j − i + 1). We proceed inn− 1 stages, where stageSt

(t = 2, . . . , n) corresponds to solving all subproblems of sizet. There are exactlyn− t + 1 problems
of sizet. Note that to solve a problem of sizet (t ≥ 2) we need to minimize over a set oft− 2 numbers
(see equation (31)), and this takes timeO(t). Thus staget takesO((t − 2)(n− t + 1)) = O(n2) time.
Summed over all stages, the time isO(n3). The space requirement isΘ(n2), because of the matrixA.

The algorithm is easy to implement in any conventional programming language: it has a triply-
nested “for-loop”, with the outermost loop-counter controlling the stage number,t. The following gives
a bottom-up implementation of equation (31):

DYNAMIC PROGRAMMING FOROPTIMAL TRIANGULATION

for t← 1 to n− 1 ⊳ do problems of size2
A[t, t + 1]← 0.

for t← 2 to n− 1 ⊳ t + 1 is problem size
for i← 1 to n− t ⊳ computeC[i, i + t]

A[i, i + t]← A[i, i + 1] + A[i + 1, i + t] + W (i, i + 1, i + t)
for k ← i + 2 to i + t− 1

A[i, i + t]← min{A[i, i + t], A[i, k] + A[k, i + t] + W (i, k, i + t)}

The algorithm lends itself to hand simulation, a process that the student should become familiar with.

In general, we would be filling entries of a rankk tensor (matrices are rankk = 2 tensors). It is
harder to visualize this process, but in terms a computer algorithm this presents no extra difficulty: we
would just have a(k + 1)-ply nested for-loop.

¶33. Splitters and the construction of Optimal Solutions. Suppose we want to find the actual
optimal triangulation, not just its cost. Let us call any index k that minimizes the second expression
on the right-hand side of equation (31) an (i, j)-splitter . If we can keep track of all the splitters, we
can clearly construct the optimal triangulation. For this purpose, we employ an upper triangularn× n
matrix K whereK[i, j] stores an(i, j)-splitter. It is easy to see that the entryK[i, j] can be filled in
at the same time thatA[i, j] is filled in. Hence, finding optimal solutions is asymptotically the same as
finding the cost of optimal solutions.

c© Chee Yap Basic Version November 29, 2011

§5. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 30

¶34. Top-down versus bottom-up dynamic programming. The above triply nested loop algorithm
is a bottom-up design. However, it is not hard to construct a top-down design recursive algorithm:
simply implement (31) by a recursion. However, it is important to maintain the matricesA (andK if
desired) as global shared space. This technique has been called “memo-izing”. Without memo-izing, the
top-down solution can take exponential time, simply because there are exponentially many subproblems
(see next section). A simple memoization does not speed up the algorithm. But we can, by computing
bounds, avoid certain branches of the recursion. This can have potential speedup – see Exercise.

¶35. Space-Efficient Solutions. We can usually reduce the space usage by a linear factor (quadratic
to linear, cubic to quadratic, etc). For instance, in the LCSproblem, it is sufficient to keep at most
two rows (or two columns) of the matrix in memory. That is because the solution for rowi depends
only on the solutions of rows(i − 1) and rowi. Indeed, space for only one row (or column) is already
sufficient – as new entries are produced for rowi, they overwrite the corresponding entries or rowi− 1.
However, such space efficient solutions are not so easy to extend into solutions that reconstruct the
optimal solutions. For instance, how do we compute a LCS using O(n) space? To do this, we need a
kind of divide and conquer technique: which we explore in theexercises.

REMARK: The abstract triangulation problem has a “linear structure” on the subproblems. This
linear structure can sometimes be artificially imposed on a problem in order to exploit the dynamic
programming framework (see Exercise on hypercube vertex selection).

EXERCISES

Exercise 5.1: Jane Sharp noted an alternative to equation (31).
(a) Jane observed that every triangulationT must contain a triangle of the form(i, i + 1, i + 2).
Such a triangle is called an “ear”. Prove this claim of Jane. (You may also prove the stronger
claim that there are at least two ears.)
(b) Suppose we remove an ear from ann-gon. The result is an(n − 1)-gon. If we knew an
ear which appears in an optimum triangulation of ann-gon, we could recursively triangular the
smaller(n− 1)-gon. But since we do not know, we can try all possible(n− 1)-gons obtained by
removing an ear. What is wrong with this approach? (Try to write the analogue of equation (31),
and think of the 3 ingredients needed for a dynamic programming approach.) ♦

Exercise 5.2: Consider the linear bin packing problem where theith item is not a single weight, but a
pair of non-negative weights,(vi, wi). If we put theith to jth items into a bin, then we require∑j

k=i vk and
∑j

k=i wk to be each bounded byM . Again the goal to use the minimum number of
bins. ♦

Exercise 5.3: Let (n0, n1, . . . , n5) = (2, 1, 4, 1, 2, 3). We want to multiply a sequence of matrices,
A1 × A2 × · · · × A5 whereAi is ni−1 × ni for eachi. Please fill in matrices (a) and (b) in
Figure4. Then write the optimal order of multiplyingA1, . . . , A5.

♦

Exercise 5.4: (Google Interview Problem, Feb 2009) You are playing a game with an opponent. Both
of you are looking at a list of numbersL. The players moves alternately. To make a move, the
player must remove either the head or tail element fromL. The score of a player is the sum of all
the numbers that the player removes. Your goal is to maximizeyour score. Construct a dynamic

c© Chee Yap Basic Version November 29, 2011

§5. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 31

1

2

4

3

5

0

0

0

0

0

1 2 3 4 5

1

2

4

3

5

0

0

0

0

0

1 2 3 4 5

0

0

0

0

(b) Splitter MatrixK
(a) Optimum Cost MatrixC

Figure 4: (a)C[i, j] is optimal cost to multiplyingAi× · · · ×Aj . (b)K[i, j] indicates the optimal split,
(Ai × · · · ×AK[i,j])(AK[i,j]+1 × · · · ×Aj)

programming algorithm that maximizes your score against any opponent (the opponent might not
be as interested in maximizing her own score as in minimizingyours). ♦

Exercise 5.5: The following problem is motivated by computations in wavelet theory. We are given
three real non-negative coefficientsa, b, c and a real function (the “barrier”)

h(x) =

{
1 if |x| < 1
0 else.

