81. oY RIDES AND BIN PACKING Lecture V Page 1

“A nickel ain’t worth a dime anymore.”
— Yogi Berra

“You know that | write slowly. This is chiefly because | am meatisfied until | have said

as much as possible in a few words, and writing briefly takesfare time than writing at
length.”

— Karl Friedrich Gauss

(1777-1855)

Lecture V
THE GREEDY APPROACH

An algorithmic approach is called “greedy” when it makesisiens for each step based on what
seems best at the current step. Moreover, once a decisicedis, it is never revoked. It may seem that
this approach is rather limited. Nevertheless, many ingranproblems have special features that allow
optimal solutions using this approach. Since we do not revmk greedy decisions, such algorithms
tend to be simple and efficient.

To make this concept of “greedy decisions” concrete, suppashave some “gain” functiofi(x)
which quantifies the gain we expect with each possible dmtisi View the algorithm as making
a sequence, o, ..., x, Of decisions, where each; € X, for some setX; of feasible choices.
Greediness amounts to choosing thes X; which maximizes the valu€'(x).

The greedy method is supposed to exemplify the idea of “Iseatch”. But closer examination of
greedy algorithms will reveal some global information lgeirsed. Such global information is usually
minimal. Typically it amounts to some global sorting stemdeed, the preferred data structure for
delivering this global information is the priority queue.

We begin with a toy version of bin packing and simple problenmwlving intervals. Next we
discuss the more realistic Huffman tree problem and mininspainning trees. An abstract setting
for the minimum spanning tree problem is basednaatroid theory and the associatethaximum
independent set problem This abstract framework captures the essence of a largs afgproblems
with greedy solutions.

§1.Joy Rides and Bin Packing

We start with an example of a greedy algorithm to solve a snppbblem which we callinear
bin packing. The problem is, however, related to the major topic of bickeg in combinatorial
algorithms.

1. Amusement Park Problem. Suppose we have a joy ride in an amusement park where rig
arrive in a queue. We want to assign riders into cars, where#ns are empty as they arrive and
can only load one car at a time. Each car has a weight lichit- 0. The number of riders in a car
is immaterial, as long as their total weightds M pounds. We may assume that no rider has weig
> M. A key constraint in this problem is that we must make a deniébr rider as they arrive at the

© Chee Yap Basic Version October 25, 2011

81. oY RIDES AND BIN PACKING Lecture V Page 2

head of the queue. This is called thieline requirement. For instance, if/ = 400 and the weights (in
pounds) of the riders in the queue are

(30,190, 80, 210, 100, 80, 50), (1)
then we can put the riders into cars in the following groups:
Sy : (30,190, 80), (210, 100, 80), (50).

Solution S; uses three cars (the first car has the first 3 riders, the neXiasathe next 3, and the last
car has 2 riders). It is the solution given by the “greedy athm” which fills each car with as many
riders as possible before loading the next car. Here are thver mon-greedy solutions that uses the
same number of cars:

S : (30,190), (80, 210), (100, 80, 50).

S5+ (30,190)(80, 210, 100), (80, 50).

2. General Bin Packing. The joy ride problem is an instance of the following protaypn pack-
ing problem: given a collection of items, to place them into as few bins @ssible Each item is
characterized by its weight (a positive real number) andthe are identical, with a limited capacity.
More precisely, we are given a multiset $et= {ws, ..., w, } of positive weights, and a bin capacity
M > 0. We want to partitionS into a minimum number of subsets such that the total weigkgich
subset is at most/. We may assume that eaah < M. Unlike the joy ride problem, the weights
can be reordered in any way we like. A solution to this genkmalpacking problem is also called
a globally optimal solution. E.g., if S = {1,1,1,3,2,2,1,3,1} and M = 5 then one solution is
{3,2},{2,3},{1,1,1,1, 1}, illustrated in Figurel.

1 2 3 4

Figure 1: Bin packing solution.

This solution uses bins. This is clearly a globally optimal solution since edwh is filled to
capacity. Finding the globally optimal bin packing is a hprdblem: no polynomial-time algorithm is
known.

In the joy ride problem, we imposed a linear constraint onghssible solutions, thereby turn-
ing a hard problem into a feasible one. Let us formalize therjde problem: given a sequence
w = (wq,ws, ..., w,) of non-negative weights, lmear solution is determined by a sequence (called
breakpoints)

0=t0)<tl)<t2)<---<t(m)=n 2
of indices. The solution ifeasibleif for eachi = 1, ..., m, the subset
Ci={w; 1 t(i—1)<j <t@i)}

has a total weight of at mogt/. A feasible solution imptimal if m is minimum over all linear solutions.

Thelinear bin packing problem is to compute an optimal linear solution for any inputFor instance,

the greedy algorithm on the input= (1,1, 1, 3,2,2,1,3,1), M = 5 leads to the solution
01:{13171}3 02:{332}3 03:{231}3 04:{331}

Since this solution uses more thabins, it is suboptimal for the general bin packing problenavét-
theless, this solution is optimal for linear bin packing.

Think ofC; as thei-th
car in the joy ride.

© Chee Yap Basic Version October 25, 2011

81. oY RIDES AND BIN PACKING Lecture V Page 3

3. Greedy Algorithm. Let us code up the Greedy Algorithm for the linear bin packimgblem
(a.k.a. joy ride problem). Let = (wy,ws,...,w,) be the input sequence of weights. l@tdenote
a container (or car) that is being filled with elementsugfand W be the sum of the weights i@".
Initially, W « 0 andC « 0.

GREEDY ALGORITHM FORLINEAR BIN PACKING:
Input: w = (w1, ...,w,)andM > 0.
Output: A sequence of containe€s;, Cs, .. ., C,, representing an optimal linear solution.
> Initialization
C—0,W 0.
> Loop
fori=1ton+1
if (i=n+1lorW +w; > M)
W «0,C <0, OutputC.
else

W<—W+wi;C<—CU{wi}.

This the greedy algorithm is also known as finst fit algorithm .

4. Optimality of Greedy Algorithm. It may not be obvious why the greedy algorithm produces an
optimal linear solution. In any case, it is instructive t@ye that this is so. We use natural induction.
Suppose the greedy algorithm outphitsars with the weights

(W1, -y Wny)y (Wit 1y ey Wiy)y e v vy (Wi 15+ -+ s Why)
wheren; = n. This defines the following feasible solution
1<ng<ng <---<np=n.

Consider any optimal solution
1<mi<me<---<my=n

with £ cars. Since this is optimal, we have
L <k. 3)
We claim that fori = 1, ..., ¢,

Itis easy to see that this is true foe 1. Fori > 1, assumen,;_; < n;_; by induction hypothesis. By
way of contradiction, suppose that, > n;. Hence

mi—1 <nj—1 < n; < m;. %)

Thei-th car in the optimal solution has weight equald@, ,+1+- - -+wn,, but this weight (according
to (5)) is at least
Wry; 441+ + Wy + Wp,41. (6)

By definition of the greedy algorithm, the sum) (nust exceed/ (otherwise the greedy algorithm
would have added,, +, to theith car). This contradiction concludes our proof &f.(

From @), we haven, < n,. Sincem, = n, we conclude that, = n. Sincen;, = n, this can only
mean? > k. Combined with 8), we conclude that = £, i.e., the greedy method is optimal.

© Chee Yap Basic Version October 25, 2011

81. oY RIDES AND BIN PACKING Lecture V Page 4

5. How good is linear bin packing? Given a sequence = (w1, ..., w,) of positive weights, we
want to compare its optimal solutions when viewed as a lib@apacking instance, and when viewed
as a general bin packing instanc@)(flLet G; (w) be the number of bins used by the greedy algorithm
andOpt(w) be the number of bins used by an optimal algorithm that doekancee to respect the linear
ordering inw.

THEOREM 1. For any weight sequenae of lengthn,
Opt(w) > 1+ [G1(w)/2] (7

For eachn, there is a sequence afweights for which {) is an equality.

Proof. Suppose&~; (w) = k. Let the weight ofith output bin béV; fori = 1,. .., k. The following
inequality holds:
W, + Wi-l—l > M (8)

where M is the bin capacity. To see this, note that the first weigtd be put into the + 1st bin by
the greedy algorithm must satis#; + v > M. This implies 8) sinceW,; > wv. It follows that

Zle W; > | k/2] M; hence thépt(w) > 1+ |k/2]. This provesT).

To see that the inequality) is sharp, consider the followidgveight sequence of length

{4

If the bin capacity isM = 1, then the greedy solution useins, but clearhOpt(w) =1+ [n/2].

%,1,%,...,1,%) if n = even,
1,%,...,1,1) if n= odd.

n

Q.E.D.

6. Application to General Bin Packing. Thus linear bin packing can be optimally solved(n)
time. If the weights are arbitrary real numbers, 1ig:) bound is based on the real RAM computational
model of Chapter 1. The solution to linear bin packing can $eduas a subroutine in solving the
original bin packing problem: we just cycle through eachhefit! permutations ofv = (w1, ..., w,),

and for each compute the greedy solutior(ifw) time. The optimal solution is among them. This
yields an@(n - n!) = O((n/e)"+(3/2)) time algorithm. Here, we assume that we can generate all
n-permutations irO(n!) time. This is a nontrivial assumption, but in 87, we will shbaw to do this.

We can improve the preceding algorithm by a factomofsince without loss of generality, we
may restrict to permutations that begins with an arbitrary(why?). Since there arg» — 1)! such
permutations, we obtain:

LEMMA 2. The bin packing problem can be solvediin!) = O((n/e)"*+(1/2)) time in the real RAM
model.

We can further improve this complexity by another factongExercise). Observe that by imposing
restrictions on the space of possible solutions, we haveetla difficult problem like general bin pack-
ing into a feasible one like linear bin packing. The latteslgem may be interesting on its own merit,
but we see that it can also be used as a subroutine for solwéngriginal problem.

1 Thanks to my student Jason Y. Lee (2008) for this simple examp Originally, | had:
1.2.13.14. .1 i+l L1 "*1)
132435 a2 on—2 n

© Chee Yap Basic Version October 25, 2011

TheO-form of
Stirling’s
approximation

81. oY RIDES AND BIN PACKING Lecture V Page 5

7. Two-Car Loading. Consider an extension of linear bin packing where we simabasly load

two cars. Call these two cars tfrent andrear cars. This is a realistic scenario for joy rides in a Ferris
wheel. This allows us to mildly violate the first-come firstrge policy: a rider may be assigned to the
rear car, while the next rider in the queue may be assignelgetéront car. But this is the worst that
can happen (people coming behind in the queue can never bd alienore than one car). If neither
car can accommodate the new rider, we ndispatch the front car, so that the rear car comes to the
front position and a new car empty becomes the rear car. Wenoerto have the “online restriction”,
i.e., we must make the decision for each rider in the queusowttknowledge of who comes afterward.
As usual, we assume that decisionsiam®vocable. Once a rider has been assigned a car, it cannot be
changed.

We want to design a new poliay, for 2-car loading. The goal, as usual, is to minimize the nemb
of cars used for any given input sequenced_et G, be the car loading policy represented by the original
greedy algorithm (§). We want to make sure th&t, is never worse tha@',. More precisely, le6 (w)
andG»(w) denote the number of cars used by the respective policieaypimputw = (w1, ..., wy).

We want to ensure that for al,
Ga(w) < Gy (w). ©)

There is a trivial way to desigts to satisfy Q): just imitateG,. But this means9) is actually an

equality for allw. This is of no interest whatsoever. What we want is a paligywhere, in addition

to (9), there are many inputs whereGs(w) < G1(w), and hopefully,G> has other quantifiable
advantages as well.

Here is our proposed 2-car loading poli¢y; : load each rider into the front car if possible, but
otherwise load into the rear car. If the latter is also not pitde, dispatch the front car.

For instance, ifv = (30, 190, 80, 210, 90, 80, 50) and M = 400 is our original example inl), then
our new policy is an improvemen;(w) = 2 < 3 = G (w).

To prove that 9), we generalize it to a stronger statement about “subsegs&nNormally,w’ is
called a subsequence of = (ws,...,w,) if w’ can be obtained fromw by dropping zero or more
entries fromw. E.g.,w’ = (2,3,1) is a subsequence af = (2,2,1,3,1). But instead of dropping
an entry, we can imagine replacing it By thusw’ = (2,3,1) can be regarded 8¢, 0,0, 3,1) or
(0,2,0,3,1). For our proof, we define subsequencef w = (wy,...,w,) to be any sequence’ =
(wf,...,w,)whered < w; < w; for eachi.

LEMMA 3. If v’ is a subsequence ofia,

Go(w') < Gy (w). (10)

Proof. We use induction on the numbéh (w). Letw = (wy,...,w,) andw’ = (w,...,w)).
If G1(w) = 1, then clearly {0) holds (it actually holds with equality unless has only0 weights).
Supposé&r; (w) > 2, and let the first car load in th&; solution be the multiset’ = {wq, wa, ..., w;}
for some: > 1. So

Gl(w) = 1+G1(wi+1,wi+2,...,wn). (11)

The first car load”” in the G (w’) solution clearly contains the multisét, . .., w}}. But C’ might
also contain additional elements from the sequantceTo account for these elements, et be the
weight sequence thatis obtained fréat , ,, w; ,, ..., w;,) by setting ta) any weightw’; thatis inC".

Thus, we have

G2 (U)/) =14+ G2 (’LU”). (12)

Clearly,w” is a subsequence 0i;_ ,, ..., wy;,), and hencey” is a subsequence Ob; 11, ..., w,). By
induction hypothesis, we conclude that

Gg(w”) S Gl(wi_ﬂ, . ,wn). (13)

© Chee Yap Basic Version October 25, 2011

81. oY RIDES AND BIN PACKING Lecture V Page 6

Thus inequality {0) now follows from (1), (12), and (L3). Q.E.D.

What about lower bounds? Consider the following weight segew of length3n,
w = (a1,b1,c15a2,b2,¢2;a3 -+ Cpo1;n, by, Cp)

wherea; = ¢; = 0.5 +i¢, b; = 0.5 —ie+ J. In the Exercise, we ask you to show that for suitable small
values ford, e > 0, we haveGs(w)/Opt(w) > 1.5 — O(1/n). Here,Opt is the optimal solution for
general bin packing af.

We may further extend the 2-car loading framework:

* One extension is to allow decisions to be revoked. This m#aat, upon seeing the next rider in
the queue, we are allowed to move one or more riders betwesinaht and rear cars. An even
stronger notion of revoking is to exchange a rider in one efttho loading cars with the rider at
the head of the queue. Note that this stronger notion caniesdeven in 1-car loading.

» Another extension is to assume that two loading cars arpardllel tracks” (left or right tracks).
That means we can dispatch either car first. Note that thistésion permits loading policies
which are arbitrarily unfair in the sense that a rider may lbegd into a car that is arbitrarily far
ahead of someone who arrived earlier in the queue. So we migfitto restrict the admissible
loading policies.

EXERCISES

Exercise 1.1: Suppose you are a cashier at a checkout and has to give cleaniggtdmers. You want
to give out the minimum number of coins and notes. Assumeytbathave an infinite supply
(nice!) of coins/notes in each denomination.

(a) What is the greedy algorithm for this?

(b) Assuming a US cashier giving change less tiaf0. You have bills in denominations
$50, $20, $10, $5, $1 and common coins 25¢, 10¢, 5¢, 1¢. Can you prove the optyraliyour
greedy algorithm?

(c) Give a set of currency denominations in which your gregldgrithm is non-optimal. <

Exercise 1.2:In 1971, the British denomination converted to a decimatesys The old system has
these denomination%;, 1,3, 6,12 (=shilling), 24 (=florin), 30 (=half-crown),60 (=crown), 240
(=pound).

(a) Show that the old system in non-canonical.
(b) Determine the largest possible valugitfr) — Opt(x) in the old system. O

© Chee Yap Basic Version October 25, 2011

81. oY RIDES AND BIN PACKING Lecture V Page 7

To explore the coin changing problem of the preceding Exes;iwe need
to develop some further concepts.cArrency systemis a vector of increag
ing positive integersD = (dy,ds,...,d,) where eachl; € D is called g
denomination. Forx € N, a D-solution for x is any vectors € N such
that the dot products, D) equalse. We sayD is completeif every positive
integer has @-solution. Clearly,D is complete iffd; = 1. Henceforth, we
omit reference tad if it is understood (so we speak of “solution” instead of
“ D-solution”, etc). Calls agreedy solution forz if s is lexicographically the
largest among solutions far. that means that if’ is another solution, the
the last non-zero entry in the vector differenee- s’ is positive. Note tha
we look at last (not first) non-zero entry entry because ofavdering of the
vectorD. Thesizeof a solutions = (s1, ..., s,,) IS given by|s|:= Zle Si.
An optimal solution for z is anys such thats| is minimum among solutions
for z. Let Optp(z) (resp.,Gp(x)) denote any optimum (resp., the greedy)
solution. By definition,|Optp(z)| < |Gp(z)|. We sayD is canonical if
|Gp(z)| = |Optp(z)| forallz € N. The key open problem here is to charac-
terize canonical systems.dfp (z) > Optp(x), we callz acounter example
for (the non-canonicity of)D. There is another property of coin systems|be-
sides canonicity: we sal) hasuniquenessif Optp(x) is unique for every
x € N. Reference: 7]

D

- 35

Exercise 1.3: Consider a currency syste = (1,da, ..., dy).

(a) (Tien and Hu) Let: be a counter example for Létp(x) = (s1,...,5m,) andOptp(x) =
(s1,...,s5) (resp.) denote the greedy and an optimal solution. Desearilyespecial properties

relatings ands* if 2 the minimum counter example.

(b) Letq¢(D) = (q1,42,---,q9m) Whereq; = |d;41/d;] foreachi = 1,...,m — 1. Also let
gm = oo. Then we have the property thatp(z) < ¢(D) — 1 wherel = (1,...,1) is the
m-vector ofl’s. &

Exercise 1.4: This exercise will prove that the US currency system is ca@n SupposeD =
(1,da,...,dy) is a canonical currency systemu (> 1). We look at extensions db:
@ If D' = (1,ds,...,dmn,dn+1) extendsD with a denominatiod,,,:=qd,,,—; for someg > 2,
thenD’ is called aType A extension ofD. Show that Type a extensions Bfare canonical.
(b) Let D" = (1,da,...,dm,dm+1,dm+2) extendD’ (from part (a)) with a denomination
dmyo = adpye1 + bd,, wherea, b are non-negative integers. ¢f< 3 anda > 1 thenD” is
called aType B extension ofD’. Show that Type B extensions &f are canonical.
(c) Conclude that the US currency system comprising thesr®®@, $20, $10, $5, $1 and coins
25¢, 10¢, 5¢, 1¢ is canonical. Canonicity is preserved euver include the $2 note whiéis a
rarely seen denomination. &

Exercise 1.5: (a) Show a currency system that is complete and canonicaldas not have uniqueness.
HINT: you need not consider more thamlenominations.
(b) Show that the binary system = (1,2,4,...,2™) is a canonical system that is also unique.

