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“Trees are the earth’s endless effort to speak to the listgtieaven”

— Rabindranath Tagor€ijreflies 1928

Alice was walking beside the White Knight in Looking Glassd.a

"You are sad.” the Knight said in an anxious tone: "let me sipgu a song to comfort you.”
"Is it very long?” Alice asked, for she had heard a good deapoktry that day.

"It's long.” said the Knight, "but it's very, very beautifulEverybody that hears me sing it
- either it brings tears to their eyes, or else -”

"Or else what?” said Alice, for the Knight had made a suddeniga.

"Or else it doesn’t, you know. The name of the song is calleadétbcks’ Eyes.
"Oh, that’s the name of the song, is it?” Alice said, tryingfeel interested.
"No, you don’t understand,” the Knight said, looking a lgtvexed. "That’s what the name
is called. The name really is 'The Aged, Aged Man.”

"Then | ought to have said 'That's what the song is called’Aio& corrected herself.

"No you oughtn't: that's another thing. The song is calleddy¥$ and Means’ but that's
only what it's called, you know!”

"Well, what is the song then?” said Alice, who was by this ticeenpletely bewildered.

"I was coming to that,” the Knight said. "The song really is-gitting On a Gate’: and the
tune’s my own invention.”

So saying, he stopped his horse and let the reins fall on itk:rtben slowly beating time
with one hand, and with a faint smile lighting up his genttelish face, he began...

— Lewis Carroll,Alice Through the Looking Glas$865

Lecture Il
BALANCED SEARCH TREES

Anthropologists inform us that there is an unusually largember of Eskimo words for snow. The
Computer Science equivalent of ‘snow’ is the ‘tree’ wotd; b)-tree, AVL tree B-tree, binary search
tree, BSP tree, conjugation tree, dynamic weighted tregefitree, half-balanced tree, heaps, interval
tree, leftist tree kd-tree, octtree, optimal binary search tree, priority sdarftee, quadtree, R-trees,
randomized search tree, range tree, red-black tree, segtrem splay tree, suffix tree, treaps, tries,
weight-balanced tree, etc. | have restricted the above list to trees which are used aslseata
structures. If we include trees arising in specific appio# (e.g., Huffman tree, DFS/BFS tree, alpha-
beta tree), we obtain an even more diverse list. The list @arflarged to include variants of these
trees: thus there are subspecieBetirees called3 - and B*-trees, etc.

If there is a most important entry in the above list, it has éobiinary search tree. It is the first
non-trivial data structure that students encounter, #ftear structures such as arrays, lists, stacks and
gueues. Trees are useful for implementing a varietglistract data types We shall see that all the
common operations for search structures are easily impleadeising binary search trees. Algorithms
on binary search trees have a worst-case behavior thatpsegiianal to the height of the tree. The height
of a binary tree om nodes is at leagtig n|. We say that a family of binary treest&lancedif every
tree in the family om nodes has heigl®(logn). The implicit constant in the big-Oh notation here
depends on the particular family. Such a family usually comguipped with algorithms for inserting
and deleting items from trees, while preserving membetishtipe family.

balance-nessis a
family property

Many balanced families have been invented in computer seiehey come in two basic forms:
height-balancedandweight-balanced schemedn the former, we ensure that the height of siblings are
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“approximately the same”. In the latter, we ensure that thalmer of descendants of sibling nodes are
“approximately the same”. Height-balanced schemes requdrto maintain less information than the
weight-balanced schemes, but the latter has some extrhifigxinat are needed for some applications.
The first balanced family was invented by the Russians Adiel'¢el'skii and Landis in 1962, and are
calledAVL trees. We will describe several balanced families, including Avées and red-black trees.
The notion of balance can be applied to non-binary trees; iWetwdy the family of (a, b)-treesand
generalizations. Tarjar¥] gives a brief history of some balancing schemes.

STUDY GUIDE: all our algorithms for search trees are destiin such a
way that they can be internalized, and we expect studentarty out hand;
simulations on concrete examples. We do not provide any atenpode, bu
once these algorithms are understood, it should be podsilieplementing
them in your favorite programming language.

—F

1. Search Structures with Keys

Search structures store a set of objects subject to segrahéthmodification of these objects. Search
structures can be viewed as a collectiomotiesthat are interconnected by pointers. Abstractly, they
are just directed graphs with edge and/or vertex labelsh Bade stores an object which we call an
item. We will be informal about how we manipulate nodes — they watiously look like ordinary
variables and pointetss in the programming languag@é C++, or like references idava. Let us look
at some intuitive examples, relying on your prior knowledgeut programming and variables.

"‘ keyl‘ datal ‘Q‘

N ‘ keyl‘ datal ‘0—‘—>‘ keyz‘ data2 M / \
y M keyz‘ data2 M ‘?‘ keyS‘ data3 ‘ ‘

v V‘ key4‘ datad ‘ A

Legend:
E—)—> Non-null Pointe
(@) Z Null Pointer

Figure 1: Two Kinds of Nodes: (a) linked lists, (b) binarydse

91. Keys and Items. Each item is associated withkey. The rest of the information in an item is
simply calleddata, so that we may regard arem as a painKey, Data). Besides an item, each node
also stores one or more pointers to other nodes. Since thetaefiof a node includes pointers to nodes,
this is a recursive definition. Two simple types of nodes Buetrated in Figurel: nodes with only one
pointer (Figurel(a)) are used to forming linked lists; nodes with two poistean be used to form a

1 The concept ofocativesintroduced by Lewis and Denenber nay also be used: a locativeis like a pointer variable
in programming languages, but it has properties like annargi variable. Informallyu will act like an ordinary variable in
situations where this is appropriate, and it will act likeainper variable if the situation demands it. This is achitbg suitable
automatic referencing and de-referencing semantics fdr sariables.
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binary trees (Figuré(b)), or doubly-linked lists. Nodes with three pointers ¢enused in binary trees
that require parent pointers. First, suppdéés a node variable of the type in Figuté). ThusN has
threefields, and we may name these fieldskesy, dat a, next . Each field has some data type. E.g.
key is typically integerdat a can be string, but it can almost anything, batxt has to be a pointer
to nodes. This field information constitutes the “type” oé thode. To access these fields, we write
N.key, N.dat a or N.next . The type ofN.next is not that of a node, but pointer to a node. In our
figures, we indicate the values of pointers by a directednarfdode pointer variables act rather like
node variables: if variable is a pointer to a node, we afsarite u.key, u.dat a andu.next to access
the fields in the node. There is a special pointer value céfledull pointer or nil value. It points to
nothing, but as a figure of speech, we may say it points tmilheode. Of course the nil node is not a
true node since it cannot store any information. In figurésHigure 1) null pointers are indicated by a
box with a slash line.

In search queries, we sometimes need to return a set of if€hesconcept of an iterator captures
this in an abstract way: aterator is a special node that has two fieldsu.val ue andu.next . Here,
u.next is a pointer to another iterator node whileval ue is a pointer to an item node. Thus, by
following thenext pointer until we reachil, we can visit a list of items in some un-specified order.

Programming semantics: The difference between a nodeblari and a very informally
node pointer variable is best seen using the assignment operation. Let us speaking
assume that the node typegieey, dat a, next ), M is another node variable
andv another node pointer variable. In the assignméat<~ M’, we copy
each of the three fields dff into the corresponding fields @¥. But in the
assignmentt < v’, we simply makeu point to the same node asReferring
to Figurel(a), we see that is initially pointing to N, andv pointing to M.
After the assignment « v, both pointers would point td/.

But what about N «+— «’ and ‘u « N'? In the former case, it has the
same effect asN «— M’ wherew points toM. In the latter case, it has the
same effect as/ < v’ wherew is any pointer taV (v may not actually exist).
In each case, the variable on the left-hand side deterntireggroper assign
ment action. Once we admit all these four assignment pdisieibj there ig
little distinction between manipulating nodes and theinpers. This is what
we meant earlier, when we said that our notion of nodes willotesly look|
like ordinary variableN or pointersu. Indeed thelava language eschews
pointers, and introduces an intermediate concept calfedenece.

Recall the Lewis Carroll quotation at the beginning of thisyater: The

four main players in our story are the two variabtegnd N, the pointe The clue from the story
value ofu, and the node thaV refers to. Then is ‘Haddocks’ Eyes’ N is of Alice and the White
‘Ways and Means’, the pointer value is ‘The Aged, Aged Mang ¢he node Knight

is ‘A-sitting On a Gate'.