Define the functionf(x, i) (wherei ≥ 0 is integer) as follows:

f(x, i) =

{
h(x) if i = 0
a · f(2x− 1, i− 1) + b · f(2x, i− 1) + c · f(2x + 1, i− 1) else.

Let f(x) = limi→∞ f(x, i). We callf(x, i) the i-th approximation tof(x). Assume that each
arithmetic operation takes unit time.
(a) What isf(0), f(1/2) andf(−1/2)?
(b) The functionf(x, i) has support contained in the open interval(−1, 1) (for fixed i).
(c) Prove thatf(x) is well-defined (possibly infinite) for allx.
(d) Determine the time to compute a single valuef(x, n) if we implement a straightforward
recursion (each call tof(y, i) is independent).
(e) We want an efficient solution for the following problem: givenn, m, we want to compute the
valuesf(i/m, n) for all

i ∈ Dm := {−m + 1,−m + 2, . . . ,−1, 0, 1, . . . , m− 2, m− 1}.

Show that this can be computed inO(mn) time andO(m) space.
(f) Strengthen (e) to show we can compute a single valuef(i/m, n) in O(n) time andO(1) space.

♦

Exercise 5.6: (Recursive Dynamic Programming) The “bottom-up” solutionof the optimal triangula-
tion problem is represented by a triply-nested for-loop in the text. Now we want to consider a
“top-down” solution, by using recursion. As usual, the weight W (i, j, k) is easily computed for
any1 ≤ i < j < k ≤ n.

c© Chee Yap Basic Version November 29, 2011

§5. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 32

(a) Give a naive recursive algorithm for optimal triangulation. Briefly explain how this algorithm
is exponential.
(b) Describe an efficient recursive algorithm. You will needto use some global data structure for
sharing information across subproblems.
(c) Briefly analyze the complexity of your solution.
(d) Does your algorithm ever run faster than the bottom-up implementation? Can you make it run
faster on some inputs? HINT: for subproblemP (i, j), we can try to compute upper and lower
bounds onC(i, j). Use this to “prune” the search. ♦

Exercise 5.7: Give a linear spaceO(n) solution to problem of optimal triangulation. Write the recur-
rence for the space and time complexity of your algorithm. Solve for the running time. ♦

Exercise 5.8: Consider the problem of evaluating the determinant of ann × n matrix. The obvious
co-factor expansion takesΘ(n ·n!) arithmetic operations. Gaussian elimination takesΘ(n3). But
for smalln and under certain circumstances, the co-factor method may be better. In this question,
we want you to improve the co-factor expansion method by using dynamic programming. What
is the number of arithmetic operations if you use dynamic programming? Please illustrate your
result forn = 3.

HINT: We suggest you just count the number of multiplications. Then argue separately that the
number of additions is of the same order. ♦

Exercise 5.9: Generalize the previous exercise. Let the set of real constants {ai : i = −N,−N +
1, . . . ,−1, 0, 1, . . . , N} be fixed. Suppose that

f(x, i) =

{
h(x) if i = 0∑N

i=−N ai · f(2x− 1, i− 1) else.

Re-do parts (a)–(c) in the last exercise. ♦

Exercise 5.10: (Hypercube vertex selection) Ahypercubeor n-cube is the setHn = {0, 1}n. Each
x = (x1, . . . , xn) ∈ Hn is called a vertex of the hypercube. Letπ = (π1, . . . , πn) andρ =
(ρ1, . . . , ρn) be two positive integer vectors. Theprice andreliability of a vertexx is given by
π(x) =

∑n
i=1 xiπi andρ(x) =

∏n
i=1;xi=1 ρi. Thehypercube vertex selection problemis this:

givenπ, ρ and a positive boundB0, find x ∈ Hn which maximizesρ(x) subject toπ(x) ≤ B0.
Solve this problem in timeO(nB0) (notO(n log B0)).
HINT: View Hn = Hk ⊗ Hn−k for anyk = 1, . . . , n − 1 andy ⊗ z denotes concatenation of
vectorsy ∈ Hk, z ∈ Hn−k. Solve subproblems onHk andHn−k with varying values ofB
(B = 1, 2, . . . , B0). The choice ofk is arbitrary, but what is the best choice ofk? ♦

Exercise 5.11:Let S ⊆ R
2 be a set ofn points. Partially order the pointsp = (p.x, p.y) ∈ R

2 as
follows: p ≤ q iff p.x ≤ q.x andp.y ≤ q.y. If p 6= q andp ≤ q, we writep < q. A point p is
S-minimal if p ∈ S and there does not existq ∈ S such thatq < p. Let min(S) denote the set of
S-minimal points.
(a) For c ∈ R, let S(c) denote the set{p ∈ S : p.x ≥ c}. E.g., let S =
{p(1, 3), q(2, 1), r(3, 4), s(4, 2)} as shown in figure5. Thenmin(S(c)) is equal to{p, q} if
c ≤ 1; {q} if 1 < c ≤ 2; {r, s} if 2 < c ≤ 3; {s} if 3 < c. Design a data structureD(S) with
two properties:

1. For anyc ∈ R (“the query” is specified byc), you can useD(S) to output the setmin(S(c))
in time

O(log n + k)

c© Chee Yap Basic Version November 29, 2011

§5. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 33

1 2 3 4

1

2

3

4

p

r

q

s

Figure 5: Set of 4 points.

wherek is the size ofmin(S(c)).

2. The data structureD(S) usesO(n) space.

(b) For anyq ∈ R
2, let S(q) denote the set{p ∈ S : p.x ≥ q.x, p.y ≥ q.y}. Design a data struc-

tureD′(S) such that for anyq ∈ R
2, you can useD′′(S) to output the setmin(S(q)) in time

O(log n + k) wherek is the size ofmin(S(q)), andD′′(S) usesO(n2) space. ♦

Exercise 5.12: (Knapsack) In this problem, you are given2n + 1 positive integers,

W, wi, vi(i = 1, . . . , n).