O

Exercise 1.6: (Kozen-Zaks)
(a) Prove thaD = (1, ds) is always canonical.
(b) LetD = (1, d2,ds) whereds = qds + r (0 < r < dz). Show that ifr > 0 anddy > ¢+ r

2 The 2 dollar bill was introduced in 1862, discontinued in 89&nd reintroduced in 1976 for the US Bicentennial. It has
been a US denomination since.

© Chee Yap Basic Version October 25, 2011

81. oY RIDES AND BIN PACKING Lecture V Page 8

thenD is non-canonical. Indeed, show that+ 1)d- is a counter example.
(c) Show thatq + 1)d, is actually the minimum counter example.
(d) The converse of (b) is true: D = (1, da, d3) is non-canonical, then > 0 anddy > ¢ + .

(e) If D = (1,ds,...,dy) is non-canonical, the minimum counter example satisfies = <
Cm—1 1 Cm- <>

Exercise 1.7: A certain sovereign state had a complete and canonical rayreystemD = Is Yogi Berra referring
(dy,...,dn). After a period of hyper-inflation, the state decreed trapénniesd; = 1) are no to this in the
longer legal currency. Henceforth, monetary values ardiptes$ ofd,. Is the new currency still introductory quote?
canonical? What if the next denominati@nis also no longer legal? &

Exercise 1.8: (Panagiotis Karras) The following problem arises in “coegsing databases”. We are

given a sequence = (wi,...,w,) of numbers and some > 0. We say a sequence =
(z1,...,2m) is ane-approximation of w of order m if there is a sequence ot breakpoints (as
in (2)

0=1¢0) <t(l)<t2)<---<t(m)=n

such that for each original numbey, the uniquez; (j = 1,...,m) suchthat(j —1) < i < t(j)
provides are-approximation tav; in the sense that

w; —xi| < e
| il

Intuitively, this says that we can approximate the sequenbg a histogram withm steps. Let
Min(w,) denote the minimum order of anapproximation ofw. Design and prove a®(n)
greedy algorithm to compute the in(w, ¢). O

Exercise 1.9: Give a counter example to the greedy algorithm in casevtfeecan be negative. NOTE:
the greedy algorithm is exactly as it was before; in parécitlis an online algorithm. &

Exercise 1.10:We consider linear bin packing problem in which the weighi%s can be negative.
From the previous problem, we know that the greedy algoritto®@s not produce the optimal
solution. How bad can the greedy solution be, compared tdftimecsolution for linear bin pack-
ing? Please quantify “badness” in some reasonable way, @mstract examples that illustrates
how bad it could be. &

Exercise 1.11: There are two places where our optimality proof for the gyesddorithm breaks down
when there are negative weights. What are they? &

Exercise 1.12: Consider the following “generalized greedy algorithm” asew;’s can be negative. A
solution to linear bin packing be characterized by the sega®f breakpointd) = ny < n; <
ng < --- < ni = n where theith car holds the weights

[wni—ri-la Wn; 425+« wnT]

Here is a greedy way to define these indicesnleto be the largest index such th ;?;1 w; <
M. Fori > 1, definen; to be the largest index such that™ . w; < M. Note that

J=ni—1

this algorithm is no longer "online”. Either prove that tisislution is optimal, or give a counter
example. &

© Chee Yap Basic Version October 25, 2011

81. oY RIDES AND BIN PACKING Lecture V Page 9

Exercise 1.13: Give anO(n?) algorithm for linear bin packing when there are negativegives. HINT:
Assume that when you solve the problem {df, w), you also solve it for eachM, w’) where
w’ is a suffix ofw. This is really the idea of dynamic programming (Chapter 7). &

Exercise 1.14:Improve the bin packing upper bound in Lem@&t O((n/e)”~(1/2)). HINT: Repeat
the trick which saved us a factor afin the first place. Fix two weights;, w,. We need to
consider two cases: either , wy belong to the same bin or they do not. &

Exercise 1.15:We have the 2-car loading problem, but now imagine the 2 casgeralong two inde-
pendent tracks, say the left track and right track. Eithecoald be sent off before the other. We
still make decision for each rider in an online manner, butitiu decisionz; now comes from
the set{ L, R, L™, R™}. The choicer; = L or x; = R means we load th&h rider into the left
or right car (resp.), but; = L+ means that we send off the left car, and putithie rider into a
new car in its place. Similarly for; = R*. Consider the following heuristic: l&t, > 0 and
C1 > 0 be the “residual capacities” of the two open cars. Try topuinto the car with the
smaller residual capacity. ; is larger than botld’y andC, we send off the car with the smaller
residual capacity (and put; into its replacement car). Prove or disprove that this agatwill
never use more cars than the greedy algorithm in the prepimidem. &

Exercise 1.16:Construct examplesv = (w1,...,w,) (for arbitrarily large n) such that
Ga2(w)/Opt(w) > 1.5 — O(1/n). Here,Opt(w) is the minimum number of bins used if you
have no constraints (you can put any weight into any bin).

HINT: Use the example suggested in the text whewe = 3m and w =
(a1,b1,c1;5a9,be, co; a3, bs, cs; - - -) where we have arranged the weights into group8 sép-
arated by semi-colons)(Also, suppose; = ¢; = 0.5 + ie andb; = 0.5 — ie + §. You must
choose suitable values afé so thatGs(w) = n, andOpt(w) < 2n+ O(1). O

Exercise 1.17:(Open) Can you improve the lower bound1o$ in the previous exercise? One idea is
to use an adaptive adversary. &

Exercise 1.18:In the text, we compare our 2-car loading policy against d@imad bin packing solution.
Now we want to compare our 2-car loading policy with the perfance of aclairvoyant 2-car
algorithm. Clairvoyant means that the algorithm can see into the éuand thus knows the
entire queue). However, it must still respect the onlineinegnent — each rider must be assigned
a car and this cannot be revoked later. &

Exercise 1.19:(Open ended) Explore the revoking of decisions in 1- or 2laading. &

Exercise 1.20: (Open ended) Quantify the improvements possible whentagicars in parallel tracks
instead of loading 2 cars in a single track. &

Exercise 1.21: Suppose we first sort the input weights, so that we have ws > - -- > w,,. Consider
the following algorithm: fori = 1 to n, try to packw; into one of the current bins. If this is not
possible, put it into a new bin.

(a) Prove that this algorithm uses at most times the optimal number of bins.
(b) Give examples showing that this factorlo$ is the best possible. &

© Chee Yap Basic Version October 25, 2011

81. oY RIDES AND BIN PACKING Lecture V Page 10

Exercise 1.22:Weights with structure: suppose that the input weights &feedformw; ; = u;+v; and
(u1,...,uy)and(vy,...,v,) are two given sequences. schasmn numbers. Moreover, each
group must have the form(i, ', j, 7/) comprising alkwy, ; such that < £ < i’ andj < ¢ < j'.
Call this a “rectangular group”. We want the sum of the wesghteach group to be at mo3f,
the bin capacity. Give a greedy algorithm to form the smalpessible number of rectangular
groups. Prove its correctness. &

Exercise 1.23: Two Dimensional Bin Packing: suppose the bins are unit ssgjand the weights are
boxes of dimensions; x y; (i = 1,...,n). Assume) < x; < 1 and0 < y; < 1. We write
w; = (x;,y;) inthis case. Give a heuristic for greedy bin packing, whepeds; must be assigned
to the bin without knowing the later boxes (j > 7). Moreover, once we place;, we are not
allowed to rearrange it's placementif cannot be placed, we must close the current bin and get
a new bin forw;. NOTE: this is a difficult problem. &

Exercise 1.24: A vertex coverfor a bigraphG = (V, E) is a subseC' C V such that for each edge
e € E, at least one of its two vertices is contained(in A minimum vertex cover is one of
minimum size. Here is a greedy algorithm to finds a vertex cote

1. Initialize C to the empty set.

2. Choose from the graph a vertexvith the largest out-degre
Add vertexo to the setC, and remove vertex and
all edges that are incident on it from the graph.

3. Repeat step 2 until the edge set is empty.

4. The final set is a vertex cover of the original graph.

o

(a) Show a graply, for which this greedy algorithm fails to give a minimum vetcover. HINT:
An example with 7 vertices exists.

(b) Letx = (x1,...,x,) where eachr; is associated with vertexc V = {1,...,n}. Consider
the following set of inequalities:

» For each € V, introduce the inequality
0<z; <1.
» For each edgéi, j) € E, introduce the inequality
r; +x; > 1

If a=(a1,...,a,) € R" satisfies these inequalities, we cala feasible solution If eacha; is
either0 or 1, we calla a0 — 1 feasible solution. Show a bijective correspondence betweeset
of vertex covers and the set 0f- 1 feasible solutions. 1€ is a vertex cover, lea“ denote the
correspondin® — 1 feasible solution.

(c) Supposec* = (z7,...,z5) € R™ is a feasible solution that minimizes the functiffx) =

’n

r1 + 22 + -+ + a0, i.€., fOr all feasiblex,

fxT) < f().

Call x* anoptimum vector. Note thatx* is not necessarily & — 1 vector. Construct a graph
G = (V, E) wherex* is not a0 — 1 feasible solution. HINT: you do not need many vertices
(n < 4 suffices).

(d) Given an optimum vectat*, define setC C V as follows:i € C'iff z; > 0.5. Show that”

iS a vertex cover.

(e) Suppos&'* is a minimum vertex cover. Show tha®| < 2|C*|. HINT: what is the relation
betweenC| and f (x*)? Betweenf(x*) and|C*|? REMARKS: using Linear Programming, we
can find a optimum vectax* quite efficiently. The technique of converting an optimunctee
into an integer vector is a powerful approximation techeiqu &

© Chee Yap Basic Version October 25, 2011

§2. INTERVAL PROBLEMS Lecture V Page 11

Exercise 1.25:For k > 1, ak-coloring of a bigraphG = (V, E) is a functionC : V' — {1,... k}.
The coloring isproper if u—v € E impliesC(u) # C(v). Thechromatic number of G is
the smallestt such that there exists a propercoloring of G; this number is denoteg(G).
Computing the chromatic number of bigraphs is one of the guagh problems for which we
do not know any polynomial time solution. But like the bin kigngy problem we can “linearize

it”: Given an enumeratior = (vy, ..., v,) of the vertices of, we define the followingreedy
coloring of G relative tov. Fori = 1,...,n, letN; = {v; : j <1i,v;—v; € E} denote the set of
vertices with index less thaithat are adjacent to;. For each = 1,...,n, in order, we color

v; using the following ruleC(vy) = 1. Fori > 2, C(v;) is the smallest integér > 1 such that

k Q/ C(Nl): {C(’U) v E Nz}

(a) Show that if the enumeration is arbitrary, then the gyemmloring may be arbitrarily bad
compared to¢(G).

(b) Suppose we first sort the vertices in order of non-deargategrees. How bad can the greedy
coloring be in this case?

(c) Show that there exists an enumeration whose greedyieglsroptimal.

(d) Using (d), establish an upper bound on the complexityoofjguting chromatic numbers<)

END EXERCISES

§2. Interval Problems

An important class of greedy algorithms involves intervaigically, we think of an interval C R
as a time interval, representing some activity. For insgtatice half-open interval = [s, f) where
s < f might represent an activity that starts at timand finishes before tim¢. Here,[s, f) is the
set{t € R: s <t < f}. Two activitiesconflict if their time intervals are not disjoint. We use half-
open intervals instead of closed intervals so that the fitimsé of an activity can coincide with the start
time of another activity without causing a conflict. A set= {I;,...,I,} of intervals is said to be
compatibleif the intervals inS are pairwise disjoint (i.e., the activities Fare mutually conflict-free).

We begin with theactivities selection problem originally studied by Gavril. Imagine you have the
choice to do any number of the following fun activities in afeernoon:

12200 1:00 2:00 3:00 4:00 5:00 6:00

L Beach

- suim —

— Tennis———

beach 12: 00 — 4 : 00, ' Moviel_.

swimming 1:15—2:45, ‘ L_Moviez_)i
tennis 1:30—3:20, ! !
movie 3:00—4:30,

movie 4:30—6:00.

The corresponding half-open time intervals are visualfyr@ésented in Figur@. You are not al-
lowed to do two activities simultaneously. Assuming thatiygoal is to maximize your number of fun
activities, which activities should you choose? Formahy activities selection problem is thigiven
a set

A={L,15,....I,}

© Chee Yap Basic Version October 25, 2011

§2. INTERVAL PROBLEMS Lecture V Page 12

12: 00 1:00 2:00 3:00 4:00 5:00 6:00
— ® ® —®— ® ® o—
i Beach i i

~— Tennis———

~—Movie I—
'—Movie 2

Figure 2: Set of activities

of intervals, to compute a compatible subsefdhat is optimal Here optimality means “of maximum
cardinality”. E.g., in the above fun activities exampleapotimal solution would be to swim and to see
two movies. It would be suboptimal to go to the beach. Whatldrawgreedy algorithm for this problem
look like? Here is a generic version:

GENERIC GREEDY ACTIVITIES SELECTION:
Input: a setA of intervals
Output: S C A, a set of compatible intervals
> Initialization
Sort A according to some numerical criterign.
Let(14,...,1I,) be the sorted sequenc
LetS = 0.
> Main Loop
Fori=1ton
If SU{I;}is compatible, add; to S
Return(S)

D

Thus,S is a partial solution that we are building up. At stagae considerA;, to eitheracceptor
reject it. Accepting means to make it part of current soluti®nNotice the difference and similarities
between this greedy solution and the one for joy rides.

But what greedy criteria should we use for sorting? Here angessuggestions:

 Sortl;’s in order of non-decreasing finish times. E.g., swim, tenbéach, movie 1, movie 2.
e Sort/;’s in order of non-decreasing start times. E.g., beach, st@mis, movie 1, movie 2.
« Sort/;’s in order of non-decreasing siZe — s;. E.g., movie 1, movie 2, swim, beach, tennis.

e Sort[;’s in order of non-decreasing conflict degree. The confligirde ofI; is the number of
1;'s which conflict with/;. E.g., movie 2, movie 1 or swim, beach or tennis.

We now show that the first criterion (sorting by non-decnegdinish times) leads to an optimal
solution. In the Exercises, you will see that the other tlureria do not guarantee optimality.

We use an inductive proof, reminiscent of the joy ride praet.S = (11, I, . . ., I;;) be the solution
given by our greedy algorithm. I, = [s;, f;), we may assume

f1<f2<"'<fk.

© Chee Yap Basic Version October 25, 2011

§2. INTERVAL PROBLEMS Lecture V Page 13

Supposes’ = (I1,15,...,1)) is an optimal solution wherg = [s/, f/) and againf] < f5 < --- < f;.
By optimality of S’, we havek < ¢. CLAIM: We have the inequality; < f/ forall: =1,...,k. We
leave this proof as an exercise.

Let us now derive a contradiction if the greedy solution is eptimal: assumé < ¢ so thatl;

is defined. Then
k < f (by CLAIM)
< Spyq (sincelr, I; ., have no confligt

and sol;, , is compatible with{ 1y, ..., I }. This is a contradiction since the greedy algorithm halts
after choosing;, because there are no other compatible intervals.

What is the running time of this algorithm? In deciding ifental ; is compatible with the current
setS, it is enough to only look at the finish timg of the last accepted interval. This can be done in
O(1) time since this comparison takég1) andf can be maintained i@(1) time. Hence the algorithm
takes linear time after the initial sorting.

8. Extensions, variations. There are many possible variations and generalizationtseoctivities
selection problem. Some of these problems are exploreiExiercises.

e Suppose your objective is not to maximize the number of/diets, but to maximize the total
amount of time spent in doing activities. In that case, farfon afternoon example, you should
go to the beach and see the second movie.

e Suppose we generalize the objective function by addingight€‘pleasure index”) to each ac-
tivity. Your goal now is to maximize the total weight of thetaiies in the compatible set.

< We can think of the activities to be selected as a uni-pmrescheduling problem. (You happen
to be the processor.) We can ask: what if you want to processmag activities as possible using
two processors? Does our original greedy approach extethe iobvious way? (Find the greedy
solution for processor 1, then find greedy solution for pssoe 2).

* Alternatively, suppose we ask: what is the minimum numlgrocessors that suffices to do all
the activities in the input set?

» Suppose that, in addition to the sébf activities, we have a sét of classrooms. We are given a
bipartite graph with verticed U C and edges i€ C A x C. Intuitively, (I, c) € E means that
activity I can be held in classroom We want to know whether there is an assignmend — C'
such that (L)f(I) = cimplies(I,c) € E and (2)f~!(c) is compatible. REMARK: scheduling
of classrooms in a school is more complicated in many moresw@ye additional twist is to do
weekly scheduling, not daily scheduling.

EXERCISES

Exercise 2.1: We gave four different greedy criteria for the activitietestion problem.
(a) Show that the other three criteria are suboptimal.
(b) Actually, each of the four criteria has an inverted vemsin which we sort in non-increasing
order. Show that each of these inverted criteria are alsoggirbal. &

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 14

Exercise 2.2: Suppose the inpWt = (14, ..., I,,) for the activities selection problem is already sorted,
by non-decreasing order of their start times, ig.,< sy < --- < s,. Give an algorithm to
compute a optimal solution i®(n) time. Show that your algorithm is correct. &

Exercise 2.3: Consider the activities selection problem with the follogrbptimality criterion: to max-
imize the lengthA| of a setA C S of activities. Define théength | A| of a compatible sef to be
the length of all the activities i¥, where the length of an activity = [s, f) is just|I| = f — s.
In caseS is not compatible, its length i&. Write L(S) for the maximum length of anyl C S.
LetAm» = {Ii, Ii+1, Ceey Ij} fori < j andLm = L(ALJ)
(a) Show by a counter example that the following “dynamiagpaonming principle” fails:

Li,j = Imax {Li,k + Lk-ﬁ-l,j) S k S] - 1} (14)

Would assuming that is sorted by its start or finish times help?
(b) Give anO(nlogn) algorithm for computingZ, ,,. HINT: order the activities in the sef
according to their finish times, say,

< o<~ < fo.