Examples of search structures:

(i) An employee databasehere each item is an employee record. The key of an emplepeed is
the social security number, with associated data such ags&ldhame, salary history, etc.

(ii) A dictionarywhere each item is a word entry. The key is the word itselp@ssed with data such
as the pronunciation, part-of-speech, meaning, etc.

2 For instanceC++ would distinguish between nodea’} and pointers+) to nodes, and we would write — key, u —
dat a, etc.
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(iii) A scheduling queum a computer operating systems where each item in the qaeujb that is
waiting to be executed. The key is the priority of the job, ethis an integer.

It is natural to refer such structureskasyed search structures From an algorithmic point of view,
the properties of the search structure are solely detedvigethe keys in items, the associated data
playing no role. This is somewhat paradoxical since, forusers of the search structure, it is the data What is the point of
that is more important. ~ With this caveat, we will normallynaye the data part of an item in oursearching for keys with
illustrations, thusdentifying the item with the key onl@ur default is theinique key assumption that no associated data?
the keys in a keyed search structure are unique. Equivgleligtinct items have the distinct keys. In
the few places where we drop this assumption, it will be gtatelicitly.

Binary search trees is an example of a keyed search structiseally, each node of the binary
search trees stores an item. In this case, our terminologyoafes” for the location of items happily
coincides with the concept of “tree nodes”. However, theevarsions of binary search trees whose
items resides only in the leaves — the internal nodes onfg &ieys for the purpose of searching.

usually, keys=

92. Uses of Key. Key values usually come from a totally ordered set. Typjcalle use the set of integers!

integers for our totally ordered set. Another common chticéey values are character strings ordered
by lexicographic ordering. For simplicity, the default asgption is that items have unique keys. When
we speak of the “largest item”, or “comparison of two items are referring to the item with the largest

key, or comparison of the keys in two items, etc. Keys are=ddlly different names to suggest their

function in the structure. For example, a key may varioualied:

e priority , if there is an operation to select the “largest item” in tharsh structure (see example
(iii) above);

o identifier, if the keys are unique (distinct items have different keyrs) our operations use only
equality tests on the keys, but not its ordering properses gxamples (i) and (ii));

e costor gain, depending on whether we have an operation to find the miniifuzost) or maxi-
mum (if gain);

e weight, if key values are non-negative.

We may define aearch structure S as a representation of a set of items that supportk dlod Up
query, among other possible operations. The lookup querg given keyK andS, returns a node
in S such that the item im has keyK. If no such node exists, it returns= nil. Next tol ookUp,
perhaps the next most important operationisert .

SincesS represents a set of items, two other basic operations wet nvayht to support are inserting
an item and deleting an item. K is subject to both insertions and deletions, we Sadl dynamic set
since its members are evolving over time. In case insertimrtaot deletions, are supported, we ¢ll
asemi-dynamic set In case both insertion and deletion are not allowed, we&Salktatic set Thus,
the dictionary example (ii) above is a static set from thewpieint of users, but it is a dynamic set from
the viewpoint of the lexicographer.

62. Abstract Data Types
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Students might be familiar with the conceptioferface in the programming languagkava. In
the data structures literature, the general concept is krasabstract data type (ADT). Using the
terminology of object-oriented languages suctCas or Java, we may view a search data structure
is an instance of aontainer class Each instance stores a set of items and have a well-defined se
members(i.e., variables) andhethods(i.e., operations). Thus, a binary tree is just an instaridheo
“binary tree class”. The “methods” of such class supportessobset of the following operations listed

below.

93. ADT Operations.

This section contains a general discussion on abstract tgtas (ADT's). |
may be used as a reference; a light reading is recommendetédirst time

groups (1)-(1V):

We will now list all the main operations found in all the ADTtsat we will
study.We emphasize that each ADT will only require a proper subidtiese operations. The full set of
ADT operations listed here is useful mainly as a referende.will organize these operations into four

Group | Operation | Meaning

() Initializer and Destroyers | nmake()—Structure creates a structure
kill() destroys a structure

(I Enumerationand Order | | i st () —Node returns an iterator
succ(Nodg—Node returns the next node
pr ed(Nodg—Node returns the previous node
m n()—Node returns a minimum node
max()—Node returns a maximum node

(Il Dictionary-like Operations| | ook Up(Key)—Node returns a node witkKey
i nsert (Item—Node returns the inserted node
del et e(Nodg deletes a node
del et eM n()—ltem deletes a minimum node

(IV) Set Operations spl it (Key— Structure| split a structure into two

nmer ge(Structureg

merges two structures into one

Most applications do not need the full suite of the these ajgmrs. Below, we will choose various
subsets of this list to describe some well-known ADT's. Theaming of these operations are fairly
intuitive. We will briefly explain them. Lef, S’ be search structures, viewed as instances of a suitable
class. LetK be a key and: a node. Each of the above operations are invoked from sgntaus,

S.make() will initialize the structureS, andS.nmax () returns the maximum value ii.

When there is only one structufg we may suppress the referencestoE.g.,S.mer ge(S’) can be

simply written as frer ge(S’)".

Group (I): We need to initialize and dispose of search stmest. Thusrake (with no arguments)
returns a brand new empty instance of the structure. Thesewdnmake iski | | , to remove a structure.

These are constant time operations.

Group (II): This group of operations are based on some linedering of the items stored in the
data structure. The operatibn st () returns a node that is an iterator. This iterator is the begmof
a list that contains all the items i$i in some arbitraryorder. The ordering of keys is not used by the
iterators. The remaining operations in this group depenithemrdering properties of keys. Then()
andmax () operations are obvious. The successocc (u) (resp., predecesspr ed(u)) of a nodeu
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refers to the node ity whose key has the next larger (resp., smaller) value. Thisdgfined ifu has
the largest (resp., smallest) valueSn

Note thatl i st () can be implemented using n() andsucc(u) or max() andpr ed(u). Such a
listing has the additional property of sorting the outpukiy value.

Group (IlI): The first three operations of this group,
| ookUp(K) — u, insert(K,D)—u, delete(u),

constitute the “dictionary operations”. In many ADT’s, Heeare the central operations.

The nodeu returned byl ook Up(K) has the property thatkey = K. In conventional program-
ming languages such &% nodes are usually represented by pointers. In this casaiiltpointer is
returned by thé ook Up function when there is no item ifi with key K.

In case no such item exists, or it is not unique, some convestiould be established. At this level,
we purposely leave this under-specified. Each applicationlsl further clarify this point. For instance,
in case the keys are not unique, we may requireltibatk Up (K') returns an iterator that represents the
entire set of items with key equal 6.

Bothi nsert anddel et e have the obvious basic meaning. In some applications, weprefgr
to have deletions that are based on key values. But such togetperation can be implemented as
‘del et e(l ookUp(K))'. In casel ookUp(K) returns an iterator, we would expect the deletion to be
performed over the iterator.

The fourth operatiort.del et eM n() in Group (Ill) is not considered a dictionary operation. The
operation returns the minimum itethin .S, and simultaneously deletes it froéh Hence, it could
be implemented adel et e(m n()). But because of its importanceel et eM n() is often directly
implemented using special efficient techniques. In most statictures, we can repladel et eM n by
del et eMax without trouble. However, this is not the same as being ab$eipport botldel et eM n
anddel et eMax simultaneously.

Group (IV): The final group of operations,
Ssplit(K)— S, S.Merge(S),

represent manipulation of entire search structusesnd S’. If S.split (K) — S’ then all the items
in S with keys greater thai” are moved into a new structufg; the remaining items are retainedsn
Conversely, the operatiafimer ge(.S’) moves all the items i’ into .S, andS’ itself becomes empty.
This operation assumes that all the key$'iare less than all the items 1. Thusspl i t andmer ge
are inverses of each other.

94. Implementation of ADTs using Linked Lists. The basic premise of ADTs is that we should
separate specification (given by the ADT) from implementat\We have just given the specifications,
so let us now discuss a concrete implementation.