Intuitively, W is the size of your knapsack and there aren items where theith item has sizewi

and valuevi. You want to choose a subset of the items of maximum value, subject to the total size
of the selected items being at mostW . Precisely, you are to compute a subsetI ⊆ {1, . . . , n}
which maximizes the sum ∑

i∈I

vi

subject to the constraint
∑

i∈I wi ≤W .
(a) Give a dynamic programming solution that runs in timeO(nW).
(b) Improve the running time toO(n, min{W, 2n}). ♦

Exercise 5.13: (Optimal line breaking) This book (and most technical papers today) is typeset using
Donald Knuth’s computer system known as TEX. This remarkable system produces very high
quality output because of its sophisticated algorithms. One such algorithm is the way in which it
breaks a paragraph into individual lines.

A paragraph can be regarded as a sequence of words. Suppose there aren words, and their
lengths area1, . . . , an. The problem is to break the paragraph into lines, no line having length
more thanm. Between 2 words in a line we introduce one space; there is no spaces after the last
word in a line. If a line has lengthk, then we assess apenalty of m− k on that line. The penalty
for a particular method of breaking up a paragraph is the sum of the penalty over all lines. The
last line of a paragraph, by definition, suffers no penalty.
(a) Consider the obvious greedy method to solve this problem(basically fill in each line until the
next word will cause an overflow). Give an example to show thatthis does not always give the
minimum penalty solution.
(b) Give a dynamic programming solution to finding the optimal (i.e., minimal penalty) solution.
(c) Illustrate your method with Lincoln’s Gettysburg address, assuming thatm = 80. In the case
of a terminal word (which is followed by a full-stop), we consider the full stop as part of the word.

c© Chee Yap Basic Version November 29, 2011

§6. OPTIMAL PARENTHESIZATION Lecture VII Page 34

(d) Suppose we assume that there are 2 spaces separating a full-stop and the following word (if
any) in the line. Modify your solution in (a) to handle this.
(e) Now introduce optional hyphenation into the words. For simplicity, assume that every word
has zero or one potential place for hyphenation (the algorithm is told where this hyphen can be
placed). If an input word of lengthℓ can be broken into two half-words of lengthsℓ1 andℓ2,
respectively, it is assumed thatℓ1 ≥ 2 andℓ2 ≥ 1. Furthermore, we must include an extra unit
(for the placement of the hyphen character) in the length of the line that contains the first half.
Can you modify the above algorithm further? ♦

END EXERCISES

§6. Optimal Parenthesization

We can view a triangulation of an(n+1)-gon to be a “parenthesized expression” onn symbols. Let
us clarify this connection.

Let (e1, e2, . . . , en), n ≥ 1, be a sequence ofn symbols. A(fully) parenthesized expression
on (e1, . . . , en) is one whose atoms areei (for i = 1, . . . , n), eachei occurring exactly once and in
this order left-to-right, and where each matched pair of parenthesis encloses exactly two non-empty
subexpressions. E.g., there are exactly two parenthesizedexpressions on(1, 2, 3):

((12)3), (1(23)).

The reader may verify that there are 5 parenthesized expressions on(1, 2, 3, 4).

A parenthesized expression on(e1, . . . , en) corresponds bijectively to aparenthesis tree on
(e1, . . . , en). Such a tree is a full8 binary treeT on n leaves, where theith leaf in symmetric order
is associated withei. If n = 1, then the tree has only one node. Otherwise, the left and right subtrees
are (respectively) parenthesized expressions on(e1, . . . , ei) and(ei+1, . . . , en) for somei = 1, . . . , n.

e1

e2
e3

e4

e1

e3e2

e4

v0

v1

v2

v3

v4

Figure 6: The parenthesis tree and triangulation corresponding to((e1(e2e3))e4).

There is a slightly more involved bijective correspondencebetween parenthesis trees on(e1, . . . , en)
and triangulations of an abstract(n + 1)-gon. See Figure6 for an illustration. If the(n + 1)-gon is
(v0, v1, . . . , vn), then the edges(vi−1, vi) is mapped toei (i = 1, . . . , n) under this correspondence, but
the “distinguished edge”(v0, vn) is not mapped. We leave the details for an exercise.

If we associate a costW (i, j, k) for forming a parenthesis of the form “(E1, E2)” whereE1 (resp.,
E2) is a parenthesized expression on(ei, . . . , ej) (resp.,(ej+1, . . . , ek), then we may speak of the

8 A node of a binary tree isfull if it has two children. A binary tree isfull if every internal node is full.

c© Chee Yap Basic Version November 29, 2011

§6. OPTIMAL PARENTHESIZATION Lecture VII Page 35

costof a parenthesized expression – it is the same as the cost of the corresponding triangulation ofP .
Finding such an optimal parenthesized expression on(e1, . . . , en) is clearly equivalent to finding an
optimal triangulation ofP .

¶36. Encoding parenthesis trees as permutations.We can encode this parenthesis tree on
(e1, . . . , en) by a unique permutation

π = (π1, . . . , πn−1) (32)

of {1, 2, . . . , n− 1}. Before explaining this in full generality, consider all the 5 possible parenthesis
trees one1, e2, e3, e4:

e1(e2(e3e4)), e1((e2e3)e4), (e1e2)(e3e4), ((e1e2)e3)e4, (e1(e2e3))e4.

These are represented, respectively, by the permutations

(123), (132), (213), (321), (312).

If n = 1, the permutation is the empty sequenceπ = (), and ifn = 2, the permutation is justπ = (1).
Forn = 3, there are two permutationsπ = (12) or π = (21).

Let us now explain how the permutation (32) encodes a parenthesis tree: ifn = 1, thenπ =
() is the empty string. the first entryπ1 tells us that the last multiplication is to form the product
A1,π1

·A1+π1,n where we writeAi,j for
∏j

k=i Ak. Recursively, the nextπ1 − 1 entries inπ represents
a parenthesis tree onA1, . . . , Aπ1

, and the remainingn− π1 − 1 entries inπ represents9 a parenthesis
tree onA1+π1

, . . . , An. Thus we have demonstrated:

LEMMA 4. There exists an injection from the set of parenthesis trees on n leaves to the set of permuta-
tions onn− 1 symbols.

It is clear that the firstπ1 entries in (32) must therefore be a permutation on{1, 2, . . . , π1}. There-
fore, not all permutations on{1, . . . , n− 1} correspond to a permutation tree. Forn = 4, we see that
π = (2, 3, 1) does not represent any parenthesis tree.