Fori =1,...,n, let L; be the maximum length of a subset{df, ..., I;}. Use an incremental
algorithm to computé.,, Lo, ..., L,, in this order. &

Exercise 2.4: Give a divide-and-conquer algorithm for the problem in jweg exercise, to find the
maximum length feasible solution for a s€tof activities. (This approach is harder and less
efficient!) &

Exercise 2.5: Interval problems often arises from scheduling.
(a) There is & player game that last&88 minutes. In this game, any number of players can be
swapped at any time. Suppose there are 8 friends what waplsytthis game. Give a schedule
for swapping players so that each of thfriends has the same amount of play time.
(b) Suppose there ism@aplayer game that lastsminutes. Again, any number of players can be
swapped at any time. There arefriends who wants to play this game. Prove that there is adway
a schedule to let each friend have the same amount of playtime
(c) Design an algorithm for (b) to schedule the swaps so thettyeone has the same amount of
play time. &

END EXERCISES

§3. Huffman Code

The problem of compressing information is central to conmguand information processing. We shall
study one problem whose solution is based on the greedyigaratt is best to begin with an informally
stated problem:

(P) Given a strings of characters (or letters or symbols) taken from an alphg&behoose
avariable length cod€” for X so as to minimize the space to encode the stsing

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 15

Before making this problem precise, it is helpful to know teatext of such a problem. A computer
file may be regarded as a stringso problem (P) can be called tfiee compression problem Often,
the characters in computer files are extended ASCII chagsacliéhis means the alphabEthas size
28 = 256, and there is a standard way to represent each charactes-bjt &inary string, represented
by a functionCys. : ¥ — {0, 1}8. Thus ASCII code dixed-length binary codeé.e., |C,s.(x)| = 8 for
all x € X, So the ASCII encoding of a file ofi characters is a binary string of lengiln. Can we do
better?

Was Gauss referring to
the difficulty of
compression in the

. N) . opening quotation?
The idea of Huffman coding is to usevariable length codein order to take advantage of the

relative frequency of different characters. For instantggpical English texts, the letters™and ‘¢’ are
most frequent and it is a good idea to use shorter length dodéisem. On the other hand, infrequent
letters like ¢’ or * 2’ could have longer length codes. An example of a variablgtlenode is Morse code
(see Notes at the end of this section). To see what additmoglerties are needed in variable-length
codes, let us give some definitions:

A (binary) codefor X is an injective function
C:¥—{0,1}".

A string of the formC'(z) (xz € ¥) is called acode word The strings = z122 - -z, € ¥* is then
encoded as
C(s):=C(z1)C(x2) - Cam) € {0,1}".

This raises the problem of decodidys), i.e., recoverings from C(s). For a general’’ ands, one
cannot expect unique decoding. One solution is to introduoew symbol$’ and use it to separate
eachC(z;). If we insist on using binary alphabet for the code, this ésras to convert, say)*to ‘ 00’,
‘1’to ‘01’ and ‘$’ to * 11". This doubles the number of bits, and seems to be wasteful.

19. Prefix-free codes. Our preferred solution for unique decoding is to require thde prefix-free.
This means that ifi, b € ¥ are distinct letters the@'(a) is not a prefix ofC(b). It is not hard to see
that the decoding problem has a unique solution under phefexeodes. With suitable preprocessing
(basically to construct the “code tree” fof, defined next) decoding can be done very simply in an
on-line fashion.

We represent a prefix-free codeby a binary treel~ with n = || leaves. Each leaf iff- is
labeled by a charactérc X such that the path from the root&as represented bg'(b) in the natural
way: starting from the root, we use successive bit€'{id) to decide to make a left branch or right
branch from the current node @%.. We call T a code treefor C. For simplicity, we will henceforth
assume that all code trees are full binary treBgjure3 shows two such trees representing prefix codes
for the alphabeE = {a,b, ¢,d}. The first code, for instance, correspond€t@) = 00, C(b) = 010,
C(c) =011 andC(d) = 1.

Returning to the informal problem (P), we can now interphnét problem as the construction of the
best prefix-free cod€’ for s, i.e., the code that minimizes the lengifi(s)| of C(s). It is easily seen
that the only statistics important abouis the number, denotefl (), of occurrences of the character
x in s. In general, call a function of the form

f:Y =N (15)

a frequency function. So we now regard the input data to our problem to be a frequiemction
f = fs rather than the string. Relative tof, thecostof C' is defined to be

COST(f,C):=">_ |C(a)] - f(a). (16)

acXx

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 16

COST=11+8+3=22 COST=11+6+3=20

Figure 3: Two prefix-free codes and their code trees: assi(me= 5, f(b) = 2, f(c) = 1, f(d) = 3.

Clearly COST(fs, C) is the length ofC'(s). Finally, thecostof f is defined by minimization over all
choices ofC:
COST(f)::mcin COST(f,C)

over all prefix-free code€' on the alphabet. A codeC is optimal for f if COST(f,C) attains this
minimum. It is easy to see that an optimal code tree must fodl dinary tree (i.e., non-leaves must
have two children).

For the codes in Figurg, assuming the frequencies of the charactetsc, d are5, 2,1, 3 (respec-
tively), the cost of the first code s 2 +2-3+1-3+4 3 -1 = 22. The second code is better, with cost
20.

We now precisely state the informal problem (P) asHiuéfman coding problem:

Given a frequency functiorf : ¥ — N, find an optimal prefix-free cod€
for f.

Relative to a frequency functiohon X, we associate weight W («) with each node: of the code
treeTc: the weight of a leaf is just the frequengyz) of the character: at that leaf, and the weight of
an internal node is the sum of the weights of its children. Lgt denote such aeighted code tree
In general, a weighted code tree is just a code tree togetitlermweights on each node satisfying the
property that the weight of an internal node is the sum of thayhts of its children. For example, see
Figure3 where the weight of each node is written next to it. Tedght of 7 ¢ is the weight of its root,
and itscostCOST (Ty,¢) defined as the sum of the weights of alliii¢ernalnodes. In Figur&(a), the
internal nodes have weights8, 11 and so theCOST (Ty,c) = 3+ 8+ 11 = 22. In general, the reader
may verify that

COST(f,C)=COST(Ty,c). (a7)

We need thenerge operation on code trees: Tf; is a code tree on the alphabet (: = 1,2) and
Y1 N X, is empty, then we can merge them into a code Trem the alphabet; U X5 by introducing a
new node as the root @f and withT}, T, as the two children of the root. We may write= T} + T5.
Note that we do not care wheth&r or Ty is the left of . If T, T5 are weighted code trees, the result
T is also a weighted code tree.

We now present a greedy algorithm for the Huffman coding jemob

© Chee Yap Basic Version October 25, 2011 =

§3. HUFFMAN CODE Lecture V Page 17

HUFFMAN CODE ALGORITHM:

Input: Frequency functiorf : ¥ — N.

Output: Optimal code tre@™ for f.

1. LetS be asetof weighted code trees. Initialfyis the set of, = || trivial trees,
each tree having only one node representing a single cleainét.

2. while S has more than one tree,
2.1. Choosd’, T’ € S with the minimum and the next-to-minimum weights, respeai.
2.2. Merg€l', T’ and insert the resulf + 7" into S.
2.3. Deletel’, T’ from S.

3. NowS has only one tre&™. Output?™.

A Huffman tree is defined as a weighted code tree tbatild be output by this algorithm. We say
“could” because we regard the Huffman code algorithm as etanthinistic — when two trees have the
same weight, the algorithm may pick either one in its choidest us illustrate the algorithm with a
familiar 12-letter string,hel | o wor |1 d!. The alphabekl for this string and its frequency function
may be represented by the following two arrays:

arguably the famous
string in computing

_5
o

letter hie|l |[o]U|w
frequency |1 |1 (3|2|1]|1

Note that the exclamation marK @nd blank space |) are counted as letters in the alphabetThe
final Huffman tree is shown in Figure The number shown inside a node®f the tree is theveight of
the node. This is just sum of the frequencies of the leavdsastibtree at. Each leaf of the Huffman
tree is labeled with a letter froi.

Figure 4: Huffman Tree forHel | o wor | d!”: weights are written inside each node, but ranks
(0,1,...,16) are beside the nodes.

Figure4 shows the Huffman tree produced by our algorithm on our farstting. In addition, we
display, next to each node, its “rank,(1, 2, ..., 16). The rank of a node specifies the order in which
nodes were extracted from the priority queue. For instatiheeleaves (rank0) ande (rank0) were
the first two to be extracted in the queue. Their merge pradlaceode of rani8. Note that the root is
the last (ranki6) to be extracted from the queue. With this rank informatiwa,can re-trace the step-
by-step execution of the Huffman code algorithm. In the sextion, we will exploit rank information
in a more significant way.

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 18

910. Implementation and complexity. The input for the Huffman algorithm may be implemented as
an arrayf[1..n] where f[i] is the frequency of théth letter andX| = n. The output is a binary tree
whose leaves are labeled franto n. This algorithm can be implemented using a priority queu@on
setS of binary tree nodes. Recall (8l111.2) that a priority queusorts two operations, (a) inserting
a keyed item and (b) deleting the item with smallest key. Tegquency of the code tree serves as its
key. Any balanced binary tree scheme (such as AVL trees itukedV) will give an implementation

in which each queue operation tak@flog n) time. Hence the overall algorithm tak€gn logn).

911. Correctness. We show that the produced codéhas minimum cost. This depends on the
following simple lemma. Let us say that a pair of node&inis adeepest pairif they are siblings and
their depth is equal to the depthBf:. In a full binary tree, there is always a deepest pair.

LEMMA 4 (Deepest Pair PropertyFor any frequency functioif, there exists a code treg that is
optimal for f, with the further property that some least frequent chaggcand some next-to-least
frequent character, form a deepest pair.

Proof. Supposé, ¢ are two characters at depth¥b), D(c) (respectively) in a weighted code tree
T. If we exchange the weights of these two nodes to get a newtoeel€’ where
f(®)D(b) + f(¢)D(c) — f(b)D(c) — f(c) D(b)
= [f(0) = f(O][D(b) — D(c)]

wheref is the frequency function. i has the least frequency th¢®) — f(c) < 0. And if D(c) is the
depth of the tre@ thenD(b) — D(c¢) < 0. Together, they imply

COST(T) — COST(T")

COST(T) — COST(T") > 0.

That is, the cost of the tree can only decrease when we mowsaftequent characters to the deepest
leaf. Hence ifc, ¢’ are the two characters labeling a deepest pair and dnare the two least frequent
characters, then by a similar argument, we may exchangateésb < o’ andc < ¢’ without increas-
ing the cost of the code. If the tree is optimal, then this exgfe proves that there is a deepest pair
formed by two least frequent characters. Q.E.D.

We are ready to prove the correctness of Huffman’s algorit®uppose by induction hypothesis
that our algorithm produces an optimal code whenever thieahlgt siz€X:| is less tham. The basis
case,n = 1, is trivial. Now supposéX| = n > 1. After the first step of the algorithm in which we
merge the two least frequent characters, we can regard the algorithm as constructing a code for a
modified alphabekL’ in which b, " are replaced by a new charact&'] with modified frequencyf’
such thatf’([bt']) = f(b)+ f(¥'), andf’(x) = f(x) otherwise. By induction hypothesis, the algorithm
produces the optimal code’ for f’:

COST(f) = COST(f,C"). (18)
This codeC” is related to a suitable codefor X in the obvious way and satisfies
COST(f,C)=COST(f',C")+ f(b) + f(b). (19)

By our deepest pair lemma, and using the fact that the COS3umaover the weights of internal nodes,
we conclude that
COST(f) =COST(f")+ f(b)+ f(b). (20)

[More explicitly, this equation says that if is the optimal weighted code tree fgrand T has the
deepest pair property, then by removing the deepest pairwgightsf(b) and f ('), we get an op-
timal weighted code tree fof’.] From equations8), (19 and 0), we concludeCOST(f) =
COST(f,C),i.e,Cisoptimal.m

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 19

912. Compact Coding for Transmission. We address the representation of a Huffman coder
the purposes of transmission. It is assumed that the regetsm will be a binary stringvc, and the
main consideration is compactness, i.e., minimality ofiémgth ofac.

It is important to spell out some further assumptions aldout. — {0,1}". First of all, the set
is only partially known. We must rely on some standard charaset such as the ASCII set or Unicode.
Let X be® such a standard character séfe assume that is some subset af,. For simplicity, we
further thato, C {0, 1} for some fixed. Thist is the common knowledge used by both the transmitter
and receiver. It is important to stress that we do not require . In practice,X is just the set of
characters that actually occur in the string we are tryingampress and transmit. Thismight be a
very small proper subset afj.

To represen’, we first encode the shape of the code ffege Once the shape @f¢ is known, we
just need to list the elements Bfin the order they appear in the left-to-right listing of teaves ofl .

We give a progression of ideas that lead to the final compatihgf the shape df-. The initial
idea is simple: let us prescribe a systematic way to travErsgtarting from the root, we use a depth-
first traversal, always go down the left child first. Each etgeaversed twice, initially downward and
later upward. Then if we “spit” out & for going down an edge and “spit” outlafor going up an edge,
we would have faithfully output a description of the shapé&dfy the time we return to the root for the
second time. Figur® illustrates this traversal of the Huffman tree of Figd(a), and shows resulting
binary sequence

0010, 0101, 1101. (21)

The commas here are only decorative, to help in parsing iloickb of 4 bits each. This scheme uses
2 bits per edge. Since there ae — 2 edges, the representation hias— 4 bits. We emphasizehis

representation depends on knowing tiiais a full binary tree Where have we

exploited this fact?

0010,0101,110+—— 0010,0101,01 0010,111

Figure 5: Compressed bit representation for the HuffmamRigure3a

To improve this representation, observe that a contiguegeence of ones can be replaced by a
single1 since we know where to stop when going upward from a leaf (op at the first node whose
right child has not been visited). This also takes advantdgke fact that we have a full binary tree.
Previously we usedn — 2 ones. With this improvement, we only useones (corresponding to the
leaves). The representation now has dily— 2 bits. Then 21) is now represented by

0010,0101, 01. (22)

Finally, we note that eachis immediately followed by & (since thel always leads us to a node whose
right child has not been visited, and we must immediately gwrdto that child). The only exception

3 What does this really mean? Take the example of the Engligtabkt, ‘A to ‘Z’. Each letter has many layers of meaning
and variations that goes beyond its recognizable symbelo&opurposes however, it suffices to choose one canonitaf 86
symbols to represent this alphabet.

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 20

to this rule is the final when we return to the root; this finalis not followed by &). We propose to
replace all such0 sequences by a plain Since there are ones (corresponding to theleaves), we How about)l — 1?
would have eliminated. — 1 zeros in this way. This gives us the final representation @sith- 1 bits.
The schemed?) is now shortened to:
0010, 111. (23)

See the final illustration in FigurB. The final scheme2@) will be known as thecompressed bit
representationar of a full binary treeT’. In caseT’ is the code tree for a Huffman cod& we may
denote the binary stringr by ac.

The above description assuniBshas more than one node: in this case, always begins with a
0 and ends with d. So the shortest such string($1, represent a full binary tree with two leaves.
If T has only one node, it is natural to represent itas= 1. Some additional simple properties are
summarized as follows:

LEMMA 5. LetT be a full binary tre€l’ withn. > 1 leaves.

(i) |ar| = 2n — 1 withn — 1 zeros anch ones.

(ii) The number of zeros is at least the number of ones in aoyerprefix ofr.

(iii) The setS C {0, 1}" of all such compressed bit representatien forms a prefix-free set.

(iv) There is a linear time algorithm that checks in a givenay strings belongs to the sef, i.e., ifs
has the formu for someT'.

We leave the proof as an Exercise. Another way to describpréfex-free property (iii) is that the
representation is “self-limiting”, viz., if we know the bieging of the representation, we can tell when
we reach the end of the representation. This has the foltpa@msequence:

THEOREM 6. There is a protocol to transmit a binary string- representing any Huffman code :
¥ — {0,1}" on || = n letters such that

(i) The length of3¢ is (2n — 1) + tn = n(t + 2) — 1.

(ii) A receiver can recover the code from 8¢ in linear time, without prior knowledge &f except that
¥ C % C{0,1}.

Proof. The stringGc has two parts: the first part is the compressed bit represemi@a-. The
second part is a list of the elementsdn The elements in this list arebit binary strings, and they
appear in their order as labels of théeaves ofl . We havelac| = 2n — 1, and the listing of uses
nt bits. This proves (i). For part (i), the receiver can usephefix-free property ofvc to detect the
end ofa while processingc. In linear time, it could also reconstruct the shap&efand thus knows
n. Since the receiver knowsit can also parse each symbol®in the rest of5¢. Q.E.D.

Remarks: The publication of the Huffman algorithm in 1952 by D. A. Hufin was considered
a major achievement. This algorithm is clearly useful fompoessing binary files. See “Conditions
for optimality of the Huffman Algorithm”, D.S. ParkeS(AM J.Comp.9:3(1980)470-48% rratum
27:1(1998)317), for a variant notion of cost of a Huffmaretamd characterizations of the cost functions
for which the Huffman algorithm remains valid.

113. Notes on Morse Code. In the Morsé code, letters are represented by a sequence of dots andsdashe
a=-—b=— - --andz = — — - - The code is also meant to be sounded: dot is pronoungi¢d(or

‘di-" when non-terminal), dash is pronouncethh’ (or ‘ da-’ when non-terminal). So the famous distress signal
“S.0.S"isdi - di - di - da-da-da-di-di -di t. Thus @’ is di — dah, ‘2’ is da — da — di — dit. The code
does not use capital or small letters. Here is the full alphab

4 samuel Finley Breese Morse (1791-1872) was Professor dfitxature of the Arts of Design in the University of the City
of New York (now New York University) 1832-72. It was in theiversity building on Washington Square where he completed
his experiments on the telegraph.

