
§1. JOY RIDES AND BIN PACKING Lecture V Page 1

“A nickel ain’t worth a dime anymore.”
— Yogi Berra

“You know that I write slowly. This is chiefly because I am never satisfied until I have said
as much as possible in a few words, and writing briefly takes far more time than writing at
length.”

— Karl Friedrich Gauss
(1777-1855)

Lecture V
THE GREEDY APPROACH

An algorithmic approach is called “greedy” when it makes decisions for each step based on what
seems best at the current step. Moreover, once a decision is made, it is never revoked. It may seem that
this approach is rather limited. Nevertheless, many important problems have special features that allow
optimal solutions using this approach. Since we do not revoke our greedy decisions, such algorithms
tend to be simple and efficient.

To make this concept of “greedy decisions” concrete, suppose we have some “gain” functionG(x)
which quantifies the gain we expect with each possible decision x. View the algorithm as making
a sequencex1, x2, . . . , xn of decisions, where eachxi ∈ Xi for some setXi of feasible choices.
Greediness amounts to choosing thexi ∈ Xi which maximizes the valueG(x).

The greedy method is supposed to exemplify the idea of “localsearch”. But closer examination of
greedy algorithms will reveal some global information being used. Such global information is usually
minimal. Typically it amounts to some global sorting step. Indeed, the preferred data structure for
delivering this global information is the priority queue.

We begin with a toy version of bin packing and simple problemsinvolving intervals. Next we
discuss the more realistic Huffman tree problem and minimumspanning trees. An abstract setting
for the minimum spanning tree problem is based onmatroid theory and the associatedmaximum
independent set problem. This abstract framework captures the essence of a large class of problems
with greedy solutions.

§1. Joy Rides and Bin Packing

We start with an example of a greedy algorithm to solve a simple problem which we calllinear
bin packing. The problem is, however, related to the major topic of bin packing in combinatorial
algorithms.

¶1. Amusement Park Problem. Suppose we have a joy ride in an amusement park where riders
arrive in a queue. We want to assign riders into cars, where the cars are empty as they arrive and we
can only load one car at a time. Each car has a weight limitM > 0. The number of riders in a car
is immaterial, as long as their total weight is≤ M pounds. We may assume that no rider has weight
> M . A key constraint in this problem is that we must make a decision for rider as they arrive at the

© Chee Yap Basic Version October 25, 2011

§1. JOY RIDES AND BIN PACKING Lecture V Page 2

head of the queue. This is called theonline requirement. For instance, ifM = 400 and the weights (in
pounds) of the riders in the queue are

(30, 190, 80, 210, 100, 80, 50), (1)

then we can put the riders into cars in the following groups:

S1 : (30, 190, 80), (210, 100, 80), (50).

SolutionS1 uses three cars (the first car has the first 3 riders, the next car has the next 3, and the last
car has 2 riders). It is the solution given by the “greedy algorithm” which fills each car with as many
riders as possible before loading the next car. Here are two other non-greedy solutions that uses the
same number of cars:

S2 : (30, 190), (80, 210), (100, 80, 50).

S3 : (30, 190)(80, 210, 100), (80, 50).

¶2. General Bin Packing. The joy ride problem is an instance of the following prototype bin pack-
ing problem: given a collection of items, to place them into as few bins as possible. Each item is
characterized by its weight (a positive real number) and thebins are identical, with a limited capacity.
More precisely, we are given a multiset setS = {w1, . . . , wn} of positive weights, and a bin capacity
M > 0. We want to partitionS into a minimum number of subsets such that the total weight ineach
subset is at mostM . We may assume that eachwi ≤ M . Unlike the joy ride problem, the weights
can be reordered in any way we like. A solution to this generalbin packing problem is also called
a globally optimal solution. E.g., if S = {1, 1, 1, 3, 2, 2, 1, 3, 1} andM = 5 then one solution is
{3, 2} , {2, 3} , {1, 1, 1, 1, 1}, illustrated in Figure1.

41 2 3

Figure 1: Bin packing solution.

This solution uses3 bins. This is clearly a globally optimal solution since eachbin is filled to
capacity. Finding the globally optimal bin packing is a hardproblem: no polynomial-time algorithm is
known.

In the joy ride problem, we imposed a linear constraint on thepossible solutions, thereby turn-
ing a hard problem into a feasible one. Let us formalize the joy ride problem: given a sequence
w = (w1, w2, . . . , wn) of non-negative weights, alinear solution is determined by a sequence (called
breakpoints)

0 = t(0) < t(1) < t(2) < · · · < t(m) = n (2)

of indices. The solution isfeasibleif for eachi = 1, . . . , m, the subset

Ci:= {wj : t(i− 1) < j ≤ t(i)}

has a total weight of at mostM . A feasible solution isoptimal if m is minimum over all linear solutions.
Thelinear bin packing problem is to compute an optimal linear solution for any inputw. For instance,

Think ofCi as thei-th
car in the joy ride.

the greedy algorithm on the inputw = (1, 1, 1, 3, 2, 2, 1, 3, 1), M = 5 leads to the solution

C1 = {1, 1, 1} , C2 = {3, 2} , C3 = {2, 1} , C4 = {3, 1} .

Since this solution uses more than3 bins, it is suboptimal for the general bin packing problem. Never-
theless, this solution is optimal for linear bin packing.

© Chee Yap Basic Version October 25, 2011

§1. JOY RIDES AND BIN PACKING Lecture V Page 3

¶3. Greedy Algorithm. Let us code up the Greedy Algorithm for the linear bin packingproblem
(a.k.a. joy ride problem). Letw = (w1, w2, . . . , wn) be the input sequence of weights. LetC denote
a container (or car) that is being filled with elements ofw, andW be the sum of the weights inC.
Initially, W ← 0 andC ← ∅.

GREEDY ALGORITHM FOR L INEAR BIN PACKING:
Input: w = (w1, . . . , wn) andM > 0.
Output: A sequence of containersC1, C2, . . . , Cm representing an optimal linear solution.
⊲ Initialization

C ← ∅, W ← 0.
⊲ Loop

for i = 1 to n + 1
if (i = n + 1 or W + wi > M)

W ← 0, C ← ∅, Output C.
else

W ←W + wi; C ← C ∪ {wi}.

This the greedy algorithm is also known as thefirst fit algorithm .

¶4. Optimality of Greedy Algorithm. It may not be obvious why the greedy algorithm produces an
optimal linear solution. In any case, it is instructive to prove that this is so. We use natural induction.
Suppose the greedy algorithm outputsk cars with the weights

(w1, . . . , wn1
), (wn1+1, . . . , wn2

), . . . , (wnk−1+1, . . . , wnk
)

wherenk = n. This defines the following feasible solution

1 ≤ n1 < n2 < · · · < nk = n.

Consider any optimal solution
1 ≤ m1 < m2 < · · · < mℓ = n

with ℓ cars. Since this is optimal, we have
ℓ ≤ k. (3)

We claim that fori = 1, . . . , ℓ,
mi ≤ ni. (4)

It is easy to see that this is true fori = 1. For i > 1, assumemi−1 ≤ ni−1 by induction hypothesis. By
way of contradiction, suppose thatmi > ni. Hence

mi−1 ≤ ni−1 < ni < mi. (5)

Thei-th car in the optimal solution has weight equal towmi−1+1+ · · ·+wmi
, but this weight (according

to (5)) is at least
wni−1+1 + · · ·+ wni

+ wni+1. (6)

By definition of the greedy algorithm, the sum in (6) must exceedM (otherwise the greedy algorithm
would have addedwni+1 to theith car). This contradiction concludes our proof of (4).

From (4), we havemℓ ≤ nℓ. Sincemℓ = n, we conclude thatnℓ = n. Sincenk = n, this can only
meanℓ ≥ k. Combined with (3), we conclude thatℓ = k, i.e., the greedy method is optimal.

© Chee Yap Basic Version October 25, 2011

§1. JOY RIDES AND BIN PACKING Lecture V Page 4

¶5. How good is linear bin packing? Given a sequencew = (w1, . . . , wn) of positive weights, we
want to compare its optimal solutions when viewed as a linearbin packing instance, and when viewed
as a general bin packing instance (¶2). Let G1(w) be the number of bins used by the greedy algorithm
andOpt(w) be the number of bins used by an optimal algorithm that does not have to respect the linear
ordering inw.

THEOREM 1. For any weight sequencew of lengthn,

Opt(w) ≥ 1 + ⌊G1(w)/2⌋ (7)

For eachn, there is a sequence ofn weights for which (7) is an equality.

Proof.SupposeG1(w) = k. Let the weight ofith output bin beWi for i = 1, . . . , k. The following
inequality holds:

Wi + Wi+1 > M (8)

whereM is the bin capacity. To see this, note that the first weightv to be put into thei + 1st bin by
the greedy algorithm must satisfyWi + v > M . This implies (8) sinceWi+1 ≥ v. It follows that
∑k

i=1 Wi > ⌊k/2⌋M ; hence theOpt(w) ≥ 1 + ⌊k/2⌋. This proves (7).

To see that the inequality (7) is sharp, consider the following1 weight sequence of lengthn:

w =

{
(1, 1

n , 1, 1
n , . . . , 1, 1

n) if n = even,
(1

n , 1, 1
n , . . . , 1, 1

n) if n = odd.

If the bin capacity isM = 1, then the greedy solution usesn bins, but clearlyOpt(w) = 1 + ⌊n/2⌋.

Q.E.D.

¶6. Application to General Bin Packing. Thus linear bin packing can be optimally solved inO(n)
time. If the weights are arbitrary real numbers, thisO(n) bound is based on the real RAM computational
model of Chapter 1. The solution to linear bin packing can be used as a subroutine in solving the
original bin packing problem: we just cycle through each of then! permutations ofw = (w1, . . . , wn),
and for each compute the greedy solution inO(n) time. The optimal solution is among them. This
yields anΘ(n · n!) = Θ((n/e)n+(3/2)) time algorithm. Here, we assume that we can generate all

TheΘ-form of
Stirling’s

approximationn-permutations inO(n!) time. This is a nontrivial assumption, but in §7, we will showhow to do this.

We can improve the preceding algorithm by a factor ofn, since without loss of generality, we
may restrict to permutations that begins with an arbitraryw1 (why?). Since there are(n − 1)! such
permutations, we obtain:

LEMMA 2. The bin packing problem can be solved inO(n!) = O((n/e)n+(1/2)) time in the real RAM
model.

We can further improve this complexity by another factor ofn (Exercise). Observe that by imposing
restrictions on the space of possible solutions, we have turned a difficult problem like general bin pack-
ing into a feasible one like linear bin packing. The latter problem may be interesting on its own merit,
but we see that it can also be used as a subroutine for solving the original problem.

1 Thanks to my student Jason Y. Lee (2008) for this simple example. Originally, I had:
(1
1
, 2
3
; 1
2
, 3

4
; 1
3
, 4
5
; · · · ; 1

i
, i+1

i+2
; · · · ; 1

n−2
, n−1

n
).

© Chee Yap Basic Version October 25, 2011

§1. JOY RIDES AND BIN PACKING Lecture V Page 5

¶7. Two-Car Loading. Consider an extension of linear bin packing where we simultaneously load
two cars. Call these two cars thefront andrear cars. This is a realistic scenario for joy rides in a Ferris
wheel. This allows us to mildly violate the first-come first-serve policy: a rider may be assigned to the
rear car, while the next rider in the queue may be assigned to the front car. But this is the worst that
can happen (people coming behind in the queue can never be ahead by more than one car). If neither
car can accommodate the new rider, we mustdispatch the front car, so that the rear car comes to the
front position and a new car empty becomes the rear car. We continue to have the “online restriction”,
i.e., we must make the decision for each rider in the queue without knowledge of who comes afterward.
As usual, we assume that decisions areirrevocable. Once a rider has been assigned a car, it cannot be
changed.

We want to design a new policyG2 for 2-car loading. The goal, as usual, is to minimize the number
of cars used for any given input sequencew. LetG1 be the car loading policy represented by the original
greedy algorithm (¶3). We want to make sure thatG2 is never worse thanG1. More precisely, letG1(w)
andG2(w) denote the number of cars used by the respective policies on any inputw = (w1, . . . , wn).
We want to ensure that for allw,

G2(w) ≤ G1(w). (9)

There is a trivial way to designG2 to satisfy (9): just imitateG1. But this means (9) is actually an
equality for allw. This is of no interest whatsoever. What we want is a policyG2 where, in addition
to (9), there are many inputsw whereG2(w) < G1(w), and hopefully,G2 has other quantifiable
advantages as well.

Here is our proposed 2-car loading policy,G2 : load each rider into the front car if possible, but
otherwise load into the rear car. If the latter is also not possible, dispatch the front car.

For instance, ifw = (30, 190, 80, 210, 90, 80, 50) andM = 400 is our original example in (1), then
our new policy is an improvement:G2(w) = 2 < 3 = G1(w).

To prove that (9), we generalize it to a stronger statement about “subsequences”. Normally,w′ is
called a subsequence ofw = (w1, . . . , wn) if w′ can be obtained fromw by dropping zero or more
entries fromw. E.g.,w′ = (2, 3, 1) is a subsequence ofw = (2, 2, 1, 3, 1). But instead of dropping
an entry, we can imagine replacing it by0: thusw′ = (2, 3, 1) can be regarded as(2, 0, 0, 3, 1) or
(0, 2, 0, 3, 1). For our proof, we define asubsequenceof w = (w1, . . . , wn) to be any sequencew′ =
(w′

1, . . . , w
′

n) where0 ≤ w′

i ≤ wi for eachi.

LEMMA 3. If w′ is a subsequence of aw,

G2(w
′) ≤ G1(w). (10)

Proof. We use induction on the numberG1(w). Let w = (w1, . . . , wn) andw′ = (w′

1, . . . , w
′

n).
If G1(w) = 1, then clearly (10) holds (it actually holds with equality unlessw′ has only0 weights).
SupposeG1(w) ≥ 2, and let the first car load in theG1 solution be the multisetC = {w1, w2, . . . , wi}
for somei ≥ 1. So

G1(w) = 1 + G1(wi+1, wi+2, . . . , wn). (11)

The first car loadC′ in theG2(w
′) solution clearly contains the multiset{w′

1, . . . , w
′

i}. But C′ might
also contain additional elements from the sequencew′. To account for these elements, letw′′ be the
weight sequence that is obtained from(w′

i+1, w
′

i+2, . . . , w
′

n) by setting to0 any weightw′

j that is inC′.
Thus, we have

G2(w
′) = 1 + G2(w

′′). (12)

Clearly,w′′ is a subsequence of(w′

i+1, . . . , w
′

n), and hencew′′ is a subsequence of(wi+1, . . . , wn). By
induction hypothesis, we conclude that

G2(w
′′) ≤ G1(wi+1, . . . , wn). (13)

© Chee Yap Basic Version October 25, 2011

§1. JOY RIDES AND BIN PACKING Lecture V Page 6

Thus inequality (10) now follows from (11), (12), and (13). Q.E.D.

What about lower bounds? Consider the following weight sequencew of length3n,

w = (a1, b1, c1; a2, b2, c2; a3 · · · cn−1; an, bn, cn)

whereai = ci = 0.5 + iǫ, bi = 0.5− iǫ+ δ. In the Exercise, we ask you to show that for suitable small
values forδ, ǫ > 0, we haveG2(w)/Opt(w) ≥ 1.5 − O(1/n). Here,Opt is the optimal solution for
general bin packing ofw.

We may further extend the 2-car loading framework:

• One extension is to allow decisions to be revoked. This means that, upon seeing the next rider in
the queue, we are allowed to move one or more riders between the front and rear cars. An even
stronger notion of revoking is to exchange a rider in one of the two loading cars with the rider at
the head of the queue. Note that this stronger notion can be applied even in 1-car loading.

• Another extension is to assume that two loading cars are in “parallel tracks” (left or right tracks).
That means we can dispatch either car first. Note that this is extension permits loading policies
which are arbitrarily unfair in the sense that a rider may be placed into a car that is arbitrarily far
ahead of someone who arrived earlier in the queue. So we mightwant to restrict the admissible
loading policies.

EXERCISES

Exercise 1.1: Suppose you are a cashier at a checkout and has to give change to customers. You want
to give out the minimum number of coins and notes. Assume thatyou have an infinite supply
(nice!) of coins/notes in each denomination.
(a) What is the greedy algorithm for this?
(b) Assuming a US cashier giving change less than$100. You have bills in denominations
$50, $20, $10, $5, $1 and common coins 25¢, 10¢, 5¢, 1¢. Can you prove the optimality of your
greedy algorithm?
(c) Give a set of currency denominations in which your greedyalgorithm is non-optimal. ♦

Exercise 1.2: In 1971, the British denomination converted to a decimal system. The old system has
these denominations:12 , 1, 3, 6, 12 (=shilling), 24 (=florin), 30 (=half-crown),60 (=crown),240
(=pound).
(a) Show that the old system in non-canonical.
(b) Determine the largest possible value ofG(x) −Opt(x) in the old system. ♦

© Chee Yap Basic Version October 25, 2011

§1. JOY RIDES AND BIN PACKING Lecture V Page 7

To explore the coin changing problem of the preceding Exercises, we need
to develop some further concepts. Acurrency systemis a vector of increas-
ing positive integers,D = (d1, d2, . . . , dm) where eachdi ∈ D is called a
denomination. For x ∈ N, a D-solution for x is any vectors ∈ N

m such
that the dot product〈s, D〉 equalsx. We sayD is completeif every positive
integer has aD-solution. Clearly,D is complete iffd1 = 1. Henceforth, we
omit reference toD if it is understood (so we speak of “solution” instead of
“D-solution”, etc). Calls agreedy solution forx if s is lexicographically the
largest among solutions forx: that means that ifs′ is another solution, then
the last non-zero entry in the vector differences − s′ is positive. Note that
we look at last (not first) non-zero entry entry because of ourordering of the
vectorD. Thesizeof a solutions = (s1, . . . , sm) is given by|s|:=

∑d
i=1 si.

An optimal solution for x is anys such that|s| is minimum among solutions
for x. Let OptD(x) (resp.,GD(x)) denote any optimum (resp., the greedy)
solution. By definition,|OptD(x)| ≤ |GD(x)|. We sayD is canonical if
|GD(x)| = |OptD(x)| for all x ∈ N. The key open problem here is to charac-
terize canonical systems. IfGD(x) > OptD(x), we callx acounter example
for (the non-canonicity of)D. There is another property of coin systems be-
sides canonicity: we sayD hasuniquenessif OptD(x) is unique for every
x ∈ N. Reference: [2]

Exercise 1.3: Consider a currency systemD = (1, d2, . . . , dm).
(a) (Tien and Hu) Letx be a counter example for LetGD(x) = (s1, . . . , sm) andOptD(x) =
(s∗1, . . . , s

∗

m) (resp.) denote the greedy and an optimal solution. Describeany special properties
relatings ands∗ if x the minimum counter example.
(b) Let q(D) = (q1, q2, . . . , qm) whereqi = ⌊di+1/di⌋ for eachi = 1, . . . , m − 1. Also let
qm = ∞. Then we have the property thatGD(x) ≤ q(D) − 1 where1 = (1, . . . , 1) is the
m-vector of1’s. ♦

Exercise 1.4: This exercise will prove that the US currency system is canonical. SupposeD =
(1, d2, . . . , dm) is a canonical currency system (m ≥ 1). We look at extensions ofD:
(a) If D′ = (1, d2, . . . , dm, dm+1) extendsD with a denominationdm:=qdm−1 for someq ≥ 2,
thenD′ is called aType A extension ofD. Show that Type a extensions ofD are canonical.
(b) Let D′′ = (1, d2, . . . , dm, dm+1, dm+2) extendD′ (from part (a)) with a denomination
dm+2 = adm+1 + bdm wherea, b are non-negative integers. Ifq ≤ 3 anda ≥ 1 thenD′′ is
called aType B extension ofD′. Show that Type B extensions ofD′ are canonical.
(c) Conclude that the US currency system comprising the notes $50, $20, $10, $5, $1 and coins
25¢, 10¢, 5¢, 1¢ is canonical. Canonicity is preserved even if we include the $2 note which2 is a
rarely seen denomination. ♦

Exercise 1.5: (a) Show a currency system that is complete and canonical butdoes not have uniqueness.
HINT: you need not consider more than3 denominations.
(b) Show that the binary systemD = (1, 2, 4, . . . , 2m) is a canonical system that is also unique.