¶37. Catalan numbers. It is instructive to count the numberP (n) of parenthesis trees onn ≥ 1
leaves. In the literature,P (n) is also denotedC(n − 1), in which case it is called aCatalan number.
The indexn− 1 of the Catalan numbers is the number of pairs of parenthesis needed to parenthesizen
symbols. HereC(n) = 1, 1, 2, 5 for n = 0, 1, 2, 3. Note thatC(0) = 1, not0.

From the injection of Lemma4, we conclude thatP (n) = C(n − 1) ≤ (n − 1)!. Our current goal
is to give a more precise census of parenthesis trees. In general, for n ≥ 1, the following recurrence is
evident:

C(n) =

n∑

i=1

C(i− 1)C(n− 1− i). (33)

We can interpretC(n) as the number of binary trees with exactlyn nodes (Exercise). In terms ofP (n),
we get a similar recurrence:

P (n) =
n−1∑

i=1

P (i)P (n− 1− i) (34)

9 Strictly speaking, the lastn − π1 − 1 entries represent a parenthesis tree onA1+π1
, . . . , An in this sense:if we subtract

π1 from each of these entries, we would obtain (recursively) a permutation representing a permutation tree onA1, . . . , An−π1
.

c© Chee Yap Basic Version November 29, 2011

§6. OPTIMAL PARENTHESIZATION Lecture VII Page 36

where we defineP (0) = 0. ThusP (1) = P (2) = 1, P (3) = 2.

This recurrence has an elegant solution using generating functions (see§VIII.9),

C(m) =
1

m + 1

(
2m

m

)
.

By Stirling’s approximation, (
2m

m

)
= Θ

(
4m

√
m

)
.

SoC(m) = Θ(4mm−3/2) grows exponentially and there is no hope to find the optimal parenthesis tree
by enumerating all parenthesis trees.

¶38. Matrix Chain Product. An instance of the parenthesis problem is thematrix chain product
problem: given a sequence

A1, . . . , An

of rectangular matrices whereAi is ai−1 × ai (i = 1, . . . , n), we want to compute the chain product

A1A2 · · ·An

in the cheapest way. The sequence(a0, a1, . . . , an) of numbers is called thedimension of this chain
product expression.

To be clear about what we mean by “cheapest way”, we must clarify the cost model. Using associa-
tivity of matrix products, each method of computing this product corresponds to a distinct parenthesis
tree on(A1, . . . , An). For instance,

((A1A2)A3), (A1(A2A3)) (35)

are the two ways of multiplying 3 matrices. LetT (p, q, r) be the cost to to multiply ap × q matrix
by a q × r matrix. For simplicity, assume the straightforward algorithm for matrix multiplication, so
T (p, q, r) = pqr. Then, if the dimension of the chain productA1A2A3 is (a0, a1, a2, a3), the first
method in (35) to multiply these three matrices costs

a0a1a2 + a0a2a3 = a0a2(a1 + a3)

while the second method in (35) costs

a0a1a3 + a1a2a3 = a1a3(a0 + a2).

Letting (a0, . . . , a3) = (1, d, 1, d), these two methods cost2d and2d2, respectively. Hence the second
method may be arbitrarily more expensive than the first.

Hence the key problem is this: given the dimension(a0, . . . , an) of a chain product instance, de-
termine the optimal costTopt(a0, . . . , an) to compute such a product. We can solve this problem by
reducing it to to the optimal parenthesis tree problem: define an triangular weight functionW (i, j, k)
for 0 ≤ i < j < k ≤ n to reflect our complexity model:

W (i, j, k) := aiajak.

This is what we called the “product weight function” in§2.

CLAIM: Topt(a0, . . . , an) is the minimumW -cost triangulation of the abstract(n + 1)-gon on the
vertex set{0, 1, . . . , n}.

c© Chee Yap Basic Version November 29, 2011

§6. OPTIMAL PARENTHESIZATION Lecture VII Page 37

We have seen anO(n3) dynamic programming solution to compute this minimumW -cost trian-
gulation (or equivalently, the corresponding parenthesistree). The original problem of matrix chain
product can be solved in two stages: first find the optimal parenthesis tree, based on just the dimension
of the chain. Then use the parenthesis tree to order the actual matrix multiplications. The only creative
part of this solution is the determination of the optimal parenthesization.

Remark: 1. Chandra10 has shown a simple method of multiplying matrices that is within a factor
of 2 from Topt. Consider the permutationπ = (1, 2, . . . , n− 1): according to encoding scheme of (32),
this corresponds to the following parenthesis tree onA1, . . . , An:

(· · · ((A1A2)A3) · · ·)An. (36)

This is essentially the left-to-right multiplication of the sequence of matrices. It can be shown that the
cost of this method of multiplication isO(T 2

opt), and this is tight (Exercise). But suppose we choosei0
such thatai0 = min {a0, a1, . . . , an}. Now consider the parenthesis tree represented by the permutation

π = (i0 − 1, i0 − 2, . . . , 1, i0 + 1, i0 + 2, . . . , n− 1, i0)

where the lasti0 is omitted ifi0 = 0 or i0 = n. This corresponds to the parenthesis structure

(A1 · · · (Ai0−2(Ai0−1Ai0)) · · ·)(· · · (Ai0+1Ai0+2) · · ·An). (37)

Then the cost of this computation is at most2Topt(a0, . . . , an).
2. For the product weight function,W (ai, aj , ak) = aiajak, the optimal triangulation problem can be
solved inO(n log n) time, using a sophisticated algorithm due to Hu and Shing [6]. Ramanan [9] gave
an exposition of this algorithm, and presented anΩ(n log n) lower bound in an algebraic decision tree.

EXERCISES

Exercise 6.1: Show thatC(n) is the number of binary trees onn nodes. HINT: Use the recurrence (33)
and structural induction on the definition of a binary tree. ♦

Exercise 6.2: Work out the bijective correspondence between triangulations and parenthesis trees
stated above. ♦

Exercise 6.3: Verify by induction thatC(m) has the claimed solution. ♦

Exercise 6.4: Solve the recurrence (33) for C(n) by using the following observation: consider gener-
ating function

G(x) =

∞∑

i=0

C(i)xi = 1 + x + 2x2 + 5x3 + · · · .

HINT: What can you say about the coefficient ofxn in the squared generating functionG(x)2?
Write this down as a recurrence equation involvingG(x) Solve this quadratic equation.