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 21

Letter [Code [[Letter [Code I

Fullstop() | - — - — - — Comma() | — — -+ — —
Query(?) | - - — — - Slash (/) — =
BT (pause) — = AR (end message) - — - — -
SK (end contact)| - - - — - —

PORNO<SKSCOVOOZTXRTOMO P
|
|
|
ONUWRNX<L—-HUDUZrS“ITO®
|

Note that Morse code assigns a dotet@nd a dash td , the two most frequent English letters. These two
assignments dash any hope for a prefix-free code. So how cgawdsend or decode messages in Morse code?
Spaces! Since spaces are not part of the Morse alphabethakeyan informal status as an explicit character (so
Morse code is not strictly a binary code). There are 3 kindspafces: space betweéit’'s and dah’s within a
letter, space between letters, and space between wordss Bssume somit space Then the above three types
of spaces are worth 1, 3 and 7 units, respectively. Thess cait also be interpreted as “unit time” when the code
is sounded. Hence we simply sagit without prejudice. Next, the system of dots and dashes &anked brought
into this system. We say that spaces are just “empty unitsilewlit’s anddah’s are “filled units”. dit is one filled
unit, anddah is 3 filled units. Of course, this brings in the question: whgr@l 7 instead of 2 and 4 in the above?
Today, Morse code is still required of HAM radio operators @wuseful in emergencies.

EXERCISES

Exercise 3.1: Give a Huffman code for the stringhel l o! this is nmy little world!”

O

Exercise 3.2: What is the length of the Huffman code for the string: “pl ease conpress ne”.
Show your hand computation. Do not forget the empty spaceactes. &

Exercise 3.3: Consider the following letter frequencies:

a=5b=1c=3,d=3,e=7,f=0,9g=2,h=1,i=5,7=0,k=1,1=2,m =0,
n=50=3p=0,g=0,r=6,s=3,t=4u=1L,v=0w=0,z=0,y=1,z=1.

Please determine the cost of the optimal tree. NOTE: you miagre letters with the zero fre-
qguency. &

Exercise 3.4: Give an example of a prefix-free codé: > — {0,1}" anda frequency functiory :
Y — N with the property that (iCOST(C, f) is optimal, but (ii)C could not have arisen from
the Huffman algorithm. HINT: you can chooRe| = 4. O

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 22

Exercise 3.5: True or False? I andT’ are two optimal prefix-free code for the frequency function
f ¥ — N, thenT andT’ are isomorphic as unordered trees. Prove or show countergaa
NOTE: a binary tree is an ordered tree because the two chilofra node are ordered. &

Exercise 3.6: In the text, we prove that for any frequency functipnthere is an optimal code tree in
which there is a deepest pair of leaves whose frequencidbateast frequent and the next-to-
least frequent. Consider this stronger statemiéfit:is any optimal code tree faf, there must be
a deepest pair whose frequencies are least frequent anetordaést frequentProve it or show a
counter example. &

Exercise 3.7:Let C : ¥ — {0,1}" be any prefix-free code whose code tieis a full-binary tree.
Prove that there exists a frequency functjonX — N such thatC is optimal. &

Exercise 3.8:
(a) Draw the full binary tree corresponding to its compredserepresentations:

a1 = 0010,1100,1011,1 s = 0100, 1001,0011, 111

(b) What isaer whereT is the full binary tree witl leaves and every right child is a leaf.
(c) What isar whereT' is the full binary tree witt6 leaves and every left child is a leaf.
(d) What isar whereT is the complete binary tree withleaves. &

Exercise 3.9: Joe Smart suggested that we can slightly improve the corsguidst representation of
full binary trees om leaves as follows: since the first bit is alwdyand the last bit is always,
we can use onlgn — 3 bits instead o2n — 1. What are some issues that might arise with this
improvement? &

Exercise 3.10: The text gave a method to represent any full binary ffe@n »n leaves using a binary
string ap with 2n — 1 bits. Clearly, not every binary string of lengmw — 1 represents a full
binary tree. For instance, the first and last bits must a@d 1, respectively. Give a necessary
and sufficient condition for a binary string to be a valid esg@ntation. &

Exercise 3.11:For any binary full tre€l’, we have given two representations: the artigyand the bit
stringar. Give detailed algorithms for the following conversion plems:
(a) To construct the string, from the arrayAr.
(b) To construct the arrayt from the stringop.

Exercise 3.12:Let T" be a full binary tree om leaves. Give an algorithm to convert its compressed bit
representation[1..2n — 1] to adn — 4 array B[1..4n — 4] representing the traversal Bt

O

Exercise 3.13: Suppose we want to represent an arbitrary binary tree, retssarily full. HINT: there
is a bijection between arbitrary binary trees and full bynees. Exploit our compressed bit-
representation of full binary trees. &

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 23

Exercise 3.14:(a) Prove 7).
(b) Itis important to note that we defin€tD.ST (T) to be the sum of (v) whereu range over
theinternalnodes ofl; . That means that if| = 1 (or Ty, has only one node which is also
the root) therCOST (T¢,¢) = 0. Why does Huffman code theory break down at this point?
(c) Suppose we (accidentally) defin€d.ST (T) to be the sum off (u) whereu range over
theall nodes ofl’; . Where in your proofin (a) would the argument fail? &

Exercise 3.15:Below is President Lincoln’s address at Gettysburg, Pdmasia on November 19,
1863.
(a) Give the Huffman code for the string comprising the first two sentences of the address.
Also state the length of the Huffman code forand the percentage of compression so obtained
(assume that the original string uses 7 bits per charadfezy caps and small letters as distinct
letters, and introduce symbols for space and punctuatioksn®&ut ignore the newline charac-
ters.
(b) The previous part was meant to be done by hand. Now writegram in your favorite pro-
gramming language to compute the Huffman code for the e@fittysburg address. What is the
compression obtained?

Four score and seven years ago our fathers brought forth on this continent a new nation
conceived in liberty and dedicated to the proposition that all nmen are created equal
Now we are engaged in a great civil war, testing whether that nation or any nation so
concei ved and so dedicated can | ong endure. W are net on a great battlefield of that
war. We have cone to dedicate a portion of that field as a final resting-place for those
who here gave their lives that that nation mght live. It is altogether fitting and
proper that we should do this. But in a |larger sense, we cannot dedi cate, we cannot
consecrate, we cannot hallow this ground. The brave nen, living and dead who struggl ed
here have consecrated it far above our poor power to add or detract. The world will
little note nor |Iong renmenber what we say here, but it can never forget what they did
here. It is for us the living rather to be dedicated here to the unfinished work which
t hey who fought here have thus far so nobly advanced. It is rather for us to be here
dedi cated to the great task renmaining before us -- that fromthese honored dead we take
i ncreased devotion to that cause for which they gave the last full measure of devotion
-- that we here highly resolve that these dead shall not have died in vain, that this
nati on under God shall have a new birth of freedom and that governnment of the people,
by the people, for the people shall not perish fromthe earth

%

Exercise 3.16:Let (fo, f1,. .., fn) be the frequencies of + 1 symbols (assuming-| = n + 1).
Consider the Huffman code in which the symbol with frequefiag represented by thi¢h code
word in the following sequence

1,01, 001, 0001,...,00---01,00---001,00---000 .
—_— —) ——

n—1 n n

(a) Show that a sufficient condition for optimality of thisdmis

fo = fi+tfot+fatt fa,
fi = fo+fa+F fan
for = fat+o+ fa,

fn—2 2 fn—l""fn-

(b) Suppose the frequencies are distinct. Give a set of rffiand necessary conditions. <

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 24

Exercise 3.17: Suppose you are given the frequencfe@ sorted order. Show that you can construct
the Huffman tree in linear time. &

Exercise 3.18: (Representation of Binary Trees) In the text, we showed ahfaill binary tree omn
leaves can be represented usitng- 1 bits. Supposé’ is an arbitrary binary tree, not necessarily
full. With how many bits can you represefi? HINT: by extendingl” into a full binary treel”,
then we could use the previous encodingidn &

Exercise 3.19:Huffman code is based on transmitting bits. Suppose wertrans ‘trits’ (a base-3
digit). Then the correspondirgary Huffman code” : 3 — {0, 1,2}* is represented by &ary
code treel’ where each leaf is associated with a unique lettex iand each internal node has
degree at most. If f : ¥ — Nis a frequency function, this assigns a weight to each nodé of
the leaf associated with € ¥ has weightf(x), and each internal node has a weight equal to the
sum of the weights of its children. The costBis defined as usual, as the sum of the weights of
the internal nodes df'. We are interested in optimal tre€$si.e., whose cost cost is minimum.

(a) Show that in an optimal-ary code tree, there are no nodes of dedraad at most one node
of degree2. Furthermore, if a node has degtzét must have leaves as both of its children.

(b) Let T be a tree whose internal nodes have degreas3. If there ared; nodes of degreé
(1 =0,2,3)in T show thatdy = 1 4 d3 + 2ds.

(c) Show that there are optimalary code trees with this property: |E| is odd, there are no
degree 2 nodes, and|if| is even, there is one degree 2 node. Moreover, if the uniqde mof
degre€ we may assume its children have minimum frequencies amaitgedeaves.

(d) Give an algorithm for constructing an optin3ahry code tree and prove its correctness.<

Exercise 3.20:We consider thel-ary version of the previous question. LBEtbe an optimund-ary
code tree for some frequency functign > — N.
(a) Give a short inductive proof of the following fact: Suged’ is any 4-ary tree om > 1
leaves, and le, be the number of nodes withchildren @ = 0,1, 2, 3,4). Thus,n = Ny. Give
a short inductive proof for the following formula: = 1 + Ny + 2N3 + 3N,.
(b) Show that ifT" is an optimal code tree, the¥; = 0 and3 N, + 2N3 < 4, and every non-full
internal node has only leaves as children and the depth sétleaves must equal the height of of
T.
(c) Moreover, we can always transforim from part (b) into7” such that the corresponding
degrees satisfyV; = 0 and N; + N5 < 1. Also, for any non-full internal node df”, its
children have weights no larger than any other leaves.
(d) Suppose = (n — 1) mod3. Sor € {0,1,2}. Show howN}, N4 in part (b) is determined by
T.
(e) Describe an algorithm to construct an optimal code tre® fa frequency functiorf.
(f) Show the optimali-ary Huffman tree for the input strinigel | o wor | d! . Please state the
cost of this optimal tree. &

Exercise 3.21: Further generalize th&-ary Huffman tree construction to arbitrakyary codes fok >

4. &

Exercise 3.22: Suppose that the cost of a binary code waris z + 20 wherez (resp.o) is the number
of zeros (resp. ones) im. Call this theskew cost So ones are twice as expensive as zeros (this
cost model might be realistic if a code word is converted amgequence of dots and dashes as in
Morse code). We extend this definition to tbleew costof a codeC' or of a code tree. A code
or code tree iskew Huffman if it is optimum with respect to this skew cost. For exampksg s

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 25

Figure 6: A skew Huffman tree with skew cost of 21.

Figure6 for a skew Huffman tree for alphabgt, b, ¢} and f(a) = 3, f(b) = 1 andf(c) = 6.

(a) Argue that in some sense, there is no greedy solutiomthkeés its greedy decisions based on
a linear ordering of the frequencies.

(b) Consider the special case where all letters of the akgtads equal frequencies. Describe the
shape of such code trees. For anys the skew Huffman tree unique?

(c) Give an algorithm for the special case considered inBe)sure to argue its correctness and
analyze its complexity. HINT: use an “incremental algamthin which you extend the solution
for n letters to one forn + 1 letters. &

Exercise 3.23: (Golin-Rote) Further generalize the problem in the presiexercise. FiX) < a <
and let the cost of a code wotd be« - z 4+ 3 - 0. Supposey/(is a rational number. Show a
dynamic programming method that take&»%*2) time. NOTE: The best result currently known
gets rid of the %-2" in the exponent, at the cost of two non-trivial ideas. &

Exercise 3.24:(Open) Give a non-trivial algorithm for the problem in thepious exercise wheke/ 3
is not rational. An algorithm is “trivial” here if it essematly checks all binary trees with leaves.

O

Exercise 3.25: The range of the frequency functighwas assumed to be natural numbers. If the range
is arbitrary integers, is the Huffman theory still meanin@fls there fix? What if the range is the
set of non-negative real numbers? &

Exercise 3.26: (Elias) Consider the following binary encoding scheme Far infinite alphabelN (the
natural numbers): an integere N is represented by a prefix string dg »| 0’s followed by the
binary representation of. This required + 2 |lgn] bits.

(a) Show that this is a prefix-free code.

(b) Now improve the above code as follows: replacing the pi&fillg n| 0’s and the firstl by a
representation oflg n | the same scheme as (a). Now we use dnly|lgn]| + 2 |lg(1 + 1gn) |
bits to encodex. Again show that this is a prefix-free code.

(c) What is the generalization of the schemes of (a) and (b)? &

Exercise 3.27:(Shift Key in Huffman Code) We want to encode small as well &gital letters in our
alphabet. Thus ‘a’ and ‘A’ are to be distinguished. Theretar@methods to do this. (I) View the
small and capital letters as distinct symbols. (II) Introela special “shift” symbol, and each letter
is assumed to be small unless it is preceded by a shift syrimbawhich case the following letter
is capitalized. As input string for this problem, use thet t&fthis question. Punctuation marks
are part of this string, but there is only one SPACE charattewlines and tabs are regarded as
instances of SPACE. Two or more consecutive SPACE chassatereplace by a single SPACE.

© Chee Yap Basic Version October 25, 2011

84. DyNAMIC HUFFMAN CODE Lecture V Page 26

(a) What is the length of the Huffman code for our input striging method (1). Note that the
input string begins with “We want to en...” and ends withrigle SPACE.".

(b) Same as part (a) but using method (II).

(c) Discuss the pros and cons of (I) and (II).

(d) There are clearly many generalizations of shift keysesn in modern computer keyboards.
The general problem arises when our letters or charactera@tonger indivisible units, but
exhibit structure (as in Chinese characters). Give a géfeeraulation of such extensions. <

END EXERCISES

§4. Dynamic Huffman Code

Here is the typical sequence of steps for compressing ansitriiting a strings using the Huffman
code algorithm;

(i) First make a pass over the stringo compute its frequency function.
(i) Next compute a Huffman code tr&g: corresponding to some codé
(iii) UsingT¢, compute the compressed striigs).

(iv) Finally, transmitthe tre@. (Theoren®b), together with the compressed strifigs), to the receiver.

The receiver receivé®- andC(s), and hence can recover the stringsince the sender must process
the strings in two passes (steps (i) and (iii)), the original Huffmaretadgorithm is sometimes called
the “2-pass Huffman encoding algorithm”. There are two deficies with this 2-pass process: (a)
Multiple passes over the input strirgnakes the algorithm unsuitable for realtime data transoriss
Note that ifs is a large file, this require extra buffer space. (b) The Haffirnode tree must be explicitly
transmitted before the decoding can begin. We need someonerycbdel . This calls for a separate
algorithm to handlg ¢ in the encoding and decoding process.

An approach called “Dynamic Huffman coding” (or adaptiveftrnan coding) overcomes these
problems: there is no need to explicitly transmit the code,tand it passes over the strinngnly once.
In fact, it does not even have to pass over the entire strieg ence, but can transmit as much of the
string as has been read! This property is important for trattisg continuous stream of data that has no
apparent end (e.g., ticker tape, satellite signals). Twawknalgorithms for dynamic Huffman coding
[7] are theFGK Algorithm (Faller 1973, Gallager 1978, Knuth 1985) and tleanbda Algorithm
(Vitter 1987). The dynamic Huffman code algorithm can beduee data compression: for example, it
is used in the Unix utility conpr ess/ unconpr ess.

914. Sibling Property. In Dynamic Huffman Coding, the weighted code tfEéenust evolve as char-
acters from the input string is read. It must evolve in two siayot only does the frequency of letters
in X increase over time, but itself can grow as new letters are encountered. We need tatejodir
representation df' as this happens. The key idea is the “sibling property” ofi&gder.

AssumeT’ hask > 0 internal nodes. So it has+ 1 leaves o2k + 1 nodes in all. We sa¥’ has the
sibling property if its nodes can beanked from 0 to 2k satisfying:

5 This particular utility has been replaced by better congicgsschemes.

© Chee Yap Basic Version October 25, 2011

84. DyNAMIC HUFFMAN CODE Lecture V Page 27

(S1) (Weights are non-decreasing with rank)df is the weight of node with rank thenw; _; < w;
fori=1,...,2k.

(S2) (Siblings have consecutive ranks) The nodes with rdl)kand2;j + 1 are siblings (forj =
0,...,k—1).

For example, the weighted code tree in Figdrkas been given the rankingsl, 2,...,16. We
check that this ranking satisfies the sibling property. Nb& the node with ranRkk is necessarily the
root, and it has no siblings. In general, 1¢t.) denote the rank of node. If the weights of nodes are
all distinct, then the rank(w) is uniquely determined by Property (S1).

LEMMA 7. LetT be weighted code tree. Thé&his Huffman iff it has the sibling property.

Proof. If T"is Huffman then by definition, it is constructed by the Huffim@de algorithm. We can
rank the nodes in the order that nodes are extracted fromribiety queue, and this ordering implies
the sibling property. Conversely, the sibling propertylofletermines an obvious order for merging
pairs of nodes to form a Huffman tree. Q.E.D.

915. Sibling Representation of Huffman Tree. We provide a array representation Huffman trees
which exploits the sibling property. L&t be a Huffman tree witlk + 1 > 1 leaves. Each of itk + 1
nodes may be identified by its rarike., a number fron® to 2k. Hence nodé has ranki. We use two
arrays

W [0..2F], Lc[0..2k]

of length2k + 1 whereW [:] is theweightof node:, andLc(i] is theleft child of nodei. ThusLc[i] + 1

is the right child of node. We can ensure that the root is ndtfe and the left and right child of any
node is a pair of the forni2j, 25 + 1) (for somey). In case nodé is a leaf, we may leLc[i| = —1.
Alternative, we letLc[i] store a letter of the alphabEt In this case, we assume that it is possible to
distinguish between elements in the 8et. . , 2k versus letters of.

We stress that storing elementsoin Lc is is not essential, but serves as an aid to understanding
the applications of this array. Whiatessential for our algorithms is tleverserepresentation that tells
us, for each letter € X, which leaf inT' containsz. Moreover, because of the dynamic natureof
we need a more general mapping,

om: ¥y — {~1,0,1,2,...,2k}

such thalCmiz| = i iff Lefi] = z € £, andCniz] = —1if ¢ . Call Cmthecharacter map array.
Initially, Cmz] = —1 for all z € 3 (i.e., initially X = 0). As new letters i, are encountered, they
are added t& and the corresponding ent@n{z| updated. Thus the third array in our representation of
a Huffman code is this arragm For instance, with three arrays, we can now determine tbe awrd
C(x) € {0,1}" of any givenw € ¥ (Exercise).