♦

Exercise 1.6: (Kozen-Zaks)
(a) Prove thatD = (1, d2) is always canonical.
(b) Let D = (1, d2, d3) whered3 = qd2 + r (0 ≤ r < d2). Show that ifr > 0 andd2 > q + r

2 The 2 dollar bill was introduced in 1862, discontinued in 1966, and reintroduced in 1976 for the US Bicentennial. It has
been a US denomination since.

© Chee Yap Basic Version October 25, 2011

§1. JOY RIDES AND BIN PACKING Lecture V Page 8

thenD is non-canonical. Indeed, show that(q + 1)d2 is a counter example.
(c) Show that(q + 1)d2 is actually the minimum counter example.
(d) The converse of (b) is true: ifD = (1, d2, d3) is non-canonical, thenr > 0 andd2 > q + r.
(e) If D = (1, d2, . . . , dm) is non-canonical, the minimum counter example satisfiesc3 < x <
cm−1 + cm. ♦

Exercise 1.7: A certain sovereign state had a complete and canonical currency systemD =
(d1, . . . , dm). After a period of hyper-inflation, the state decreed that its pennies (d1 = 1) are no
longer legal currency. Henceforth, monetary values are multiples ofd2. Is the new currency still
canonical? What if the next denominationd2 is also no longer legal? ♦

Is Yogi Berra referring
to this in the

introductory quote?

Exercise 1.8: (Panagiotis Karras) The following problem arises in “compressing databases”. We are
given a sequencew = (w1, . . . , wn) of numbers and someǫ > 0. We say a sequencex =
(x1, . . . , xm) is anǫ-approximation of w of order m if there is a sequence ofm breakpoints (as
in (2))

0 = t(0) < t(1) < t(2) < · · · < t(m) = n

such that for each original numberwi, the uniquexj (j = 1, . . . , m) such thatt(j−1) < i ≤ t(j)
provides anǫ-approximation towi in the sense that

|wi − xj | ≤ ǫ.

Intuitively, this says that we can approximate the sequencew by a histogram withm steps. Let
Min(w, ǫ) denote the minimum order of anǫ-approximation ofw. Design and prove anO(n)
greedy algorithm to compute theMin(w, ǫ). ♦

Exercise 1.9: Give a counter example to the greedy algorithm in case thewi’s can be negative. NOTE:
the greedy algorithm is exactly as it was before; in particular it is an online algorithm. ♦

Exercise 1.10:We consider linear bin packing problem in which the weightswi’s can be negative.
From the previous problem, we know that the greedy algorithmdoes not produce the optimal
solution. How bad can the greedy solution be, compared to an offline solution for linear bin pack-
ing? Please quantify “badness” in some reasonable way, and construct examples that illustrates
how bad it could be. ♦

Exercise 1.11:There are two places where our optimality proof for the greedy algorithm breaks down
when there are negative weights. What are they? ♦

Exercise 1.12:Consider the following “generalized greedy algorithm” in casewi’s can be negative. A
solution to linear bin packing be characterized by the sequence of breakpoints,0 = n0 < n1 <
n2 < · · · < nk = n where theith car holds the weights

[wni−1+1, wni+2, . . . , wni
].

Here is a greedy way to define these indices: letn1 to be the largest index such that
∑n1

j=1 wj ≤

M . For i > 1, defineni to be the largest index such that
∑ni

j=ni−1+1 wj ≤ M . Note that
this algorithm is no longer ”online”. Either prove that thissolution is optimal, or give a counter
example. ♦

© Chee Yap Basic Version October 25, 2011

§1. JOY RIDES AND BIN PACKING Lecture V Page 9

Exercise 1.13:Give anO(n2) algorithm for linear bin packing when there are negative weights. HINT:
Assume that when you solve the problem for(M, w), you also solve it for each(M, w′) where
w′ is a suffix ofw. This is really the idea of dynamic programming (Chapter 7). ♦

Exercise 1.14: Improve the bin packing upper bound in Lemma2 to O((n/e)n−(1/2)). HINT: Repeat
the trick which saved us a factor ofn in the first place. Fix two weightsw1, w2. We need to
consider two cases: eitherw1, w2 belong to the same bin or they do not. ♦

Exercise 1.15:We have the 2-car loading problem, but now imagine the 2 cars move along two inde-
pendent tracks, say the left track and right track. Either car could be sent off before the other. We
still make decision for each rider in an online manner, but our ith decisionxi now comes from
the set{L, R, L+, R+}. The choicexi = L or xi = R means we load theith rider into the left
or right car (resp.), butxi = L+ means that we send off the left car, and put thei-th rider into a
new car in its place. Similarly forxi = R+. Consider the following heuristic: letC0 > 0 and
C1 > 0 be the “residual capacities” of the two open cars. Try to putwi into the car with the
smaller residual capacity. Ifwi is larger than bothC0 andC1, we send off the car with the smaller
residual capacity (and putwi into its replacement car). Prove or disprove that this strategy will
never use more cars than the greedy algorithm in the previousproblem. ♦

Exercise 1.16:Construct examplesw = (w1, . . . , wn) (for arbitrarily large n) such that
G2(w)/Opt(w) > 1.5 − O(1/n). Here,Opt(w) is the minimum number of bins used if you
have no constraints (you can put any weight into any bin).

HINT: Use the example suggested in the text wheren = 3m and w =
(a1, b1, c1; a2, b2, c2; a3, b3, c3; · · ·) where we have arranged the weights into groups of3 sep-
arated by semi-colons (;). Also, supposeai = ci = 0.5 + iǫ andbi = 0.5 − iǫ + δ. You must
choose suitable values ofǫ, δ so thatG2(w) = n, andOpt(w) ≤ 2n + O(1). ♦

Exercise 1.17: (Open) Can you improve the lower bound of1.5 in the previous exercise? One idea is
to use an adaptive adversary. ♦

Exercise 1.18: In the text, we compare our 2-car loading policy against an optimal bin packing solution.
Now we want to compare our 2-car loading policy with the performance of aclairvoyant 2-car
algorithm . Clairvoyant means that the algorithm can see into the future (and thus knows the
entire queue). However, it must still respect the online requirement – each rider must be assigned
a car and this cannot be revoked later. ♦

Exercise 1.19: (Open ended) Explore the revoking of decisions in 1- or 2-carloading. ♦

Exercise 1.20: (Open ended) Quantify the improvements possible when loading 2 cars in parallel tracks
instead of loading 2 cars in a single track. ♦

Exercise 1.21:Suppose we first sort the input weights, so that we havew1 ≥ w2 ≥ · · · ≥ wn. Consider
the following algorithm: fori = 1 to n, try to packwi into one of the current bins. If this is not
possible, put it into a new bin.
(a) Prove that this algorithm uses at most1.5 times the optimal number of bins.
(b) Give examples showing that this factor of1.5 is the best possible. ♦

© Chee Yap Basic Version October 25, 2011

§1. JOY RIDES AND BIN PACKING Lecture V Page 10

Exercise 1.22:Weights with structure: suppose that the input weights are of the formwi,j = ui+vj and
(u1, . . . , um) and(v1, . . . , vn) are two given sequences. Sow hasmn numbers. Moreover, each
group must have the formw(i, i′, j, j′) comprising allwk,ℓ such thati ≤ k ≤ i′ andj ≤ ℓ ≤ j′.
Call this a “rectangular group”. We want the sum of the weights in each group to be at mostM ,
the bin capacity. Give a greedy algorithm to form the smallest possible number of rectangular
groups. Prove its correctness. ♦

Exercise 1.23:Two Dimensional Bin Packing: suppose the bins are unit squares, and the weights are
boxes of dimensionsxi × yi (i = 1, . . . , n). Assume0 ≤ xi ≤ 1 and0 ≤ yi ≤ 1. We write
wi = (xi, yi) in this case. Give a heuristic for greedy bin packing, where boxwi must be assigned
to the bin without knowing the later boxeswj (j > i). Moreover, once we placewi, we are not
allowed to rearrange it’s placement Ifwi cannot be placed, we must close the current bin and get
a new bin forwi. NOTE: this is a difficult problem. ♦

Exercise 1.24:A vertex cover for a bigraphG = (V, E) is a subsetC ⊆ V such that for each edge
e ∈ E, at least one of its two vertices is contained inC. A minimum vertex cover is one of
minimum size. Here is a greedy algorithm to finds a vertex cover C:

1. InitializeC to the empty set.
2. Choose from the graph a vertexv with the largest out-degree.

Add vertexv to the setC, and remove vertexv and
all edges that are incident on it from the graph.

3. Repeat step 2 until the edge set is empty.
4. The final setC is a vertex cover of the original graph.

(a) Show a graphG, for which this greedy algorithm fails to give a minimum vertex cover. HINT:
An example with 7 vertices exists.
(b) Letx = (x1, . . . , xn) where eachxi is associated with vertexi ∈ V = {1, . . . , n}. Consider
the following set of inequalities:

• For eachi ∈ V , introduce the inequality

0 ≤ xi ≤ 1.

• For each edge(i, j) ∈ E, introduce the inequality

xi + xj ≥ 1.

If a = (a1, . . . , an) ∈ R
n satisfies these inequalities, we calla a feasible solution. If eachai is

either0 or 1, we calla a0− 1 feasible solution. Show a bijective correspondence between the set
of vertex covers and the set of0 − 1 feasible solutions. IfC is a vertex cover, letaC denote the
corresponding0− 1 feasible solution.
(c) Supposex∗ = (x∗

1, . . . , x
∗

n) ∈ R
n is a feasible solution that minimizes the functionf(x) =

x1 + x2 + · · ·+ xn, i.e., for all feasiblex,

f(x∗) ≤ f(x).

Call x∗ anoptimum vector. Note thatx∗ is not necessarily a0 − 1 vector. Construct a graph
G = (V, E) wherex

∗ is not a0 − 1 feasible solution. HINT: you do not need many vertices
(n ≤ 4 suffices).
(d) Given an optimum vectorx∗, define setC ⊆ V as follows:i ∈ C iff xi ≥ 0.5. Show thatC
is a vertex cover.
(e) SupposeC∗ is a minimum vertex cover. Show that|C| ≤ 2|C∗|. HINT: what is the relation
between|C| andf(x∗)? Betweenf(x∗) and|C∗|? REMARKS: using Linear Programming, we
can find a optimum vectorx∗ quite efficiently. The technique of converting an optimum vector
into an integer vector is a powerful approximation technique. ♦

© Chee Yap Basic Version October 25, 2011

§2. INTERVAL PROBLEMS Lecture V Page 11

Exercise 1.25:For k ≥ 1, ak-coloring of a bigraphG = (V, E) is a functionC : V → {1, . . . , k}.
The coloring isproper if u−v ∈ E implies C(u) 6= C(v). Thechromatic number of G is
the smallestk such that there exists a properk-coloring of G; this number is denotedχ(G).
Computing the chromatic number of bigraphs is one of the puregraph problems for which we
do not know any polynomial time solution. But like the bin packing problem we can “linearize
it”: Given an enumerationv = (v1, . . . , vn) of the vertices ofG, we define the followinggreedy
coloring of G relative tov. Fori = 1, . . . , n, let Ni = {vj : j < i, vj−vi ∈ E} denote the set of
vertices with index less thani that are adjacent tovi. For eachi = 1, . . . , n, in order, we color
vi using the following rule:C(v1) = 1. For i ≥ 2, C(vi) is the smallest integerk ≥ 1 such that
k 6∈ C(Ni):= {C(v) : v ∈ Ni}.
(a) Show that if the enumeration is arbitrary, then the greedy coloring may be arbitrarily bad
compared toχ(G).
(b) Suppose we first sort the vertices in order of non-decreasing degrees. How bad can the greedy
coloring be in this case?
(c) Show that there exists an enumeration whose greedy coloring is optimal.
(d) Using (d), establish an upper bound on the complexity of computing chromatic numbers.♦

END EXERCISES

§2. Interval Problems

An important class of greedy algorithms involves intervals. Typically, we think of an intervalI ⊆ R

as a time interval, representing some activity. For instance, the half-open intervalI = [s, f) where
s < f might represent an activity that starts at times and finishes before timef . Here,[s, f) is the
set{t ∈ R : s ≤ t < f}. Two activitiesconflict if their time intervals are not disjoint. We use half-
open intervals instead of closed intervals so that the finishtime of an activity can coincide with the start
time of another activity without causing a conflict. A setS = {I1, . . . , In} of intervals is said to be
compatible if the intervals inS are pairwise disjoint (i.e., the activities inS are mutually conflict-free).

We begin with theactivities selection problem, originally studied by Gavril. Imagine you have the
choice to do any number of the following fun activities in oneafternoon:

beach 12 : 00− 4 : 00,
swimming 1 : 15− 2 : 45,
tennis 1 : 30− 3 : 20,
movie 3 : 00− 4 : 30,
movie 4 : 30− 6 : 00.

3 : 00 5 : 00 6 : 004 : 0012 : 00 1 : 00 2 : 00

Swim

Beach

Movie 1

Tennis

Movie 2

The corresponding half-open time intervals are visually represented in Figure2. You are not al-
lowed to do two activities simultaneously. Assuming that your goal is to maximize your number of fun
activities, which activities should you choose? Formally,the activities selection problem is this:given
a set

A = {I1, I2, . . . , In}

© Chee Yap Basic Version October 25, 2011

§2. INTERVAL PROBLEMS Lecture V Page 12

3 : 00 5 : 00 6 : 004 : 0012 : 00 1 : 00 2 : 00

Swim

Beach

Movie 1

Tennis

Movie 2

Figure 2: Set of5 activities

of intervals, to compute a compatible subset ofS that is optimal. Here optimality means “of maximum
cardinality”. E.g., in the above fun activities example, anoptimal solution would be to swim and to see
two movies. It would be suboptimal to go to the beach. What would a greedy algorithm for this problem
look like? Here is a generic version:

GENERIC GREEDY ACTIVITIES SELECTION:
Input: a setA of intervals
Output: S ⊆ A, a set of compatible intervals
⊲ Initialization

SortA according to some numerical criterion.
Let (I1, . . . , In) be the sorted sequence.

Let S = ∅.
⊲ Main Loop

For i = 1 to n
If S ∪ {Ii} is compatible, addIi to S

Return(S)

Thus,S is a partial solution that we are building up. At stagei, we considerAi, to eitheracceptor
reject it. Accepting means to make it part of current solutionS. Notice the difference and similarities
between this greedy solution and the one for joy rides.

But what greedy criteria should we use for sorting? Here are some suggestions:

• SortIi’s in order of non-decreasing finish times. E.g., swim, tennis, beach, movie 1, movie 2.

• SortIi’s in order of non-decreasing start times. E.g., beach, swim, tennis, movie 1, movie 2.

• SortIi’s in order of non-decreasing sizefi − si. E.g., movie 1, movie 2, swim, beach, tennis.

• Sort Ii’s in order of non-decreasing conflict degree. The conflict degree ofIi is the number of
Ij ’s which conflict withIi. E.g., movie 2, movie 1 or swim, beach or tennis.

We now show that the first criterion (sorting by non-decreasing finish times) leads to an optimal
solution. In the Exercises, you will see that the other threecriteria do not guarantee optimality.

We use an inductive proof, reminiscent of the joy ride proof.LetS = (I1, I2, . . . , Ik) be the solution
given by our greedy algorithm. IfIi = [si, fi), we may assume

f1 < f2 < · · · < fk.

© Chee Yap Basic Version October 25, 2011

§2. INTERVAL PROBLEMS Lecture V Page 13

SupposeS′ = (I ′1, I
′

2, . . . , I
′

ℓ) is an optimal solution whereI ′i = [s′i, f
′

i) and againf ′

1 < f ′

2 < · · · < f ′

ℓ.
By optimality ofS′, we havek ≤ ℓ. CLAIM: We have the inequalityfi ≤ f ′

i for all i = 1, . . . , k. We
leave this proof as an exercise.

Let us now derive a contradiction if the greedy solution is not optimal: assumek < ℓ so thatI ′k+1

is defined. Then
fk ≤ f ′

k (by CLAIM)
≤ s′k+1 (sinceI ′k, I ′k+1 have no conflict)

and soI ′k+1 is compatible with{I1, . . . , Ik}. This is a contradiction since the greedy algorithm halts
after choosingIk because there are no other compatible intervals.

What is the running time of this algorithm? In deciding if intervalIi is compatible with the current
setS, it is enough to only look at the finish timef of the last accepted interval. This can be done in
O(1) time since this comparison takesO(1) andf can be maintained inO(1) time. Hence the algorithm
takes linear time after the initial sorting.

¶8. Extensions, variations. There are many possible variations and generalizations of the activities
selection problem. Some of these problems are explored in the Exercises.

• Suppose your objective is not to maximize the number of activities, but to maximize the total
amount of time spent in doing activities. In that case, for our fun afternoon example, you should
go to the beach and see the second movie.

• Suppose we generalize the objective function by adding a weight (“pleasure index”) to each ac-
tivity. Your goal now is to maximize the total weight of the activities in the compatible set.

• We can think of the activities to be selected as a uni-processor scheduling problem. (You happen
to be the processor.) We can ask: what if you want to process asmany activities as possible using
two processors? Does our original greedy approach extend inthe obvious way? (Find the greedy
solution for processor 1, then find greedy solution for processor 2).

• Alternatively, suppose we ask: what is the minimum number of processors that suffices to do all
the activities in the input set?

• Suppose that, in addition to the setA of activities, we have a setC of classrooms. We are given a
bipartite graph with verticesA ∪ C and edges isE ⊆ A × C. Intuitively, (I, c) ∈ E means that
activityI can be held in classroomc. We want to know whether there is an assignmentf : A→ C
such that (1)f(I) = c implies(I, c) ∈ E and (2)f−1(c) is compatible. REMARK: scheduling
of classrooms in a school is more complicated in many more ways. One additional twist is to do
weekly scheduling, not daily scheduling.

EXERCISES

Exercise 2.1: We gave four different greedy criteria for the activities selection problem.
(a) Show that the other three criteria are suboptimal.
(b) Actually, each of the four criteria has an inverted version in which we sort in non-increasing
order. Show that each of these inverted criteria are also suboptimal. ♦

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 14

Exercise 2.2: Suppose the inputA = (I1, . . . , In) for the activities selection problem is already sorted,
by non-decreasing order of their start times, i.e.,s1 ≤ s2 ≤ · · · ≤ sn. Give an algorithm to
compute a optimal solution inO(n) time. Show that your algorithm is correct. ♦

Exercise 2.3: Consider the activities selection problem with the following optimality criterion: to max-
imize the length|A| of a setA ⊆ S of activities. Define thelength |A| of a compatible setS to be
the length of all the activities inS, where the length of an activityI = [s, f) is just |I| = f − s.
In caseS is not compatible, its length is0. Write L(S) for the maximum length of anyA ⊆ S.
Let Ai,j = {Ii, Ii+1, . . . , Ij} for i ≤ j andLi,j = L(Ai,j).
(a) Show by a counter example that the following “dynamic programming principle” fails:

Li,j = max {Li,k + Lk+1,j : i ≤ k ≤ j − 1} (14)

Would assuming thatS is sorted by its start or finish times help?
(b) Give anO(n log n) algorithm for computingL1,n. HINT: order the activities in the setS
according to their finish times, say,

f1 ≤ f2 ≤ · · · ≤ fn.