♦
10 “Computing Matrix Chain Products in Near-Optimal Time”, Ashok K. Chandra, IBM Research Report RC 5625 (#24393),

10/6/75.

c© Chee Yap Basic Version November 29, 2011

§7. OPTIMAL BINARY TREES Lecture VII Page 38

Exercise 6.5: (Chandra)
(i) Show that the method (36) for multiplying the matrix chainA1, . . . , An is O(T 2

opt) whereTopt

is the optimal cost of multiplying the chain.
(ii) Show that the boundO(T 2

opt) is asymptotically tight.
(iii) Show that the method (37) has cost at most2Topt. ♦

Exercise 6.6: (i) Consider an abstractn-gon whose weight function is a product function,W (i, j, k) =
wiwjwk for some sequencew1, . . . , wn of non-negative numbers. Callwi the “weight” of vertex
i. Let (π1, π2, . . . , πn) be a permutation of{1, . . . , n} such that

wπ1
≤ wπ2

≤ · · · ≤ wπn
.

Show that there exists an optimal triangulationT of P such that vertexπ1 of least weight is
connected toπ2 and also toπ3 in T . [We say vertexi is connected toj in T if either ij or ji is
in T or is an edge of then-gon.]
HINT: Use induction onn. Call a vertexi isolated if it is not connected to another vertex by a
chord inT . Consider two cases, depending on whetherπ1 is isolated inT or not.

(ii) (Open) Can you exploit this result to obtain ao(n3) algorithm for the matrix chain product
problem? ♦

END EXERCISES

§7. Optimal Binary Trees

Suppose we storen keys
K1 < K2 < · · · < Kn

in a binary search tree. The probability that a keyK to be searched is equalKi is pi ≥ 0, and the
probability thatK falls betweenKj andKj+1 is qj ≥ 0. Naturally,

n∑

i=1

pi +

n∑

j=0

qj = 1.

In our formulation, we do not restrict the sum of thep’s andq’s to be1, since we can simply interpret
these numbers to be “relative weights”. But we do require theqj , pi’s to be non-negative.

We want to construct an full11 binary search treeT whose nodes are labeled by

q0, p1, q1, p2, . . . , qn−1, pn, qn (38)

in symmetric order. Note that thepi’s label the internal nodes andqj ’s label the leaves.

[FIGURE]

In a natural way,T corresponds to a binary search tree in which the internal nodes are labeled by
K1, . . . , Kn. But for our purposes, the actual keysKi are irrelevant: only the probabilitiespi, qj are

11 This amounts to an extended binary search tree, as describedin Lecture 3.

c© Chee Yap Basic Version November 29, 2011

§7. OPTIMAL BINARY TREES Lecture VII Page 39

of interest. Each subtreeTi,j (1 ≤ i ≤ j ≤ n) of T corresponds to a binary search tree on the keys
Ki, . . . , Kj. We define the followingweight function:

W (i− 1, j) := qi−1 + pi + qi + · · · pj + qj

= qi−1 +

j∑

k=i

(qk + pk)

for all 0 ≤ i ≤ j ≤ n. ThusW (i, i) = qi. Thecostof T is given by

C(T) = W (0, n) + C(TL) + C(TR)

whereTL and TR are the left and right subtrees ofT . If T has only one node, thenC(T) = 0,
corresponding to the case where the node is labeled by someqj . We sayT is optimal if its cost is
minimum. So the problem ofoptimal search treesis that of computing an optimalT , given the data
in (38). Why is this definition of “cost” reasonable? Let us charge aunit cost to each node we visit
when we lookup a keyK. If K has the frequency distribution given by the probabilitiespi, qj , then the
expected charge to the root ofT is preciselyW (i− 1, j) if the leaves ofT areKi, . . . , Kj . SoC(T) is
the expected cost of looking upK in the search treeT .

¶39. Application. In constructing compilers for programming languages, we need a search structure
for looking up if a given identifierK is a key word. SupposeK1, . . . , Kn are the key words of our
programming language and we have statistics telling us thatan identifierK in a typical program is
equal toKi with probabilitypi and lies betweenKj andKj+1 with probabilityqj . One solution to this
compiler problem is to construct an optimal search tree for the key words with these probabilities.

¶40. Example. Assume that(p1, p2, p3) = (6, 1, 3) and theqi’s are zero. There are 5 possible search
trees here (see figure7). The optimal search tree has root labeledp1, giving a cost of6+ 2(3)+ 3(1) =
15. Note that the structurally “balanced tree” withp2 at the root has a bigger cost of19. Intuitively, we
understand why it is better to havep1 at the root – it has a much larger frequency than the other nodes.

p1

p2

p3

Cost = 5 Cost = 9

p1

p2 p3

6

3

1

1

6 3

Figure 7: The 5 possible binary search trees on(p1, p2, p3).

Let us observe that thedynamic programming principle holds,i.e., every subtree ofTi,j (1 ≤ i ≤
n) is optimal for its associated relative weights

qi−1, pi, qi, . . . , qj−1, pj, qj .

Hence an obvious dynamic programming algorithm can be devised to find optimal search trees inO(n3)
time. Exploiting additional properties of the cost function, Knuth shows this can be done inO(n2) time.
The key to the improvement is due to a general inequality satisfied by the cost function, first clarified
by F. Yao, which we treat next.

EXERCISES

c© Chee Yap Basic Version November 29, 2011

§8. OPTIMAL BINARY TREES Lecture VII Page 40

Exercise 7.1: Describe the precise connection between the optimal searchtree problem and the optimal
triangularization problem. ♦

Exercise 7.2: Suppose the input frequencies are(p1, . . . , pn) (the qi’s are all zero). If thepi’s are
distinct, Joe Quick has a suggestion: why not choose the largestpi to be the root? Is this true for
n = 3? Find the smallestn for which this is false, and provide a counter example for thisn.

♦

Exercise 7.3: (Project) Collect several programs in your programming language X.
(a) Make a sorted list of all the key words in language X. If there aren key words, construct a
count of the number of occurrences of these key words in your set of programs. Letp1, p2, . . . , pn

be these frequencies.
(b) Construct an optimum search tree for these key words (assumingqi’s are0) these key words
(assumingqi’s are0).
(c) Construct from your programs the frequencies that a non-key word falls between the keywords,
and thereby obtainq0, q1, . . . , qn. Construct an optimum search tree for thesep’s andq’s. ♦

Exercise 7.4: The following class of recurrences was investigated by Fredman [3]:

M(n) = g(n) + min
0≤k≤n−1

{αM(k) + βM(n− k − 1)}

whereα, β > 0 andg(n) are given. This is clearly related to optimal search trees. We focus on
g(n) = n.
(a) Supposemin{α, β} < 1. Show thatM(n) ∼ n

1−min{α,β} .