In summary, our Huffman tree is represented by three atray®{ ,Cm For example, the Huffman
tree in Figured is illustrated by the arrays in Table Two of these arrayd,c andW , are explicitly
shown. But the arra@niz € %] is easily inferred from the leaf entriesbo€ . E.g.,Cnih] = 0, Crrle] =
1 andCnia] = —1. There is no “Rank” array in this representation becauséally, Rank[v] = v for
allv € {0,...,2k}.

Here is a simple application of the Sibling representatiSBnppose we are given a letterc %,
and we want to determine the corresponding Huffman ¢d(e). We need to first go to the leaf of
T corresponding ta:.. This is of course given by = Cz]. The last bit ofC(z) is therefore equal to

© Chee Yap Basic Version October 25, 2011

84. DyNAMIC HUFFMAN CODE Lecture V Page 28

Rank||0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|
Lc hjejlU|lw|r|d|!|o|0]|2| 4| 6 14 8 | 10| 12| 15
W 1/1(1(1(1|1(1|2|2|2| 2|3 |3|4|5]|7]12

Table 1: Compact representation of Huffman tree in Figure

the “parity” of u. (The parity of a natural numbaeris equal ta) if « is even, and equal tb otherwise.)
Then we replace by paren{u), and thereby determine the next bit@fz). lterating this process, we
stop whernu eventually becomes the root. So the macro to compute thefhii$x) (in reverse order)
is given by

C(z):
Output(parity())
while v < 2k
u «—paren{u)
Output(parity(:))

The parent of: is computed by a simpl@r-loop:

paren{u):
—2|u/2|
forp «— u+ 1to2k
if (Lc[p] = ¢), Return(p).

Thefor-loop is sure to terminate whenis non-root. Moreover, the number of times that pheariable
is updated (over repeated callsgaren{u) by C(x)) is at mostk values since the value pfis strictly
increasing with each assignment. This ensures the overalptexity of C(x) is O(k).

16. The Restoration Problem. The key problem of dynamic Huffman tree is how to restore
Huffman-ness under a particular kind of perturbation:flebe Huffman and suppose the weight of
a leafu is incremented byt. So weights of each node along the path fraro the root is similarly
incremented. The result is a weighted code fféebut it may no longer be Huffmarinformally, our
problem is to restore Huffman-ness in such a ffée

Let us first give some intuition of what has to be done, usingexample othe/¢o wor ¢d! .
Begin with the Huffman tree after having transmitted thefigree/. Assume that, somehow, we
managed to construct a Huffman tree for this string as shaviigure7(a). The letterd, e and/ are
stored in noded, 3 and1 (respectively). Note that there is a leaf with weightout we ignore this
for now. Each letter has frequency (=weight)lofThe next transmitted letter & and if we simply
increase the frequency of nodgwhich representg) to 2 = 1 + 1, we would violate the ranking
property (S1) of 4. This is because the weight of a node of rankould now be greater than the
weights of nodes with greater rank &nd4). The key idea is to firsswap nodel with node4. This
is shown in Figure/(b). Now, the letter is represented by nodk and incrementing its weight by
is no longer a problem. The result is seen in Figi(®. We must next increment the weight of the
parent of nodel, namely nodé. So the focus moves to no@eas indicated by Figuré(d). We can
simply increment the weight of nodebecause it is the root. But if it is not the root, we may have

© Chee Yap Basic Version October 25, 2011

84. DyNAMIC HUFFMAN CODE Lecture V Page 29

Figure 7: Restoring Huffmanness after incrementing thgueacy of letter

to do a swap first. The result is Figuré). The process stops since we have reached the root of the
tree.

Consider the following algorithm for restoring Huffmanssen7'. For each node in T', let R(v)
denote its rank in the original tré&. But our usual convention is thatis identified with its rank, i.e.,
R(v) = v. Letu be the current node. Initially, is the leaf whose weight was incremented. We use the
following iterative process:

RESTORE(u)
> u is a node whose weight is to be incremented
While (u is not the root) do
1. > Find the node with the largest rank?(v) subject
> to the constrainW [v] = W [u]. Specifically:
V<—Uu
While (W [v + 1] = W [u])
v++
2. If (v # u)
3. Swap(u,v). < This swaps the subtrees rootediaand .
4. W [u]++. < Increment the weight af
5. u — parent(u). < Reselu
6. W [u]++. < Now,u is the root

We need to explain one detail in theeRTOREroutine. The swap operation in Line 3 needs to be
explained: conceptually, swappingandv means the subtree rootedwatind the subtree rooted at
exchange places. This can be confusing to explain sincemmadéng identifies the nodesandwv with
their rank. So for the moment, imagine thais a node in a tree where nodes have parent, left child and
right child pointers, etc. Suppos€ andv’ were the parents (respectively)@findv before the swap.

© Chee Yap Basic Version October 25, 2011

84. DyNAMIC HUFFMAN CODE

Lecture V

Page 30

Then after the swapy (resp.u’) becomes the parent ef(resp.,v). Coming back to our representation
using thelLc array, we only have exchange the values in the array ertcipg andLc[v]. But note that
this swap may involve leaves, in which case we have to uptatehiaracter magm

SWAP(u, v)
tmp «— Lc[ul]; Lc[u] « Le[v]; Lefv] « tmp
If (Lc[u] € 3o) then CniLc[u]] <« u
If (Lc[v] € o) then CrrLc[v]] « v

We do not have to exchan@¥ [«] andW [v] since these have the same values! A swap is done only if
v > u (Line 2). Thus the rank of the current nodés strictly increased by such swaps. After swapping
u andv, their siblings will change (recall that ra2ld and rank2; + 1 nodes are siblings).

The reader may verify that the informal example of Figuis really an operation of the BE5STORE

routine.

But let us walk through an example of the operations @6RORE this time seeing its transfor-
mation on theLc, W arrays. Suppose we have just completely processed our fastong ‘he /o
wor | d!' 7, and assume that the resulting Huffman tiiées given by Figuret. Let the next character to
be transmitted bel (space character), and seto the node correspondingtd SoW [u] is to be incre-
mented, and we call BSTORHu). We use the representation’fby the arrayd.c, W above: in this
caseu is the node (whose rank ig)(or v9, for clarity). It has weight [v;] = 1 and so we must find
the largest ranked node with weightnamely nodes. Swappingus with vg, and then incrementing
the weight ofug, we get:

Rank foJ1]2]3[4]5] 6 [7][8]9]10[11[12[13[14[15]16]
Lc hie|! |w]|r |d U o|0|2] 4 6 l 8 | 10 | 12 | 15
W 1(1(1(1|1|1|1+1 2|2 |2 2 3 3 4 5 7 12
After first swap v U

Next, u is set to the parent of node of rafiknamelywvy;. This has weigh8, and so we must swap
it with the element, which is the highest ranked node with weightAfter swappingy;; andvo, we
increment the new;». The following table illustrates the remaining changes:
Rank || |1|2|3|4|5|6| |8|9|10|£ Q|13|14|§|Q
Lc e|! |w|r |d U 0|2| 4 l 6 8 | 10 12 15
W 1 (1121]21)1]1+1 2|2 2 3 3+1 4 5 7 12
After second swap v u
Lc e |! wi|r |d u 0|2 4 14 6 8 10 12 15
W 1 (1121]21)1]1+1 2|2 2 3 3+1 4 5 7+1 12
No third swap u="v
Lc e[l wlr]d|] U o241 ¢ 6 8 [10 | 12 15
W 1 (1711]1] 1+1 212 2 3 3+1 4 5 7+1 12+1
No final swap u="v

© Chee Yap

Basic Version

October 25, 2011

84. DyNAMIC HUFFMAN CODE Lecture V Page 31

917. How to add a new letter: theO-Node. Our dynamic Huffman code tréE must be capable of
expanding its alphabet. E.g., if the current alphabét is {h, e} and we next encounter the letler
we want to expand the alphabetto= {h, e,| }. For this purpose, we introduceiha special leaf with
weight0. Call this the0-node This node does not represent any letters of the alphabtet) Bnother
sense, it represents all the yet unseen letters. We mightihaathe0-node represents the character *
Upon seeing a new letter like, we take three steps: to updéte

1. First, we “expand” thé@-node by giving it two children. Its left child is the nevnode, and its
right child u is a new leaf representing the letter

2. Next, we must give ranks to all the nodes: the flemode has rank, the new leaf: has ranki,
and all the previous nodes have their ranks incrementeti by particular, the origina-node

will have rank2.

3. Finally, we must update the weights. The weight of the fievade is0, and the weight of. is 1.
We must now increase the weight of all the nodes along thefpatinthe old0-node to the root:
this is done by calling RsToREON the old0-node.

The operations of the restore function using thisode convention is illustrated in Figuge Here,
we begin with an initial Huffman tree containing just thenode, and show successive Huffman trees

on inserting the first five letters of our hello example.

Figure 8: Evolving Huffman tree on inserting the strimgl | o

Note that the transition fromel tohel | is already described in detail in Figure

118. Interface between Huffman Code and Canonical Encoding LetX denote the set of characters
in the current Huffman code. We viel as a subset of a fixed universal §éwhereU C {0,1}%.
Call U thecanonical encoding In reality, U might be the set of ASCII characters with = 8. A more

© Chee Yap Basic Version October 25, 2011

84. DyNAMIC HUFFMAN CODE Lecture V Page 32

complicated example is whelé is some unicode set. We assume the transmitter and receitter b
know this global parametg¥ and the set/. In the encoding process, we assume that each character
of the string comes frorfy. Upon seeing a letter, we must decide whethere X (i.e., in our current
Huffman tree), and if so, what is its current Huffman code|Uf is not too large (e.g|U| = 2%),

we can provide an arra¢|[1..2"V] such thatC[x] maps to a leaf of the Huffman tree. To be specific,
supposdX| = k and the current Huffman treE is represented by the arrays[0..2k], W [0..2k]. If

x € {0, 1}N, let C[x] = i if nodei (of ranki) is the leaf ofT" representing the letter. Initially, let

C[z] = —1for all z. Hence, the arrag’ is a representation of the alphabet

For instance, ifC[x] is the0-node, this means is not inX. If |U] is large, we can use hashing
techniques.

Even though we know the leaf, it requires some work to obtagndorresponding Huffman code.
[This is the encoding problem — but the Huffman code treeéssly designed for the inverse problem,
i.e., decoding problem.] One way to solve this encoding [gmolis assume that our Huffman tree has
parent pointer. In terms of odrc, W array representation, we now add another aiéy..2k| for
parent pointers.

Here now is the dynamic Huffman coding method for transmtg strings:

DYNAMIC HUFFMAN TRANSMISSIONALGORITHM:
Input: A string s of indefinite length.
Output: The dynamically encoded sequence representing
> Initialization
Initialize T' to contain just thé-node.
> Main Loop
while s is non-empty
Remove the next charactefrom the front of strings.
Letu = Clx] be the leaf off" that corresponds to.
Usingu, transmit the code word fat.
If u is the0-node < =z is a new character
Expand thé-node to have two children, both with weight
Letwu be the right sibling, representing the charaater
and the left sibling represent the néwode.
Call RESTORHu).
Signal termination, using some convention.

oukrwnNpE

~

Decoding is also relatively straightforward. We are preags a continuous binary sequence, but
we know where the implicit “breaks” are in this continuousjgence. Call the binary sequence be-
tween these breaksweord. We know how to recognize these words by maintaining the ssynamic
Huffman code tred” as the transmission algorithm. For each received word, wegvkahether it is (a)

a code word for some character, (b) signal to add a new letttret alphabek, or (c) the canonical
representation of a letter. Thus the receiver can faithf@produce the original string

Another practical issue is that whenever we insert a new jtbdaanks of current nodes implicitly
increases by, and a literal implementation requires updating the emtiray forLc andW . There is
a simple solution to this. Let us store the array in reversieorAll invocations ofLc|:] is really an
invocation ofLc[2k — 4]. Similarly for W [i]. We leave it to the student to work out this detail.

REMARKS: It can be shown that the FGK Algorithm transmit atsn®H,(s) + 4/|s| bits. The
Lambda Algorithm of Vitter ensures that the transmittedngtiength is< Hs(s) + |s| — 1 where

© Chee Yap Basic Version October 25, 2011

84. DyNAMIC HUFFMAN CODE Lecture V Page 33

H,(s) is the number of bits transmitted by tBepass algorithm fog, independent of alphabet size. In
Chapter VI, we will show another approach to dynamic congioesof strings based on the move-to-
front heuristic and splay tree§][

919. Notes on Unicode. The Unicode is an evolving standard for encoding the charasets of most human
languages (including dead ones like Egyptian hieroglypHsye, we must make a basic distinction betwelear-
acters (or graphemes) and their magyyphs (or graphical renderings). The idea is to assign a uniquebesm
called acode point to each character. Typically, we write such a number as UXXXX where the X's are
hexadecimal. As usual, leading zeros are insignificant.ifsiance the first 128 code points in Unicode, U+0000
to U+007F, correspond to the ASCII code. The code pointsvb&l®0020 are control characters in ASCII code.
But there are many subtle points because human languagegitind are remarkably diverse. Characters are not
always atomic objects, but may have internal structure sThlould we regard & as a single Unicode character, or
as the character “e” with a combining acute “"? (Answer:Hosolutions are provided in unicode.) If combined,
what kinds of combinations do we allow? Coupled with this, mweast meet the needs of computer applications:
computers use unprintable or control characters, but ditbelse be characters for Unicode? (Answer: of course,
this is part of ASCII.)

There are other international standards (ISO) and these $mawe compatibility with Unicode. For instance,
the first 256 code points corresponds to ISO 8859-1. Thersvarmethods for encoding in Unicode called Unicode
Transformation Format (UTF) and Universal Character S&tS)) These leads to UTF-n, UCS-n for various values
of n. Let us just focus on one of these, UTF-8. This was created.bpdtnpson and R.Pike, which is a de facto
standard in many applications (e.g., electronic mail). al$ | basic 8-bit format with variable length extensions
that uses up to 4 bytes (32 bits). It is particularly compactXSCII characters: only 1 byte suffices for the 127
US-ASCII characters. A major advantage of UTF-8 is that snp¥SClI string is also a valid UTF-8 string (with
the same meaning of course). Here is UTF-8 in brief:

1. Any code point below U+0080 is encoded by a single byte. ddf®e,080 in hex is just128 in decimal.
Thus, U+OXY whereX < 8 can be represented by the single bj#&” that has a leading 0-bit.

2. Code points between U+0080 to U+07FF uses two bytes. Tidjite begins with 110, second byte begins
with 10.

3. Code points between U+0800 to U+FFFF uses three bytesfirShbyte begins with 1110, remaining two
bytes begin with 10.

4. Code points between U+100000 to U+10FFFF uses four bytesfirst byte begins with 11110, remaining
three bytes begin with 10.

Observe that each code point is self-limiting, i.e., you inwvhen you have reached the end of a code point.

EXERCISES

Exercise 4.1: In this question, we are asking for three numbers. But youtrsusimarize to show
intermediate results of your computations. Assume thaalihieabet: is a subset of0, 1}8 (i.e.,
ASCII code).

(a) What is the length of the (static) Huffman code of thensfriHel | o, wor | d!"? The
guotation marks are not part of the string, but the space andtpation marks are.

(b) How many bits does it take to transmit the Huffman codédtferstring of (a)?

(c) How many bits would be transmitted by the Dynamic Huffnecade algorithm in sending the
string “Hel | o, wor | d! "? Compare this number with (a)+(b). &

Exercise 4.2: What binary string would you transmit in order to send théngt‘now i s t he
ti me”, under the dynamic Huffman algorithm? Show your workingot& you would have

© Chee Yap Basic Version October 25, 2011

84. DyNAMIC HUFFMAN CODE Lecture V Page 34

to transmit ascii codes for the lettarso, w, etc. Just write ASC(In) , ASCII(0) , ASClI(w) ,
etc. &

Exercise 4.3: Natural languages are highly redundant (for good reasbtesk is one way to test this.
(a) Please transmit the following string using dynamic Irh&h coding, and state the bit length
of your transmission.

Aoccdrnig to a rscheearch at Crmabrigde Uinervtisy, it deosn't nttaer
in waht oredr the Itteers in a wod are, the olny iprnoetnt tihng is
taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a total nmses and you can sitll raed it wouthit porbelm Tihs is
bcuseae the huamm mmi d deos not raed ervey Iteter by istlef, but the
wod as a w ohe.

(b) Now repeat part (a) but using similar string in which therds are now properly spelled.
Should we expect a drop in the number of transmitted bits Nt this experiment could not
be done using standard Huffman coding since the frequemmiin in (a) and (b) are identical.

&

Exercise 4.4:
(a) Please reconstruct the Huffman code ffeieom the following representation:

r(T) = 0000, 1111,0011,011d, mrit, yo

CONVENTIONS: the commas in(T") are just decorative, and meant to help you parse the string.
Other tharD/1 symbols, the letterd, m, i, etc, stands fog-bit ASCII codes. The leftmost leaf in
the tree is thé@-node, and its label (namely”) is implicit. The remaining leaves are labeled by
8-bit ASCII codes fowl, m, r,,t,y, o, in left-to-right order.

(b) Here is a string encoded using this Huffman code:

0001, 1110, 1001, 1001, 0111, 1011, 10

Decode the string.
(c) Assume that the leaves of the Huffman tree in (a) has thafimg frequencies (or weights):

f) =0, f(d)=f(m)=[f(i)=f{t)=dly) =1, [f(r)=flo)=2.

Assign a rank (i.e., numbers frofn 1, ..., 14) to the nodes of the tree in (a) so that the sibling
property is obeyed. Redraw this tree with the ranking listest to each node. Also, write the
arraysLc[0..14] andW [0..14] which encodes this ranking of the Huffman tree. Recall these
arrays encode the left-child relation and weights (fre@ies), respectively.

(d) Suppose that we now insert a new lette(blank space) into the weighted Huffman code
tree of (c). Draw the new Huffman tree with updated rankindgsoA show the updated arrays
Lc[0..16] andW [0..16].