Data structures such as arrays, linked list or binary seiedts are calledoncrete data types
Hence ADTs are to be implemented by such concrete data tygesvill now discuss a simple imple-
mentation of all the ADT operations using linked lists. Thismble data structure comesSivarieties
according to Tarjang]. For concreteness, we use the variety that Tarjan eaittogeneous doubly-
linked list. Endogeneous means the item is stored in the node itsefffithion a node:, we can directly
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access:.key andu.dat a. Doubly-linked means has two pointers.next andu.pr ev. These two
pointers satisfies the invariantnext = v iff v.prev = u. We assume students understand linked
lists, so the following discussion is a review of linkeddist

Let L be a such a linked list. Conceptually, a linked list is set oflés organized in some linear
order. The linked list has two special nodéshead andL.t ai | , corresponding to the first and last
node in this linear order. We can visit all the nodedirusing the following routine with a simple
while-loop:

LISTTRAVERSAL(L):

u < Lhead List traversaShell
while (u # nil)

u «— u.next
CLEANUP()

Here, VISIT{) and CLEANUP() arenacros meaning that they stand for pieces of code that will be

textually substituted before compiling and executing thegpam. We will indicate a macro ABC by

framing it in a box Iik. Macros should be contrastedgabroutines which are independent

procedures. In most situations, there is no semantic difie between macros and subroutines (except

that macros are cheaper to implement). But see the impleti@ntofl ook Up(K) next. Note that

macros, like subroutines, can take arguments. As a detheltnacros do nothing (“no-op”) unless

we specify otherwise. We calllETTRAVERSAL ashell program — this theme will be taken up more macros are not
fully when we discuss tree traversal beldy). Since the while-loop (by hypothesis) visits every node subroutines
in L, there is a unique node(assume. is non-empty) withu.next = nil. This nodeis_.t ai | .

It should be obvious how to implement most of the ADT operatioising linked lists. We ask
the student to carry this out for the operations in Groupsutd (I1). Here we focus on the dictionary
operations:

e | 00kUp(K): We can use the above ListTraversal routine but replace '™Ml&)” by the follow-
ing code fragment:

: if (ukey = K) Return(u)

Since VISIT is a macro and not a subroutine, ®Return in VISIT is nota return from VISIT, but
a return from thé ook Up routine! The CLEANUP macro is similarly replaced by

CLEANUP()|: Return(nil)

The correctness of this implementation should be obvious.

e i nsert (K, D): We use the ListTraversal shell, but define VIGLT as the following macro:

\VISIT(u) | if (u.key=K) Return(nil)

Thus, if the keyK is found inu, we returmil, indicating failure (duplicate key). The CLEANUP()
macro creates a new node for the ité/, D) and installs it at the head of the list:
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CLEANUP()|

u — new(Node)
u.key:=K;u.dat a:=D
u.next :=L.head
L.head:=u

Return(u)

wherenew(Node) returns a pointer to space on the heap for a node.

e del et e(u): Sinceu is a pointer to the node to be deleted, this amounts to theatdreletion
of a node from a doubly-linked list:

u.next .prev — w.prev
u.prev.next «— u.next
del(u)

wheredel(u) is a standard routine to return a memory to the system heap takes time)(1).

95. Complexity Analysis. Another simple way to implement our ADT operations is to usays
(Exercise). In subsequent sections, we will discuss hownf@ément the ADT operations using bal-
anced binary trees. In order to understand the tradeoftsaset alternative implementations, we now
provide a complexity analysis of each implementation. lsadla this for our linked listimplementation.

We can provide a worst case time complexity analysis. Fat thé need to have a notion of input
size: this will ben, the number of nodes in the (current) linked list. Consistath our principles in
Lecture I, we will perform @-order analysis.

The complexity of ookUp(K) is ©(n) in the worst case because we have to traverse the entire list
in the worst case. Bothnsert (K, D) anddel et e(u) are preceded blyookUp’s, which we know
takes©(n) in the worst case. Theel et e operation isO(1). Note that such an efficient deletion is
possible because we use doubly-linked lists; with singlizdd lists, we nee®(n) time.

More generally, with linked list implementation, all the Aldperations can easily be shown to have
time complexity eithe© (1) or ©(n). The principal goal of this chapter is to show that é@:) can be
replaced by (logn). This represents an “exponential speedup” from the linistdrhplementation.

96. Some Abstract Data Types. The above operations are defined on typed domains (keystates,
items) with associated semantics. Alnstract data type(acronym “ADT") is specified by

e one or more “typed” domains of objects (such as integerstisets, graphs);
e a set of operations on these objects (such as lookup an itearfian item);

e properties (axioms) satisfied by these operations.

These data types are “abstract” because we make no assaraptiat the actual implementation.

It is not practical or necessary to implement a single datecgire that has all the operations listed
above. Instead, we find that certain subsets of these opesatiork together nicely to solve certain
problems. Here are some of these subsets with wide appitgabi
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Dictionary ADT : | ookUp[, i nsert[, del et e]].

Ordered Dictionary ADT : | ookUp, i nsert,del et e, succ, pr ed.

Priority queue ADT : del et eM n,i nsert [, del et e[, decr easeKey]].

Fully mergeable dictionary ADT: | ookUp, i nsert,del et e, merge[,split].

For instance, an ADT that supports only the three operatidrisookUp,i nsert ,del et e is
called adictionary ADT . In these ADT's, there may be further stripped-down versiamere we
omit some operations (these omitted operations are entiassquare brackets:---]. Thus, a dic-
tionary ADT without thedel et e operation is called @emi-dynamic dictionary, and if it further
omitsi nsert, itis called astatic dictionary. Thus static dictionaries are down to a bare minimum
thel ook Up operation. If we omitthepl i t operation in fully mergeable dictionary, then we obtain
themergeable dictionary ADT.

0\(\/hat do you get if you
omitl ookUp? A
write-only memory”
(WOM)

Alternatively, some ADT’s can be enhanced by additionarapens. For instance, a priority queue
ADT traditionally supports onlydel et eM n andi nsert. But in some applications, it must be
enhanced with the operation@él et e and/ordecr easeKey. The latter operation can be defined as

decreaseKey(K,K') = [u — | ookUp(K);del et e(u);i nsert (K’,u.dat a)]

with the extra condition thak” < K (assuming a min-queue). In other words, we change the fyriori
of the itemu in the queue fronk to K’. SinceK’ < K, this amounts to increasing its priority ofin
a min-queue.

If the deletion in dictionaries are based on keys (see comatmve) then we may think of a dictio-
nary as a kind ofssociative memory The operationsake andki | I (from group (I)) are assumed
to be present in every ADT.

Variant interpretations of all these operations are péssHor instance, some versioniafiser t
may wish to return a boolean (to indicate success or failorejot to return any result (in case the
application will never have an insertion failure). Otheefus functions can be derived from the
above. E.g., it is useful to be able to create a structuo®ntaining just a single itemh. This can
be reduced toS.make(); Si nsert (I)’. The concept of ADT was a major research topic in the
1980’s. Many of these ideas found their way into structunesyramming languages such as Pascal
and their modern successors. An interface in Java is a kidddf where we capture only the types
of operation. Our discussion of ADT is informal, but one waystudy them formally is to describe
axioms that these operations satisfy. For instancg, i a stack, then we can postulate the axiom
that pushing an item: on S followed by poppingS should return the itenz. In our treatment, we
will rely on informal understanding of these ADT’s to avoltetaxiomatic treatment.

97. Application to Heapsort In Chapter I, we introduce the Mergesort Algorithm which veas-
lyzed in Chapter Il to have complexit¥(n) = 27(n/2) + n = ©(nlogn). We now give another
solution to the sorting problem based on the (stripped dgwioyity queue ADT: in order to sort an
array A[1..n] of items, we insert each iter[i] into a priority queu&), and then remove them frof)
usingdel et eM n:
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HEAPSORTA, n):
Input: An array A of n items
Output: The sorted arrayl
1. Q — make()
2. fori=1tondo
Q.insert (Afi])
3. fori=1tondo
Ali] — Q.del eteM n()
4. Return(A)

The correctness of the algorithm is obvious. As each pyigiieue operation i©(log n), this gives
anotherO(n logn) solution to sorting.