For i = 1, . . . , n, let Li be the maximum length of a subset of{I1, . . . , Ii}. Use an incremental
algorithm to computeL1, L2, . . . , Ln in this order. ♦

Exercise 2.4: Give a divide-and-conquer algorithm for the problem in previous exercise, to find the
maximum length feasible solution for a setS of activities. (This approach is harder and less
efficient!) ♦

Exercise 2.5: Interval problems often arises from scheduling.
(a) There is a5 player game that lasts48 minutes. In this game, any number of players can be
swapped at any time. Suppose there are 8 friends what wants toplay this game. Give a schedule
for swapping players so that each of the8 friends has the same amount of play time.
(b) Suppose there is an player game that lastst minutes. Again, any number of players can be
swapped at any time. There arem friends who wants to play this game. Prove that there is always
a schedule to let each friend have the same amount of playtime.
(c) Design an algorithm for (b) to schedule the swaps so that every one has the same amount of
play time. ♦

END EXERCISES

§3. Huffman Code

The problem of compressing information is central to computing and information processing. We shall
study one problem whose solution is based on the greedy paradigm. It is best to begin with an informally
stated problem:

(P) Given a strings of characters (or letters or symbols) taken from an alphabetΣ, choose
avariable length codeC for Σ so as to minimize the space to encode the strings.

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 15

Before making this problem precise, it is helpful to know thecontext of such a problem. A computer
file may be regarded as a strings, so problem (P) can be called thefile compression problem. Often,
the characters in computer files are extended ASCII characters. This means the alphabetΣ has size
28 = 256, and there is a standard way to represent each character by a8-bit binary string, represented
by a functionCasc : Σ→ {0, 1}8. Thus ASCII code afixed-length binary code, i.e., |Casc(x)| = 8 for
all x ∈ Σ, So the ASCII encoding of a file ofm characters is a binary string of length8m. Can we do
better?

Was Gauss referring to
the difficulty of

compression in the
opening quotation?

The idea of Huffman coding is to use avariable length code in order to take advantage of the
relative frequency of different characters. For instance,in typical English texts, the letters ‘e’ and ‘t’ are
most frequent and it is a good idea to use shorter length codesfor them. On the other hand, infrequent
letters like ‘q’ or ‘ z’ could have longer length codes. An example of a variable length code is Morse code
(see Notes at the end of this section). To see what additionalproperties are needed in variable-length
codes, let us give some definitions:

A (binary)codefor Σ is an injective function

C : Σ→ {0, 1}∗.

A string of the formC(x) (x ∈ Σ) is called acode word. The strings = x1x2 · · ·xm ∈ Σ∗ is then
encoded as

C(s):=C(x1)C(x2) · · ·C(xm) ∈ {0, 1}∗.

This raises the problem of decodingC(s), i.e., recoverings from C(s). For a generalC ands, one
cannot expect unique decoding. One solution is to introducea new symbol ‘$’ and use it to separate
eachC(xi). If we insist on using binary alphabet for the code, this forces us to convert, say, ‘0’ to ‘ 00’,
‘1’ to ‘ 01’ and ‘$’ to ‘ 11’. This doubles the number of bits, and seems to be wasteful.

¶9. Prefix-free codes. Our preferred solution for unique decoding is to require that C beprefix-free.
This means that ifa, b ∈ Σ are distinct letters thenC(a) is not a prefix ofC(b). It is not hard to see
that the decoding problem has a unique solution under prefix-free codes. With suitable preprocessing
(basically to construct the “code tree” forC, defined next) decoding can be done very simply in an
on-line fashion.

We represent a prefix-free codeC by a binary treeTC with n = |Σ| leaves. Each leaf inTC is
labeled by a characterb ∈ Σ such that the path from the root tob is represented byC(b) in the natural
way: starting from the root, we use successive bits inC(b) to decide to make a left branch or right
branch from the current node ofTC . We callTC a code treefor C. For simplicity, we will henceforth
assume that all code trees are full binary trees.Figure3 shows two such trees representing prefix codes
for the alphabetΣ = {a, b, c, d}. The first code, for instance, corresponds toC(a) = 00, C(b) = 010,
C(c) = 011 andC(d) = 1.

Returning to the informal problem (P), we can now interpret this problem as the construction of the
best prefix-free codeC for s, i.e., the code that minimizes the length|C(s)| of C(s). It is easily seen
that the only statistics important abouts is the number, denotedfs(x), of occurrences of the character
x in s. In general, call a function of the form

f : Σ→ N (15)

a frequency function. So we now regard the input data to our problem to be a frequency function
f = fs rather than the strings. Relative tof , thecostof C is defined to be

COST (f, C):=
∑

a∈Σ

|C(a)| · f(a). (16)

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 16

COST=11+8+3=22 COST=11+6+3=20
cb

d

a
5 3

2 1

8

11

3

cb

a

d
3

11

6

12

3

5

Figure 3: Two prefix-free codes and their code trees: assumef(a) = 5, f(b) = 2, f(c) = 1, f(d) = 3.

ClearlyCOST (fs, C) is the length ofC(s). Finally, thecostof f is defined by minimization over all
choices ofC:

COST (f):=min
C

COST (f, C)

over all prefix-free codesC on the alphabetΣ. A codeC is optimal for f if COST (f, C) attains this
minimum. It is easy to see that an optimal code tree must be afull binary tree (i.e., non-leaves must
have two children).

For the codes in Figure3, assuming the frequencies of the charactersa, b, c, d are5, 2, 1, 3 (respec-
tively), the cost of the first code is5 · 2 + 2 · 3 + 1 · 3 + 3 · 1 = 22. The second code is better, with cost
20.

We now precisely state the informal problem (P) as theHuffman coding problem:

Given a frequency functionf : Σ → N, find an optimal prefix-free codeC
for f .

Relative to a frequency functionf onΣ, we associate aweight W (u) with each nodeu of the code
treeTC : the weight of a leaf is just the frequencyf(x) of the characterx at that leaf, and the weight of
an internal node is the sum of the weights of its children. LetTf,C denote such aweighted code tree.
In general, a weighted code tree is just a code tree together with weights on each node satisfying the
property that the weight of an internal node is the sum of the weights of its children. For example, see
Figure3 where the weight of each node is written next to it. Theweight of Tf,C is the weight of its root,
and itscostCOST (Tf,C) defined as the sum of the weights of all itsinternalnodes. In Figure3(a), the
internal nodes have weights3, 8, 11 and so theCOST (Tf,C) = 3+8+11 = 22. In general, the reader
may verify that

COST (f, C) = COST (Tf,C). (17)

We need themergeoperation on code trees: ifTi is a code tree on the alphabetΣi (i = 1, 2) and
Σ1 ∩Σ2 is empty, then we can merge them into a code treeT on the alphabetΣ1 ∪Σ2 by introducing a
new node as the root ofT and withT1, T2 as the two children of the root. We may writeT = T1 + T2.
Note that we do not care whetherT1 or T2 is the left ofT . If T1, T2 are weighted code trees, the result

=

+

T2

T1

T
a

3

11

6

12

3

5

5
a

2

3

cb

d
3

6

1

d

T is also a weighted code tree.

We now present a greedy algorithm for the Huffman coding problem:

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 17

HUFFMAN CODE ALGORITHM:
Input: Frequency functionf : Σ→ N.
Output: Optimal code treeT ∗ for f .
1. LetS be a set of weighted code trees. Initially,S is the set ofn = |Σ| trivial trees,

each tree having only one node representing a single character inΣ.
2. while S has more than one tree,

2.1. ChooseT, T ′ ∈ S with the minimum and the next-to-minimum weights, respectively.
2.2. MergeT, T ′ and insert the resultT + T ′ into S.
2.3. DeleteT, T ′ from S.

3. NowS has only one treeT ∗. OutputT ∗.

A Huffman tree is defined as a weighted code tree thatcouldbe output by this algorithm. We say
“could” because we regard the Huffman code algorithm as nondeterministic – when two trees have the
same weight, the algorithm may pick either one in its choices. Let us illustrate the algorithm with a
familiar 12-letter string,hello world!. The alphabetΣ for this string and its frequency function

arguably the famous
string in computing

may be represented by the following two arrays:

letter h e l o ⊔ w r d !
frequency 1 1 3 2 1 1 1 1 1

Note that the exclamation mark (!) and blank space (⊔) are counted as letters in the alphabetΣ. The
final Huffman tree is shown in Figure4. The number shown inside a nodeu of the tree is theweight of
the node. This is just sum of the frequencies of the leaves in the subtree atu. Each leaf of the Huffman
tree is labeled with a letter fromΣ.

12 0 1 2 3 4 5 6 7

8 9 10 11

14

15

16

13

4

2 2 2 3

5

12

7

3

ℓ

1

h

1

e

1

⊔

1

w

1

r

1

d

1

!

2

o

Figure 4: Huffman Tree for “hello world!”: weights are written inside each node, but ranks
(0, 1, . . . , 16) are beside the nodes.

Figure4 shows the Huffman tree produced by our algorithm on our famous string. In addition, we
display, next to each node, its “rank” (0, 1, 2, . . . , 16). The rank of a node specifies the order in which
nodes were extracted from the priority queue. For instance,the leavesh (rank0) ande (rank0) were
the first two to be extracted in the queue. Their merge produced a node of rank8. Note that the root is
the last (rank16) to be extracted from the queue. With this rank information,we can re-trace the step-
by-step execution of the Huffman code algorithm. In the nextsection, we will exploit rank information
in a more significant way.

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 18

¶10. Implementation and complexity. The input for the Huffman algorithm may be implemented as
an arrayf [1..n] wheref [i] is the frequency of theith letter and|Σ| = n. The output is a binary tree
whose leaves are labeled from1 to n. This algorithm can be implemented using a priority queue ona
setS of binary tree nodes. Recall (§III.2) that a priority queue supports two operations, (a) inserting
a keyed item and (b) deleting the item with smallest key. The frequency of the code tree serves as its
key. Any balanced binary tree scheme (such as AVL trees in Lecture IV) will give an implementation
in which each queue operation takesO(log n) time. Hence the overall algorithm takesO(n log n).

¶11. Correctness. We show that the produced codeC has minimum cost. This depends on the
following simple lemma. Let us say that a pair of nodes inTC is adeepest pairif they are siblings and
their depth is equal to the depth ofTC . In a full binary tree, there is always a deepest pair.

LEMMA 4 (Deepest Pair Property).For any frequency functionf , there exists a code treeT that is
optimal for f , with the further property that some least frequent character, and some next-to-least
frequent character, form a deepest pair.

Proof. Supposeb, c are two characters at depthsD(b), D(c) (respectively) in a weighted code tree
T . If we exchange the weights of these two nodes to get a new codetreeT ′ where

COST (T)− COST (T ′) = f(b)D(b) + f(c)D(c)− f(b)D(c)− f(c)D(b)

= [f(b)− f(c)][D(b)−D(c)]

wheref is the frequency function. Ifb has the least frequency thenf(b)− f(c) ≤ 0. And if D(c) is the
depth of the treeT thenD(b)−D(c) ≤ 0. Together, they imply

COST (T)− COST (T ′) ≥ 0.

That is, the cost of the tree can only decrease when we move a least frequent characters to the deepest
leaf. Hence ifc, c′ are the two characters labeling a deepest pair and andb, b′ are the two least frequent
characters, then by a similar argument, we may exchange the labelsb↔ b′ andc↔ c′ without increas-
ing the cost of the code. If the tree is optimal, then this exchange proves that there is a deepest pair
formed by two least frequent characters. Q.E.D.

We are ready to prove the correctness of Huffman’s algorithm. Suppose by induction hypothesis
that our algorithm produces an optimal code whenever the alphabet size|Σ| is less thann. The basis
case,n = 1, is trivial. Now suppose|Σ| = n > 1. After the first step of the algorithm in which we
merge the two least frequent charactersb, b′, we can regard the algorithm as constructing a code for a
modified alphabetΣ′ in which b, b′ are replaced by a new character[bb′] with modified frequencyf ′

such thatf ′([bb′]) = f(b)+f(b′), andf ′(x) = f(x) otherwise. By induction hypothesis, the algorithm
produces the optimal codeC′ for f ′:

COST (f ′) = COST (f ′, C′). (18)

This codeC′ is related to a suitable codeC for Σ in the obvious way and satisfies

COST (f, C) = COST (f ′, C′) + f(b) + f(b′). (19)

By our deepest pair lemma, and using the fact that the COST is asum over the weights of internal nodes,
we conclude that

COST (f) = COST (f ′) + f(b) + f(b′). (20)

[More explicitly, this equation says that ifT is the optimal weighted code tree forf andT has the
deepest pair property, then by removing the deepest pair with weightsf(b) andf(b′), we get an op-
timal weighted code tree forf ′.] From equations (18), (19) and (20), we concludeCOST (f) =
COST (f, C), i.e., C is optimal.

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 19

¶12. Compact Coding for Transmission. We address the representation of a Huffman codeC for
the purposes of transmission. It is assumed that the representation will be a binary stringαC , and the
main consideration is compactness, i.e., minimality of thelength ofαC .

It is important to spell out some further assumptions aboutC : Σ → {0, 1}∗. First of all, the setΣ
is only partially known. We must rely on some standard character set such as the ASCII set or Unicode.
Let Σ0 be3 such a standard character set.We assume thatΣ is some subset ofΣ0. For simplicity, we
further thatΣ0 ⊆ {0, 1}t for some fixedt. Thist is the common knowledge used by both the transmitter
and receiver. It is important to stress that we do not requireΣ = Σ0. In practice,Σ is just the set of
characters that actually occur in the string we are trying tocompress and transmit. ThusΣ might be a
very small proper subset ofΣ0.

To representC, we first encode the shape of the code treeTC . Once the shape ofTC is known, we
just need to list the elements ofΣ in the order they appear in the left-to-right listing of the leaves ofTC .

We give a progression of ideas that lead to the final compact coding of the shape ofTC . The initial
idea is simple: let us prescribe a systematic way to traverseT . Starting from the root, we use a depth-
first traversal, always go down the left child first. Each edgeis traversed twice, initially downward and
later upward. Then if we “spit” out a0 for going down an edge and “spit” out a1 for going up an edge,
we would have faithfully output a description of the shape ofT by the time we return to the root for the
second time. Figure5 illustrates this traversal of the Huffman tree of Figure3(a), and shows resulting
binary sequence

0010, 0101, 1101. (21)

The commas here are only decorative, to help in parsing into blocks of 4 bits each. This scheme uses
2 bits per edge. Since there are2n − 2 edges, the representation has4n − 4 bits. We emphasize:this
representation depends on knowing thatT is a full binary tree.

Where have we
exploited this fact?

0010,0101,1101

1

0

0

0

1

1

1

1

1

0
0

10

10

1

1
0

0010,0101,01 0010,111

0

2

d

a

3

1

3

12

5

ccb

d

a
5

b

Figure 5: Compressed bit representation for the Huffman tree Figure3a

To improve this representation, observe that a contiguous sequence of ones can be replaced by a
single1 since we know where to stop when going upward from a leaf (we stop at the first node whose
right child has not been visited). This also takes advantageof the fact that we have a full binary tree.
Previously we used2n − 2 ones. With this improvement, we only usen ones (corresponding to the
leaves). The representation now has only3n− 2 bits. Then (21) is now represented by

0010, 0101, 01. (22)

Finally, we note that each1 is immediately followed by a0 (since the1 always leads us to a node whose
right child has not been visited, and we must immediately go down to that child). The only exception

3 What does this really mean? Take the example of the English alphabet, ‘A’ to ‘Z’. Each letter has many layers of meaning
and variations that goes beyond its recognizable symbol. For our purposes however, it suffices to choose one canonical set of 26
symbols to represent this alphabet.

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 20

to this rule is the final1 when we return to the root; this final1 is not followed by a0. We propose to
replace all such10 sequences by a plain1. Since there aren ones (corresponding to then leaves), we How about01→ 1?
would have eliminatedn− 1 zeros in this way. This gives us the final representation with2n− 1 bits.
The scheme (22) is now shortened to:

0010, 111. (23)

See the final illustration in Figure5. The final scheme (23) will be known as thecompressed bit
representationαT of a full binary treeT . In caseT is the code tree for a Huffman codeC, we may
denote the binary stringαT by αC .

The above description assumesT has more than one node: in this case,αT always begins with a
0 and ends with a1. So the shortest such string is011, represent a full binary tree with two leaves.
If T has only one node, it is natural to represent it asαT = 1. Some additional simple properties are
summarized as follows:

LEMMA 5. LetT be a full binary treeT with n ≥ 1 leaves.
(i) |αT | = 2n− 1 with n− 1 zeros andn ones.
(ii) The number of zeros is at least the number of ones in any proper prefix ofαT .
(iii) The setS ⊆ {0, 1}∗ of all such compressed bit representationαT forms a prefix-free set.
(iv) There is a linear time algorithm that checks in a given binary strings belongs to the setS, i.e., ifs
has the formαT for someT .

We leave the proof as an Exercise. Another way to describe theprefix-free property (iii) is that the
representation is “self-limiting”, viz., if we know the beginning of the representation, we can tell when
we reach the end of the representation. This has the following consequence:

THEOREM 6. There is a protocol to transmit a binary stringβC representing any Huffman codeC :
Σ→ {0, 1}∗ on |Σ| = n letters such that
(i) The length ofβC is (2n− 1) + tn = n(t + 2)− 1.
(ii) A receiver can recover the codeC fromβC in linear time, without prior knowledge ofΣ except that
Σ ⊆ Σ0 ⊆ {0, 1}t.

Proof. The stringβC has two parts: the first part is the compressed bit representation αC . The
second part is a list of the elements inΣ. The elements in this list aret-bit binary strings, and they
appear in their order as labels of then leaves ofTC . We have|αC | = 2n− 1, and the listing ofΣ uses
nt bits. This proves (i). For part (ii), the receiver can use theprefix-free property ofαC to detect the
end ofαC while processingβC . In linear time, it could also reconstruct the shape ofTC and thus knows
n. Since the receiver knowst, it can also parse each symbol ofΣ in the rest ofβC . Q.E.D.

Remarks: The publication of the Huffman algorithm in 1952 by D. A. Huffman was considered
a major achievement. This algorithm is clearly useful for compressing binary files. See “Conditions
for optimality of the Huffman Algorithm”, D.S. Parker (SIAM J.Comp., 9:3(1980)470–489,Erratum
27:1(1998)317), for a variant notion of cost of a Huffman tree and characterizations of the cost functions
for which the Huffman algorithm remains valid.

¶13. Notes on Morse Code. In the Morse4 code, letters are represented by a sequence of dots and dashes:
a = · −, b = − · · · andz = − − · ·. The code is also meant to be sounded: dot is pronounced ‘dit’ (or
‘di-’ when non-terminal), dash is pronounced ‘dah’ (or ‘ da-’ when non-terminal). So the famous distress signal
“S.O.S” isdi-di-di-da-da-da-di-di-dit. Thus ‘a’ is di − dah, ‘z’ is da − da − di − dit. The code
does not use capital or small letters. Here is the full alphabet:

4 Samuel Finley Breese Morse (1791-1872) was Professor of theLiterature of the Arts of Design in the University of the City
of New York (now New York University) 1832-72. It was in the university building on Washington Square where he completed
his experiments on the telegraph.