(b) Supposemin{α, β} > 1, log α/ log β is rational andα−1 + β−1 = 1. ThenM(n) = Θ(n2).
♦

Exercise 7.5: If the pi’s are all zero in the Optimal Search Tree problem, then the optimization cri-
teria amounts to minimizing the external path length. Recall that the external path length of a
tree whose leaves are weighted is equal to

∑
u d(u)w(u) whereu ranges over the leaves, with

w(u), d(u) denoting the weight and depth ofu. Suppose we consider amodified path length
of a leafu to bew(u)

∑d(u)
i=0 2−i (instead ofd(u)w(u)). Solve the Optimal Search Tree under

this criteria. REMARK: This problem is motivated by the processing of cartographic maps of the
counties in a state. We want to form a hierarchical level-of-detail map of the state by merging the
counties. After the merge of a pair of maps, we always simplify the result by discarding some
details. If the weight of a map is the number of edges or vertices in its representation, then after
a simplification step, we are left with half as many edges. ♦

Exercise 7.6: Consider the following generalization of Optimal Binary Trees. We are given a subdivi-
sion of the plane into simply connected regions. Each regionhas a positive weight. We want to
construct a binary treeT with these regions as leaves subject to one condition: each internal node
u of T determines a subregionRu of the plane, obtained as the union of all the regions belowu.
We requireRu to be simply-connected. The cost ofT is as usual the external path length (i.e.,
sum of the weights of each leaf multiplied by its depth).
(a) Show that this problem isNP -complete.
(b) Give provably good heuristics for this problem. ♦

END EXERCISES

c© Chee Yap Basic Version November 29, 2011

§8. WEIGHT MATRICES Lecture VII Page 41

§8. Weight Matrices

We reformulate the optimal search tree problem in an abstract framework.

DEFINITION 1. Letn ≥ 2 be an integer. Atriangular function W (of ordern) is any partial function
with domain[0..n] × [0..n] suchW (i, j) is defined iffi ≤ j. We callW a weight matrix if it is a
triangular function whose range is the set of non-negative real numbers. A quadruple(i, i′, j, j′) is
admissibleif

0 ≤ i ≤ i′ ≤ j ≤ j′ ≤ n.

We sayW is monotoneif
W (i′, j) ≤W (i, j′)

for all admissible(i, i′, j, j′). Thequadrangle inequality for W for (i, i′, j, j′) is

W (i, j) + W (i′, j′) ≤W (i, j′) + W (i′, j).

We sayW is quadrangular if it satisfies the quadrangular inequality for all admissible (i, i′, j, j′).

i

i′

i′′

j j′ j′′

+
quadrangular:

monotone:

+ ≤

≤

Figure 8: Monotone and quadrangular weight matrix.

It is sometimes convenient to writeWij or Wi,j instead ofW (i, j). If we view Wij as the(i, j)-th
entry of ann-square matrixW , thenW is upper triangular matrix. Note that(i, i′, j, j′) is admissible
iff the four points(i, j), (i′, j), (i, j′), (i′, j′) are all on or above the main diagonal ofW (see Figure8).
Monotonicity and quadrangularity is also best seen visually (cf. Figure8):

• Monotonic means that along any north-eastern path in the upper triangular matrix, the matrix
values are non-decreasing.

• Quadrangularity means that for any 4 corner entries of a rectangle lying on or above the main
diagonal, the south-west plus the north-east entries are not less than the sum of the other two.

¶41. Example: In the optimal search tree problem, the weight functionW is implicitly specified by
O(n) parameters,viz., q0, p1, q1, . . . , pn, qn, with

W (i, j) =

j∑

k=i−1

qk +

j∑

k=i

pk.

In this case,W (i, j) can be computed in linear time from theqk ’s andpk ’s. The point is that, depending
on the representation,W (i, j) may not be available in constant time. The following is left as an exercise:

LEMMA 5. The weight matrix for the optimal search tree problem is bothmonotone and quadrangular.
In fact, the quadrangular inequality is an equality.

c© Chee Yap Basic Version November 29, 2011

§9. QUADRANGULAR INEQUALITY Lecture VII Page 42

DEFINITION 2. Given a weight matrixW , its derived weight matrix is the triangular function

W ∗ : [0..n]2 → R≥0

is defined as follows:
W ∗(i, i) :=W (i, i).

Assuming thatW ∗(i, j) has been defined for allj − i < ℓ, define

W ∗(i, i + ℓ) := W (i, i + ℓ) + min
i<k≤i+ℓ

{W ∗(i, k − 1) + W ∗(k, i + ℓ)}.

Defining
W ∗(i, j; k) :=W (i, j) + W ∗(i, k − 1) + W ∗(k, j), (39)

we callk an (i, j)-splitter if W ∗(i, j) = W ∗(i, j; k).

Note: the literature (especially in operations research) describes the Monge property of matrices.
This turns out to be the quadrangle inequality restricted toadmissible quadruples(i, i′, j, j′) where
i′ = i + 1 andj′ = j + 1.

EXERCISES

Exercise 8.1: (a) Computer the derived matrix of the following weight matrices:

W1 =

1 1 1 1
2 2 2

3 3
4

, W2 =

1 2 1 2 1
2 0 3 2

1 0 1
4 2

2

.