EXERCISES

Exercise 2.1: Recall our discussion of pointer semantics. Consider theeot of a “pointer to a
pointer” (also known as handler).
(a) Let the variablep, ¢ have the type pointer-to-pointer-to-node, whileand N have types
pointer-to-node and node (resp.). It is clear what- ¢ means. But what shoulg '+ ',
‘p— N',' N «— p’, and ‘u < p’ mean? Or should they have meaning?
(b) Give some situations where this concept might be useful. &

Exercise 2.2: In 94, we provided implementations of the dictionary operatigsiag linked list. Please
complete this exercise by implementing the full suite of ADJerations using linked lists. We
want you to do this within the shell programming framework. &

Exercise 2.3: Consider the dictionary ADT.
(a) Describe algorithms to implement this ADT when the cetermata structures are arrays.
HINT: A difference from implementation using linked liststb decide what to do when the array
is full. How do you choose the larger size? What is the anaauhe ListTraversal Shell?
(b) Analyze the complexity of your algorithms in (a). Com@dnis complexity with that of the
linked list implementation. &

Exercise 2.4: Repeat the previous question for the priority queue ADT. &

Exercise 2.5: SupposeD is a dictionary with the dictionary operations of lookupsént and delete.
List a complete set of axioms (properties) for these opemati &

END EXERCISES

3. Binary Search Trees

We introduce binary search trees and show that such treesupgort all the operations described
in the previous section on ADT. Our approach will be somewimaionventional, because we want to
reduce all these operations to the single operation of timta
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Recall the definition and basic properties of binary treethenAppendix of Chapter I. Figur2
shows two binary trees (small and big) which we will use in tlustrations. For each node of the
tree, we store a valuekey called its key. The keys in Figuteare integers, used simply as identifiers
for the nodes.

@ (b)

Figure 2: Two binary (not search) trees: (a) small, (b) big

Briefly, a binary tre€l is a set/N of nodeswhere each node has two pointersy.l ef t and
u.ri ght. The set\V is either the empty set, dv has a special node called theroot. The remaining
nodesN \ {u} are partitioned into two sets of nodes that, recursivelynfbinary trees7, andTr. If
N is non-empty, then the roathas two fieldsy.l ef t andw.ri ght, that point to the roots df';, and
Tr (resp.). The tree%},, Tk are called theeft andright subtrees of T'. If these subtrees are empty,
thenu.l eft (u.ri ght)isnil.

This definition of binary trees is based efructural induction . Thesizeof T' is |N|. We often
identify 7" with the set of nodesV, and so the size may be denotdd, and we may write tt € T
instead of t € N”. Figure 2 illustrates two binary trees whose node sets are (respdgtiv’ =
{1,2,3,4,5} (small tree) andV = {1,2,3,...,15} (big tree).

@ (b)

Figure 3: (a) Binary Search Tree on kejyis 2, 3,4, ...,14,15}. (b) Afterr ot at e(2).

The keys of the binary trees in FiguPeare just used as identifiers. To turn them into a binary
searchtree, we must organize the keys in a particular way. Such arpisearch tree is illustrated in
Figure3(a). Structurally, it is the big binary tree from Figu2éb), but now the keys are no longer just
arbitrary identifiers.
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A binary treeT is called abinary search tree (BST) if each node: € T has a fieldu.key that BST are binary trees
satisfies thé8ST property: that satisfy the BST
ur.key < u.key <ug.key. 1) property!

for all left descendent;, and and all right descendemg, of u. Please verify that the binary search trees
in Figure3 obey (1) at each node.

The “standard mistake” is to replace) by u.l ef t .key < u.key < w.ri ght .key. By defi- good quiz question...
nition, a left (right) descendant ef is a node in the subtree rooted at the left (right) child.ofThe
left and right children of: are denoted by..| ef t andw.ri ght. This mistake focuses on a necessary,
but not sufficient, condition in the concept of a BST. Seléckt construct a counter example to the
standard mistake using a binary tree of size

Fundamental Rule about binary tre@sost properties about binary trees are
best proved by induction on the structure of the tree. Likeyalgorithms fof
binary trees are often best described using structural atigdun.

98. Height of binary trees. Let M (h) andu(h) (resp.) be the maximum and minimum number of
nodes in a binary tree with height It is easy to see that

w(h) = h+1. )

What aboutM (h)? Clearly,M(0) = 1 andM (1) = 3. Inductively, we can see that/(h + 1) =
1+ 2M(h). ThusM (1) = 1 +2M(0) = 3, M(2) = 1 +2M (1) = 7, M(3) = 1 + 2M(2) = 15.
From these numbers, you might guess that

M(h) =21 —1 ()

and it is trivial to verify this for allh. Another way to sed/(h) is that it is equal '@:?:o 2% since there
are at mos2’ nodes at level, and this bound can be achieved at every level. The simpleuiar 3)
tells us a basic fact about the minimum height of binary tgres nodes: if its height ig, then clearly,
n < M (h) (by definition of M (h). Thusn < 2"+ — 1, leading to

h>lg(n+1)—1. (4)

Informally, the height of a binary tree is at least logarithmic in the sizhis simple relation is critical
in understanding complexity of algorithms on binary trees.

99. Lookup. The algorithm for key lookup in a binary search tree is almnosnediate from the
binary search tree property: to look for a kiy we begin at the root (remember the Fundamental Rule
above?). In general, suppose we are lookingHoin some subtree rooted at nodeIf u.key = K,

we are done. Otherwise, eith&r < u.key or K > u.key. In the former case, we recursively search
the left subtree ofi; otherwise, we recurse in the right subtreea:ofin the presence of duplicate keys,
what does lookup return? There are two interpretations\d an return the first nodewe found to
have the given keyK'. (2) We may insist on locating all nodes whose ke¥is

In any case, requirement (2) can be regarded as an exterfgib)y aamely, given a node, find
all the other nodes below with same same key askey. This subproblem can be solved separately
(Exercise). Hence we may assume interpretation (1) in thesfing.
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910. Insertion. To insert an item, say the key-data p@if, D), we proceed as in the Lookup algo-
rithm. If we find K in the tree, then the insertion fails (assuming distinctsieytherwise, we would
have reached a nodethat has at most one child. We then create a new road®ntaining the item
(K, D) and make.’ into a child ofu. Note that if K’ < u.key, thenu’ becomes a left child; otherwise
aright child. In any case,’ is now a leaf of the tree.

911. Rotation. Roughly, to rotate a node means to make the parent efbecome its child. The
set of nodes is unchanged. Rotation is not an operation idigtuof ADT operation §2), but it is
critical for binary trees. On the face of it, rotation does do anything essential: it is just redirecting
some parent/child pointers. Two search structures theg staactly the same set of items are said to be
equivalent. Rotation is arequivalence transformation i.e., it transforms a binary search tree into an
equivalent one. Remarkably, we shall show that rotatior? éamm the basis for all other binary tree
operations.

The operatiom ot at e(u) is a null operation (“no-op” or identity transformation) @ is a root.
So assume is a non-root node in a binary search tleThenr ot at e(u) amounts to the following
transformation of” (see Figurel).

rotate(u)
(w) (o)
rotate(v)

Figure 4: Rotation at and its inverse.

Inr ot at e(u), we basically want to invert the parent-child relation beéwu and its parent. The
other transformations are more or less automatic, giverthiearesult is to remain a binary search tree.
If the subtreesA, B, C (any of these can be empty) are as shown in Figutaen they must re-attach
as shown. This is the only way to reattach as children afidv, since we know that

A<u<B<uv<(C

in the sense that each key ihis less than, which is less than any key iB, etc. Actually, only the
parent of the root oB has switched fromx to v. Notice that after ot at e(u), the former parent od
(not shown) will now have: instead ofv as a child. After a rotation at, the depth of: is decreased by
1. Note thatr ot at e(u) followed byr ot at e(v) is the identity or no-op operation; see Figdre

912. Graphical convention: Figure4 encodes two conventions: consider the figure on the leftcide
the arrow. First, the edge connectingp its parent is directed vertically upwards. This indicateaty
could be the left- or right-child of its parent. Second, twe edges fromv to its children are connected
by a circular arc. This is to indicate thatand its sibling coultlexchange places (i.eu,could be the
right-child of v even though we choose to shavas the left-child). Thus Figuréis a compact way to
represent four distinct situations.

3 Augmented by the primitive operations of adding or remowirmpde.
4 If this were to happen, the subtreds B, C' needs to be appropriately relabeled.
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9* 13. Implementation of rotation. Let us discuss how to implement rotation. Until now, when we
draw binary trees, we only display child pointers. But we tmew explicitly discuss parent pointers.