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 21

Letter Code Letter Code

A · − B − · · ·

C − · − · D − · ·

E · F · · − ·

G − − · H · · · ·

I · · J · − − −

K − · − L · − · ·

M − − N − ·

O − − − P · − − ·

Q − − · − R · − ·

S · · · T −

U · · − V · · · −

W · − − X − · · −

Y − · − − Z − − · ·

0 − − − − − 1 · − − − −

2 · · − − − 3 · · · − −

4 · · · · − 5 · · · · ·

6 − · · · · 7 − − · · ·

8 − − − · · 9 − − − − ·

Fullstop (.) · − · − · − Comma (,) − − · · − −

Query (?) · · − − · · Slash (/) − · · − ·

BT (pause) − · · · − AR (end message) · − · − ·

SK (end contact) · · · − · −

Note that Morse code assigns a dot toe and a dash tot, the two most frequent English letters. These two
assignments dash any hope for a prefix-free code. So how can doyou send or decode messages in Morse code?
Spaces! Since spaces are not part of the Morse alphabet, theyhave an informal status as an explicit character (so
Morse code is not strictly a binary code). There are 3 kinds ofspaces: space betweendit’s anddah’s within a
letter, space between letters, and space between words. Letus assume someunit space. Then the above three types
of spaces are worth 1, 3 and 7 units, respectively. These units can also be interpreted as “unit time” when the code
is sounded. Hence we simply sayunit without prejudice. Next, the system of dots and dashes can also be brought
into this system. We say that spaces are just “empty units”, while dit’s anddah’s are “filled units”.dit is one filled
unit, anddah is 3 filled units. Of course, this brings in the question: why 3and 7 instead of 2 and 4 in the above?
Today, Morse code is still required of HAM radio operators and is useful in emergencies.

EXERCISES

Exercise 3.1: Give a Huffman code for the string “hello! this is my little world!”.
♦

Exercise 3.2: What is the length of the Huffman code for the strings = “please compress me′′.
Show your hand computation. Do not forget the empty space character. ♦

Exercise 3.3: Consider the following letter frequencies:

a = 5, b = 1, c = 3, d = 3, e = 7, f = 0, g = 2, h = 1, i = 5, j = 0, k = 1, l = 2, m = 0,

n = 5, o = 3, p = 0, q = 0, r = 6, s = 3, t = 4, u = 1, v = 0, w = 0, x = 0, y = 1, z = 1.

Please determine the cost of the optimal tree. NOTE: you may ignore letters with the zero fre-
quency. ♦

Exercise 3.4: Give an example of a prefix-free codeC : Σ → {0, 1}∗ anda frequency functionf :
Σ → N with the property that (i)COST (C, f) is optimal, but (ii)C could not have arisen from
the Huffman algorithm. HINT: you can choose|Σ| = 4. ♦

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 22

Exercise 3.5: True or False? IfT andT ′ are two optimal prefix-free code for the frequency function
f : Σ → N, thenT andT ′ are isomorphic as unordered trees. Prove or show counter example.
NOTE: a binary tree is an ordered tree because the two children of a node are ordered. ♦

Exercise 3.6: In the text, we prove that for any frequency functionf , there is an optimal code tree in
which there is a deepest pair of leaves whose frequencies arethe least frequent and the next-to-
least frequent. Consider this stronger statement:if T is any optimal code tree forf , there must be
a deepest pair whose frequencies are least frequent and next-to-least frequent.Prove it or show a
counter example. ♦

Exercise 3.7: Let C : Σ → {0, 1}∗ be any prefix-free code whose code treeTC is a full-binary tree.
Prove that there exists a frequency functionf : Σ→ N such thatC is optimal. ♦

Exercise 3.8:
(a) Draw the full binary tree corresponding to its compressed bit representations:

α1 = 0010, 1100, 1011, 1 α2 = 0100, 1001, 0011, 111

(b) What isαT whereT is the full binary tree with6 leaves and every right child is a leaf.
(c) What isαT whereT is the full binary tree with6 leaves and every left child is a leaf.
(d) What isαT whereT is the complete binary tree with8 leaves. ♦

Exercise 3.9: Joe Smart suggested that we can slightly improve the compressed bit representation of
full binary trees onn leaves as follows: since the first bit is always0 and the last bit is always1,
we can use only2n − 3 bits instead of2n − 1. What are some issues that might arise with this
improvement? ♦

Exercise 3.10:The text gave a method to represent any full binary treeT on n leaves using a binary
stringαT with 2n − 1 bits. Clearly, not every binary string of length2n − 1 represents a full
binary tree. For instance, the first and last bits must be0 and1, respectively. Give a necessary
and sufficient condition for a binary string to be a valid representation. ♦

Exercise 3.11:For any binary full treeT , we have given two representations: the arrayAT and the bit
stringαT . Give detailed algorithms for the following conversion problems:
(a) To construct the stringαT from the arrayAT .
(b) To construct the arrayAT from the stringαT .

♦

Exercise 3.12:Let T be a full binary tree onn leaves. Give an algorithm to convert its compressed bit
representationαT [1..2n− 1] to a4n− 4 arrayB[1..4n− 4] representing the traversal ofT .

♦

Exercise 3.13:Suppose we want to represent an arbitrary binary tree, not necessarily full. HINT: there
is a bijection between arbitrary binary trees and full binary trees. Exploit our compressed bit-
representation of full binary trees. ♦

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 23

Exercise 3.14: (a) Prove (17).
(b) It is important to note that we definedCOST (Tf,C) to be the sum off(u) whereu range over
the internal nodes ofTf,C . That means that if|Σ| = 1 (or Tf,C has only one node which is also
the root) thenCOST (Tf,C) = 0. Why does Huffman code theory break down at this point?
(c) Suppose we (accidentally) definedCOST (Tf,C) to be the sum off(u) whereu range over
theall nodes ofTf,C . Where in your proof in (a) would the argument fail? ♦

Exercise 3.15:Below is President Lincoln’s address at Gettysburg, Pennsylvania on November 19,
1863.
(a) Give the Huffman code for the stringS comprising the first two sentences of the address.
Also state the length of the Huffman code forS, and the percentage of compression so obtained
(assume that the original string uses 7 bits per character).View caps and small letters as distinct
letters, and introduce symbols for space and punctuation marks. But ignore the newline charac-
ters.
(b) The previous part was meant to be done by hand. Now write a program in your favorite pro-
gramming language to compute the Huffman code for the entireGettysburg address. What is the
compression obtained?

Four score and seven years ago our fathers brought forth on this continent a new nation,
conceived in liberty and dedicated to the proposition that all men are created equal.
Now we are engaged in a great civil war, testing whether that nation or any nation so
conceived and so dedicated can long endure. We are met on a great battlefield of that
war. We have come to dedicate a portion of that field as a final resting-place for those
who here gave their lives that that nation might live. It is altogether fitting and
proper that we should do this. But in a larger sense, we cannot dedicate, we cannot
consecrate, we cannot hallow this ground. The brave men, living and dead who struggled
here have consecrated it far above our poor power to add or detract. The world will
little note nor long remember what we say here, but it can never forget what they did
here. It is for us the living rather to be dedicated here to the unfinished work which
they who fought here have thus far so nobly advanced. It is rather for us to be here
dedicated to the great task remaining before us -- that from these honored dead we take
increased devotion to that cause for which they gave the last full measure of devotion
-- that we here highly resolve that these dead shall not have died in vain, that this
nation under God shall have a new birth of freedom, and that government of the people,
by the people, for the people shall not perish from the earth.

♦

Exercise 3.16:Let (f0, f1, . . . , fn) be the frequencies ofn + 1 symbols (assuming|Σ| = n + 1).
Consider the Huffman code in which the symbol with frequencyfi is represented by theith code
word in the following sequence

1, 01, 001, 0001, . . . , 00 · · · 01
︸ ︷︷ ︸

n−1

, 00 · · ·001
︸ ︷︷ ︸

n

, 00 · · ·000
︸ ︷︷ ︸

n

.

(a) Show that a sufficient condition for optimality of this code is

f0 ≥ f1 + f2 + f3 + · · ·+ fn,

f1 ≥ f2 + f3 + · · ·+ fn,

f2 ≥ f3 + · · ·+ fn,

. . .

fn−2 ≥ fn−1 + fn.

(b) Suppose the frequencies are distinct. Give a set of sufficient and necessary conditions. ♦

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 24

Exercise 3.17:Suppose you are given the frequenciesfi in sorted order. Show that you can construct
the Huffman tree in linear time. ♦

Exercise 3.18: (Representation of Binary Trees) In the text, we showed thata full binary tree onn
leaves can be represented using2n− 1 bits. SupposeT is an arbitrary binary tree, not necessarily
full. With how many bits can you representT? HINT: by extendingT into a full binary treeT ′,
then we could use the previous encoding onT ′. ♦

Exercise 3.19:Huffman code is based on transmitting bits. Suppose we transmit in ‘trits’ (a base-3
digit). Then the corresponding3-ary Huffman codeC : Σ→ {0, 1, 2}∗ is represented by a3-ary
code treeT where each leaf is associated with a unique letter inΣ and each internal node has
degree at most3. If f : Σ → N is a frequency function, this assigns a weight to each node ofT :
the leaf associated withx ∈ Σ has weightf(x), and each internal node has a weight equal to the
sum of the weights of its children. The cost ofT is defined as usual, as the sum of the weights of
the internal nodes ofT . We are interested in optimal treesT , i.e., whose cost cost is minimum.
(a) Show that in an optimal3-ary code tree, there are no nodes of degree1 and at most one node
of degree2. Furthermore, if a node has degree2, it must have leaves as both of its children.
(b) Let T be a tree whose internal nodes have degrees2 or 3. If there aredi nodes of degreei
(i = 0, 2, 3) in T show thatd0 = 1 + d2 + 2d3.
(c) Show that there are optimal3-ary code trees with this property: if|Σ| is odd, there are no
degree 2 nodes, and if|Σ| is even, there is one degree 2 node. Moreover, if the unique nodeu of
degree2 we may assume its children have minimum frequencies among all the leaves.
(d) Give an algorithm for constructing an optimal3-ary code tree and prove its correctness.♦

Exercise 3.20:We consider the4-ary version of the previous question. LetT be an optimum4-ary
code tree for some frequency functionf : Σ→ N.
(a) Give a short inductive proof of the following fact: SupposeT is any 4-ary tree onn ≥ 1
leaves, and letNd be the number of nodes withd children (d = 0, 1, 2, 3, 4). Thus,n = N0. Give
a short inductive proof for the following formula:n = 1 + N2 + 2N3 + 3N4.
(b) Show that ifT is an optimal code tree, thenN1 = 0 and3N2 + 2N3 ≤ 4, and every non-full
internal node has only leaves as children and the depth of these leaves must equal the height of of
T .
(c) Moreover, we can always transformT from part (b) intoT ′ such that the corresponding
degrees satisfyN ′

1 = 0 and N ′

2 + N ′

3 ≤ 1. Also, for any non-full internal node ofT ′, its
children have weights no larger than any other leaves.
(d) Supposer = (n− 1) mod3. Sor ∈ {0, 1, 2}. Show howN ′

2, N
′

3 in part (b) is determined by
r.
(e) Describe an algorithm to construct an optimal code tree from a frequency functionf .
(f) Show the optimal4-ary Huffman tree for the input stringhello world!. Please state the
cost of this optimal tree. ♦

Exercise 3.21:Further generalize the3-ary Huffman tree construction to arbitraryk-ary codes fork ≥
4. ♦

Exercise 3.22:Suppose that the cost of a binary code wordw is z + 2o wherez (resp.o) is the number
of zeros (resp. ones) inw. Call this theskew cost. So ones are twice as expensive as zeros (this
cost model might be realistic if a code word is converted intoa sequence of dots and dashes as in
Morse code). We extend this definition to theskew costof a codeC or of a code tree. A code
or code tree isskew Huffman if it is optimum with respect to this skew cost. For example, see

© Chee Yap Basic Version October 25, 2011

§3. HUFFMAN CODE Lecture V Page 25

a b

c

21

1

3 1

62

Figure 6: A skew Huffman tree with skew cost of 21.

Figure6 for a skew Huffman tree for alphabet{a, b, c} andf(a) = 3, f(b) = 1 andf(c) = 6.
(a) Argue that in some sense, there is no greedy solution thatmakes its greedy decisions based on
a linear ordering of the frequencies.
(b) Consider the special case where all letters of the alphabet has equal frequencies. Describe the
shape of such code trees. For anyn, is the skew Huffman tree unique?
(c) Give an algorithm for the special case considered in (b).Be sure to argue its correctness and
analyze its complexity. HINT: use an “incremental algorithm” in which you extend the solution
for n letters to one forn + 1 letters. ♦

Exercise 3.23: (Golin-Rote) Further generalize the problem in the previous exercise. Fix0 < α < β
and let the cost of a code wordw beα · z + β · o. Supposeα/β is a rational number. Show a
dynamic programming method that takesO(nβ+2) time. NOTE: The best result currently known
gets rid of the “+2” in the exponent, at the cost of two non-trivial ideas. ♦

Exercise 3.24: (Open) Give a non-trivial algorithm for the problem in the previous exercise whereα/β
is not rational. An algorithm is “trivial” here if it essentially checks all binary trees withn leaves.

♦

Exercise 3.25:The range of the frequency functionf was assumed to be natural numbers. If the range
is arbitrary integers, is the Huffman theory still meaningful? Is there fix? What if the range is the
set of non-negative real numbers? ♦

Exercise 3.26: (Elias) Consider the following binary encoding scheme for the infinite alphabetN (the
natural numbers): an integern ∈ N is represented by a prefix string of⌊lg n⌋ 0’s followed by the
binary representation ofn. This requires1 + 2 ⌊lg n⌋ bits.
(a) Show that this is a prefix-free code.
(b) Now improve the above code as follows: replacing the prefix of ⌊lg n⌋ 0’s and the first1 by a
representation of⌊lg n⌋ the same scheme as (a). Now we use only1 + ⌊lg n⌋+ 2 ⌊lg(1 + lg n)⌋
bits to encoden. Again show that this is a prefix-free code.
(c) What is the generalization of the schemes of (a) and (b)? ♦

Exercise 3.27: (Shift Key in Huffman Code) We want to encode small as well as capital letters in our
alphabet. Thus ‘a’ and ‘A’ are to be distinguished. There aretwo methods to do this. (I) View the
small and capital letters as distinct symbols. (II) Introduce a special “shift” symbol, and each letter
is assumed to be small unless it is preceded by a shift symbol,in which case the following letter
is capitalized. As input string for this problem, use the text of this question. Punctuation marks
are part of this string, but there is only one SPACE character. Newlines and tabs are regarded as
instances of SPACE. Two or more consecutive SPACE characters are replace by a single SPACE.

© Chee Yap Basic Version October 25, 2011

§4. DYNAMIC HUFFMAN CODE Lecture V Page 26

(a) What is the length of the Huffman code for our input stringusing method (I). Note that the
input string begins with “We want to en...” and ends with “...ngle SPACE.”.
(b) Same as part (a) but using method (II).
(c) Discuss the pros and cons of (I) and (II).
(d) There are clearly many generalizations of shift keys, asseen in modern computer keyboards.
The general problem arises when our letters or characters are no longer indivisible units, but
exhibit structure (as in Chinese characters). Give a general formulation of such extensions. ♦

END EXERCISES

§4. Dynamic Huffman Code

Here is the typical sequence of steps for compressing and transmitting a strings using the Huffman
code algorithm:

(i) First make a pass over the strings to compute its frequency function.

(ii) Next compute a Huffman code treeTC corresponding to some codeC.

(iii) UsingTC , compute the compressed stringC(s).

(iv) Finally, transmit the treeTC (Theorem6), together with the compressed stringC(s), to the receiver.

The receiver receivesTC andC(s), and hence can recover the strings. Since the sender must process
the strings in two passes (steps (i) and (iii)), the original Huffman tree algorithm is sometimes called
the “2-pass Huffman encoding algorithm”. There are two deficiencies with this 2-pass process: (a)
Multiple passes over the input strings makes the algorithm unsuitable for realtime data transmissions.
Note that ifs is a large file, this require extra buffer space. (b) The Huffman code tree must be explicitly
transmitted before the decoding can begin. We need some way to encodeTC . This calls for a separate
algorithm to handleTC in the encoding and decoding process.

An approach called “Dynamic Huffman coding” (or adaptive Huffman coding) overcomes these
problems: there is no need to explicitly transmit the code tree, and it passes over the strings only once.
In fact, it does not even have to pass over the entire string even once, but can transmit as much of the
string as has been read! This property is important for transmitting continuous stream of data that has no
apparent end (e.g., ticker tape, satellite signals). Two known algorithms for dynamic Huffman coding
[7] are theFGK Algorithm (Faller 1973, Gallager 1978, Knuth 1985) and theLambda Algorithm
(Vitter 1987). The dynamic Huffman code algorithm can be used for data compression: for example, it
is used5 in the Unix utility compress/uncompress.

¶14. Sibling Property. In Dynamic Huffman Coding, the weighted code treeT must evolve as char-
acters from the input string is read. It must evolve in two ways: not only does the frequency of letters
in Σ increase over time, butΣ itself can grow as new letters are encountered. We need to update our
representation ofT as this happens. The key idea is the “sibling property” of Gallagher.

AssumeT hask ≥ 0 internal nodes. So it hask + 1 leaves or2k + 1 nodes in all. We sayT has the
sibling property if its nodes can beranked from 0 to 2k satisfying:

4

1

6

3
1

2

4

5

2

e

h

0

2

ℓ

1

1

0

5 This particular utility has been replaced by better compression schemes.

© Chee Yap Basic Version October 25, 2011

§4. DYNAMIC HUFFMAN CODE Lecture V Page 27

(S1) (Weights are non-decreasing with rank) Ifwi is the weight of node with ranki, thenwi−1 ≤ wi

for i = 1, . . . , 2k.

(S2) (Siblings have consecutive ranks) The nodes with ranks2j and 2j + 1 are siblings (forj =
0, . . . , k − 1).

For example, the weighted code tree in Figure4 has been given the rankings0, 1, 2, . . . , 16. We
check that this ranking satisfies the sibling property. Notethat the node with rank2k is necessarily the
root, and it has no siblings. In general, letr(u) denote the rank of nodeu. If the weights of nodes are
all distinct, then the rankr(u) is uniquely determined by Property (S1).

LEMMA 7. LetT be weighted code tree. ThenT is Huffman iff it has the sibling property.

Proof. If T is Huffman then by definition, it is constructed by the Huffman code algorithm. We can
rank the nodes in the order that nodes are extracted from the priority queue, and this ordering implies
the sibling property. Conversely, the sibling property ofT determines an obvious order for merging
pairs of nodes to form a Huffman tree. Q.E.D.

¶15. Sibling Representation of Huffman Tree. We provide a array representation Huffman trees
which exploits the sibling property. LetT be a Huffman tree withk + 1 ≥ 1 leaves. Each of its2k + 1
nodes may be identified by its rank,i.e., a number from0 to 2k. Hence nodei has ranki. We use two
arrays

Wt[0..2k], Lc[0..2k]

of length2k +1 whereWt[i] is theweightof nodei, andLc[i] is theleft childof nodei. ThusLc[i]+ 1
is the right child of nodei. We can ensure that the root is node2k, and the left and right child of any
node is a pair of the form(2j, 2j + 1) (for somej). In case nodei is a leaf, we may letLc[i] = −1.
Alternative, we letLc[i] store a letter of the alphabetΣ. In this case, we assume that it is possible to
distinguish between elements in the set0, . . . , 2k versus letters ofΣ.

We stress that storing elements ofΣ in Lc is is not essential, but serves as an aid to understanding
the applications of this array. Whatis essential for our algorithms is theinverserepresentation that tells
us, for each letterx ∈ Σ, which leaf inT containsx. Moreover, because of the dynamic nature ofΣ,
we need a more general mapping,

Cm : Σ0 → {−1, 0, 1, 2, . . . , 2k}

such thatCm[x] = i iff Lc[i] = x ∈ Σ, andCm[x] = −1 if x /∈ Σ. Call Cm thecharacter map array.
Initially, Cm[x] = −1 for all x ∈ Σ0 (i.e., initially Σ = ∅). As new letters inΣ0 are encountered, they
are added toΣ and the corresponding entryCm[x] updated. Thus the third array in our representation of
a Huffman code is this arrayCm. For instance, with three arrays, we can now determine the code word
C(x) ∈ {0, 1}∗ of any givenx ∈ Σ (Exercise).