(e) Give the Huffman code for the strindi‘rty r oond (this string has is a blank character
but the quotes are not part of the string). What is the reidbietween this string and the one in

(d)? &

Exercise 4.5: Give the dynamic Huffman coding for the following anagrarfi:t he nor se code
(2)here cone dots &

Exercise 4.6: Assume the Sibling Representation of the Huffman c6de ¥ — {0,1}". Give the
routine to compute the code wofi(z) € {0,1}" of any givenz € 3. &

© Chee Yap Basic Version October 25, 2011

85. MINIMUM SPANNING TREE Lecture V Page 35

Exercise 4.7: Give a careful and efficient implementation of the dynamidfian code. Assume the
compact representation of Huffman tree using the arvdlyandLc described in the text. <

Exercise 4.8: Consider3-ary Huffman tree code. State and prove the Sibling profertyhis code.
¢

Exercise 4.9: A previous Exercise asks you to construct the standard Harffoode of Lincoln’s speech
at Gettysburg.
(a) Construct the optimal Huffman code tree for this spe®&itbase give the length of Lincoln’s
coded speech, and also the size of the code tree.
(b) Please give the length of the dynamic Huffman code far $peech. How does it compare to
part (a)? Also, compare the code tree at the end of the dyneadiag process with the one in
part (a). &

Exercise 4.10: The correctness of the dynamic Huffman code depends oncdhthtt the weight at the
leaves are integral and the change-is
(a) Suppose the leave weights can be any positive real nyt@the change in weight is also
by an arbitrary positive number. Modify the algorithm.
(b) What if the weight change can be negative? &

END EXERCISES

§5. Minimum Spanning Tree

In the minimum spanning forest problemwe are given a costed bigraph
G=V,E;C)

whereC : E — R. An acyclic setl’ C I of maximum cardinality is called spanning forest in this
case,|T| = |V| — ¢ whereG hasc > 1 components. TheostC(T') of any subsef’ C F is given by
C(T) = > .cr C(e). Anacyclic set isninimum if its cost is minimum. Itis conventional to make the
following simplification:

‘ The input bigraphG is connected.‘

With this assumption, a spanning forgsts actually a tree, and the problem is known asrtfie-
imum spanning tree (MST) problem. The simplification is not too severe: if our graph is not con-
nected, we can first compute its connected components (wef§iakent solutions to this basic graph
problem in Chapter IV). Then we apply the MST algorithm toleeomponent. Alternatively, it is not
hard to modify most MST algorithms so that they apply to nonfected graphs.

Consider the costed bigraph in Figu®ewith verticesV = {a,b,¢,d,e}. One such MST is
{a—b,b—c,c—d,d—e}, with cost6. It is easy to verify that there are a total five MST’s for this b
graph, as shown in Figurk.

© Chee Yap Basic Version October 25, 2011

85. MINIMUM SPANNING TREE Lecture V Page 36

Figure 9: A bigraph with edge costs.

920. Generic MST Algorithm. There several distinct algorithms for MST. They all fit inteetfol-
lowing framework:

GENERIC GREEDY MST ALGORITHM
Input: G = (V, E; C) a connected bigraph with edge costs.
Output: S C FE, a MST forG.
S — 0.
fori=1to|V|—1do
1. Greedy Step: find ane E — S that is “good forS”.
2. S—S+e
OutputS as the minimum spanning tree.

NOTATION: as illustrated in Line 2, we shall write5“+ e” for “ .S U {e}". Likewise, “S — e” shall
denote the setS'\ {e}".

What does it mean foré‘to be good forS™? This will be made specific next.

21. Some Greedy MST Criteria. Let us say that is acandidatefor S if S + e is acyclic. IfU is

a connected component6f = (V, S), ande = (u,v) is a candidate such thate U orv € U then
we say that extendsU. Note that ife extendsJ then the set/ cannot be a component of the graph
G" = (V, S + e). The following are 4 notions of what it means foris good forS”:

* (Simple)S + e is extendible to some MST.
 (Kruskal) Edgee has the least cost among all the candidates.

* (Boruvka) There is a connected componéhbf G’ = (V,S) such thate has the least cost
among all the candidates that extdiid Let us expand this a bit: suppo&é hask components
Ui, ...,U,. Then for eaclU;, there is at least ong that extendg$/; with least cost. There fact
that there are many choices focan be exploited in parallel algorithms. Note that it is ploiss
thate; = e; with ¢ # j, but we still have at least: /2] choices.

* (Prim) This has, in addition to Boruvka’s condition, theugement that the grapfi” = (V, .S +
e) has only one non-trivial component. [A component s trivié has only a single vertex.]

This first criterion is computational ineffective. The ramiag three criteria are effective and are
named after the inventors of three well-known MST algorishihere are additional algorithmic tech-
nigues that are needed before we finally achieve the bes&tagah of these ideas:

© Chee Yap Basic Version October 25, 2011

85. MINIMUM SPANNING TREE Lecture V Page 37

Figure 10: MST's of a bigraph.

* (Kruskal) How can we quickly tell it + e is acyclic? Ife is u—wv, this amounts to checkingif, v
are in the same connected component of the géAps (V, S). A simple method is to do this is
have a linked list for each connected componerntof= (V, .S), with the nodes of the linked list
representing vertices of the connected component. Giveartaxu, assume we have a pointer
from u to the representative node forin such a linked list. To decide if two verticesv are in
the same connected component, we go to the linked lists ribdesepresent andv, and follow
the links till the end of their respective linked listBhe ends of these two linked list are equal iff
S + e has a cycle.

The elaborations of this linked list idea will ultimatelyalé us to the union-find data structure
which is studied in Chapter XIII. An Exercise below will exyppé some of these ideas.

¢ (Boruvka) We must maintain for each connected compone6t cf (V, S), the least cost edge
that extends it. Again we need some form of union-find datectitre. A key feature of Boruvka’s
algorithm is that we can select the good edges in “phasestevbach phase calls for a pass
through the set of remaining edges. This feature can be igxglm parallel algorithms. We
explore these ideas in the Exercise.

» (Prim) Because of its additional restriction to one nawidt connected component, Prim’s algo-
rithm is easier to implement than Boruvka’s. We shall do b@kow. But the ultimate version of
Prim’s algorithm can only be taken up in Chapter VI (amott@atechniques).

Let us call those set§ C FE that may arise during the execution of the generic MST allyori
simply-good, Boruvka-good, Kruskal-good or Prim-good, depending on which of the above criteria
is used. The correctness of these algorithms amounts toispohat “X-good implies simply-godd

© Chee Yap Basic Version October 25, 2011

85. MINIMUM SPANNING TREE Lecture V Page 38

where X = Kruskal, Boruvka or Prim. Letus now show the comess of the algorithm of Boruvka. By
definition, Prim-good implies Boruvka-good, and so Pringoaithm is also correct. Indeed, Kruskal-
good also implies Boruvka-good, so this also show the coress of Kruskal's algorithm.

LEMMA 8 (Correctness of Boruvka'’s AlgorithmBoruvka-good sets are simply-good.

Proof. We use induction on the siZ&| of Boruvka-good setss. Clearly if S = @, thenS is
Boruvka-good and this is clearly simply-good. Next supp8se S’ + e whereS’ is Boruvka-good.
We need to prove th&f is simply-good. By the Boruvka-goodness®f there is a componeidf of
the graphG’ = (V,S’) such thate has the least cost among all edges that exténdy induction
hypothesis, we may assunsé is simply-good. Hence there is a MGT that containss’. If ¢ € T7,
then we are done (a8’ would be a witness to the fact thdt= S’ + e is simply-good). So assume
eg T

Figure 11: Extending a compondiitby e = (u, v).

Write e = u—v such that € U andv ¢ U. Hencel” + e contains a unique closed path of the form
Z:=(u—v—v1—vg— -+ - —U—U).
There exists some= 0, ..., k such that; ¢ U andv;,, € U. Write
Z = (u—v—v1— - —0;—Vjp1— - —U)

(wherev = vy andu = vy in this notation). Let”:=(v;—wv;1). Note thatl:=T" + e — ¢’ is acyclic
and is a spanning tree. Moreovét(e) < C(e’), by our choice ok. HenceC(T) < C(T"). Since
C(T'") is minimum, so i<”(T). This shows thaf is simply-good, as' is contained ir". Q.E.D.

22. Good sets of vertices. Let us extend the notion of “goodness” to sets of vertices. dfy set
S C E of edges, lef/(S) denote the set of vertices that are incident on some edge dfe say a
setU C V' is X-goodif there exists anX-good setS C E such thaty = V(S). Here, X is equal to
‘simply’, ‘Prim’, ‘Kruskal’ or ‘Boruvka’. We also declare @y singleton set with only one vertex to be
X-good.

923. Hand Simulation of MST Algorithms. Students are expected to understand those aspects of
Kruskal’'s and Prim’s algorithms that are independent ofrthltimate realizations via efficient data
structures. That is, you must do “hand simulations” whene gct as the oracle for queries to the data
structures. For Kruskal’s algorithm, this is easy — we jisttthe edges by non-decreasing weight order
and indicate the acceptance/rejection of successive edges

For Prim’s algorithm, we just maintain an arrdjl ..n] assuming the vertex set¥s = {1,...,n}.
We shall maintain a subsstC V representing the set of vertices which we know how to contoettie

© Chee Yap Basic Version October 25, 2011

85. MINIMUM SPANNING TREE Lecture V Page 39

source nodé in a MST. The sefS is “Prim good”. Initially, letS = () andd[1] = 0 andd[v] = oo for
v =2,...,n. Ingeneral, the entry[v] (v € V' \ S) represents the “cheapest” cost to connect vertex
to the MST on the sef. Our simulation consists in building up a matfiX which is an x n matrix,
where thelth row representing the initial arraly Each time the array is updated, we rewrite it as a

new row of a matrix\/.

At stagei > 1, suppose we pick a nodg € V' \ S whered[v;] = min{d[j]: j € V' \ S}. We add
v; 10 S, and update all the value$u] for eachu € V'\ S that is adjacent to,. The update rule is this:

d[u] = min{d[u], C[v;, u]}.

The resulting array is written as roinn our matrix.

Figure 12: The house graph: The cost of edgev, is defined ag”(v;) + C(v;), whereC(v) is the
value indicated nextto. E.g.C(v1—v4) =146 =T.

Let us illustrate the process on the graph of Figl2eThe vertex seti¥ = {vy, v, ..., v11,v12}.
The cost of an edge is the sum of the costs associated to edgek.\e.g.,C'(v1,v4) = C(v1)+C(vg) =

1+ 6 = 7. The final matrix is the following:

Stage|| 1 2 3 4|5 6 7 8|9 10 11 12|
0 0 o0 o | o0 o |l o 00 o
1 X 3 1 7 |00 00 o0 0|00 00 00 o
2 X 6 3

3 X 6

4 X 8

5 X 7

6 X 6 6
7 3 X 3 2

8 1 1 X 2
9 X

10 6 X

11 X
12 X

Conventions in this matrix: We mark the newly picked nodeastestage with an ‘X'. Also, any
value that is unchanged from the previous row may be leftkblahus, in stage 2, the nodes picked

and we updaté[v,] usingd[vs4] = min{d[v4], C[vs, 4]} = min{7,6} = 6.

The final cost of the MST is 37. To see this, each X correspamds/ertexv that was picked, and
the last value ofi[v] contributes to the cost of the MST. E.g., the X correspontbngertex 1 has cost
0, the X corresponding to vertex 2 has cost 3, etc. Summingapail X's, we get 37.

© Chee Yap Basic Version October 25, 2011

85. MINIMUM SPANNING TREE Lecture V Page 40

Remarks: Boruvka (1926) has the first MST algorithm; his algorithm wediscovered by Sollin
(1961). The algorithm attributed to Prim (1957) was diseedesarlier by Jarnik (1930). These algo-
rithms have been rediscovered many times. $géof further references. Both Boruvka and Jarnik’s
work are in Czech. The Prim-Jarnik algorithm is very simiastructure to Dijkstra’s algorithm which
we will encounter in the chapter on minimum cost paths.

EXERCISES

Exercise 5.1: We consider minimum spanning trees (MST’s) in an undiregtephG = (V, E) where
each vertex € V is given a numerical valu€'(v) > 0. ThecostC(u, v) of an edggu—v) € E
is defined to be&”'(u) + C(v).
(a) LetG be the graph in Figur&2. Compute an MST of7 using Boruvka'’s algorithm. Please
organize your computation so that we can verify intermediasults. Also state the cost of your
minimum spanning tree.
(b) Can you design an MST algorithm that takes advantageeofatt that edge costs has the
special formC (u,v) = C(u) + C(v)? o

Exercise 5.2: Redo the previous problem with a different cost functioneveC'(u—v) = C(u)C(v)
(the product instead of the sum). Is the result the same? &

Exercise 5.3: Suppose~ is the complete bipartite gragh,, ,,. That is, the vertice¥” are partitioned
into two subsetd, andV; where|Vy| = m andVi| = nandE = V; x V;. Give a simple
description of an MST of~,,, ,,. Argue that your description is indeed an MST. HINT: tramsfo
an arbitrary MST into your description by modifying one edge time. &

Exercise 5.4: Let GG,, be the bigraph whose vertices dre= {1,2,...,n}. The edges are defined
as follows: for each € V, if i is prime, then(1,:) € E with weighti. [Recall thatl is not
considered prime, spis the smallest prime.] Far < i < j, if 7 divides; then we adds, j) to
E with weightj /i.

(a) Draw the grapldrg.

(b) Compute the MST of+;5 using Prim’s algorithm, using nodeas the source vertex. Please
use the organization described in the appendix below.

(c) Are there special properties of the graghsthat can be exploited? %

Exercise 5.5: LetG = (V, E; W) be a connected bigraph with edge weight funclidnFix a constant
M and define the weight functio’” whereW’(e) = M — W (e) for eache € E. LetG’ =
(V, E;W'). Show thatl" is a maximum spanning tree 6f iff 7" is a minimum spanning tree of
G’. NOTE: Thus we say that the concepts of maximum spanningatnéeminimum spanning
tree are “cryptomorphic versions” of each other. &

Exercise 5.6: Describe the rule for reconstructing the MST from the mafvixusing in our hand-
simulation of Prim’s Algorithm. &

Exercise 5.7: Hand Simulation of Kruskal's Algorithm on the graph of Figur2. This exercise sug-
gests a method for carry out the steps of this algorithm. Wisider each edge in their sorted
order, maintaining a partition df = {1,...,12} into disjoint sets. Lef(i) denote the set con-
taining vertexi. Initially, each node is in its own set, i.€.{i) = {i}. Whenever an edge-j is

© Chee Yap Basic Version October 25, 2011

85. MINIMUM SPANNING TREE Lecture V Page 41

added to the MST, we merge the correspondingbsétgJL(j). E.g., in the first step, we add edge
1-3. Thus the lists.(1) = {1} andL(3) = {1} are merged, and we gé&{1) = L(3) = {1, 3}.
To show the computation of Kruskal's algorithm, for eachedfthe edge is “rejected”, we mark
it with an “X”. Otherwise, we indicate the merged list resudf from the union of_ (i) and L(j):
Please fill in the last two columns of the table (we have fillethie first 4 rows for you).

| Sorting Order|| Edge Weight Merged List Cumulative Weight

1 1- 3: 1 {1,3} 1
2 6-11: 1 {6,11} 2
3 10- 11: 1 {6,10,11} 3
4 6- 10: 2 X 3
5 7- 11. 2
6 11- 12: 2
7 1- 2 3
8 3-8: 3
9 6-7: 3
10 7- 10: 3
11 2-5: 6
12 3-4: 6
13 57 6
14 5-12: 6
15 9-10: 6
16 1- 4: 7
17 4- 6: 7
18 8- 9: 8
19 4-5: 10
20 4-9: 11

Exercise 5.8: This question considers two concrete ways to implementkéiissalgorithm. LetV =
{1,2,...,n} and D[1..n] be an array of size that represents frest G(D) with vertex sefl”
and edge seff = {(i, D[i]) : i € V'}. More preciselyG(D) is an directed graph that has no
cycles except for self-loops (i.e., edges of the fdim)). A vertex: such thatD[i] = i is called
aroot. The setV is thereby partitioned into disjoint subséts= 1, U V5, U - - - U V;, (for some
k > 1) such that eacl; has a unique root;, and from everyj € V; there is a path fronj to ;.
For example, witm = 7, D[1] = D[2] = D[3] = 3, D[4] = 4, D[5] = D[6] = 5 andD[7] = 6
(see Figure.3). We callV; acomponentof the graph= (D) (this terminology is justified because
V; is a component in the usual sense if we vié\D) as anundirectedgraph).

®
®
@

|2 Va Vs

Figure 13: Directed grapf¥(D) with three componentdAg, Vs, V3)

(i) Consider two restrictions on our data structure: $eig list type if each componentis a linear
list. SayD is star type if each component is a star (i.e., each vertex in the comg@uants to
the root). E.g., in Figurd3, V, andV; are linear lists, whiléd’ andV; are stars. Let ROQT)
denote the root of the component containing Give a pseudo-code for computing RO@JT

© Chee Yap Basic Version October 25, 2011

85. MINIMUM SPANNING TREE Lecture V Page 42

and give its complexity in the 2 cases: [@)is list type, (2)D is star type.

(i) Let COMP(i) C V denote the component that contains Define the operation
MERGE(i,j) that transformsD so that COMRP:i) and COMRj) are combined into a new
component (but all the other components are unchanged), tBegcomponents in Figure3
are{1,2,3},{4} and{5,6,7}. After M ERGE(1,4), we have two component§], 2, 3,4} and
{5,6,7}. Give a pseudo-code that implemeMsZ RGE(i,) under the assumption thatj are
roots andD is list type which you must preserve. Your algorithmusthave complexityD(1). To
achieve this complexity, you need to maintain some addtiorformation (perhaps by a simple
modification ofD).

(iii) Similarly to part (ii), implement\ ERGE(i, j) whenD is star type. Give the complexity of
your algorithm.

(iv) Describe how to use ROQT) and M ERGE(i, j) to implement Kruskal’s algorithm for
computing the minimum spanning tree (MST) of a weighted eated undirected graph.

(v) What is the complexity of Kruskal's in part (iv) if (1 is list type, and if (2)D is star type.
AssumeH hasn vertices andn edges. &

Exercise 5.9: Give two alternative proofs that the suggested algorithncémputing minimum base is
correct:
(a) By verifying the analogue of the Correctness Lemma.
(b) By replacing the cost'(e) (for eache € E) by the costy — C(e). Choose large enough
so thatcy — C'(e) > 0. O

Exercise 5.10:Let G be a bigraphz with distinct weights. Give a direct argument for the (a) &oxd
(a) Prove that the MST af must contain that the edge of smallest weight.
(b) Prove that the MST off must contain that the edge of second smallest weight.
(c) Must it contain the edge of third smallest weight? &

Exercise 5.11: Show that every MST can be obtained from Kruskal’s algorithyna suitable re-
ordering of the edges which have identical weights. Corelidt when the edge weights are
unique, then the MST is unique. &

Exercise 5.12: Student Joe wants to reduce the minimum base problem fortaccostroid(S, I; C)
to the MIS problem for(S, I; C’) whereC” is a suitable transformation @f. See next section
for matroid definitions.
(a) Student Joe considers the modified cost funafi6fe) = 1/C(e) for eache. Construct an
example to show that the MIS solution f6f need not be the same as the minimum base solution

for C.