Let us classify a node into one of thredypes left, right or root. This is defined in the obvious
way. E.g.uis alefttypeiffitis notaroot and is a left child. The typewfs easily testedu is type root
iff w.par ent = nil, andu is type left iff u.par ent .| eft = w. Clearly,r ot at e(u) is sensitive to
the type ofu. In particular, ifu is a root therr ot at e(u) is the null operation. 1T € {l ef t ,ri ght }
denote left or right type, itsomplementary typeis denoted’, wherel ef t = ri ght andri ght =
left.

rot at e(u)

rotate(v)

Figure 5: Links that must be fixed not at e (u).

We are ready to discuss thet at e(u) subroutine. We assume that it will return the (same) node
u. Assumeu is not the root, and its type 5 € {l ef t ,ri ght }. Letv = u.par ent, w = v.par ent
andx = v.T. Note thatw andz might benil. Thus we have potentially three child-parent pairs:

(x,u), (u,v), (v,w). (5)
But after rotationy andv are interchanged, and we have the following child-pareinspa
(x,v), (v,u), (u,w). (6)

These pairs are illustrated in Figuresand6 where we explicitly show the parent pointers as well as
child pointers. Thus, to implement rotation, we need to siggs pointers § parent pointers and
child pointers). We show that it is possible to achieve thiggsignment using exactiyassignments.

— X — T\
RO W
~._--7 ~._--7 ~._--7

Figure 6: Simplified view of ot at e(u) as fixing a doubly-linked listz, u, v, w).

rot at e(u)
e

Such re-assignments must be done in the correct order.dsigdsee what is needed by thinking of
(5) as a doubly-linked listz, u, v, w) which must be converted into the doubly-linked Iist v, u, w)
in (6). Thisis illustrated in Figuré. For simplicity, we use the terminology of doubly-linkestlso that
u.next andu.pr ev are the forward and backward pointers of a doubly-linked kere is the code:
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ROTATE(u):
> Fix the forward pointers
1. w.prev.next < u.next
<4 z.next =wv
2. wu.next «— wu.next.next
<4 u.next =w
3. wu.prev.next.next «— u
<d4 v.next =u
> Fix the backward pointers
4. wu.next.prev.prev «— u.prev
4 v.prev=c
5. wu.next.prev «—u
< w.prev =u
6. wu.prev <« u.prev.next
< u.prev=w

We can now translate this sequencesadissignments into the corresponding assignments for binary
trees: theu.next pointer may be identified with.par ent pointer. Howevery.pr ev would beu.T'
whereT € {l ef t,ri ght} is the type ofr. Moreover,v.prev isv.T. Also w.prev isw.T" for
another typel”. A further complication is that or/andw may not exist; so these conditions must be
tested for, and appropriate modifications taken.

If we use temporary variables in doing rotation, the codelmsimplified (Exercise).

914. Variations on Rotation. The above rotation algorithm assumes that for any nadee can
access its parent and grandparent”. This is true if each node has a parent pointgrar ent . This

is our default assumption for binary tree algorithnigut even if we have no parent pointers, we could
modify our algorithms to achieve the desired results bexaus search invariably starts from the root,
and we can keep track of the triple, v’, u””) which is necessary to know when we rotate:at

Some authors replace rotation with a pair of variants, ddd#-rotation andright-rotation . These
can be defined as follows:

left-rotate(u) =rotate(uleft), right-rotate(u) =rotate(u.right).

The advantage of using these two rotations is that they deoegoire parent pointers.

915. Double Rotation. Suppose: has a parent and a grandparent. Then two successive rotations
on u will ensure thaty andw are descendants af We may denote this operation byt at e?(u).
Up to left-right symmetry, there are two distinct outcomes ot at e?(u): (i) eitherv, w are becomes
children ofu, or (ii) only w becomes a child of andv a grandchild ofu. These depend on whether
is theouter or inner grandchildren ofw. These two cases are illustrated in FigidrgAs an exercise,
we ask the reader to draw the intermediate tree after thafiptcation ofr ot at e(w) in this figure.]

It turns out that case (ii) is the more important case. Forynpamposes, we would like to view the
two rotations in this case as one indivisible operation:ceame introduce the termhouble rotation to
refer to case (ii) only. For emphasis, we might call the oxddrotation asingle rotation.

These two cases are also known as the zig-zig (or zag-zagigizég (or zag-zig) cases, respec-
tively. This terminology comes from viewing a left turn agzand a right turn as zag, as we move from
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() (u)
Q A rot at e?(u) A Q
® L = o\
AN swamene /3

()
Q A r ot at e’(u)
(u)

/i

A A Zig-zag Case

Figure 7: Two outcomes afot at e (u)

up aroot path. The Exercise considers how we might implemeiouble rotation more efficiently than
by simply doing two single rotations.

916. Five Canonical Paths from a node. A path is a sequence of nodég, u1, . .., u,) where each

u; is a child ofu;_, or eachu; is a parent of:;_;. The length of this path is, andu,, is also called

thetip of the path. E.g.(2,4,8,12) is a path in Figur&(b), with tip 12. Relative to a node, there

are 5 canonical paths that originate framThe first of these is the path fromto the root, called the

root path of u. In figures, the root path is displayed as an upward pathoviatig parent pointers from u
the nodeu. E.g., ifu = 4 in Figure2(b), then the root path ist, 2, 1). Next we introduce 4 downward
paths fromu. Theleft-path of « is simply the path that starts fromand keeps moving towards the
left or right child until we cannot proceed further. Thight-path of « is similarly defined. E.g., with
u = 4 as before, the left-path {g, 7) and right-path i$4, 8). Next, we define thé&eft-spine of a nodeu 5 paths from a node
is defined to be the pattu, rightpati{u.| ef t)). In caseu.l ef t = nil, the left spine is just the trivial

path(u) of length0. Theright-spine is similarly defined. E.g., with. as before, the left-spine {d, 7)

and right-spine ig4, 8, 12). The tips of the left- and right-paths atcorrespond to the minimum and

maximum keys in the subtree@t The tips of the left- and right-spingsiovided they are different from

u itself, correspond to the predecessor and successor Gfearly,« is a leaf iff all these four tips are

identical and equal ta.

We now examine what happens to these five paths after a rotation. After performing a left-
rotation atu, we reduce the left-spine length afby one (but the right-spine af is unchanged). See
Figure8.

LEMMA 1. Let(ug,uq,...,ux) be the left-spine af andk > 1. Also let(vy, . . ., v,,) be the root path

of u, whereu = v, andu,, is the root of the tree. After performinpt at e(u.l ef t ), the left-child of ~ How rotations affect
the 5 paths
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Q rot at e(w) Q

®
202 /

Figure 8: Reduction of the left-spine ofafterr ot at e(u.l eft ) = r ot at e(w).

w is transferred from the left-spine to the root path. Moregisely:

(i) the left-spine oft becomegug, us, ..., uy) of lengthk — 1,
(i) the root path ofu becomesguvy, u1,v1,...,v,) of lengthm + 1, and

(iii) the right-path and right-spine ofi are unchanged.

So repeatedly left-rotations atwill reduce the left-spine ofi to length0. A similar property holds
for right-rotations.

917. Deletion. Suppose we want to delete a nadeln caseu has at most one child, this is easy to
do — simply redirect the parent’s pointerddnto the unique child of. (or nil if w is a leaf). Call this Th&'ut(u) operation.
procedureC'ut(u). It is now easy to describe a general algorithm for deletingdeu:

DELETE(T, w):
Input:  w is node to be deleted froffi.
Output: T, the tree withu deleted.
while u.l ef t = nil do
rotate(uleft).
Cut(u)

The overall effect of this algorithm is schematically iliteted in Figureo.

If we maintain information about the left and right spinedtds of nodes (Exercise), and the right
spine ofu is shorter than the left spine, we can perform the while-lagipg right-rotations to minimize
the number of rotations. To avoid maintaining height infation, we can also do this: alternately
perform left- and right-rotates at until one of its 2 spines have length This guarantees that the
number of rotations is never more than twice the minimal eded

We ask the reader to simulate the operationBefete(T, 10) whereT is the BST of Figures.

918. Standard Deletion Algorithm. The preceding deletion algorithm is simple but it is quit&no
standard. We now describe thandard deletion algorithm:
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0]
deletef)

S ()

standard delete]

v — I_\e\ftTip(u)

cut(v)

Figure 9: Deletion: (i) Rotation-based, (ii) Standard.