(b) SupposeW (i, j) = ai for i = j andW (i, j) = 0 for i 6= j. Theai’s are arbitrary constants.
Succinctly describe the matrixW ∗. ♦

Exercise 8.2: (Lemma5) Verify that the weight matrix for the optimal search tree problem is indeed
monotone and satisfies the quadrangularequality. ♦

Exercise 8.3: Write a program to compute the derivative of a matrix. It should run in O(n3) time on
ann-square matrix. ♦

Exercise 8.4:
(a) Interpret the derived matrix for the optimal search treeproblem.
(b) Does the derived matrix of a derived matrix have a realistic interpretation? ♦

Exercise 8.5: Generalize the concept of a triangular functionW so that its domain is[0..n]k for any
integerk ≥ 2, andW (i1, . . . , ik) is defined iffi1 ≤ i2 ≤ · · · ≤ ik. ThenW is aweight function
(of order n anddimensionk) if it is triangular and has range over the non-negative realnumbers.
Formulate the “optimalk-gonalization” problem for an abstractn-gon. (This seeks to partition
ann-gon intoℓ-gons where3 ≤ ℓ ≤ k. Give a dynamic programming solution. ♦

c© Chee Yap Basic Version November 29, 2011

§9. QUADRANGULAR INEQUALITY Lecture VII Page 43

END EXERCISES

§9. Quadrangular Inequality

The quadrangular inequality is central in theO(n2) solution of the optimal search tree problem. We
will show two key lemmas.

LEMMA 6. If W is monotone and quadrangular, then the derived weight matrix W ∗ is also quadran-
gular.

Proof. We must show the quadrangular inequality

W ∗(i, j) + W ∗(i′, j′) ≤W ∗(i, j′) + W ∗(i′, j), (0 ≤ i ≤ i′ ≤ j ≤ j′ ≤ n). (40)

First, we make the simple observation wheni = i′ or j = j′, the inequality in equation (40) holds
trivially.

The proof is by induction onℓ = j′ − i. The basis, whenℓ = 1, is immediate from the previous
observation, since we havei = i′ or j = j′ in this case.

¶42. Casei < i′ = j < j′: So we want to prove thatW ∗(i, j) + W ∗(j, j′) ≤W ∗(i, j′) + W ∗(j, j).
Let W ∗(i, j′) = W (i, j′; k) and initially assumei < k ≤ j. Then

W ∗
i,j + W ∗

j,j′ ≤ [Wi,j + W ∗
i,k−1 + W ∗

k,j] + W ∗
j,j′ (expandingW ∗

i,j)

≤ Wi,j′ + W ∗
i,k−1 + [W ∗

k,j + W ∗
j,j′] (by monotonicity)

≤ [Wi,j′ + W ∗
i,k−1 + W ∗

k,j′] + W ∗
j,j (by induction)

= W ∗
i,j′ + W ∗

j,j (by choice ofk).

In casej < k ≤ j′, we would initially expandW ∗
j,j′ above.

¶43. Casei < i′ < j < j′: Let W ∗(i, j′) = W (i, j′; k) andW ∗(i′, j) = W (i′, j; ℓ) and initially
assumek ≤ ℓ. Then

W ∗
i,j + W ∗

i′,j′ ≤ [Wi,j + W ∗
i,k−1 + W ∗

k,j] + [Wi′,j′ + W ∗
i′,ℓ−1 + W ∗

ℓ,j′] (sincei < k ≤ j, i′ < ℓ ≤ j′)

≤ [Wi,j′ + Wi′,j] + W ∗
i,k−1 + W ∗

i′,ℓ−1 + [W ∗
k,j + W ∗

ℓ,j′] (W is quadrangular)
≤ [Wi,j′ + Wi′,j] + W ∗

i,k−1 + W ∗
i′,ℓ−1 + [W ∗

k,j′ + W ∗
ℓ,j] (induction on(k, ℓ, j, j′))

≤ [Wi,j′ + W ∗
i,k−1 + W ∗

k,j′] + [Wi′,j + W ∗
i′,ℓ−1 + W ∗

ℓ,j]

= W ∗
i,j′ + W ∗

i′,j (by choice ofk, ℓ).

In caseℓ < k, we can begin as above with the initial inequalityW ∗(i, j) + W ∗(i′, j′) ≤W ∗(i, j; ℓ) +
W ∗(i′, j′; k). Q.E.D.

¶44. Splitting function KW . The (i, j)-splitter k is not unique but we make it unique in the next
definition by choosing the largest suchk.

DEFINITION 3. Let W be an weight matrix. Define thesplitting function KW to be a triangular
function

KW : [0..n]2 → [0..n]

defined as follows:KW (i, i) = i and for0 ≤ i < j ≤ n,

KW (i, j) := max{k : W ∗(i, j) = W (i, j; k)}.

c© Chee Yap Basic Version November 29, 2011

§9. QUADRANGULAR INEQUALITY Lecture VII Page 44

We simply writeK(i, j) for KW (i, j) whenW is understood. Once the functionKW is determined,
it is a straightforward matter to compute the derived matrixof W The following is the key to a faster
algorithm.

LEMMA 7. If the derived weight matrix ofW is quadrangular, then for all0 ≤ i ≤ j < j,

KW (i, j) ≤ KW (i, j + 1) ≤ KW (i + 1, j + 1).

Proof. By symmetry, it suffices to prove that

K(i, j) ≤ K(i, j + 1). (41)

This is implied by the following claim: ifi < k ≤ k′ ≤ j then

W ∗(i, j; k′) ≤W ∗(i, j; k) implies W ∗(i, j + 1; k′) ≤W ∗(i, j + 1; k). (42)

To see the implication, suppose equation (41) fails, sayK(i, j) = k′ > k = K(i, j + 1). Then the
claim impliesK(i, j + 1) ≥ k′, contradiction.

It remains to show the claim. Consider the quadrangular inequality for the admissible quadruple
(k, k′, j, j + 1),

W ∗(k, j) + W ∗(k′, j + 1) ≤W ∗(k, j + 1) + W ∗(k′, j).

AddingW (i, j) + W (i, j + 1) + W ∗(i, k − 1) + W ∗(i, k′ − 1) to both sides, we obtain

W ∗(i, j; k) + W ∗(i, j + 1; k′) ≤W ∗(i, j + 1; k) + W ∗(i, j; k′).

This implies equation (42). Q.E.D.

¶45. Main result. The previous lemma gives rise to a faster dynamic programming solution for
monotone quadrangular weight functions.

THEOREM 8. Let W be weight matrix such thatW (i, j) can be computed in constant time for all
1 ≤ i ≤ j ≤ n, and its derived matrixW ∗ is quadrangular. Then its derived matrixW ∗ and the
splitting functionKW can be computed inO(n2) time and space.