(b) Next, student Joe considers another variation: he ndineC’(e) = —C(e) for eache.

Again, provide a counter example. &
Exercise 5.13: Extend the algorithm to finding MIS in contracted matroids. &

Exercise 5.14:1f S C F'is Prim-good, then clearlg’ = (V(5),5) is clearly a tree. Prove thatis
actually an MST of the restricted graphV (S). o

Exercise 5.15:
(a) Enumerate th&'-good sets of vertices in FiguBe Here, X is ‘simply’, ‘Kruskal’, ‘Boruvka’
or ‘Prim’.
(b) Characterize the good singletons (relative to any oftihee notions of goodness). &

© Chee Yap Basic Version October 25, 2011

85. MINIMUM SPANNING TREE Lecture V Page 43

Exercise 5.16: This question will develop Boruvka’s approach to MST: focleaertexv, pick the edge
(v—u) that has the least cost among all the nodébat are adjacent to. Let P be the set of
edges so picked.

(a) Show that/2 < P < n — 1. Give general examples to show that these two extreme bounds
are achieved for each

(b) Show that if the costs are unigu,cannot contain a cycle. What kinds of cycles can form if
weights are not unique?

(c) Assume edges iR are picked with the tie breaking rule: among the edges; (: = 1,2,...)
adjacent ta that have minimum cost, pick the that is the smallest numbered vertex (assume
vertices are numbered frointo n). Prove thatP is acyclic and has the following property: if
adding an edgeto P creates a cycl¢ in P + e, thene has the maximum cost among the edges
in Z.

(d) For any costed bigrap¥ = (V, E;C), andP C FE, define a new costed bigraph denoted
G/ P as follows. First, two vertices df are said to be equivalent modulif they are connected
by a sequence of edgesih Forv € V, let [v] denote the equivalence classwof The vertex
set of G/Pis {[v] : v € V}. The edge set of// P comprises thos€u]—[v]) such that there
exists an edgéu’—v') € F whereu’ € [u] andv’ € [v]. The cost of([u]—[v]) is defined as
min{C(u/,v") : v € [u],v" € [v],(uv'—v") € E}. Note thatG/P has at mosti/2 vertices.
Moreover, we can pick another set of edges in/ P using the same rules as before. This gives
us another grapfiz/ P)/ P’ with at mostn /4 vertices. We can continue this uniilhas 1 vertex.
Please convert this informal description into an algoritonsompute the cost of the MST. (You
need not show how to compute the MST.)

(e) Determine the complexity of your algorithm. You will ik specify suitable data structures
for carrying out the operations of the algorithm. (Pleasedmta structures that you know up to
this point.) &

Exercise 5.17:(Tarjan) Consider the followingeneric accept/reject algorithmfor MST. This con-
sists of steps that eithacceptor reject edges. In our generic MST algorithm, we only explicitly
accept edges. However, we may be implicitly rejecting edgesell, as in the case of Kruskal's
algorithm. LetS, R be the sets of accepted and rejected edges (so far). We sa\51t?) is
simply-goodif there is an MST that contain$ but not containing any edge @f. Note that this
extends our original definition of “simply good”. Prove tlilg following extensions of and R
will maintain minimal goodness:

(a) LetU C V be any subset of vertices. The set of edges of the farm) whereu € U and

v & U is called aJ-cut. If e is the minimum cost edge ofla-cut and there are no accepted edges
in theU-cut, then we may extendl by e.

(b) If e is the maximum cost edge in a cyaleand there are no rejected edge€ithen we may
extendR by e. &

Exercise 5.18: With respect to the generic accept/reject version of MST:
(a) Give a counter example to the following rejection rukt:elande’ be two edges in &-cut.
If C(e) > C(e’) then we may rejeat’.
(b) Can the rule in part (a) be fixed by some additional pragethat we can maintain?
(c) Can you make the criterion for rejection in the previoxsreise (part (b)) computationally
effective? Try to invent the “inverses” of Prim’s and Borak algorithm in which we solely
reject edges.
(d) Is it always a bad idea tonly reject edges? Suppose that we alternatively accept art reje
edges. Is there some situation where this can be a win?

Exercise 5.19: Consider the following recursive “MST algorithm” on inptGit= (V, E; C):
(I) SubdivideV = V; W V5.

© Chee Yap Basic Version October 25, 2011

86. MINIMUM SPANNING TREE Lecture V Page 44

(I) Recursive find a “MST"T; of G|V; (i = 1, 2).
(1N Find e in the V;-cut of minimum cost. Returif} + e + T5.
Give a small counter example to this algorithm. Can you fig #igorithm? &

Exercise 5.20: s there an analogue of Prim and Boruvka’s algorithm for tH8 problem for matroids?

&

Exercise 5.21:Let G = (V, E;C) be the complete graph in which each vertex V is a pointin
the Euclidean plane and(u, v) is just the Euclidean distance between the poingsdv. Give
efficient methods to compute the MST f6t &

Exercise 5.22:Fix a connected undirected graph= (V, E). LetT C E be any spanning tree ¢}.
A pair (e, ¢’) of edges is called swappable pair for T if
(i) e € T ande’ € E\ T (Notation: for sets4, B, their difference is denoted \ B = {a € A :
a ¢ BY})
(i) The set(T'\ {e}) U {e'} is a spanning tree.
Let T'(e, e’) denote the spanning tré& \ {e}) U {¢’} obtained fromI" by swappinge and ¢’
(see illustration in Figuré4(a), (b)).

@T (b) T'(e,)

(c) PathP (uy,).

Figure 14: (a) A swappable pdit, ¢') for spanning tre€’. (b) The new spanning tre®(e, ¢’) [NOTE:
tree edges are indicated by thick lines]

(a) Supposée, ¢’) is a swappable pair féF ande’ = (u,v). Prove that lies on the unique path,
denoted byP (u, v), of T fromw to v. In Figurel4(a),e’ = (1-5) = (5—1). So the path is either
P(1,5) = (1-2—3-5) or P(5,1) = (5—-3—2—1).

(b) Letn = |V|. Relative tol", we define av x n matrix F'irst indexed by pairs of vertices, v,
where Flirst[u,v] = w means that the first edge in the unique pBifu, v) is (u, w). (In the
special case of = v, let Firstu, u] = u.) In Figurel4(a), First[1,5] = 2 andFirst[5,1] = 3.
Show the matrixF'irst for the treeT" in Figure14(a). Similarly, give the matrix"irst for the
treeT (e, ') in Figurel4(b).

(c) Describe arO(n?) algorithm calledUpdate(First, e, e’) which updates the matrik'irst
after we transfornil” to T'(e,e’). HINT: For which pair of verticegz, y) does the value of
First[xz, y] have to change? Suppose= (u/,v’) and P(v/,v") = (ug,u1,...,us) is as illus-
trated in Figurel4(c). Thenu’' = wg,v’ = wuy, and alsce = (uy, ur4+1) for somed < k < 2.
Then, originally Fiirst[ug, u¢] = u; but after the swapFirst[ug, us] = u,. What else must

change?
(d) Analyze your algorithm to show that that it@%n?). Be sure that your description in (c) is
clear enough to support this analysis. &

© Chee Yap Basic Version October 25, 2011

§6. MATROIDS Lecture V Page 45

END EXERCISES

§6. Matroids

An abstract structure that supports greedy algorithms tsaiaks. Indeed, we will see that Kruskal's
algorithm for MST is an instance of a general greedy methosbtee a matroid problem. We first
illustrate the idea of matroids.

f124. Graphic matroids. Let G = (V,S) be a bigraph. A subset C S is acyclicif it does not
contain any cycle. Lef be the set of all acyclic subsets §f The empty set is a acyclic and hence
belongs tal. We note two properties df.

Hereditary property: If A C BandB € [thenA € [.

Exchange property: If A, B € I and|A| < |B|thenthereis anedgec B— AsuchthatAU{e} € I.

The hereditary property is obvious. To prove the exchangpdaty, note that the subgraphy:=(V, A)
has|V|—|A| (connected) components; similarly the subgr&ph=(V, B) has|V|—|B| components. If
every componerit C V of G is contained in some componentdfof G 4, then|V|—|B| < |V|—|A]
implies that some component 6f4 contains no vertices, contradiction. Hence assimg V is a
component of7 5 that is not contained in any component@f,. LetT:=B N (g) Thus(U,T) is a
tree and there must exist an edge (u—v) € T such that. andv belongs to different components of
G 4. Thise will serve for the exchange property.

For example, in Figur® the setsA = {a—b,a—c,a—d} and B = {b—c,c—a,a—d,d—e} are
acyclic. Then the exchange property betweeand B is witnessed by the edgk-e € B\ A, since
addingd—e to A will result in an acyclic set.

125. Matroids. The above systerfiS, I) is called thegraphic matroid corresponding to grapi =
(V,S). In general, anatroid is a hypergraph

M =(S.1)

with special propertiesS andI C 25 are both non-empty sets such ttiatas both the hereditary and
exchange properties. The sgis called theground set Elements ofl are calledndependent sets
other subsets of are calleddependent setsNote that the empty sétis always a member df.

Another example of matroids arise with numerical matrides:any matrix)/, let S be its set of
columns, and be the family of linearly independent subsets of columndl tB& the matrix matroid
of M. The terminology of independence comes from this settirigs Was the motivation of Whitney,
who coined the term ‘matroid’.

The explicit enumeration of the sétis usually out of the question. So, in computational proldem
whose input is a matroids, I), the matroid is usually implicitly represented. The aboxareples
illustrate this: a graphic matroid is represented by a gr@pland the matrix matroid is represented
by a matrix}/. The size of the input is then taken to be the siz&Zobr M, not of |I| which can
exponentially larger.

© Chee Yap Basic Version October 25, 2011

§6. MATROIDS Lecture V Page 46

126. Submatroids. Given matroids\ = (S, 1) andM’ = (S’,I’), we callM’ asubmatroid of M
if S C Sandl’ C I. There are two general methods to obtain submatroidsirgfdrom a non-empty
subsetk? C S:

(i) Induced submatroids. Th&-induced submatroid of M is

M|R:= (R, I n2%).

(ii) Contracted submatroids. Thék-contracted submatroid of M is
MAR:=(R,INR)

wherel AR:={ANR: Ae I S— R C A}. Thus, there is a bijective correspondence between
the independent set§’ of M A R and those independent setsof M which containS — R. Indeed,
A’ = AN R. Of course, ifS — R is dependent, theh A R is empty.

We leave it to an exercise to show thd R andM A R are matroids. Special cases of induced and
contracted submatroids arise whBn= S — {e} for somee € S. In this case, we say that/|R is
obtained bydeletinge andM A R is obtained bycontracting e.

f27. Bases. Let M = (S, I) be a matroid. IfA C B andB € I then we callB anextensionof A4; if
A = B, the extension ismproper and otherwise it iproper. A baseof M (alternatively: anaximal
independent se} is an independent set with no proper extensiond.Uf{e} is independentand ¢ A,
we call A U {e} asimple extensionof A and say that extendsA. If R C S, we may relativize these

concepts taR: we may speak of A C R being a base oR”, “ e extendsA in R”, etc. This is the same
as viewingA as a set of the induced submatraif] R.

128. Ranks. We note a simple propertyll bases of a matroid have the same sitfed, B are bases
and|A| > |B| then there is am € A — B such thatB U {e} is a simple extension aB. This is a
contradiction. Note that this property is true evesihas infinite cardinality. Thus we may define the
rank of a matroid)/ to be the size of its bases. More generally, we may define tileabanyR C S

to be the size of the bases Bf(this size is just the rank af/|R). Therank function

ra:2° = N

simply assigns the rank @ C S tory, (R).

129. Problems on Matroids. A costed matroidis given byM = (S, I; C') where(S, I) is a matroid
andC : S — R. is a cost function. The cost of a set C S is just the sumd__ _, C(z). The
maximum independent set problem(abbreviated, MIS) is this: given a costed matroidI; C'), find
an independent set C S with maximum cost. A closely related problem is thraximum base
problem where, given(S, I; C'), we want to find a bas& C S of maximum cost. If the costs are
non-negative, then it is easy to see the MIS problem and thémoan base problem are identical. The
following algorithm solves the maximum base problem:

6 Contracted submatroids are introduced here for complesen€hey are not used in the subsequent development (but the
exercises refer to them).
7 Recall our convention that costs may be negative. If thescst non-negative, we call a a “weight function”.

© Chee Yap Basic Version October 25, 2011

§6. MATROIDS Lecture V Page 47

GREEDY ALGORITHM FOR MAXIMUM BASE:
Input: matroidM = (S, I; C') with cost functionC'.
Output: a baseA € I with maximum cost.
1. SortS ={z1,...,2,} by cost.
Suppos&€(x1) > C(x2) > -+ > C(xy).
2. Initialize A — 0.
3. Fori=1ton,
putz; into A provided this does not maké dependent.
4. ReturnA.

The steps in this abstract algorithm needs to be instadtiat@articular representations of matroids.
In particular, testing if a set is independent is usually non-trivial (recall that matsgde usually given
implicitly in terms of other combinatorial structures). \Bscuss this issue for graphic matroids below.
It is interesting to note that the usual Gaussian algoritbmcbmputing the rank of a matrix is an
instance of this algorithm where the c@%tx) of each element is unit.

Let us see why the greedy algorithm is correct.

LEMMA 9 (Correctness)Suppose the elements.fare put intoA in this order:
Z1y 2255 Zm,

wherem = |A|. LetA; = {z1,29,...,2i},i=1,...,m. Then:

1. Ais abase.

2. Ifz € S extendsA; theni < m andC(z) < C(zi41).

3. LetB = {uy,...,u;} be an independent set whet&u,) > C(ug) > --- > C(ux). Thenk < m
andC(u;) < C(z;) for all 4.

Proof. 1. By way of contradiction, suppose € S extendsA. Thenx ¢ A and we must have
decided not to place into the set4d at some pointin the algorithm. That is, for sophg m, A; U {z}
is dependent. This contradicts the hereditary propertpbseA; U {«} is a subset of the independent
setA U {z}.
2. Suppose: extendsA;. By part 1,i < m. If C(z) > C(z;41) then for somej < i, we must have
decided not to place into A;. This means4; U {z} is dependent, which contradicts the hereditary
property sinced; U {z} C A; U{z} andA; U {z} is independent.
3. Since all bases are independent sets with the maximunmneditg we havek < m. The result
is clearly true fork = 1 and assume the result holds inductively for- 1. SoC(u;) < C(z;) for
j < k—1. We only need to show'(uy) < C(zx). Since|B| > |Ax_1]|, the exchange property says
that thereisam € B — A;_; thatextendsi;_;. By part 2,C(z;) > C(z). ButC(x) > C(us), since
uy, is the lightest element i by assumption. Thu€'(u) < C(zy), as desired. Q.E.D.

From this lemma, it is not hard to see that an algorithm foli® problem is obtained by replacing
the for-loop (for : = 1 to n”) in the above Greedy algorithm bydr i = 1 to m” wherez,,, is the last
positive elementin the ligtey, ..., Tm, ..., Tn).

130. Greedoids. While the matroid structure allows the Greedy Algorithm torky it turns out that a
more general abstract structure calipdedoidsis tailor-fitted to the greedy approach. To see what this
structure looks like, consider the set syste$nF') wheresS is a non-empty finite set, anfl C 2°. In

this context, eachl € F is called afeasible set We call(S, F') agreedoidif

© Chee Yap Basic Version October 25, 2011

§7. CENERATING PERMUTATIONS Lecture V Page 48

Accessibility property If A is a non-empty feasible set, then there is semeA such thatd \ {e} is
feasible.

Exchange property: If A, B are feasible anf4| < |B| then there is somee B\ A such thatdU{e}
is feasible.

EXERCISES

Exercise 6.1: Consider the graphic matroid in Figude Determine its rank function. &

Exercise 6.2: The text described a modification of the Greedy Maximum Bdgerthm so that it will
solve the MIS problem. Verify its correctness. &

Exercise 6.3:
(a) Interpret the induced and contracted submatrdid® andM A R in the bigraph of Figur®,
for various choices of the edge $8t When isM|R = M A R?
(b) Show thatM|R and M A R are matroids in general. &

Exercise 6.4: Show that; (AUB)+ry (ANB) < ras(A)+ra (B). Thisis called thsubmodularity
property of the rank function. It is the basis of further generaliaati of matroid theory. <

Exercise 6.5: In Gavril's activities selection problem, we have a getf intervals of the fornis, f).
Recall that a subsef C A is said to be compatible if is pairwise disjoint. Does the set of
compatible subsets of form a matroid? If yes, prove it. If no, give a counter example <

END EXERCISES

§7. Generating Permutations

In 81, we saw how the general bin packing problem can be rebiecénear bin packing. This
reduction depends on the ability to generate all permutataf n» elements efficiently. Since there
are many uses for such permutation generators, we will tafaadl detour to address this interesting
topic. A survey of this classic problem is given by Sedgewidgk Perhaps the oldest incarnation of
this problem is the “change ringing problem” of bell-ringém early 17th Century English churche$.|
This calls for ringing a sequence ofbells in alln! permutations.

The problem of generating all permutations efficiently ipresentative of an important class of
problems calle@ombinatorial enumeration. For instance, we might want to general all sizeubsets
of a set, all graphs of size, all convex polytopes based some given set afertices, etc. Such an
enumerations would be considered optimal if the algorithkesO(1) time to generate each member.

It is good to fix some terminology. A-permutation of a finite setX is a surjective function
p : {1,...,n} — X. Surjectivity of p impliesn > |X|. The functionp may be represented by
a sequencép(1),p(2),...,p(n)). Here we are interested in the case= |X|, i.e, permutation of

© Chee Yap Basic Version October 25, 2011

§7. CENERATING PERMUTATIONS Lecture V Page 49

distinct elements. We use a path-like notation for permutationgjngri‘(p(1)— - - - —p(n))” for the
permutation(p(1), p(2),...,p(n)).