STANDARD DELETE(T, u):
Input:  w is node to be deleted froffi.
Output: T, the tree with item in, deleted.
if « has at most one child, apptyut(«) and return.
else let v be the tip of the left spine af.
Copy the item inv into « (removing the old item inu)
Cut(v).

This process is illustrated in Figu® Note that in the else-case, the nodés not physically
removed: only the item represented#ys removed. Since is the tip of the left spine, it has at most
one child, and therefore it can be cut. If we have to returnlaevat is useful to return the parent of the
nodev that was cut — this can be used in rebalancing tree (see Adtidelbelow). The reader should
simulate the operations dbelete(T', 10) for the tree in Figure3, and compare the results of standard
deletion to the rotation-based deletion.

The rotation-based deletion is conceptually simpler, aildb& useful for amortized algorithms
later. However, the rotation-based algorithm seems todweeslas it requires an unbounded number of
pointer assignments. To get a definite complexity benefitcoved perform this rotation in the style of
splaying (Chapter VI, Amortization).

919. Inorder listing of a binary tree.

LEMMA 2. LetT be a binary tree om nodes. There is a unique way to assign the Kayg, ..., n}
to the nodes of" such that the result is a binary search tree on these keys.

We leave the simple proof to an Exercise. For exampl&,ig the binary tree in Figurg(b), then
this lemma assigns the keys, . . ., 15} to the nodes of " as in Figure3(a). In general, the node that is
assigned key (i = 1,...,n) by Lemma2 may be known as théh node of 7. In particular, we can
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speak of thdirst (: = 1) andlast node(i = n) of T'. The unique enumeration of the nodes/ofrom
first to last is called then-order listing of 7.

920. Successor and Predecessorlf « is theith node of a binary tre®’, thesuccessoof « refers to
the (i + 1)st node ofl". By definition,u is thepredecessof v iff v is the successor af. Letsucc (u)

andpr ed(u) denotes the successor and predecessar df coursesucc(u) (resp.,pred(u)) is

undefined ifu is the last (resp., first) node in the in-order listing of theet

We will define a closely related concept, but applied to aryyKe Let K be any key, not necessarily
occurring inT'. Define thesuccessoiof K in T to be the least ke’ in T such thatk’ < K’. We
similarly define thepredecessonf K in T' to be the greatedt”’ in 7' such that’ < K. Note that if K
occurs inT’, say in node:, then the successor/predecessakdadre just the successor/predecessar.of

In some applications of binary trees, we want to maintaimigws to the successor and predecessor
of each node. In this case, these pointers may be denctedt c andu.pr ed. Note that the succes-
sor/predecessor pointers of nodes is unaffected by rattur default version of binary trees do not
include such pointerd.et us make some simple observations:

LEMMA 3. Letwu be a node in a binary tree, butis not the last node in the in-order traversal of the
tree. Letsucc(u) = v.

(@) If u.ri ght # nil thenw is the tip of the right-spine af.

(i) If u.ri ght = nil thenu is the tip of the left-spine af.

It is easy to derive an algorithm femucc (u) using this lemma:

Succ(u):

Output: The successor node of(if it exists) ornil.
1. if w.right #nil < return the tip of the right-spine af
1.1 v« u.ri ght;

1.2 while v.l eft #nil, v — v.l eft;

1.3 Return(v).

2. else <« returnv whereu is the tip of the left-spine af
21 v« u.parent;

2.2 while v # nilandu = v.ri ght,

2.3 (u,v) < (v,v.parent).

2.4 Return(v).

The algorithm fopr ed(u) is similar.

921. Min, Max, DeleteMin. This is trivial once we notice that the minimum (maximum)rités
in the first (last) node of the binary tree. Moreover, the fffast) node is at the tip of the left-path
(right-path) of the root.

922. Merge. To merge two treed’, T where all the keys iff" are less than all the keys if, we

proceed as follows. Introduce a new nadand form the tree rooted at with left subtreel” and right
subtre€l”. Then we repeatedly perform left rotationsuatintil w.| ef t = nil. At this point, we can
performCut(u) (see§17). If you like, you can perform right rotations instead oftledtations.
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923. Split. Suppose we want to split a tr§éat a keyK. Recall the semantics of split frof2:
T.split(K) — T’. This says that all the keys less than or equaktes retained inl’, and the rest are
split off into a new tredl” that is returned.

First we do d ookUp of K in T'. This leads us to a nodethat either contain&” or elseu is the
successor or predecessorifin 7. That is,u.key is either the smallest key i that is greater or
equal toK or the largest key iff" that is less than or equal #&§. Now we can repeatedly rotate @t
until u becomes the root df. At this point, we can split off either the left-subtree ayhi-subtree of
T, renaming them &% and7” appropriately. This paifT’,T”) of trees is the desired result.

924. Complexity. Letus now discuss the worst case complexity of each of theeatyerations. They
are all©(h) whereh is the height of the tree. It is therefore desirable to be &blaintainO(log n)
bounds on the height of binary search trees.

We stress that our rotation-based algorithms for inserioth deletion may be slower than the
“standard” algorithms which perform only a constant numtifgpointer re-assignments. If this cost
is not an issue, then rotation-based algorithms are attegwtcause of their simplicity. Other possible
benefits of rotation will be explored in Chapter 6 on amottaand splay trees.

EXERCISES

Exercise 3.1: Let T be a left-list (i.e., a BST in which no node has a right-child)
(a) Suppose: is the tip of the left-path of the root. Describe the resultegeated rotation af
until « becomes the root.
(b) Describe the the effect of repeated left-rotate of thot 067" (until the root has no left child)?
lllustrate your answer to (a) and (b) by drawing the interiatedtrees whefi’ has5 nodes. <

Exercise 3.2: Consider the BST of Figur8(a). This calls for hand-simulation of the insertion and
deletion algorithms. Show intermediate trees after eatdtiom, not just the final tree.
(a) Perform the deletion of the kay this tree using the rotation-based deletion algorithm.
(b) Repeat part (a), using the standard deletion algorithm. &

Exercise 3.3: Suppose the set of keys in a BST are no longer unique, and wetwanodify the
| ookUp(u, K) function to return a linked list containing all the nodes t@oming key K in a
subtre€l’, rooted atu. Write the pseudo-code fdrookUpAll(u, K). O

Exercise 3.4: The function \ERIFY(u) is supposed returtnue iff the binary tree rooted at is a binary
search tree with distinct keys:

VERIFY(Nodeu)
if (u = nil) Return(true)
if ((u.left #nil)and u.key < u.l ef t .key)) Return(false)
if ((u.right #nil)and @.key > w.ri ght key)) Return(false)
Return(VERIFY(u.l ef t )AVERIFY(u.ri ght))

Either argue for it's correctness, or give a counter-exaspbwing it is wrong. &
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Exercise 3.5: TRUE or FALSE: Recall that a rotation can be implemented Wiflointer assignments.
Suppose a binary search tree maintains successor and @ssdetinks (denoted.succ and
u.pr ed in the text). Now rotation requirel®2 pointer assignments. O

Exercise 3.6: (a) Implement the above binary search tree algorithmst{ootdookup, insert, deletion,
etc) in your favorite high level language. Assume the birisegs have parent pointers.
(b) Describe the necessary modifications to your algoritim@a) in case the binary trees do not
have parent pointers. &

Exercise 3.7: Let T' be the binary search tree in Figuse You should recall the ADT semantics of
T — split(T,K)andnerge(T,T") in §2. HINT: although we only require that you show

the trees at the end of the operations, we recommend thathyuselected intermediate stages.

This way, we can give you partial credits in case you makeakést!
(a) Perform the operatioh’ — spl i t (T,5). DisplayT andT” after the split.