Proof. We proceed in stages. In stageℓ = 1, . . . , n−1, we will computeK(i, i+ℓ) andW ∗(i, i+ℓ)
(for all i = 0, . . . , n − ℓ). It suffices to show that each stage takes takesO(n) time. We compute
W ∗(i, i + ℓ) using the minimization

W ∗(i, i + ℓ) = min{W (i, i + ℓ; k) : K(i, i + ℓ− 1) ≤ k ≤ K(i + 1, i + ℓ)}.

This equation is justified by the previous lemma, and it takestimeO(K(i+1, i+ℓ)−K(i, i+ℓ−1)+1).
Summing over alli = 1, . . . , n− ℓ, we get the telescoping sum

n−ℓ∑

i=1

[K(i + 1, i + ℓ)−K(i, i + ℓ− 1) + 1] = n− ℓ + K(n− ℓ + 1, n)−K(1, ℓ) = O(n).

Hence stageℓ takesO(n) time. Q.E.D.

c© Chee Yap Basic Version November 29, 2011

§9. QUADRANGULAR INEQUALITY Lecture VII Page 45

¶46. Remarks. We refer to [7] for a history of this problem and related work. The originalformula-
tion of the optimal search tree problem assumespi’s are zero. For this case, T.C. Hu has an non-obvious
algorithm that Hu and Tucker were able to show runs correctlyin O(n log n) time. Mehlhorn [8] con-
siders “approximate” optimal trees and show that these can be constructed inO(n log n) time. He
describes a solution to the “approximate search tree” problem in which we dynamically change the
frequencies; see “Dynamic binary search”, (SIAM J.Comp.,8:2(1979)175–198). M. R. Garey gives an
efficient algorithm when we want the optimal tree subject to adepth bound; see “Optimal Binary Search
Trees with Restricted Maximum Depth, (SIAM J.Comp.,3:2(1974)101-110).

EXERCISES

Exercise 9.1: (a) Compute the optimal binary tree for the following sequence:

(q0, p1, q1, . . . , p10, q10) = (1, 2, 0, 1, 1, 3, 2, 0, 1, 2, 4, 1, 3, 3, 2, 1, 2, 5, 1, 0, 2).

(b) Compute the optimal binary tree for the case where theq’s are the same as in (a), namely,

(q0, q1, . . . , q10) = (1, 0, 1, 2, 1, 4, 3, 2, 2, 1, 2)

and thep’s are0. ♦

Exercise 9.2: It is actually easy to give a “graphical” proof of lemma7. In the figure9, this amounts to
showing that ifA + a ≥ B + b thenA′ + a′ ≥ B′ + b′.

A B C

A′ B′
C ′

a a′

b b′

Figure 9: Derived weight matrix.

♦

Exercise 9.3: If W is monotone and quadrangular, isW ∗ monotone? ♦

c© Chee Yap Basic Version November 29, 2011

§10. CONCLUSION Lecture VII Page 46

pn

pn−1

p1

q1q0

qn−1

qn

Figure 10: Linear list search tree.

Exercise 9.4: Consider a binary search tree that has this shape (essentially a linear list):

Show that the following set of inequalities is necessary andsufficient for the above search tree to
be optimal:

p2 + q2 ≥ p1 + q0 (E2)
p3 + q3 ≥ p2 + q1 + p1 + q0 (E3)
. . .
pn + qn ≥ pn−1 + qn−2 + pn−2 + · · ·+ p1 + q0 (En)

HINT: use induction to prove sufficiency.
Remark: So search trees with such shapes can be verified to be optimal in linear time. In general,
can an search tree be verified to be optimal ino(n2) time? ♦

Exercise 9.5: (a) Generalize the above result so that all the internal nodes to the left of the root are left-
child of its parent, and all the internal nodes to the right ofthe root are right-child of its parent.
(b) Can you generalized this to the case where all the internal nodes lie on one path (ignoring
directions along the tree edges – the path first traverses up the tree to the root and then down the
tree again). ♦

Exercise 9.6: Given a sequencea1, . . . , an of real numbers. LetAij =
∑j

k=i ak, Bij = min{Akj :
k = i, . . . , j} andBj = B1j . Compute the valuesB1, . . . , Bn in O(n) time. ♦

END EXERCISES

§10. Conclusion

This chapter shows the versatility of the on dynamic programming approach to a variety of problems.
A serious drawback of dynamic programming is its high polynomial cost: O(nk) for k ≥ 2, in both
time and space may not be practical in some applications. Hence there is interest in exploiting “sparsity
conditions” when they occur. Sometimes, the implicit matrix to be searched has special properties
(Monge conditions). See the survey of Giancarlo [4] for such examples.

References

[1] A. Apostolico and Z. Galil, editors.Pattern Matching Algorithms. Oxford University Press, 1997.

c© Chee Yap Basic Version November 29, 2011

§10. CONCLUSION Lecture VII Page 47

[2] D. Z. Chen, O. Daescu, X. Hu, and J. Xu. Finding an optimal path without growing the tree.J.
Algorithms, 49(1):13–41, 2003.

[3] M. L. Fredman.Growth Properties of a class of recursively defined functions. PhD thesis, Stanford
University, 1972. Technical Report No. STAN-CS-72-296. PhD Thesis.

[4] R. Giancarlo. Dynamic programming: Special cases. In A.Apostolico and Z. Galil, editors,Pattern
Matching Algorithms, pages 201–232. Oxford University Press, 1997.

[5] D. S. Hirschberg. A linear space algorithm for computingmaximal common subsequences.Comm.
of the ACM, 18(6):341–343, 1975.

[6] T. C. Hu and M.-T. Shing. AnO(n) algorithm to find a near-optimum partition of a convex polygon.
J. Algorithms, 2:122–138, 1981.

[7] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-
Wesley, Boston, 1972.

[8] K. Mehlhorn. Datastructures and Algorithms 1: Sorting and Sorting. Springer-Verlag, Berlin,
1984.

[9] P. Ramanan. A new lower bound technique and its application: Tight lower bound for a polygon
triangulation problem.SIAM J. Computing, 23:834–851, 1994.

c© Chee Yap Basic Version November 29, 2011

	 DYNAMIC PROGRAMMING
	 First Glimpses of Dynamic Programming
	 Longest Common Subsequence
	 Edit Distance
	 Polygon Triangulation
	 The Dynamic Programming Method
	 Optimal Parenthesization
	 Optimal Binary Trees
	 Weight Matrices
	 Quadrangular Inequality
	 Conclusion