In summary, our Huffman tree is represented by three arraysLc,Wt,Cm. For example, the Huffman
tree in Figure4 is illustrated by the arrays in Table1: Two of these arrays,Lc andWt, are explicitly
shown. But the arrayCm[x ∈ Σ0] is easily inferred from the leaf entries ofLc. E.g.,Cm[h] = 0, Cm[e] =
1 andCm[a] = −1. There is no “Rank” array in this representation because, trivially, Rank[v] = v for
all v ∈ {0, . . . , 2k}.

12 0 1 2 3 4 5 6 7

8 9 10 11

14

15

16

13

4

2 2 2 3

5

12

7

3

ℓ

1

h

1

e

1

⊔

1

w

1

r

1

d

1

!

2

o

Here is a simple application of the Sibling representation.Suppose we are given a letterx ∈ Σ,
and we want to determine the corresponding Huffman codeC(x). We need to first go to the leafu of
T corresponding tox. This is of course given byu = Cm[x]. The last bit ofC(x) is therefore equal to

© Chee Yap Basic Version October 25, 2011

§4. DYNAMIC HUFFMAN CODE Lecture V Page 28

Rank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Lc h e ⊔ w r d ! o 0 2 4 6 ℓ 8 10 12 15
Wt 1 1 1 1 1 1 1 2 2 2 2 3 3 4 5 7 12

Table 1: Compact representation of Huffman tree in Figure4

the “parity” of u. (The parity of a natural numberu is equal to0 if u is even, and equal to1 otherwise.)
Then we replaceu by parent(u), and thereby determine the next bit ofC(x). Iterating this process, we
stop whenu eventually becomes the root. So the macro to compute the bitsof C(x) (in reverse order)
is given by

C(x):
u← Cm[x]
Output(parity(u))
while u < 2k

u←parent(u)
Output(parity(u))

The parent ofu is computed by a simplefor-loop:

parent(u):
ℓ← 2 ⌊u/2⌋
for p← u + 1 to 2k

if (Lc[p] = ℓ), Return(p).

Thefor-loop is sure to terminate whenu is non-root. Moreover, the number of times that thep variable
is updated (over repeated calls toparent(u) by C(x)) is at most2k values since the value ofp is strictly
increasing with each assignment. This ensures the overall complexity ofC(x) is O(k).

¶16. The Restoration Problem. The key problem of dynamic Huffman tree is how to restore
Huffman-ness under a particular kind of perturbation: letT be Huffman and suppose the weight of
a leafu is incremented by1. So weights of each node along the path fromu to the root is similarly
incremented. The result is a weighted code treeT ′, but it may no longer be Huffman.Informally, our
problem is to restore Huffman-ness in such a treeT ′.

Let us first give some intuition of what has to be done, using our example ofheℓℓo worℓd!.
Begin with the Huffman tree after having transmitted the prefix heℓ. Assume that, somehow, we
managed to construct a Huffman tree for this string as shown in Figure7(a). The lettersh, e andℓ are
stored in nodes4, 3 and1 (respectively). Note that there is a leaf with weight0, but we ignore this
for now. Each letter has frequency (=weight) of1. The next transmitted letter isℓ, and if we simply
increase the frequency of node1 (which representsℓ) to 2 = 1 + 1, we would violate the ranking
property (S1) of ¶14. This is because the weight of a node of rank1 would now be greater than the
weights of nodes with greater rank (3 and4). The key idea is to firstswap node1 with node4. This
is shown in Figure7(b). Now, the letterℓ is represented by node4, and incrementing its weight by1
is no longer a problem. The result is seen in Figure7(c). We must next increment the weight of the
parent of node4, namely node6. So the focus moves to node6, as indicated by Figure7(d). We can
simply increment the weight of node6 because it is the root. But if it is not the root, we may have

© Chee Yap Basic Version October 25, 2011

§4. DYNAMIC HUFFMAN CODE Lecture V Page 29

(d)

3

(c)

1

Wt[u]++

(b)(a)

Wt[u]++

4

4

1

3

3

6

1

u← parent(u)

6

4

1

3

4

6

4

(e)

6

swap(u,v), u=1, v=4

1

3

6

1

1

2

2

5

3

1

2

2

5

3

2

2

5

1

2

2

5

1

2

2

5

ℓ

ℓ

3

1

h

1

e0

1

10

0
0

* *

0

0

*

2

ℓ

3

1

h

1

e

e
1

1

1

e

1

ℓ

*

0

0

h

e

1

2

1

h

ℓ

4

h

*

0

0

2

Figure 7: Restoring Huffmanness after incrementing the frequency of letterℓ

to do a swap first. The result is Figure7(e). The process stops since we have reached the root of the
tree.

Consider the following algorithm for restoring Huffman-ness inT . For each nodev in T , let R(v)
denote its rank in the original treeT . But our usual convention is thatv is identified with its rank, i.e.,
R(v) = v. Let u be the current node. Initially,u is the leaf whose weight was incremented. We use the
following iterative process:

RESTORE(u)
⊲ u is a node whose weight is to be incremented
While (u is not the root) do

1. ⊲ Find the nodev with the largest rankR(v) subject
⊲ to the constraintWt[v] = Wt[u]. Specifically:
v ← u
While (Wt[v + 1] = Wt[u])

v++
2. If (v 6= u)
3. Swap(u, v). ⊳ This swaps the subtrees rooted atu andv.
4. Wt[u]++. ⊳ Increment the weight ofu
5. u← parent(u). ⊳ Resetu
6. Wt[u]++. ⊳ Now,u is the root

We need to explain one detail in the RESTOREroutine. The swap operation in Line 3 needs to be
explained: conceptually, swappingu andv means the subtree rooted atu and the subtree rooted atv
exchange places. This can be confusing to explain since our encoding identifies the nodesu andv with
their rank. So for the moment, imagine thatu is a node in a tree where nodes have parent, left child and
right child pointers, etc. Supposeu′ andv′ were the parents (respectively) ofu andv before the swap.

© Chee Yap Basic Version October 25, 2011

§4. DYNAMIC HUFFMAN CODE Lecture V Page 30

Then after the swap,v′ (resp.,u′) becomes the parent ofu (resp.,v). Coming back to our representation
using theLc array, we only have exchange the values in the array entriesLc[u] andLc[v]. But note that
this swap may involve leaves, in which case we have to update the character mapCm:

SWAP(u, v)
tmp← Lc[u]; Lc[u]← Lc[v]; Lc[v]← tmp
If (Lc[u] ∈ Σ0) then Cm[Lc[u]]← u
If (Lc[v] ∈ Σ0) then Cm[Lc[v]]← v

We do not have to exchangeWt[u] andWt[v] since these have the same values! A swap is done only if
v > u (Line 2). Thus the rank of the current nodeu is strictly increased by such swaps. After swapping
u andv, their siblings will change (recall that rank2j and rank2j + 1 nodes are siblings).

The reader may verify that the informal example of Figure7 is really an operation of the RESTORE

routine.

But let us walk through an example of the operations of RESTORE, this time seeing its transfor-
mation on theLc,Wt arrays. Suppose we have just completely processed our famous string “heℓℓo
world!”, and assume that the resulting Huffman treeT is given by Figure4. Let the next character to
be transmitted be⊔ (space character), and setu to the node corresponding to⊔. SoWt[u] is to be incre-
mented, and we call RESTORE(u). We use the representation ofT by the arraysLc,Wt above: in this
caseu is the node (whose rank is)2 (or v2, for clarity). It has weightWt[v2] = 1 and so we must find
the largest ranked node with weight1, namely nodev6. Swappingv2 with v6, and then incrementing
the weight ofv6, we get:

Rank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Lc h e ! w r d ⊔ o 0 2 4 6 ℓ 8 10 12 15
Wt 1 1 1 1 1 1 1+1 2 2 2 2 3 3 4 5 7 12
After first swap v u

Next,u is set to the parent of node of rank6, namelyv11. This has weight3, and so we must swap
it with the elementv12 which is the highest ranked node with weight3. After swappingv11 andv12, we
increment the newv12. The following table illustrates the remaining changes:

Rank 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Lc h e ! w r d ⊔ o 0 2 4 ℓ 6 8 10 12 15
Wt 1 1 1 1 1 1 1+1 2 2 2 2 3 3+1 4 5 7 12
After second swap v u

Lc h e ! w r d ⊔ o 0 2 4 ℓ 6 8 10 12 15
Wt 1 1 1 1 1 1 1+1 2 2 2 2 3 3+1 4 5 7+1 12
No third swap u = v

Lc h e ! w r d ⊔ o 0 2 4 ℓ 6 8 10 12 15
Wt 1 1 1 1 1 1 1+1 2 2 2 2 3 3+1 4 5 7+1 12+1
No final swap u = v

© Chee Yap Basic Version October 25, 2011

§4. DYNAMIC HUFFMAN CODE Lecture V Page 31

¶17. How to add a new letter: the0-Node. Our dynamic Huffman code treeT must be capable of
expanding its alphabet. E.g., if the current alphabet isΣ = {h,e} and we next encounter the letterl,
we want to expand the alphabet toΣ = {h,e,l}. For this purpose, we introduce inT a special leaf with
weight0. Call this the0-node. This node does not represent any letters of the alphabet, but in another
sense, it represents all the yet unseen letters. We might saythat the0-node represents the character ‘∗’.
Upon seeing a new letter likel, we take three steps: to updateT :

1. First, we “expand” the0-node by giving it two children. Its left child is the new0-node, and its
right childu is a new leaf representing the letterl.

2. Next, we must give ranks to all the nodes: the new0-node has rank0, the new leafu has rank1,
and all the previous nodes have their ranks incremented by2. In particular, the original0-node
will have rank2.

3. Finally, we must update the weights. The weight of the new0-node is0, and the weight ofu is 1.
We must now increase the weight of all the nodes along the pathfrom the old0-node to the root:
this is done by calling RESTOREon the old0-node.

The operations of the restore function using this0-node convention is illustrated in Figure8. Here,
we begin with an initial Huffman tree containing just the0-node, and show successive Huffman trees
on inserting the first five letters of our hello example.

7

8

1

6

h
e

6

4

1

3
3ℓ

1

1

3

4

o

6

1

3

4

ℓ
1

1

2

5

5

2

3

1

2

2

5

3

1

2

2

1

2

2

5

4

4

2

0

1

h

0

* e

0

1

h

0

*

1

*

h

1

1h

1

e
h

0

1

1

*

0 0

*

0

e

0

1

ℓ

1

e

ℓ

o

1

2

2

ℓ

0

*

0

0

Figure 8: Evolving Huffman tree on inserting the stringhello

Note that the transition fromhel to hell is already described in detail in Figure7.

¶18. Interface between Huffman Code and Canonical Encoding. LetΣ denote the set of characters
in the current Huffman code. We viewΣ as a subset of a fixed universal setU whereU ⊆ {0, 1}N .
Call U thecanonical encoding. In reality,U might be the set of ASCII characters withN = 8. A more

© Chee Yap Basic Version October 25, 2011

§4. DYNAMIC HUFFMAN CODE Lecture V Page 32

complicated example is whereU is some unicode set. We assume the transmitter and receiver both
know this global parameterN and the setU . In the encoding process, we assume that each character
of the string comes fromU . Upon seeing a letterx, we must decide whetherx ∈ Σ (i.e., in our current
Huffman tree), and if so, what is its current Huffman code. If|U | is not too large (e.g.,|U | = 28),
we can provide an arrayC[1..2N] such thatC[x] maps to a leaf of the Huffman tree. To be specific,
suppose|Σ| = k and the current Huffman treeT is represented by the arraysLc[0..2k],Wt[0..2k]. If
x ∈ {0, 1}N , let C[x] = i if node i (of rank i) is the leaf ofT representing the letterx. Initially, let
C[x] = −1 for all x. Hence, the arrayC is a representation of the alphabetΣ.

For instance, ifC[x] is the0-node, this meansx is not in Σ. If |U | is large, we can use hashing
techniques.

Even though we know the leaf, it requires some work to obtain the corresponding Huffman code.
[This is the encoding problem – but the Huffman code tree is specially designed for the inverse problem,
i.e., decoding problem.] One way to solve this encoding problem is assume that our Huffman tree has
parent pointer. In terms of ourLc,Wt array representation, we now add another arrayP [0..2k] for
parent pointers.

Here now is the dynamic Huffman coding method for transmitting a strings:

DYNAMIC HUFFMAN TRANSMISSIONALGORITHM:
Input: A strings of indefinite length.
Output: The dynamically encoded sequence representings.
⊲ Initialization

Initialize T to contain just the0-node.
⊲ Main Loop

while s is non-empty
1. Remove the next characterx from the front of strings.
2. Letu = C[x] be the leaf ofT that corresponds tox.
3. Usingu, transmit the code word forx.
4. If u is the0-node ⊳ x is a new character
5. Expand the0-node to have two children, both with weight0;
6. Letu be the right sibling, representing the characterx

and the left sibling represent the new0-node.
7. Call RESTORE(u).

Signal termination, using some convention.

Decoding is also relatively straightforward. We are processing a continuous binary sequence, but
we know where the implicit “breaks” are in this continuous sequence. Call the binary sequence be-
tween these breaks aword. We know how to recognize these words by maintaining the samedynamic
Huffman code treeT as the transmission algorithm. For each received word, we know whether it is (a)
a code word for some character, (b) signal to add a new letter to the alphabetΣ, or (c) the canonical
representation of a letter. Thus the receiver can faithfully reproduce the original strings.

Another practical issue is that whenever we insert a new node, the ranks of current nodes implicitly
increases by2, and a literal implementation requires updating the entirearray forLc andWt. There is
a simple solution to this. Let us store the array in reverse order. All invocations ofLc[i] is really an
invocation ofLc[2k − i]. Similarly forWt[i]. We leave it to the student to work out this detail.

REMARKS: It can be shown that the FGK Algorithm transmit at most 2H2(s) + 4|s| bits. The
Lambda Algorithm of Vitter ensures that the transmitted string length is≤ H2(s) + |s| − 1 where

© Chee Yap Basic Version October 25, 2011

§4. DYNAMIC HUFFMAN CODE Lecture V Page 33

H2(s) is the number of bits transmitted by the2-pass algorithm fors, independent of alphabet size. In
Chapter VI, we will show another approach to dynamic compression of strings based on the move-to-
front heuristic and splay trees [1].

¶19. Notes on Unicode. The Unicode is an evolving standard for encoding the characters sets of most human
languages (including dead ones like Egyptian hieroglyphs). Here, we must make a basic distinction betweenchar-
acters (or graphemes) and their manyglyphs (or graphical renderings). The idea is to assign a unique number,
called acode point, to each character. Typically, we write such a number as U+XXXXXX where the X’s are
hexadecimal. As usual, leading zeros are insignificant. Forinstance the first 128 code points in Unicode, U+0000
to U+007F, correspond to the ASCII code. The code points below U+0020 are control characters in ASCII code.
But there are many subtle points because human languages andwriting are remarkably diverse. Characters are not
always atomic objects, but may have internal structure. Thus, should we regard é as a single Unicode character, or
as the character “e” with a combining acute “´”? (Answer: both solutions are provided in unicode.) If combined,
what kinds of combinations do we allow? Coupled with this, wemust meet the needs of computer applications:
computers use unprintable or control characters, but should these be characters for Unicode? (Answer: of course,
this is part of ASCII.)

There are other international standards (ISO) and these have some compatibility with Unicode. For instance,
the first 256 code points corresponds to ISO 8859-1. There aretwo methods for encoding in Unicode called Unicode
Transformation Format (UTF) and Universal Character Set (UCS). These leads to UTF-n, UCS-n for various values
of n. Let us just focus on one of these, UTF-8. This was created by K.Thompson and R.Pike, which is a de facto
standard in many applications (e.g., electronic mail). It has a basic 8-bit format with variable length extensions
that uses up to 4 bytes (32 bits). It is particularly compact for ASCII characters: only 1 byte suffices for the 127
US-ASCII characters. A major advantage of UTF-8 is that a plain ASCII string is also a valid UTF-8 string (with
the same meaning of course). Here is UTF-8 in brief:

1. Any code point below U+0080 is encoded by a single byte. Of course,080 in hex is just128 in decimal.
Thus, U+00XY whereX < 8 can be represented by the single byteXY that has a leading 0-bit.

2. Code points between U+0080 to U+07FF uses two bytes. The first byte begins with 110, second byte begins
with 10.

3. Code points between U+0800 to U+FFFF uses three bytes. Thefirst byte begins with 1110, remaining two
bytes begin with 10.

4. Code points between U+100000 to U+10FFFF uses four bytes.The first byte begins with 11110, remaining
three bytes begin with 10.

Observe that each code point is self-limiting, i.e., you cantell when you have reached the end of a code point.

EXERCISES

Exercise 4.1: In this question, we are asking for three numbers. But you must summarize to show
intermediate results of your computations. Assume that thealphabetΣ is a subset of{0, 1}8 (i.e.,
ASCII code).
(a) What is the length of the (static) Huffman code of the string “Hello, world!”? The
quotation marks are not part of the string, but the space and punctuation marks are.
(b) How many bits does it take to transmit the Huffman code forthe string of (a)?
(c) How many bits would be transmitted by the Dynamic Huffmancode algorithm in sending the
string “Hello, world!”? Compare this number with (a)+(b). ♦

Exercise 4.2: What binary string would you transmit in order to send the string “now is the
time”, under the dynamic Huffman algorithm? Show your working. Note: you would have

© Chee Yap Basic Version October 25, 2011

§4. DYNAMIC HUFFMAN CODE Lecture V Page 34

to transmit ascii codes for the lettersn, o, w, etc. Just write ASCII(n), ASCII(o), ASCII(w),
etc. ♦

Exercise 4.3: Natural languages are highly redundant (for good reasons).Here is one way to test this.
(a) Please transmit the following string using dynamic Huffman coding, and state the bit length
of your transmission.

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t mttaer
in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is
taht the frist and lsat ltteer be at the rghit pclae. The rset can be
a total mses and you can sitll raed it wouthit porbelm. Tihs is
bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the
wrod as a wlohe.

(b) Now repeat part (a) but using similar string in which the words are now properly spelled.
Should we expect a drop in the number of transmitted bits? Note that this experiment could not
be done using standard Huffman coding since the frequency function in (a) and (b) are identical.

♦

Exercise 4.4:
(a) Please reconstruct the Huffman code treeT from the following representation:

r(T) = 0000, 1111, 0011, 011d, mrit, yo

CONVENTIONS: the commas inr(T) are just decorative, and meant to help you parse the string.
Other than0/1 symbols, the lettersd, m, i, etc, stands for8-bit ASCII codes. The leftmost leaf in
the tree is the0-node, and its label (namely ’∗’) is implicit. The remaining leaves are labeled by
8-bit ASCII codes ford, m, r, i, t, y, o, in left-to-right order.
(b) Here is a string encoded using this Huffman code:

0001, 1110, 1001, 1001, 0111, 1011, 10

Decode the string.
(c) Assume that the leaves of the Huffman tree in (a) has the following frequencies (or weights):

f(∗) = 0, f(d) = f(m) = f(i) = f(t) = d(y) = 1, f(r) = f(o) = 2.