(b) Now performi nsert (T, 3.5) whereT is the tree after the operation in (a). Display the tree

after insertion.
(c) Finally, performner ge(7,7") whereT is the tree after the insert in (b) arfd is the tree
after the splitin (a). &

Exercise 3.8: Give the code for rotation which uses temporary variables. &

Exercise 3.9: Instead of minimizing the number of assignments, let usdryntnimize the time. To

count time, we count each reference to a pointer as takindim@. For instance, the assignment
u.next .prev.prev « wu.prev costss time units because in addition to the assignment, we

have to make accedsointers.
(a) What is the rotation time in odirassignment solution in the text?
(b) Give a faster rotation algorithm, by using temporaryafales. &

Exercise 3.10: We could implement a double rotation as two successiveioogtand this would take
12 assignment steps.
(a) Give a simple proof that 10 assignments are necessary.
(b) Show that you could do this with 10 assignment steps. &

Exercise 3.11: Open-ended: The problem of implementingt at e(u) without using extra storage or
in minimum time (previous Exercise) can be generalized.d & a directed graph where each
edge (“pointer”) has a name (e.gext , prev,| ef t ,ri ght) taken from a fixed set. Moreover,
there is at most one edge with a given name coming out of eadh. nBuppose we want to
transformG to another grapld’, just by reassignment of these pointers. Under what canmiti
can this transformation be achieved with only one variab(as inr ot at e(u))? Under what
conditions is the transformation achievable at all (usirgyenintermediate variables? We also
want to achieve minimum time. &

Exercise 3.12: The goal of this exercise is to show thafl, and T} are two equivalent binary search
trees, then there exists a sequence of rotations that wamsf7}, into 77. Assume the keys in
each tree are distinct. We explore two strategies.

(a) One strategy is to first make sure that the rootgpand7; have the same key. Then by
induction, we can transform the left- and right-subtree$p$o that they are identical to those
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of Ty. Describe an algorithml (77, T%) that implements this strategy. The algorithdoes not
modify T5 at all, but transform§? by rotations untill’; has the same shape’Bs Of course, we
assume thdt, T, are equivalent BST's.

(@) Let Ra(n) be the worst case number of rotations of algoritAron trees withn keys. Give
a tight analysis o 4 (n).

(b) Another strategy is to show that any tree can be reducadcamonical form. For canonical
form, we choose those binary search trees that form a &ftAileft-list is a binary tree in which
every node has no right-child. If every BST can be rotated anleft-list, then we can rotate from
any T, to anyT; as follows: sincel, andT; are equivalent, they can each be rotated into the
same left-listL. To rotate fromI to T, we first transfornil}y to L, and then apply thesverse
of the sequence of rotations that transfdfimto L. Give an explicit description of an algorithm
B(T) that transforms any BST into an equivalent BST that is a left-list.

(b”) Let Rp(n) be worst case number of rotations for algorit®(i") on trees withn keys. Give
atight analysis oRRp(n). O

Exercise 3.13: Prove Lemm&, that there is a unique way to order the nodes of a binaryfré®t is
consistent with any binary search tree based oRlINT: remember the Fundamental Rule about
binary trees. &

Exercise 3.14:Implement the Cuyt:) operation in a high-level informal programming language- A
sume that nodes have parent pointers, and your code shotdkcewen ifu.par ent = nil. Your
code should explicitly “delete)” after you physically remove a node If « has two children,
then Cutu) must be a no-op.

O

Exercise 3.15: Design an algorithm to find both the successor and predecebsogiven keyK in
a binary search tree. It should be more efficient than jusirfinthe successor and finding the
predecessor independently. &

Exercise 3.16: Show that if a binary search tree has heigland« is any node, then a sequence of
k > 1 repeated executions of the assignmenrt successor(u) takes timeO(h + k). O

Exercise 3.17: Show how to efficiently maintain the heights of the left arghtispines of each node.
(Use this in the rotation-based deletion algorithm.) &

Exercise 3.18: We refine the successor/predecessor relation. Supposé'thiatobtained fromil” by
pruning all the proper descendantagfsow is a leaf inT™). Then the successor and predecessor
of u in T" are called (respectively) thexternal successoandpredecessornf u in T' Next, if
T, is the subtree at, then the successor and predecessariof7), are called (respectively) the
internal successorandpredecessoof v in T'

(a) Explain the concepts of internal and external successwt predecessors in terms of spines.
(b) What is the connection between successors and predesé¢sgshe internal or external ver-
sions of these concepts? &

Exercise 3.19: Give the rotation-based version of the successor algorithm &
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Exercise 3.20: Suppose that we begin withpointing at the first node of a binary tree, and continue to
apply the rotation-based successor (see previous qugstitinu is at the last node. Bound the
number of rotations made as a functiornnofthe size of the binary tree). &

Exercise 3.21: Suppose we allow allow duplicate keys. Undé&}, (we can modify our algorithms
suitably so that all the keys with the same value lie in consee nodes of some “right-path
chain”.

(a) Show how to modify lookup on kel so that we list all the items whose keyAis

(b) Discuss how this property can be preserved during mtainsertion, deletion.

(c) Discuss the effect of duplicate keys on the complexitsotédition, insertion, deletion. Suggest
ways to improve the complexity. &

Exercise 3.22: Consider the priority queue ADT. Describe algorithms to liempent this ADT when
the concrete data structures are binary search trees.
(b) Analyze the complexity of your algorithms in (a). &

END EXERCISES

64. Tree Traversals and Applications

In this section, we describe systematic methods to visthalhodes of a binary tree. Such methods Unix fans — shell
are calledree traversals Tree traversals provide “algorithmic skeletons” stiellsfor implementing programming is not

many useful algorithms. We had already seen this concefpt,invhen implemented ADT operations  what you think it is
using linked lists.

925. In-order Traversal. There are three systematic ways to visit all the nodes in arpitnee: they
are all defined recursively. Perhaps the most importaneigtiorder or symmetric traversal. Here
is the recursive procedure to perform an in-order travefaltree rooted at:

Fundamental Rule of
binary trees!

IN-ORDER(u):

Input:  w is root of binary tredl” to be traversed.

Output: The in-order listing of the nodes if.
I n-order (ul eft).

1.
2. [VISIT(uw)]
3.

I n-order (u.right).

This recursive program uses two macros called BASE and VISdT traversals, the BASE macro can
be expanded into the following single line of code:

BASE(@) |
if (u=nil) Return.
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The VISIT(u) macro is simply:

ViST]

Printukey.

In illustration, consider the two binary trees in Fig@eThe numbers on the nodes are keys, but they
are not organized into a binary search tree. They simplyesasudentifiers.

An in-order traversal of the small tree in Figuitevill produce(2,4, 1,5, 3). For a more substantial
example, consider the output of an in-order traversal obtbdree:

(7,4,12,15,8,2,9,5,10,1,3,13,11, 14, 6)

Basic fact:if we list the keys of a BST using an inorder traversal, thenkiiys will be sorted.

For instance, the in-order traversal of the BST in Figaivell simply produce the sequence
(1,2,3,4,5,...,12,13,14,15).

This yields an interesting conclusiosorting a setS of numbers can be reduced to constructing a
binary search tree on a set of nodes withas their keys.

926. Pre-order Traversal. We can re-write the above In-Order routine succinctly as:

IN(u) = [BASE(@) | IN(u.l ef t );[ VISIT(u)  IN (u.ri ght )]

Changing the order of Steps 1, 2 and 3 in the In-Order proee(hut always doing Step 1 before
Step 3), we obtain two other methods of tree traversal. Tihug perform Step 2 before Steps 1 and 3,
the result is called thpre-order traversal of the tree:

PRE(u) = | BASE() ;| VISIT(v) | PRE(u.l ef t ); PRE(u.r i ght )]

Applied to the small tree in Figurg we obtain(1, 2,4, 3,5). The big tree produces

(1,2,4,7,8,12,15,5,9,10,3,6, 11, 13, 14).

927. Post-order Traversal. If we perform Step 2 after Steps 1 and 3, the result is callegtst-
order traversal of the tree:

POST(u) = [ BASE@) |; POST (ul ef t ); POST (u.ri ght );| VISIT(u) |

Using the trees of Figur2 we obtain the output sequendés2, 5, 3, 1) and

(7,15,12,8,4,9,10,5,2,13,14,11,6,3, 1).
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928. Applications of Tree Traversal: Shell Programming Tree traversals may not appear interest-
ing on their own right. However, they serve as shells for sg\many interesting problems. That is,
many algorithms can be programmed by taking a tree travehsdl, and replacing the named macros
by appropriate code: for tree traversals, we have two suangsacalled BASE and VISIT.