Let S,, denote the set of all permutations &f = {1,2,...,n}; each element of,, is called an
n-permutation. Note thatS,,| = n!. E.g., the following is a listing ob:

(1-2-3), (1-3-2), (3—1-2); (3—2-1), (2-3-1), (2—-1-3). (24)
Two n-permutationst = (z1—---—x,) andn’ = (2} —---—z) are said to bedjacent (to each
other) if there is someé = 2,...,n such thatr;_, = 2} andz; = z_,, and for all otherj, z; = :z:;

Indeed, we writer’ = Exch;(m) in this case. E.gq = (1-2—4-3) andn’ = (1-4—-2-3) are
adjacent since’ = Fuxchs(r). An adjacency orderingof a setS of permutations is a listing of the
elements ofS such that every two consecutive permutations in this listine adjacent. For instance,
the listing ofS3 in (24) is an adjacency ordering.

[Figure: Adjacency Graph for 3-permutations]

We need another concept:zif= (x;—--- —z,_1) is an(n — 1)-permutation, ane’ is obtained
from 7 by inserting the letten into 7, then we callr’ anextensionof 7. Indeed, ifn is inserted just
before theith letter in, then we writer’ = Euxt;(7) fori = 1,...,n. The meaning of Ext, (7)"

should be clear: it is obtained by appending to the end of the sequenece Note that there are
extensions ofr. E.g., if 7 = (1—2) then the three extensionsofare(3—1-2), (1-3-2), (1-2-3).

31. The Johnson-Trotter Ordering. Among the several known methods to generatenall
permutations, we will describe one that is independentigaiered by S.M.Johnson and H.F.Trotter
(1962), and apparently known td'th Century English bell-ringers!]. The two main ideas in the
Johnson-Trotter algorithm are (1) thepermutations are generated as an adjacency ordering2and (
then-permutations are generated recursively. Supposeikan(n — 1)-permutation that has been re-
cursively generated. Then we note thatthextensions ofr can given one of two adjacency orderings.
Itis either

UP(r) : Exty(n), Bxty(n), ..., Ext, ()

or the reverse sequence
DOWN(7) : Exty, (), Exty_1(7), ..., Exti(r).
E.g.,UP(1-2-3) is equal to
(4-1-2-3), (1-4-2-3), (1-2—-4-3), (1-2—3—4).
Note that if7’ is anothel(n — 1)-permutation that is adjacent g then the concatenated sequences
UP(m); DOW N (7')

and
DOWN (m); UP(7")

are both adjacency orderings. We have thus shown:

LEMMA 10 (Johnson-Trotter ordering)f 7y, ..., 7,,—1y is an adjacency ordering of,,_;, then the
concatenation of alternating DOWN/UP sequences

DOW N (my); UP(ma); DOW N (m3);- -+ s DOWN (T(r—1)1)

is an adjacency ordering of,,.

© Chee Yap Basic Version October 25, 2011

§7. CENERATING PERMUTATIONS Lecture V Page 50

For example, starting from the adjacency orderin@-gplermutationgm; = (1-2),m = (2—1)),
our above lemma says thBYOW N (1), U P(72) is an adjacency ordering. Indeed, this is the ordering
shown in @4).

Let us define th@ermutation graph G, to be the bigraph whose vertex sefSis and whose edges
comprise those pairs of vertices that are adjacent in theesdefined for permutations. We note that
the adjacency ordering produced by Lemifes actually a cycle in the grapfi,,. In other words, the
adjacency ordering has the additional property that thedird the last permutations of the ordering are
themselves adjacent. A cycle that goes through every veftexgraph is said to belamiltonian. If
(m—ma— -+ —my) (form = (n — 1)!) is a Hamiltonian cycle fo6,,—1, then it is easy to see that

(DOW N (m1); UP(ma); -+ s UP(7m))

is a Hamiltonian cycle fo6,,.

132. The Permutation Generator. We proceed to derive an efficient means to generate suceessiv
permutations in the Johnson-Trotter ordering. We need progpiate high level view of this generator.
The generated permutations are to be used by some “perorutathsumer” such as our greedy linear
bin packing algorithm. There are two alternative views & telation between the “permutation gener-
ator” and the “permutation consumer”. We may view the coreuas calling the generator repeatedly,
where each call to the generator returns the next permuotaditiernatively, we view the generator as

a skeleton program with the consumer program as a (shelfpstibe. We prefer the latter view, since
this fits the established paradigm of BFS and DFS as skeletmrams (see Chapter 4). Indeed, we
may view the permutation generator as a bigraph travetsalntplicit bigraph here is the permutation
graphG,,.

In the following, ann-permutation is represented by the arpay[1..n]. We will transformper by
exchange of two adjacent values, indicated by

perli] < per[i — 1] (25)

forsomei =2,...,n,0r
per[i] < per[i + 1]

wherei =1,...,n—1.

133. A Counter for n factorial. To keep track of the successive exchanges in Johnson-Tgetter-
ator, we introduce an array efcounters
C[1..n]

where eachC[] is initialized to1 but always satisfying the relation < Ci] < . Of course,C[1]
may be omitted since its value cannot change under ourctsitrs. The array countér hasn! distinct
values. We say théth counter isfull iff C[i{] = i. Thelevel of the C is the largest indexX such
that the/-th counter is not full. If all the counters are full, the léw# C is defined to bel. E.g.,
C[1..5] =[1,2,2,1, 5] has levelt. We define théncrement of this counter array as follows: if the level
of the counter i¢, then (1) we incremen®'[¢] provided? > 1, and (2) we seC[i] = 1 for all i > /.
E.g., the increment of'[1..5] = [1, 2,2, 1, 5] gives]1, 2, 2,2, 1]. In code:

8 The generator in this viewpoint is@-routine. It has to remember its state from the previous call.

© Chee Yap Basic Version October 25, 2011

§7. CENERATING PERMUTATIONS Lecture V Page 51

INC(C)
{—n.
while (C[{] =) A (£ > 1)
Clt--] 1.
If(¢>1)
Cl)++.
Return(?)

Note that Nc returns the level of the original counter value. This masra generalization of the usual
increment of binary counters (Chapter 6.1). For instanmen f= 4, starting with the initial value of
[1,1,1], successive increments of this array produce the followjaic sequence:

C[2,3,4 = [1,1,1]—[1,1,2] = [1,1,3] — [1,1,4] — [1,2,1] (26)
— [1,2,2] — [1,2,3] — [1,2,4] — [1,3,1] — -~

) 3

2,3,3] — [2,3,4] — [1,1,1] —

Let the cost of incrementing the counter array be equal o1 — ¢ where/ is the level. CLAIM: the
cost to increment the counter array frgm1,...,1]t0[2,3,...,n]is < 2(n!). In proof, note thaC'[¢]

is updated after every! /¢! steps, so that the overafl}[¢] is updated! times. Hence the total number
of updates for thes — 1 counters is

nl4+(n— 1D+ 421 <2(n!),

which proves our Claim.

This gives us the top level structure for our permutationegator:

JOHNSONTROTTER GENERATOR (SKETCH)
Input: natural numben > 2
> Initialization

per[l.n] — [1,2,...,n]. < Initial permutation
C[2..n] < [1,1,...,1]. < Initial counter value
> Main Loop
do
0 — Inc(C)

UPDATE({) < The permutation is updates
CONSUME(per) <« Permutation is consumegd
while (¢ > 1)

The shell macro CONSUME is application-dependent. As defare simply use it to print the
current permutation.

134. How to update the permutation. We now describe the UPDATE macro. It uses the previous
counter level to transform the current permutation to the next permutafi@r example, the successive
counter values ing6) correspond to the following sequence of permutations:

[1,1.4]

Dl g gy (g o g 3y gy 9 gy BBy g o 3y B2y 1 3 9 (27)
22 (1_g39) L2 (13 4 gyt (13 9 4 LA (31 g g2
238 (1—a—2-3) 22 10 g3y M 1934y

© Chee Yap Basic Version October 25, 2011

§7. CENERATING PERMUTATIONS Lecture V Page 52

To interpret the above, consider a general step of the form

[e3,¢5,¢4]

2 @y gy —aa) Y (@ —aty—ah—af)

We start with the counter valdes, cs, ¢4] and permutatioriz; —xo—x5—x4). After callingl nc, the
counter is updated t5, ¢, ¢4], and it returns the level of [ca, 3, ca]. If £ = 1, we may terminate;
otherwise¢ € {2,3,4}. We find the index such that:; = ¢ (for somei = 1,2,3,4). UPDATE will
then exchange; with its neighborr; ; or z;_,. The resulting permutation (g} —z4—x5—x).

In (27), we indicater; by an underscorey;”. The choice of which neighbor(_, orz;,) depends
on whether we are in the “UP” phase or “DOWN” phase of lekeLet U P[1..n] be a Boolean array
whereU P[¢] is true in the UP phase, and false in the DOWN phase when weenementing a counter
at level/. Moreover, the value o/ P[¢] is changed (flipped) each tim@&[¢] is reinitialized tol. For
instance, in the first row of2(7), U P[4] = false and so the entryt is moving down with each swap
involving 4. In the next rowlJ P[4] = true and so the entry is moving up with each swap.

Hence we modify our previousic macro to include this update:

INCREMENT(C)
Output: Incrementg”, updated/ P, and returns the previous level 6f
{ — n.
while (C[¢] = ¢) A (¢ > 1) < Loop to find the counter level
Cll) < 1;
UP[{] — -UP[{); < Flipsthe boolean valu& P|[/]
l--.
If(£>1)
Cl)++.
Return(?).

For a given level, the UPDATE macro need to find the “positiohivhereper(i] = ¢ (i = 1,...,n).
We could search for this position i(n) time, but it is more efficient to maintain this information
directly: letpos[¢] denote the current position éf Thus thepos[1..n] is just the inverse of the array
per[l..n] in the sense that

per[pos[l]] = ¢ (L=1,...,n).

We can now specify the UPDATE macro to update hathandper:

UPDATE(Y)

if (UP[{])
per[pos[l]] < per[pos[l] +1]; < modify permutation
pos|per[pos[l]]] < pos[l]; < update position array
pos[f]++; < update position array

else
per[pos[f]] < per[pos[(] — 1];
pos[perlpos[t]]] — pos[(];
poslt]- -;

Thus, the final algorithm is:

9 In case we want to continue, the cdse 1 is treated as if = n. E.g., in 7), the cas¢ = 1 is treated ag = 4.

© Chee Yap Basic Version October 25, 2011

§7. CENERATING PERMUTATIONS Lecture V Page 53

JOHNSON-TROTTER GENERATOR
Input: natural numben > 2
> Initialization

per[l.n] < [1,2,...,n]. < Initial permutation

pos[l.n] — [1,2,...,n]. < Initial positions

C[2..n] < [1,1,...,1]. < Initial counter value
> Main Loop

do

¢ — Increment(C);

UPDATE({); < The permutation is updated

CONSUME(per); < Permutation is consumed
while(¢ > 1)

Remarks:
1. In practice, we can introduce early termination critémta our permutation generator. For instance,
in the bin packing application, there is a trivial lower bduon the number of bins, nameby =
[(O-F, wi)/M]. We can stop when we found a solution withbins. If we want only an approximate
optimal, say within a factor df, we may exit when the we achie¥e2b, bins.
2. We have focused on permutations of distinct objects. &&the objects may be identical, more
efficient techniques may be devised. For more informati@mutipermutation generation, see the book
of Paige and Wilsond]. Knuth’s much anticipated 4th volume will treat permubais; this will no
doubt become a principle reference for the subject.
3. The Java code for the Johnson-Trotter Algorithm is priegkim an appendix of this chapter.

EXERCISES

Exercise 7.1:
(a) Draw the adjacency bigraph corresponding-fmermutations. HINT: first draw the adjacency
graph for3-permutations and view-permutations as extension ®fpermutations.
(b) How many edges are there in the adjacency bigraphmgrmutations?
(c) What is the radius and diameter of the bigraph in part ([§@e definition of radius and
diameter in Exercise 4.8 (Chapter 4).] &

Exercise 7.2: Another way to list all then-permutations inS, is lexicographic ordering:
(x1—---—mp) < (x)—---—ax) if the first indexi such thate; #) satisfiest; < 2. Thus
the lexicographic smallest-permutation is(1—2—--- —n). Give an algorithm to generate
permutations in lexicographic ordering. Compare this atjo to the Johnson-Trotter algorithm.

O

Exercise 7.3: All adjacency orderings df- and3-permutations are cyclic. Is it true éfpermutations?

O

Exercise 7.4: Two n-permutationsr, 7’ are cyclic equivalentif = = (x;—a9— - —z,) andn’ =
(xi—xip1— - —Tp—21—29— - - —x;—1) for somei = 1,...,n. A cyclic n-permutation is an
equivalence class of the cyclic equivalence relation. Nodé there are exactly permutations
in each cyclicn-permutation. LetS!, denote the set of cyclia-permutations. S¢S),| = (n —
1)!. Again, we can define the cyclic permutation gra@h whose vertex set i§/,, and edges
determined by adjacent pairs of cyclic permutations. Giveefficient algorithm to generate a
Hamiltonian cycle of&/,. O

© Chee Yap Basic Version October 25, 2011

§7. CENERATING PERMUTATIONS Lecture V Page 54

Exercise 7.5: Suppose you are given a sebf n points in the plane. Give an efficient method to gen-
erate all the convex polygons whose vertices are febreive the complexity of your algorithm
as a function ofa. &

END EXERCISES

© Chee Yap Basic Version October 25, 2011

8A. APPENDIX: AvA CODE Lecture V Page 55

SA. APPENDIX: Java Code for Permutations

/**

* Per (mutations)

* Thi s generates the Johnson-Trotter permnutation order.

* By n-pernutation, we nmean a pernutation of the synbols {1,2,...,n}.
*

* Usage:

* % j avac Per.java

* % java Per [n=3] [n=0O]

*

* will print all n-pernutations. Default values n=3 and nr0.
* If mel, output in verbose node.

* Thus "java Per" will print

* (1,2,3), (1,3,2), (3,1,2), (3,2,1), (2,3,1), (2,1,3).
* See Lecture Notes for details of this algorithm

*

***/

public class Per {

/1 dobal variables
JHLELTTEE i rririrrirriri

static int n; /1 n-pernutations are being considered

/1 Quirk: Followi ng arrays are indexed from1l to n

static int[] per; /'l represents the current n-pernmutation
static int[] pos; /1 inverse of per: per[pos[i]]=i (for i=1..n)
static int[] C /1 Counter array: 1 <= (i] <=1i (for i=1..n)

static boolean[] UP; [l UP[i]=true iff pos[i] is increasing

I (going up) in the current phase

/1 Display permutation or position arrays
FEELEEEEEEEr bbb rrrnny
static void showArray(int[] myArray, String nessage){
System out . print (nessage) ;
Systemout.print("(" + myArray[1]);
for (int i=2; i<=n; i++)
Systemout.print("," + myArray[i]);
Systemout.printin(")");
}

/] Print counter
FEETEEE bbb r i rrrrr
static void showC(String m{
Systemout.print(n);
Systemout.print("(" + d2]);
for (int i=3; i<=n; i++)
Systemout.print("," + di]);
Systemout.printin(")");
}

/1l lIncrement counter
THLLELLEEEE i rirrirrrrtr
static int inc(){

int ell=n;
while ((Cell]==ell) && (ell>1)){
UP[ell] =1 (UP[ell]); /1 flip Boolean flag

© Chee Yap Basic Version October 25, 2011

8A. APPENDIX: AvA CODE Lecture V Page 56

Cell--1=1,;
}
if (ell>1)
Clell]++;
return ell; /1 level of previous counter val ue

}

/1l Update per and pos arrays
FEEEEEEE T bbb r i rrrrr
static void update(int ell){

int tnpSynbol ; /1 this is not necessary, but for clarity
if (UP[ell]) {
t npSynbol = per[pos[ell]+1]; // Assert: pos[ell]+1 nakes sense!
per[pos[ell]] = tnpSynbol;
per[pos[ell]+1] = ell;

pos[el |] ++;
pos[tnpSynbol] --;
} else {

t npSynbol

= per[pos[ell]-1]; [/ Assert: pos[ell]-1 nakes sense!
per[posf[ell]]=

t npSynbol ;

per[pos[ell]-1] = ell;
pos[ell]--;
pos[t npSynbol] ++;

}
}

/1 Main program
NNy
public static void main (String[] args)
throws java.io.| OException
{
/[Comrand |ine Processing
n=3; // default value of n
bool ean verbose=false; // default is false (corresponds to second argunment = 0)
if (args.!|ength>0)
n = Integer.parselnt(args[0]);
if ((args.length>1) && (Integer.parselnt(args[1]) !'= 0))
verbose = true;

[llnitialize
per = new int[n+1];

pos = new int[n+1];
C = newint[n+l];
UP = new bool ean[n+1];
for (int i=0; i<=n; i++) {
per[i]=i;
pos[i]=i;
ai]=1;
UP[i] =fal se;
}
/1 Setup For Loop
i nt count=0; /1 only used in verbose node
int ell=1;

Systemout. println("Johnson-Trotter ordering of "+ n + "-pernutations");
if (verbose)

showArray(per, count + ", level="+ell + " :\t");
el se

showArray(per, "");

© Chee Yap Basic Version October 25, 2011

8A. APPENDIX: AvA CODE Lecture V Page 57

/1 Mai n Loop
do {
ell =inc();
update(el lI');
if (verbose)
count ++;
showArray(per, count + ", level="+ell + " :\t");
el se
showArray(per, "");
} while (ell>1);

}/ /' main
}//class Per

References

[1] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. échlly adaptive data compression
scheme Comm. of the ACIVR9(4):320-330, 1986.

[2] X. Cai and Y. Zheng. Canonical coin systems for chang&ingaproblems.arXiv:0809.0400v1
[cs.DS], 2009. 14 pages.

[3] E. Page and L. WilsonAn Introduction to Computational Combinatoric€ambridge Computer
Science Texts, No. 9. Cambridge University Press, 1979.

[4] T. W. Parsons. Letter: A forgotten generation of perntiates, 1977.

[5] R. Sedgewick. Permutation generation methd@ismputing Survey9(2):137-164, 1977.

[6] R. E. Tarjan.Data Structures and Network AlgorithmSIAM, Philadelphia, PA, 1974.

[7] J. S. Vitter. The design and analysis of dynamic huffmades.J. ACM 34(4):825-845, 1987.

© Chee Yap Basic Version October 25, 2011

	 THE GREEDY APPROACH
	 Joy Rides and Bin Packing
	 Interval Problems
	 Huffman Code
	 Dynamic Huffman Code
	 Minimum Spanning Tree
	 Matroids
	 Generating Permutations
	 APPENDIX: Java Code for Permutations