Assign a rank (i.e., numbers from0, 1, . . . , 14) to the nodes of the tree in (a) so that the sibling
property is obeyed. Redraw this tree with the ranking listednext to each node. Also, write the
arraysLc[0..14] andWt[0..14] which encodes this ranking of the Huffman tree. Recall that these
arrays encode the left-child relation and weights (frequencies), respectively.
(d) Suppose that we now insert a new letter⊔ (blank space) into the weighted Huffman code
tree of (c). Draw the new Huffman tree with updated ranking. Also, show the updated arrays
Lc[0..16] andWt[0..16].
(e) Give the Huffman code for the string “dirty room” (this string has is a blank character⊔,
but the quotes are not part of the string). What is the relation between this string and the one in
(d)? ♦

Exercise 4.5: Give the dynamic Huffman coding for the following anagrams:(1)the morse code
(2)here come dots ♦

Exercise 4.6: Assume the Sibling Representation of the Huffman codeC : Σ → {0, 1}∗. Give the
routine to compute the code wordC(x) ∈ {0, 1}∗ of any givenx ∈ Σ. ♦

© Chee Yap Basic Version October 25, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 35

Exercise 4.7: Give a careful and efficient implementation of the dynamic Huffman code. Assume the
compact representation of Huffman tree using the arraysWt andLc described in the text. ♦

Exercise 4.8: Consider3-ary Huffman tree code. State and prove the Sibling propertyfor this code.
♦

Exercise 4.9: A previous Exercise asks you to construct the standard Huffman code of Lincoln’s speech
at Gettysburg.
(a) Construct the optimal Huffman code tree for this speech.Please give the length of Lincoln’s
coded speech, and also the size of the code tree.
(b) Please give the length of the dynamic Huffman code for this speech. How does it compare to
part (a)? Also, compare the code tree at the end of the dynamiccoding process with the one in
part (a). ♦

Exercise 4.10:The correctness of the dynamic Huffman code depends on the fact that the weight at the
leaves are integral and the change is+1.
(a) Suppose the leave weights can be any positive real number, and the change in weight is also
by an arbitrary positive number. Modify the algorithm.
(b) What if the weight change can be negative? ♦

END EXERCISES

§5. Minimum Spanning Tree

In theminimum spanning forest problemwe are given a costed bigraph

G = (V, E; C)

whereC : E → R. An acyclic setT ⊆ E of maximum cardinality is called aspanning forest; in this
case,|T | = |V | − c whereG hasc ≥ 1 components. ThecostC(T) of any subsetT ⊆ E is given by
C(T) =

∑

e∈T C(e). An acyclic set isminimum if its cost is minimum. It is conventional to make the
following simplification:

The input bigraphG is connected.

With this assumption, a spanning forestT is actually a tree, and the problem is known as themin-
imum spanning tree (MST) problem. The simplification is not too severe: if our graph is not con-
nected, we can first compute its connected components (we sawefficient solutions to this basic graph
problem in Chapter IV). Then we apply the MST algorithm to each component. Alternatively, it is not
hard to modify most MST algorithms so that they apply to non-connected graphs.

Consider the costed bigraph in Figure9 with verticesV = {a, b, c, d, e}. One such MST is
{a−b, b−c, c−d, d−e}, with cost6. It is easy to verify that there are a total five MST’s for this bi-
graph, as shown in Figure10.

© Chee Yap Basic Version October 25, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 36

b a

c d

e

2

1 2

2

1

2

3

Figure 9: A bigraph with edge costs.

¶20. Generic MST Algorithm. There several distinct algorithms for MST. They all fit into the fol-
lowing framework:

GENERIC GREEDY MST ALGORITHM

Input: G = (V, E; C) a connected bigraph with edge costs.
Output: S ⊆ E, a MST forG.

S ← ∅.
for i = 1 to |V | − 1 do
1. Greedy Step: find ane ∈ E − S that is “good forS”.
2. S ← S + e.
OutputS as the minimum spanning tree.

NOTATION: as illustrated in Line 2, we shall write “S + e” for “ S ∪ {e}”. Likewise, “S − e” shall
denote the set “S \ {e}”.

What does it mean for “e to be good forS”? This will be made specific next.

¶21. Some Greedy MST Criteria. Let us say thate is acandidate for S if S + e is acyclic. IfU is
a connected component ofG′ = (V, S), ande = (u, v) is a candidate such thatu ∈ U or v ∈ U then
we say thate extendsU . Note that ife extendsU then the setU cannot be a component of the graph
G′′ = (V, S + e). The following are 4 notions of what it means for “e is good forS”:

• (Simple)S + e is extendible to some MST.

• (Kruskal) Edgee has the least cost among all the candidates.

• (Boruvka) There is a connected componentU of G′ = (V, S) such thate has the least cost
among all the candidates that extendU . Let us expand this a bit: supposeG′ hask components
U1, . . . , Uk. Then for eachUi, there is at least oneei that extendsUi with least cost. There fact
that there are many choices fore can be exploited in parallel algorithms. Note that it is possible
thatei = ej with i 6= j, but we still have at least⌈k/2⌉ choices.

• (Prim) This has, in addition to Boruvka’s condition, the requirement that the graphG′′ = (V, S +
e) has only one non-trivial component. [A component is trivialif it has only a single vertex.]

This first criterion is computational ineffective. The remaining three criteria are effective and are
named after the inventors of three well-known MST algorithms. There are additional algorithmic tech-
niques that are needed before we finally achieve the best realization of these ideas:

© Chee Yap Basic Version October 25, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 37

3

1

b a

c d

e

2

2

2

1

2

3

b a

c d

e

2

1 2

2

1

2

3

b a

c d

e

2

1 2

2

1

2

3

b a

c d

e

2

1 2

2

1

2

3

1

b a

c d

e

2

2

2

1

2

Figure 10: MST’s of a bigraph.

• (Kruskal) How can we quickly tell ifS+e is acyclic? Ife is u−v, this amounts to checking ifu, v
are in the same connected component of the graphG′ = (V, S). A simple method is to do this is
have a linked list for each connected component ofG′ = (V, S), with the nodes of the linked list
representing vertices of the connected component. Given a vertexu, assume we have a pointer
from u to the representative node foru in such a linked list. To decide if two verticesu, v are in
the same connected component, we go to the linked lists nodesthat representu andv, and follow
the links till the end of their respective linked lists.The ends of these two linked list are equal iff
S + e has a cycle.

The elaborations of this linked list idea will ultimately lead us to the union-find data structure
which is studied in Chapter XIII. An Exercise below will explore some of these ideas.

• (Boruvka) We must maintain for each connected component ofG′ = (V, S), the least cost edge
that extends it. Again we need some form of union-find data structure. A key feature of Boruvka’s
algorithm is that we can select the good edges in “phases” where each phase calls for a pass
through the set of remaining edges. This feature can be exploited in parallel algorithms. We
explore these ideas in the Exercise.

• (Prim) Because of its additional restriction to one non-trivial connected component, Prim’s algo-
rithm is easier to implement than Boruvka’s. We shall do thisbelow. But the ultimate version of
Prim’s algorithm can only be taken up in Chapter VI (amortization techniques).

Let us call those setsS ⊆ E that may arise during the execution of the generic MST algorithm
simply-good, Boruvka-good, Kruskal-good or Prim-good, depending on which of the above criteria
is used. The correctness of these algorithms amounts to showing that “X-good implies simply-good”

© Chee Yap Basic Version October 25, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 38

where X = Kruskal, Boruvka or Prim. Let us now show the correctness of the algorithm of Boruvka. By
definition, Prim-good implies Boruvka-good, and so Prim’s algorithm is also correct. Indeed, Kruskal-
good also implies Boruvka-good, so this also show the correctness of Kruskal’s algorithm.

LEMMA 8 (Correctness of Boruvka’s Algorithm).Boruvka-good sets are simply-good.

Proof. We use induction on the size|S| of Boruvka-good setsS. Clearly if S = ∅, thenS is
Boruvka-good and this is clearly simply-good. Next supposeS = S′ + e whereS′ is Boruvka-good.
We need to prove thatS is simply-good. By the Boruvka-goodness ofS′, there is a componentU of
the graphG′ = (V, S′) such thate has the least cost among all edges that extendU . By induction
hypothesis, we may assumeS′ is simply-good. Hence there is a MSTT ′ that containsS′. If e ∈ T ′,
then we are done (asT ′ would be a witness to the fact thatS = S′ + e is simply-good). So assume
e 6∈ T ′.

e

e′

V − U

v1

U

vi+1

v

vi

vk

u

Figure 11: Extending a componentU by e = (u, v).

Write e = u−v such thatu ∈ U andv 6∈ U . HenceT ′ + e contains a unique closed path of the form

Z:=(u−v−v1−v2− · · · −vk−u).

There exists somei = 0, . . . , k such thatvi 6∈ U andvi+1 ∈ U . Write

Z = (u−v−v1− · · · −vi−vi+1− · · · −u)

(wherev = v0 andu = vk+1 in this notation). Lete′:=(vi−vi+1). Note thatT :=T ′ + e− e′ is acyclic
and is a spanning tree. Moreover,C(e) ≤ C(e′), by our choice ofe. HenceC(T) ≤ C(T ′). Since
C(T ′) is minimum, so isC(T). This shows thatS is simply-good, asS is contained inT . Q.E.D.

¶22. Good sets of vertices. Let us extend the notion of “goodness” to sets of vertices. For any set
S ⊆ E of edges, letV (S) denote the set of vertices that are incident on some edge ofS. We say a
setU ⊆ V is X-good if there exists anX-good setS ⊆ E such thatU = V (S). Here, X is equal to
‘simply’, ‘Prim’, ‘Kruskal’ or ‘Boruvka’. We also declare any singleton set with only one vertex to be
X-good.

¶23. Hand Simulation of MST Algorithms. Students are expected to understand those aspects of
Kruskal’s and Prim’s algorithms that are independent of their ultimate realizations via efficient data
structures. That is, you must do “hand simulations” where you act as the oracle for queries to the data
structures. For Kruskal’s algorithm, this is easy – we just list the edges by non-decreasing weight order
and indicate the acceptance/rejection of successive edges.

For Prim’s algorithm, we just maintain an arrayd[1..n] assuming the vertex set isV = {1, . . . , n}.
We shall maintain a subsetS ⊆ V representing the set of vertices which we know how to connectto the

© Chee Yap Basic Version October 25, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 39

source node1 in a MST. The setS is “Prim good”. Initially, letS = ∅ andd[1] = 0 andd[v] = ∞ for
v = 2, . . . , n. In general, the entryd[v] (v ∈ V \ S) represents the “cheapest” cost to connect vertexv
to the MST on the setS. Our simulation consists in building up a matrixM which is an × n matrix,
where the0th row representing the initial arrayd. Each time the arrayd is updated, we rewrite it as a
new row of a matrixM .

At stagei ≥ 1, suppose we pick a nodevi ∈ V \ S whered[vi] = min{d[j] : j ∈ V \ S}. We add
vi to S, and update all the valuesd[u] for eachu ∈ V \ S that is adjacent tovi. The update rule is this:

d[u] = min{d[u], C[vi, u]}.

The resulting array is written as rowi in our matrix.

v1 v2

v6 v7

2

1

3 5 1

0

0

2

6 4

21

v12v11v10v9

v5v4v3

v8

Figure 12: The house graph: The cost of edgevi−vj is defined asC(vi) + C(vj), whereC(v) is the
value indicated next tov. E.g.C(v1−v4) = 1 + 6 = 7.

Let us illustrate the process on the graph of Figure12. The vertex set isV = {v1, v2, . . . , v11, v12}.
The cost of an edge is the sum of the costs associated to each vertex. E.g.,C(v1, v4) = C(v1)+C(v4) =
1 + 6 = 7. The final matrix is the following:

Stage 1 2 3 4 5 6 7 8 9 10 11 12

0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1 X 3 1 7 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

2 X 6 3
3 X 6
4 X 8
5 X 7
6 X 6 6
7 3 X 3 2
8 1 1 X 2
9 X
10 6 X
11 X
12 X

Conventions in this matrix: We mark the newly picked node in each stage with an ‘X’. Also, any
value that is unchanged from the previous row may be left blank. Thus, in stage 2, the node3 is picked
and we updated[v4] usingd[v4] = min{d[v4], C[v3, 4]} = min{7, 6} = 6.

The final cost of the MST is 37. To see this, each X corresponds to a vertexv that was picked, and
the last value ofd[v] contributes to the cost of the MST. E.g., the X correspondingto vertex 1 has cost
0, the X corresponding to vertex 2 has cost 3, etc. Summing up over all X’s, we get 37.

© Chee Yap Basic Version October 25, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 40

Remarks: Boruvka (1926) has the first MST algorithm; his algorithm wasrediscovered by Sollin
(1961). The algorithm attributed to Prim (1957) was discovered earlier by Jarnı́k (1930). These algo-
rithms have been rediscovered many times. See [6] for further references. Both Boruvka and Jarnı́k’s
work are in Czech. The Prim-Jarnı́k algorithm is very similar in structure to Dijkstra’s algorithm which
we will encounter in the chapter on minimum cost paths.

EXERCISES

Exercise 5.1: We consider minimum spanning trees (MST’s) in an undirectedgraphG = (V, E) where
each vertexv ∈ V is given a numerical valueC(v) ≥ 0. ThecostC(u, v) of an edge(u−v) ∈ E
is defined to beC(u) + C(v).
(a) LetG be the graph in Figure12. Compute an MST ofG using Boruvka’s algorithm. Please
organize your computation so that we can verify intermediate results. Also state the cost of your
minimum spanning tree.
(b) Can you design an MST algorithm that takes advantage of the fact that edge costs has the
special formC(u, v) = C(u) + C(v)? ♦

Exercise 5.2: Redo the previous problem with a different cost function, whereC(u−v) = C(u)C(v)
(the product instead of the sum). Is the result the same? ♦

Exercise 5.3: SupposeG is the complete bipartite graphGm,n. That is, the verticesV are partitioned
into two subsetsV0 andV1 where|V0| = m andV1| = n andE = V0 × V1. Give a simple
description of an MST ofGm,n. Argue that your description is indeed an MST. HINT: transform
an arbitrary MST into your description by modifying one edgeat a time. ♦

Exercise 5.4: Let Gn be the bigraph whose vertices areV = {1, 2, . . . , n}. The edges are defined
as follows: for eachi ∈ V , if i is prime, then(1, i) ∈ E with weight i. [Recall that1 is not
considered prime, so2 is the smallest prime.] For1 < i < j, if i dividesj then we add(i, j) to
E with weightj/i.
(a) Draw the graphG19.
(b) Compute the MST ofG18 using Prim’s algorithm, using node1 as the source vertex. Please
use the organization described in the appendix below.
(c) Are there special properties of the graphsGn that can be exploited? ♦

Exercise 5.5: Let G = (V, E; W) be a connected bigraph with edge weight functionW . Fix a constant
M and define the weight functionW ′ whereW ′(e) = M −W (e) for eache ∈ E. Let G′ =
(V, E; W ′). Show thatT is a maximum spanning tree ofG iff T is a minimum spanning tree of
G′. NOTE: Thus we say that the concepts of maximum spanning treeand minimum spanning
tree are “cryptomorphic versions” of each other. ♦

Exercise 5.6: Describe the rule for reconstructing the MST from the matrixM using in our hand-
simulation of Prim’s Algorithm. ♦

Exercise 5.7: Hand Simulation of Kruskal’s Algorithm on the graph of Figure 12. This exercise sug-
gests a method for carry out the steps of this algorithm. We consider each edge in their sorted
order, maintaining a partition ofV = {1, . . . , 12} into disjoint sets. LetL(i) denote the set con-
taining vertexi. Initially, each node is in its own set, i.e.,L(i) = {i}. Whenever an edgei−j is

© Chee Yap Basic Version October 25, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 41

added to the MST, we merge the corresponding setsL(i)∪L(j). E.g., in the first step, we add edge
1−3. Thus the listsL(1) = {1} andL(3) = {1} are merged, and we getL(1) = L(3) = {1, 3}.
To show the computation of Kruskal’s algorithm, for each edge, if the edge is “rejected”, we mark
it with an “X”. Otherwise, we indicate the merged list resulting from the union ofL(i) andL(j):
Please fill in the last two columns of the table (we have filled in the first 4 rows for you).

Sorting Order Edge Weight Merged List Cumulative Weight

1 1-3: 1 {1, 3} 1
2 6-11: 1 {6, 11} 2
3 10-11: 1 {6, 10, 11} 3
4 6-10: 2 X 3
5 7-11: 2
6 11-12: 2
7 1-2: 3
8 3-8: 3
9 6-7: 3
10 7-10: 3
11 2-5: 6
12 3-4: 6
13 5-7: 6
14 5-12: 6
15 9-10: 6
16 1-4: 7
17 4-6: 7
18 8-9: 8
19 4-5: 10
20 4-9: 11

♦

Exercise 5.8: This question considers two concrete ways to implement Kruskal’s algorithm. LetV =
{1, 2, . . . , n} andD[1..n] be an array of sizen that represents aforest G(D) with vertex setV
and edge setE = {(i, D[i]) : i ∈ V }. More precisely,G(D) is an directed graph that has no
cycles except for self-loops (i.e., edges of the form(i, i)). A vertexi such thatD[i] = i is called
a root. The setV is thereby partitioned into disjoint subsetsV = V1 ∪ V2 ∪ · · · ∪ Vk (for some
k ≥ 1) such that eachVi has a unique rootri, and from everyj ∈ Vi there is a path fromj to ri.
For example, withn = 7, D[1] = D[2] = D[3] = 3, D[4] = 4, D[5] = D[6] = 5 andD[7] = 6
(see Figure13). We callVi acomponentof the graphG(D) (this terminology is justified because
Vi is a component in the usual sense if we viewG(D) as anundirectedgraph).

3

1 2

V1

4

V2

5

6

7

V3

Figure 13: Directed graphG(D) with three components (V1, V2, V3)

(i) Consider two restrictions on our data structure: SayD is list type if each component is a linear
list. SayD is star type if each component is a star (i.e., each vertex in the component points to
the root). E.g., in Figure13, V2 andV3 are linear lists, whileV1 andV2 are stars. Let ROOT(i)
denote the rootr of the component containingi. Give a pseudo-code for computing ROOT(i),

© Chee Yap Basic Version October 25, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 42

and give its complexity in the 2 cases: (1)D is list type, (2)D is star type.
(ii) Let COMP(i) ⊆ V denote the component that containsi. Define the operation
MERGE(i, j) that transformsD so that COMP(i) and COMP(j) are combined into a new
component (but all the other components are unchanged). E.g., the components in Figure13
are{1, 2, 3}, {4} and{5, 6, 7}. After MERGE(1, 4), we have two components,{1, 2, 3, 4} and
{5, 6, 7}. Give a pseudo-code that implementsMERGE(i, j) under the assumption thati, j are
roots andD is list type which you must preserve. Your algorithmmusthave complexityO(1). To
achieve this complexity, you need to maintain some additional information (perhaps by a simple
modification ofD).
(iii) Similarly to part (ii), implementMERGE(i, j) whenD is star type. Give the complexity of
your algorithm.
(iv) Describe how to use ROOT(i) andMERGE(i, j) to implement Kruskal’s algorithm for
computing the minimum spanning tree (MST) of a weighted connected undirected graphH .
(v) What is the complexity of Kruskal’s in part (iv) if (1)D is list type, and if (2)D is star type.
AssumeH hasn vertices andm edges. ♦

Exercise 5.9: Give two alternative proofs that the suggested algorithm for computing minimum base is
correct:
(a) By verifying the analogue of the Correctness Lemma.
(b) By replacing the costC(e) (for eache ∈ E) by the costc0 − C(e). Choosec0 large enough
so thatc0 − C(e) > 0. ♦

Exercise 5.10:Let G be a bigraphG with distinct weights. Give a direct argument for the (a) and(b).
(a) Prove that the MST ofG must contain that the edge of smallest weight.
(b) Prove that the MST ofG must contain that the edge of second smallest weight.
(c) Must it contain the edge of third smallest weight? ♦

Exercise 5.11:Show that every MST can be obtained from Kruskal’s algorithmby a suitable re-
ordering of the edges which have identical weights. Conclude that when the edge weights are
unique, then the MST is unique. ♦

Exercise 5.12: Student Joe wants to reduce the minimum base problem for a costed matroid(S, I; C)
to the MIS problem for(S, I; C′) whereC′ is a suitable transformation ofC. See next section
for matroid definitions.
(a) Student Joe considers the modified cost functionC′(e) = 1/C(e) for eache. Construct an
example to show that the MIS solution forC′ need not be the same as the minimum base solution
for C.
(b) Next, student Joe considers another variation: he now definesC′(e) = −C(e) for eache.
Again, provide a counter example. ♦

Exercise 5.13:Extend the algorithm to finding MIS in contracted matroids. ♦

Exercise 5.14: If S ⊆ E is Prim-good, then clearlyG′ = (V (S), S) is clearly a tree. Prove thatS is
actually an MST of the restricted graphG|V (S). ♦

Exercise 5.15:
(a) Enumerate theX-good sets of vertices in Figure9. Here,X is ‘simply’, ‘Kruskal’, ‘Boruvka’
or ‘Prim’.
(b) Characterize the good singletons (relative to any of thethree notions of goodness). ♦

© Chee Yap Basic Version October 25, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 43

Exercise 5.16:This question will develop Boruvka’s approach to MST: for each vertexv, pick the edge
(v−u) that has the least cost among all the nodesu that are adjacent tov. Let P be the set of
edges so picked.
(a) Show thatn/2 ≤ P ≤ n− 1. Give general examples to show that these two extreme bounds
are achieved for eachn.
(b) Show that if the costs are unique,P cannot contain a cycle. What kinds of cycles can form if
weights are not unique?
(c) Assume edges inP are picked with the tie breaking rule: among the edgesv−ui (i = 1, 2, . . .)
adjacent tov that have minimum cost, pick theui that is the smallest numbered vertex (assume
vertices are numbered from1 to n). Prove thatP is acyclic and has the following property: if
adding an edgee to P creates a cycleZ in P + e, thene has the maximum cost among the edges
in Z.
(d) For any costed bigraphG = (V, E; C), andP ⊆ E, define a new costed bigraph denoted
G/P as follows. First, two vertices ofV are said to be equivalent moduloP if they are connected
by a sequence of edges inP . For v ∈ V , let [v] denote the equivalence class ofv. The vertex
set ofG/P is {[v] : v ∈ V }. The edge set ofG/P comprises those([u]−[v]) such that there
exists an edge(u′−v′) ∈ E whereu′ ∈ [u] andv′ ∈ [v]. The cost of([u]−[v]) is defined as
min{C(u′, v′) : u′ ∈ [u], v′ ∈ [v], (u′−v′) ∈ E}. Note thatG/P has at mostn/2 vertices.
Moreover, we can pick another setP ′ of edges inG/P using the same rules as before. This gives
us another graph(G/P)/P ′ with at mostn/4 vertices. We can continue this untilV has 1 vertex.
Please convert this informal description into an algorithmto compute the cost of the MST. (You
need not show how to compute the MST.)
(e) Determine the complexity of your algorithm. You will need to specify suitable data structures
for carrying out the operations of the algorithm. (Please use data structures that you know up to
this point.) ♦

Exercise 5.17: (Tarjan) Consider the followinggeneric accept/reject algorithmfor MST. This con-
sists of steps that eitheracceptor reject edges. In our generic MST algorithm, we only explicitly
accept edges. However, we may be implicitly rejecting edgesas well, as in the case of Kruskal’s
algorithm. LetS, R be the sets of accepted and rejected edges (so far). We say that (S, R) is
simply-good if there is an MST that containsS but not containing any edge ofR. Note that this
extends our original definition of “simply good”. Prove thatthe following extensions ofS andR
will maintain minimal goodness:
(a) LetU ⊆ V be any subset of vertices. The set of edges of the form(u, v) whereu ∈ U and
v 6∈ U is called aU -cut. If e is the minimum cost edge of aU -cut and there are no accepted edges
in theU -cut, then we may extendS by e.
(b) If e is the maximum cost edge in a cycleC and there are no rejected edges inC then we may
extendR by e. ♦

Exercise 5.18:With respect to the generic accept/reject version of MST:
(a) Give a counter example to the following rejection rule: let e ande′ be two edges in aU -cut.
If C(e) ≥ C(e′) then we may rejecte′.
(b) Can the rule in part (a) be fixed by some additional properties that we can maintain?
(c) Can you make the criterion for rejection in the previous exercise (part (b)) computationally
effective? Try to invent the “inverses” of Prim’s and Boruvka’s algorithm in which we solely
reject edges.
(d) Is it always a bad idea toonly reject edges? Suppose that we alternatively accept and reject
edges. Is there some situation where this can be a win? ♦

Exercise 5.19:Consider the following recursive “MST algorithm” on inputG = (V, E; C):
(I) SubdivideV = V1 ⊎ V2.

© Chee Yap Basic Version October 25, 2011

§6. MINIMUM SPANNING TREE Lecture V Page 44

(II) Recursive find a “MST”Ti of G|Vi (i = 1, 2).
(III) Find e in theV1-cut of minimum cost. ReturnT1 + e + T2.
Give a small counter example to this algorithm. Can you fix this algorithm? ♦

Exercise 5.20: Is there an analogue of Prim and Boruvka’s algorithm for the MIS problem for matroids?
♦

Exercise 5.21:Let G = (V, E; C) be the complete graph in which each vertexv ∈ V is a point in
the Euclidean plane andC(u, v) is just the Euclidean distance between the pointsu andv. Give
efficient methods to compute the MST forG. ♦

Exercise 5.22:Fix a connected undirected graphG = (V, E). Let T ⊆ E be any spanning tree ofG.
A pair (e, e′) of edges is called aswappable pair for T if
(i) e ∈ T ande′ ∈ E \ T (Notation: for setsA, B, their difference is denotedA \B = {a ∈ A :
a 6∈ B})
(ii) The set(T \ {e}) ∪ {e′} is a spanning tree.
Let T (e, e′) denote the spanning tree(T \ {e}) ∪ {e′} obtained fromT by swappinge and e′

(see illustration in Figure14(a), (b)).

e e′

(b) T (e, e′)

e e′

(a)T

e′

e

u0

u1

uk

uℓ

ek+1

(c) PathP (u0, uℓ).

11

3

2 5

43

2 5

4

Figure 14: (a) A swappable pair(e, e′) for spanning treeT . (b) The new spanning treeT (e, e′) [NOTE:
tree edges are indicated by thick lines]

(a) Suppose(e, e′) is a swappable pair forT ande′ = (u, v). Prove thate lies on the unique path,
denoted byP (u, v), of T from u to v. In Figure14(a),e′ = (1−5) = (5−1). So the path is either
P (1, 5) = (1−2−3−5) or P (5, 1) = (5−3−2−1).
(b) Letn = |V |. Relative toT , we define an× n matrixFirst indexed by pairs of verticesu, v,
whereFirst[u, v] = w means that the first edge in the unique pathP (u, v) is (u, w). (In the
special case ofu = v, letFirst[u, u] = u.) In Figure14(a),First[1, 5] = 2 andFirst[5, 1] = 3.
Show the matrixFirst for the treeT in Figure14(a). Similarly, give the matrixFirst for the
treeT (e, e′) in Figure14(b).
(c) Describe anO(n2) algorithm calledUpdate(First, e, e′) which updates the matrixFirst
after we transformT to T (e, e′). HINT: For which pair of vertices(x, y) does the value of
First[x, y] have to change? Supposee′ = (u′, v′) andP (u′, v′) = (u0, u1, . . . , uℓ) is as illus-
trated in Figure14(c). Thenu′ = u0, v

′ = uℓ, and alsoe = (uk, uk+1) for some0 ≤ k < ℓ.
Then, originallyFirst[u0, uℓ] = u1 but after the swap,First[u0, uℓ] = uℓ. What else must
change?
(d) Analyze your algorithm to show that that it isO(n2). Be sure that your description in (c) is
clear enough to support this analysis. ♦

© Chee Yap Basic Version October 25, 2011

§6. MATROIDS Lecture V Page 45

END EXERCISES

§6. Matroids

An abstract structure that supports greedy algorithms is matroids. Indeed, we will see that Kruskal’s
algorithm for MST is an instance of a general greedy method tosolve a matroid problem. We first
illustrate the idea of matroids.

¶24. Graphic matroids. Let G = (V, S) be a bigraph. A subsetA ⊆ S is acyclic if it does not
contain any cycle. LetI be the set of all acyclic subsets ofS. The empty set is a acyclic and hence
belongs toI. We note two properties ofI:

Hereditary property: If A ⊆ B andB ∈ I thenA ∈ I.

Exchange property: If A, B ∈ I and|A| < |B| then there is an edgee ∈ B−A such thatA∪{e} ∈ I.

The hereditary property is obvious. To prove the exchange property, note that the subgraphGA:=(V, A)
has|V |−|A| (connected) components; similarly the subgraphGB:=(V, B) has|V |−|B| components. If
every componentU ⊆ V of GB is contained in some component ofU ′ of GA, then|V |−|B| < |V |−|A|
implies that some component ofGA contains no vertices, contradiction. Hence assumeU ⊆ V is a
component ofGB that is not contained in any component ofGA. Let T :=B ∩

(
U
2

)
. Thus(U, T) is a

tree and there must exist an edgee = (u−v) ∈ T such thatu andv belongs to different components of
GA. Thise will serve for the exchange property.

For example, in Figure9 the setsA = {a−b, a−c, a−d} andB = {b−c, c−a, a−d, d−e} are
acyclic. Then the exchange property betweenA andB is witnessed by the edged−e ∈ B \ A, since
addingd−e to A will result in an acyclic set.

¶25. Matroids. The above system(S, I) is called thegraphic matroid corresponding to graphG =
(V, S). In general, amatroid is a hypergraph

M = (S, I)

with special properties:S andI ⊆ 2S are both non-empty sets such thatI has both the hereditary and
exchange properties. The setS is called theground set. Elements ofI are calledindependent sets;
other subsets ofS are calleddependent sets. Note that the empty set∅ is always a member ofI.

Another example of matroids arise with numerical matrices:for any matrixM , let S be its set of
columns, andI be the family of linearly independent subsets of columns. Call this thematrix matroid
of M . The terminology of independence comes from this setting. This was the motivation of Whitney,
who coined the term ‘matroid’.

The explicit enumeration of the setI is usually out of the question. So, in computational problems
whose input is a matroid(S, I), the matroid is usually implicitly represented. The above examples
illustrate this: a graphic matroid is represented by a graphG, and the matrix matroid is represented
by a matrixM . The size of the input is then taken to be the size ofG or M , not of |I| which can
exponentially larger.

© Chee Yap Basic Version October 25, 2011

§6. MATROIDS Lecture V Page 46

¶26. Submatroids. Given matroidsM = (S, I) andM ′ = (S′, I ′), we callM ′ a submatroid of M
if S′ ⊆ S andI ′ ⊆ I. There are two general methods to obtain submatroids, starting from a non-empty
subsetR ⊆ S:
(i) Induced submatroids. TheR-induced submatroid ofM is

M |R := (R, I ∩ 2R).

(ii) Contracted6 submatroids. TheR-contracted submatroid ofM is

M ∧R := (R, I ∧R)

whereI ∧ R:={A ∩ R : A ∈ I, S − R ⊆ A}. Thus, there is a bijective correspondence between
the independent setsA′ of M ∧ R and those independent setsA of M which containS − R. Indeed,
A′ = A ∩R. Of course, ifS −R is dependent, thenI ∧R is empty.

We leave it to an exercise to show thatM |R andM ∧R are matroids. Special cases of induced and
contracted submatroids arise whenR = S − {e} for somee ∈ S. In this case, we say thatM |R is
obtained bydeleting e andM ∧R is obtained bycontracting e.

¶27. Bases. Let M = (S, I) be a matroid. IfA ⊆ B andB ∈ I then we callB anextensionof A; if
A = B, the extension isimproper and otherwise it isproper. A baseof M (alternatively: amaximal
independent set) is an independent set with no proper extensions. IfA∪{e} is independent ande 6∈ A,
we callA ∪ {e} a simple extensionof A and say thate extendsA. If R ⊆ S, we may relativize these
concepts toR: we may speak of “A ⊆ R being a base ofR”, “ e extendsA in R”, etc. This is the same
as viewingA as a set of the induced submatroidM |R.

¶28. Ranks. We note a simple property:all bases of a matroid have the same size. If A, B are bases
and |A| > |B| then there is ane ∈ A − B such thatB ∪ {e} is a simple extension ofB. This is a
contradiction. Note that this property is true even ifS has infinite cardinality. Thus we may define the
rank of a matroidM to be the size of its bases. More generally, we may define the rank of anyR ⊆ S
to be the size of the bases ofR (this size is just the rank ofM |R). Therank function

rM : 2S → N

simply assigns the rank ofR ⊆ S to rM (R).

¶29. Problems on Matroids. A costed matroidis given byM = (S, I; C) where(S, I) is a matroid
andC : S → R. is a cost7 function. The cost of a setA ⊆ S is just the sum

∑

x∈A C(x). The
maximum independent set problem(abbreviated, MIS) is this: given a costed matroid(S, I; C), find
an independent setA ⊆ S with maximum cost. A closely related problem is themaximum base
problem where, given(S, I; C), we want to find a baseB ⊆ S of maximum cost. If the costs are
non-negative, then it is easy to see the MIS problem and the maximum base problem are identical. The
following algorithm solves the maximum base problem:

6 Contracted submatroids are introduced here for completeness. They are not used in the subsequent development (but the
exercises refer to them).

7 Recall our convention that costs may be negative. If the costs are non-negative, we callC a a “weight function”.

© Chee Yap Basic Version October 25, 2011

§6. MATROIDS Lecture V Page 47

GREEDY ALGORITHM FOR MAXIMUM BASE:
Input: matroidM = (S, I; C) with cost functionC.
Output: a baseA ∈ I with maximum cost.
1. SortS = {x1, . . . , xn} by cost.

SupposeC(x1) ≥ C(x2) ≥ · · · ≥ C(xn).
2. InitializeA← ∅.
3. Fori = 1 to n,

putxi into A provided this does not makeA dependent.
4. ReturnA.

The steps in this abstract algorithm needs to be instantiated for particular representations of matroids.
In particular, testing if a setA is independent is usually non-trivial (recall that matroids are usually given
implicitly in terms of other combinatorial structures). Wediscuss this issue for graphic matroids below.
It is interesting to note that the usual Gaussian algorithm for computing the rank of a matrix is an
instance of this algorithm where the costC(x) of each elementx is unit.

Let us see why the greedy algorithm is correct.

LEMMA 9 (Correctness).Suppose the elements ofA are put intoA in this order:

z1, z2, . . . , zm,

wherem = |A|. LetAi = {z1, z2, . . . , zi}, i = 1, . . . , m. Then:
1. A is a base.
2. If x ∈ S extendsAi theni < m andC(x) ≤ C(zi+1).
3. LetB = {u1, . . . , uk} be an independent set whereC(u1) ≥ C(u2) ≥ · · · ≥ C(uk). Thenk ≤ m
andC(ui) ≤ C(zi) for all i.

Proof. 1. By way of contradiction, supposex ∈ S extendsA. Thenx 6∈ A and we must have
decided not to placex into the setA at some point in the algorithm. That is, for somej ≤ m, Aj ∪ {x}
is dependent. This contradicts the hereditary property becauseAj ∪ {x} is a subset of the independent
setA ∪ {x}.
2. Supposex extendsAi. By part 1,i < m. If C(x) > C(zi+1) then for somej ≤ i, we must have
decided not to placex into Aj . This meansAj ∪ {x} is dependent, which contradicts the hereditary
property sinceAj ∪ {x} ⊆ Ai ∪ {x} andAi ∪ {x} is independent.
3. Since all bases are independent sets with the maximum cardinality, we havek ≤ m. The result
is clearly true fork = 1 and assume the result holds inductively fork − 1. SoC(uj) ≤ C(zj) for
j ≤ k − 1. We only need to showC(uk) ≤ C(zk). Since|B| > |Ak−1|, the exchange property says
that there is anx ∈ B−Ak−1 that extendsAk−1. By part 2,C(zk) ≥ C(x). ButC(x) ≥ C(uk), since
uk is the lightest element inB by assumption. ThusC(uk) ≤ C(zk), as desired. Q.E.D.

From this lemma, it is not hard to see that an algorithm for theMIS problem is obtained by replacing
the for-loop (“for i = 1 to n”) in the above Greedy algorithm by “for i = 1 to m” wherexm is the last
positive element in the list(x1, . . . , xm, . . . , xn).

¶30. Greedoids. While the matroid structure allows the Greedy Algorithm to work, it turns out that a
more general abstract structure calledgreedoidsis tailor-fitted to the greedy approach. To see what this
structure looks like, consider the set system(S, F) whereS is a non-empty finite set, andF ⊆ 2S. In
this context, eachA ∈ F is called afeasible set. We call(S, F) a greedoidif

© Chee Yap Basic Version October 25, 2011

§7. GENERATING PERMUTATIONS Lecture V Page 48

Accessibility property If A is a non-empty feasible set, then there is somee ∈ A such thatA \ {e} is
feasible.

Exchange property: If A, B are feasible and|A| < |B| then there is somee ∈ B \A such thatA∪{e}
is feasible.

EXERCISES

Exercise 6.1: Consider the graphic matroid in Figure9. Determine its rank function. ♦

Exercise 6.2: The text described a modification of the Greedy Maximum Base Algorithm so that it will
solve the MIS problem. Verify its correctness. ♦

Exercise 6.3:
(a) Interpret the induced and contracted submatroidsM |R andM ∧R in the bigraph of Figure9,
for various choices of the edge setR. When isM |R = M ∧R?
(b) Show thatM |R andM ∧R are matroids in general. ♦

Exercise 6.4: Show thatrM (A∪B)+rM (A∩B) ≤ rM (A)+rM (B). This is called thesubmodularity
property of the rank function. It is the basis of further generalizations of matroid theory. ♦

Exercise 6.5: In Gavril’s activities selection problem, we have a setA of intervals of the form[s, f).
Recall that a subsetS ⊆ A is said to be compatible ifS is pairwise disjoint. Does the set of
compatible subsets ofA form a matroid? If yes, prove it. If no, give a counter example. ♦

END EXERCISES

§7. Generating Permutations

In §1, we saw how the general bin packing problem can be reduced to linear bin packing. This
reduction depends on the ability to generate all permutations of n elements efficiently. Since there
are many uses for such permutation generators, we will take asmall detour to address this interesting
topic. A survey of this classic problem is given by Sedgewick[5]. Perhaps the oldest incarnation of
this problem is the “change ringing problem” of bell-ringers in early 17th Century English churches [4].
This calls for ringing a sequence ofn bells in alln! permutations.

The problem of generating all permutations efficiently is representative of an important class of
problems calledcombinatorial enumeration. For instance, we might want to general all sizek subsets
of a set, all graphs of sizen, all convex polytopes based some given set ofn vertices, etc. Such an
enumerations would be considered optimal if the algorithm takesO(1) time to generate each member.

It is good to fix some terminology. An-permutation of a finite setX is a surjective function
p : {1, . . . , n} → X . Surjectivity of p implies n ≥ |X |. The functionp may be represented by
a sequence(p(1), p(2), . . . , p(n)). Here we are interested in the casen = |X |, i.e., permutation of

© Chee Yap Basic Version October 25, 2011

§7. GENERATING PERMUTATIONS Lecture V Page 49

distinct elements. We use a path-like notation for permutations, writing “(p(1)− · · · −p(n))” for the
permutation(p(1), p(2), . . . , p(n)).

Let Sn denote the set of all permutations ofX = {1, 2, . . . , n}; each element ofSn is called an
n-permutation. Note that|Sn| = n!. E.g., the following is a listing ofS3:

(1−2−3), (1−3−2), (3−1−2); (3−2−1), (2−3−1), (2−1−3). (24)

Two n-permutationsπ = (x1− · · · −xn) andπ′ = (x′

1− · · ·−x′

n) are said to beadjacent (to each
other) if there is somei = 2, . . . , n such thatxi−1 = x′

i andxi = x′

i−1, and for all otherj, xj = x′

j .
Indeed, we writeπ′ = Exchi(π) in this case. E.g.,π = (1−2−4−3) andπ′ = (1−4−2−3) are
adjacent sinceπ′ = Exch3(π). An adjacency orderingof a setS of permutations is a listing of the
elements ofS such that every two consecutive permutations in this listing are adjacent. For instance,
the listing ofS3 in (24) is an adjacency ordering.

[Figure: Adjacency Graph for 3-permutations]

We need another concept: ifπ = (x1− · · · −xn−1) is an(n − 1)-permutation, andπ′ is obtained
from π by inserting the lettern into π, then we callπ′ anextensionof π. Indeed, ifn is inserted just
before theith letter inπ, then we writeπ′ = Exti(π) for i = 1, . . . , n. The meaning of “Extn(π)”
should be clear: it is obtained by appending ‘n’ to the end of the sequenceπ. Note that there aren
extensions ofπ. E.g., ifπ = (1−2) then the three extensions ofπ are(3−1−2), (1−3−2), (1−2−3).

¶31. The Johnson-Trotter Ordering. Among the several known methods to generate alln-
permutations, we will describe one that is independently discovered by S.M.Johnson and H.F.Trotter
(1962), and apparently known to17th Century English bell-ringers [4]. The two main ideas in the
Johnson-Trotter algorithm are (1) then-permutations are generated as an adjacency ordering, and (2)
then-permutations are generated recursively. Suppose letπ is an(n− 1)-permutation that has been re-
cursively generated. Then we note that then extensions ofπ can given one of two adjacency orderings.
It is either

UP (π) : Ext1(π), Ext2(π), . . . , Extn(π)

or the reverse sequence

DOWN(π) : Extn(π), Extn−1(π), . . . , Ext1(π).

E.g.,UP (1−2−3) is equal to

(4−1−2−3), (1−4−2−3), (1−2−4−3), (1−2−3−4).

Note that ifπ′ is another(n− 1)-permutation that is adjacent toπ, then the concatenated sequences

UP (π); DOWN(π′)

and
DOWN(π); UP (π′)

are both adjacency orderings. We have thus shown:

LEMMA 10 (Johnson-Trotter ordering).If π1, . . . , π(n−1)! is an adjacency ordering ofSn−1, then the
concatenation of alternating DOWN/UP sequences

DOWN(π1); UP (π2); DOWN(π3); · · · ; DOWN(π(n−1)!)

is an adjacency ordering ofSn.

© Chee Yap Basic Version October 25, 2011

§7. GENERATING PERMUTATIONS Lecture V Page 50

For example, starting from the adjacency ordering of2-permutations(π1 = (1−2), π2 = (2−1)),
our above lemma says thatDOWN(π1), UP (π2) is an adjacency ordering. Indeed, this is the ordering
shown in (24).

Let us define thepermutation graph Gn to be the bigraph whose vertex set isSn and whose edges
comprise those pairs of vertices that are adjacent in the sense defined for permutations. We note that
the adjacency ordering produced by Lemma10 is actually a cycle in the graphGn. In other words, the
adjacency ordering has the additional property that the first and the last permutations of the ordering are
themselves adjacent. A cycle that goes through every vertexof a graph is said to beHamiltonian . If
(π1−π2− · · · −πm) (for m = (n− 1)!) is a Hamiltonian cycle forGn−1, then it is easy to see that

(DOWN(π1); UP (π2); · · · ; UP (πm))

is a Hamiltonian cycle forGn.

¶32. The Permutation Generator. We proceed to derive an efficient means to generate successive
permutations in the Johnson-Trotter ordering. We need an appropriate high level view of this generator.
The generated permutations are to be used by some “permutation consumer” such as our greedy linear
bin packing algorithm. There are two alternative views of the relation between the “permutation gener-
ator” and the “permutation consumer”. We may view the consumer as calling8 the generator repeatedly,
where each call to the generator returns the next permutation. Alternatively, we view the generator as
a skeleton program with the consumer program as a (shell) subroutine. We prefer the latter view, since
this fits the established paradigm of BFS and DFS as skeleton programs (see Chapter 4). Indeed, we
may view the permutation generator as a bigraph traversal: the implicit bigraph here is the permutation
graphGn.

In the following, ann-permutation is represented by the arrayper[1..n]. We will transformper by
exchange of two adjacent values, indicated by

per[i]⇔ per[i− 1] (25)

for somei = 2, . . . , n, or
per[i]⇔ per[i + 1]

wherei = 1, . . . , n− 1.

¶33. A Counter for n factorial. To keep track of the successive exchanges in Johnson-Trotter gener-
ator, we introduce an array ofn counters

C[1..n]

where eachC[i] is initialized to1 but always satisfying the relation1 ≤ C[i] ≤ i. Of course,C[1]
may be omitted since its value cannot change under our restrictions. The array counterC hasn! distinct
values. We say thei-th counter isfull iff C[i] = i. The level of the C is the largest indexℓ such
that theℓ-th counter is not full. If all the counters are full, the level of C is defined to be1. E.g.,
C[1..5] = [1, 2, 2, 1, 5] has level4. We define theincrement of this counter array as follows: if the level
of the counter isℓ, then (1) we incrementC[ℓ] providedℓ > 1, and (2) we setC[i] = 1 for all i > ℓ.
E.g., the increment ofC[1..5] = [1, 2, 2, 1, 5] gives[1, 2, 2, 2, 1]. In code:

8 The generator in this viewpoint is aco-routine. It has to remember its state from the previous call.

© Chee Yap Basic Version October 25, 2011

§7. GENERATING PERMUTATIONS Lecture V Page 51

INC(C)
ℓ← n.
while (C[ℓ] = ℓ) ∧ (ℓ > 1)

C[ℓ--]← 1.
If (ℓ > 1)

C[ℓ]++.
Return(ℓ)

Note that INC returns the level of the original counter value. This macro is a generalization of the usual
increment of binary counters (Chapter 6.1). For instance, for n = 4, starting with the initial value of
[1, 1, 1], successive increments of this array produce the followingcyclic sequence:

C[2, 3, 4] = [1, 1, 1]→ [1, 1, 2]→ [1, 1, 3]→ [1, 1, 4]→ [1, 2, 1] (26)

→ [1, 2, 2]→ [1, 2, 3]→ [1, 2, 4]→ [1, 3, 1]→ · · ·

→ [2, 3, 3]→ [2, 3, 4]→ [1, 1, 1]→ · · · .

Let the cost of incrementing the counter array be equal ton + 1 − ℓ whereℓ is the level. CLAIM: the
cost to increment the counter array from[1, 1, . . . , 1] to [2, 3, . . . , n] is < 2(n!). In proof, note thatC[ℓ]
is updated after everyn!/ℓ! steps, so that the overall,C[ℓ] is updatedℓ! times. Hence the total number
of updates for then− 1 counters is

n! + (n− 1)! + · · ·+ 2! < 2(n!),

which proves our Claim.

This gives us the top level structure for our permutation generator:

JOHNSON-TROTTER GENERATOR (SKETCH)
Input: natural numbern ≥ 2

⊲ Initialization
per[1..n]← [1, 2, . . . , n]. ⊳ Initial permutation
C[2..n]← [1, 1, . . . , 1]. ⊳ Initial counter value

⊲ Main Loop
do

ℓ← Inc(C)
UPDATE(ℓ) ⊳ The permutation is updates
CONSUME(per) ⊳ Permutation is consumed

while (ℓ > 1)

The shell macro CONSUME is application-dependent. As default, we simply use it to print the
current permutation.

¶34. How to update the permutation. We now describe the UPDATE macro. It uses the previous
counter levelℓ to transform the current permutation to the next permutation. For example, the successive
counter values in (26) correspond to the following sequence of permutations:

[1,1,1]
−→ (1−2−3−4)

[1,1,2]
−→ (1−2−4−3)

[1,1,3]
−→ (1−4−2−3)

[1,1,4]
−→ (4−1−2−3)

[1,2,1]
−→ (4−1−3−2) (27)

[1,2,2]
−→ (1−4−3−2)

[1,2,3]
−→ (1−3−4−2)

[1,2,4]
−→ (1−3−2−4)

[1,3,1]
−→ (3−1−2−4)

[1,3,2]
−→ · · ·

[2,3,3]
−→ (1−4−2−3)

[2,3,4]
−→ (1−2−4−3)

[1,1,1]
−→ (1−2−3−4) −→ · · · .

© Chee Yap Basic Version October 25, 2011

§7. GENERATING PERMUTATIONS Lecture V Page 52

To interpret the above, consider a general step of the form

· · ·
[c2,c3,c4]
−→ (x1−x2−x3−x4)

[c′
2
,c′

3
,c′

4
]

−→ (x′

1−x′

2−x′

3−x′

4) · · ·

We start with the counter value[c2, c3, c4] and permutation(x1−x2−x3−x4). After callingInc, the
counter is updated to[c′2, c

′

3, c
′

4], and it returns the levelℓ of [c2, c3, c4]. If ℓ = 1, we may9 terminate;
otherwise,ℓ ∈ {2, 3, 4}. We find the indexi such thatxi = ℓ (for somei = 1, 2, 3, 4). UPDATE will
then exchangexi with its neighborxi+1 or xi−1. The resulting permutation is(x′

1−x′

2−x′

3−x′

4).

In (27), we indicatexi by an underscore, “xi”. The choice of which neighbor (xi−1 orxi+1) depends
on whether we are in the “UP” phase or “DOWN” phase of levelℓ. Let UP [1..n] be a Boolean array
whereUP [ℓ] is true in the UP phase, and false in the DOWN phase when we are incrementing a counter
at levelℓ. Moreover, the value ofUP [ℓ] is changed (flipped) each timeC[ℓ] is reinitialized to1. For
instance, in the first row of (27), UP [4] = false and so the entry4 is moving down with each swap
involving 4. In the next row,UP [4] = true and so the entry4 is moving up with each swap.

Hence we modify our previous INC macro to include this update:

INCREMENT(C)
Output: IncrementsC, updatesUP , and returns the previous level ofC

ℓ← n.
while (C[ℓ] = ℓ) ∧ (ℓ > 1) ⊳ Loop to find the counter level

C[ℓ]← 1;
UP [ℓ]← ¬UP [ℓ]; ⊳ Flips the boolean valueUP [ℓ]
ℓ--.

If (ℓ > 1)
C[ℓ]++.

Return(ℓ).

For a given levelℓ, the UPDATE macro need to find the “position”i whereper[i] = ℓ (i = 1, . . . , n).
We could search for this position inO(n) time, but it is more efficient to maintain this information
directly: letpos[ℓ] denote the current position ofℓ. Thus thepos[1..n] is just the inverse of the array
per[1..n] in the sense that

per[pos[ℓ]] = ℓ (ℓ = 1, . . . , n).

We can now specify the UPDATE macro to update bothpos andper:

UPDATE(ℓ)
if (UP [ℓ])

per[pos[ℓ]]⇔ per[pos[ℓ] + 1]; ⊳ modify permutation
pos[per[pos[ℓ]]]← pos[ℓ]; ⊳ update position array
pos[ℓ]++; ⊳ update position array

else
per[pos[ℓ]]⇔ per[pos[ℓ]− 1];
pos[per[pos[ℓ]]]← pos[ℓ];
pos[ℓ]--;

Thus, the final algorithm is:

9 In case we want to continue, the caseℓ = 1 is treated as ifℓ = n. E.g., in (27), the caseℓ = 1 is treated asℓ = 4.

© Chee Yap Basic Version October 25, 2011

§7. GENERATING PERMUTATIONS Lecture V Page 53

JOHNSON-TROTTER GENERATOR

Input: natural numbern ≥ 2
⊲ Initialization

per[1..n]← [1, 2, . . . , n]. ⊳ Initial permutation
pos[1..n]← [1, 2, . . . , n]. ⊳ Initial positions
C[2..n]← [1, 1, . . . , 1]. ⊳ Initial counter value

⊲ Main Loop
do

ℓ← Increment(C);
UPDATE(ℓ); ⊳ The permutation is updated
CONSUME(per); ⊳ Permutation is consumed

while(ℓ > 1)

Remarks:
1. In practice, we can introduce early termination criteriainto our permutation generator. For instance,
in the bin packing application, there is a trivial lower bound on the number of bins, namelyb0 =
⌈(

∑n
i=1 wi)/M⌉. We can stop when we found a solution withb0 bins. If we want only an approximate

optimal, say within a factor of2, we may exit when the we achieve≤ 2b0 bins.
2. We have focused on permutations of distinct objects. In case the objects may be identical, more
efficient techniques may be devised. For more information about permutation generation, see the book
of Paige and Wilson [3]. Knuth’s much anticipated 4th volume will treat permutations; this will no
doubt become a principle reference for the subject.
3. The Java code for the Johnson-Trotter Algorithm is presented in an appendix of this chapter.

EXERCISES

Exercise 7.1:
(a) Draw the adjacency bigraph corresponding to4-permutations. HINT: first draw the adjacency
graph for3-permutations and view4-permutations as extension of3-permutations.
(b) How many edges are there in the adjacency bigraph ofn-permutations?
(c) What is the radius and diameter of the bigraph in part (b)?[See definition of radius and
diameter in Exercise 4.8 (Chapter 4).] ♦

Exercise 7.2: Another way to list all the n-permutations in Sn is lexicographic ordering:
(x1− · · · −xn) < (x′

1− · · · −x′

n) if the first indexi such thatxi 6= x′

i satisfiesxi < x′

i. Thus
the lexicographic smallestn-permutation is(1−2− · · · −n). Give an algorithm to generaten-
permutations in lexicographic ordering. Compare this algorithm to the Johnson-Trotter algorithm.

♦

Exercise 7.3: All adjacency orderings of2- and3-permutations are cyclic. Is it true of4-permutations?
♦

Exercise 7.4: Two n-permutationsπ, π′ arecyclic equivalent if π = (x1−x2− · · · −xn) andπ′ =
(xi−xi+1− · · · −xn−x1−x2− · · · −xi−1) for somei = 1, . . . , n. A cyclic n-permutation is an
equivalence class of the cyclic equivalence relation. Notethat there are exactlyn permutations
in each cyclicn-permutation. LetS′

n denote the set of cyclicn-permutations. So|S′

n| = (n −
1)!. Again, we can define the cyclic permutation graphG′

n whose vertex set isS′

n, and edges
determined by adjacent pairs of cyclic permutations. Give an efficient algorithm to generate a
Hamiltonian cycle ofG′

n. ♦

© Chee Yap Basic Version October 25, 2011

§7. GENERATING PERMUTATIONS Lecture V Page 54

Exercise 7.5: Suppose you are given a setS of n points in the plane. Give an efficient method to gen-
erate all the convex polygons whose vertices are fromS. Give the complexity of your algorithm
as a function ofn. ♦

END EXERCISES

© Chee Yap Basic Version October 25, 2011

§A. APPENDIX: JAVA CODE Lecture V Page 55

§A. APPENDIX: Java Code for Permutations

/**
* Per(mutations)

* This generates the Johnson-Trotter permutation order.

* By n-permutation, we mean a permutation of the symbols {1,2,...,n}.

*
* Usage:

* % javac Per.java

* % java Per [n=3] [m=0]

*
* will print all n-permutations. Default values n=3 and m=0.

* If m=1, output in verbose mode.

* Thus "java Per" will print

* (1,2,3), (1,3,2), (3,1,2), (3,2,1), (2,3,1), (2,1,3).

* See Lecture Notes for details of this algorithm.

*
***/

public class Per {

// Global variables
//
static int n; // n-permutations are being considered

// Quirk: Following arrays are indexed from 1 to n
static int[] per; // represents the current n-permutation
static int[] pos; // inverse of per: per[pos[i]]=i (for i=1..n)
static int[] C; // Counter array: 1 <= C[i] <= i (for i=1..n)
static boolean[] UP; // UP[i]=true iff pos[i] is increasing

// (going up) in the current phase

// Display permutation or position arrays
//
static void showArray(int[] myArray, String message){
System.out.print(message);
System.out.print("(" + myArray[1]);
for (int i=2; i<=n; i++)

System.out.print("," + myArray[i]);
System.out.println(")");

}

// Print counter
//
static void showC(String m){
System.out.print(m);
System.out.print("(" + C[2]);
for (int i=3; i<=n; i++)

System.out.print("," + C[i]);
System.out.println(")");

}

// Increment counter
//
static int inc(){
int ell=n;
while ((C[ell]==ell) && (ell>1)){

UP[ell] = !(UP[ell]); // flip Boolean flag

© Chee Yap Basic Version October 25, 2011

§A. APPENDIX: JAVA CODE Lecture V Page 56

C[ell--]=1;
}
if (ell>1)

C[ell]++;
return ell; // level of previous counter value

}

// Update per and pos arrays
//
static void update(int ell){
int tmpSymbol; // this is not necessary, but for clarity
if (UP[ell]) {

tmpSymbol = per[pos[ell]+1]; // Assert: pos[ell]+1 makes sense!
per[pos[ell]] = tmpSymbol;
per[pos[ell]+1] = ell;
pos[ell]++;
pos[tmpSymbol]--;

} else {
tmpSymbol = per[pos[ell]-1]; // Assert: pos[ell]-1 makes sense!
per[pos[ell]]= tmpSymbol;
per[pos[ell]-1] = ell;
pos[ell]--;
pos[tmpSymbol]++;

}
}

// Main program
//
public static void main (String[] args)

throws java.io.IOException
{
//Command line Processing
n=3; // default value of n
boolean verbose=false; // default is false (corresponds to second argument = 0)
if (args.length>0)

n = Integer.parseInt(args[0]);
if ((args.length>1) && (Integer.parseInt(args[1]) != 0))

verbose = true;

//Initialize
per = new int[n+1];
pos = new int[n+1];
C = new int[n+1];
UP = new boolean[n+1];
for (int i=0; i<=n; i++) {

per[i]=i;
pos[i]=i;
C[i]=1;
UP[i]=false;

}

//Setup For Loop
int count=0; // only used in verbose mode
int ell=1;
System.out.println("Johnson-Trotter ordering of "+ n + "-permutations");
if (verbose)

showArray(per, count + ", level="+ ell + " :\t");
else

showArray(per, "");

© Chee Yap Basic Version October 25, 2011

§A. APPENDIX: JAVA CODE Lecture V Page 57

//Main Loop
do {

ell = inc();
update(ell);
if (verbose)

count++;
showArray(per, count + ", level="+ ell + " :\t");

else
showArray(per, "");

} while (ell>1);

}//main
}//class Per

References

[1] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A locally adaptive data compression
scheme.Comm. of the ACM, 29(4):320–330, 1986.

[2] X. Cai and Y. Zheng. Canonical coin systems for change-making problems.arXiv:0809.0400v1
[cs.DS], 2009. 14 pages.

[3] E. Page and L. Wilson.An Introduction to Computational Combinatorics. Cambridge Computer
Science Texts, No. 9. Cambridge University Press, 1979.

[4] T. W. Parsons. Letter: A forgotten generation of permutations, 1977.

[5] R. Sedgewick. Permutation generation methods.Computing Surveys, 9(2):137–164, 1977.

[6] R. E. Tarjan.Data Structures and Network Algorithms. SIAM, Philadelphia, PA, 1974.

[7] J. S. Vitter. The design and analysis of dynamic huffman codes.J. ACM, 34(4):825–845, 1987.

© Chee Yap Basic Version October 25, 2011

	 THE GREEDY APPROACH
	 Joy Rides and Bin Packing
	 Interval Problems
	 Huffman Code
	 Dynamic Huffman Code
	 Minimum Spanning Tree
	 Matroids
	 Generating Permutations
	 APPENDIX: Java Code for Permutations