To illustrate shell programming, suppose we want to comghaeheight of each node of a BST.
Assume that each nodehas a variable. H that is to store the height of node If we have recursive
computed the values afl ef t .H andu.ri ght .H, then we see that the heightottan be computed
as
w.H =1+ max{uleft.H+uright.H}.
computing height in

This suggests the use of post-order shell to solve the heigitlem: We keep the no-op BASE post-order

subroutine, but modify’ 1,517 () to the following task:

if (u.l eft =nil)then L «— —1.
else L — uleft.H.

if (u.ri ght =nil)then R «— —1.
else R « w.ri ght .H.

u.H «— 14 max{L, R}.

On the other hand, suppose we want to compute the depth ofrealeh Again, assume each nade
stores a variable.D to record its depth. Then, assuming thab has been computed, then we could
easily compute the depths of the childreruaising

computing depth in
pre-order

uleft.D=wuright.D=1+u.D.

This suggests that we use the pre-order shell for compugpthd

929. Return Shells. For some applications, we want a version of the above tralessitines that
return some value. Call them “return shells” here. We iliatgt this by modifying the previous postorder
shell POSTY) into a new version rPOSTJ which returns a value of tyg€. For instance]” might be
the type integer or the type node. The returned value fromrsae calls are then passed to the VISIT
macro:

RPOST()
Gz
L — rPOST(u.l eft).
R «— rPOST (u.ri ght).

[VISIT(u, L, R) |

Note that bothr BASE(u) andrVISIT (u, L, R) returns some value of tygg.

As an application of this rPOST routine, consider our prasisolution for computing the height of
binary trees. There we assume that every notlas an extra field called H that we used to store the
height ofu. Suppose we do not want to introduce this extra field for emede. Instead of POS#),
we can use rPOST] to return the height of.. How can we do this? First, BASE) should be modified
to return the height afil nodes:
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RBASE(u):
if (u=nil) Return(—1).

Second, we must re-visit the VISIT routine, modifying (siifypng!) it as follows:

RVISIT(u, L, R)
Return(l + max{L, R}).

The reader can readily check that rPOST solves the heightgroelegantly. As another application
of such “return shell”, suppose we want to check if a binagg fis a binary search tree. This is explored
in Exercises below.

The motif of using shell programs to perform node traversalgmented by a small set of macros
such as BASE and VISIT, will be further elaborated when westraph traversals in the next Lecture.
Indeed, graph traversal is a generalization of tree tratefhell programs unify many programming
aspects of traversal algorithms: we cannot over emphdszeoint.

EXERCISES

Exercise 4.1: Give the in-order, pre-order and post-order listing of tlee in Figurel5s. &

Exercise 4.2: BST reconstruction from node-listings in tree traversals.
(a) Let the in-order and pre-order traversal of a binary tfEewith 10 nodes be
(a,b,c,d,e, f,g,h,i,7)and(f,d,b,a,c, e, h,g,j, i), respectively. Draw the treg.
(b) Prove that if we have the pre-order and in-order listihthe nodes in a binary tree, we can
reconstruct the tree.
(c) Consider the other two possibilities: (c.1) pre-orded gost-order, and (c.2) in-order and
post-order. State in each case whether or not they havertieregonstruction property as in (b).
If so, prove it. If not, show a counter example.
(d) Redo part(c) for full binary trees. Recall that in a fulhary tree, each node either has no
children or 2 children. &

Figure 10:

Exercise 4.3: Here is the inorder and postorder listing of nodes in a bit@s: (a, b, ¢, d, e, f, g, h, 1)
and(f,b,a,e,c,d, h,g,i), respectively. Please draw the BST. O
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Exercise 4.4: Tree reconstruction from key-listings in tree traversdlkis is a slightly problem from
the previous question. In the previous problem, we want ¢omstruct a BST from the list of
nodes from various traversals. Now, instead of nodes, wgieea the keys in a traversal. Instead
of two lists, we only need one for reconstruction.

(a) Here is the list of keys from post-order traversal of a BST

2,1,3,7,10,8,5,13,15, 14, 12

Draw this binary search tree.
(b) Describe the general algorithm to reconstruct a BST fitsmost-order traversal. &

Exercise 4.5: Use shell programming to give an algorithm to compute the siza nodeu (i.e., the
number of nodes in the subtree rooted:at Give two versions: (a) using a return shell, and (b)
using a version where the size of nades recorded in a field.size. O

Exercise 4.6: Let size(u) be the number of nodes in the tree rooted.atSay that node is size-
balancedif

1/2 < size(u.l eft)/size(u.ri ght) <2

where a leaf node is size-balanced by definition.

(a) Use shell programming to compute the routig:) which returnssize(u) if each node in
the subtree at is balanced, an@(u) = —1 otherwise. Do not assume any additional fields in
the nodes or that the size information is available.

(b) Suppose you know that.| eft andu.ri ght are size-balanced. Give a routine called
REBALANCE(u) that uses rotations to makebalanced. Assume each nodéas an ex-
tra fieldu.SIZ FE whose value isize(u) (you must update this field as you rotate). &

Exercise 4.7: Show how to use the pre-order shell to compute the depth &f eade in a binary tree.
Assume that each nodehas a depth field;.D. &

Exercise 4.8: Give a recursive routine calledheck BST (u) which checks whether the binary trég
rooted at a node is a binary search tree (BST). You must figure out the inforomed be returned
by CheckBST (u); this information should also tell you wheth&y; is BST or not. Assume that
each non-nil node has the three fields,.key, .l ef t ,u.ri ght. &

Exercise 4.9: A student proposed a different approach to the previoustipumed et minBST (u) and
maxBST (u) compute the minimum and maximum keysTip, respectively. These subroutines
are easily computed in the obvious way. For simplicity, assall keys are distinct and # nil
in these arguments. The recursive subroutine is given kvl

CheckBST(u)
> Returns largest key iffi,, if T}, is BST
> Returnstoo if not BST
> Assumae; is notnil
If (u.l eft #nil)
L — maxBST(u.l ef t)
If (L > u.key or L = oo) returno)
If (u.ri ght # nil)
R — minBST (u.ri ght)
If (R < u.key or R = o0) returno)
Return(CheckBST (u.l ef t ) A (CheckBST (u.ri ght)
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Is this program correct? Bound its complexity. HINT: Let theot path length” of a node be the
length of its path to the root. The “root path length” of a iintkeeT’, is the sum of the root path
lengths of all its nodes. The complexity is related to thisber. &

Exercise 4.10: Like the previous problem, we want to check if a binary tre@ BST. Write a recursive
algorithm calledSlowBST (u) which solves the problem, except that the running time ofryou
solution must be provably exponential-time. If you like uysolution may consist of mutually
recursive algorithms. Your overall algorithm must achiévis exponential complexity without
any trivial redundancies. E.g., we should not be able totdalatements from your code and still
achieve a correct program. Thus, we want to avoid a trivilitems of this kind:

SlowBST (u)
Compute the number of nodes inT;,
Do for 2™ times:
FastBST(u)

END EXERCISES

65. Variations on Binary Search Trees

We discuss some important variations of our standard tre@tiof binary search trees (BST). For
instance, an alternative way to use binary trees in seargbtgtes is to only store keys in the leaves.
There are also notions of implicit BST: this means that tteecekeys are not explicitly stored as such in
the tree. Another notion of implicitness is where the clpidént links of the BST is not directly stored,
but computed. We can also store various auxiliary inforarath the BST such as height, depth or
size information. We can also maintain additional poingersh as level links, or successor/predecessor
links.

930. Extended binary trees. There is an alternative view of binary trees; following Kim{#, p. 399],
we call themextended binary trees For emphasis, the original version will be calstdndard binary
trees In the extended trees, every node asr 2 children; nodes with no children are caltexil
nodeswhile the other nodes are callesbn-nil nodes See Figurell(a) for a standard binary tree
and Figurel1(b) for the corresponding extended version. In this figure see a common convention
(following Knuth) of representing nil nodes by black squsare

The bijection between extended and standard binary tregeds as follows:

1. For any extended binary tree, if we delete all its nil nqdes obtain a standard binary
tree.

2. Conversely, for any standard binary tree, if we give eveaytwo nil nodes as children
and for every internal node with one child, we give it one witia as child, then we obtain
a corresponding extended binary tree.

5 A binary tree in which every node has 2 or 0 children is saidet6fbll”. Knuth calls the nil nodes “external nodes”. A path
that ends in an external node is called an “external path”.
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¢

@
(a)

m nil node

[ | external node

In view of this correspondence, we could switch between weuiewpoints depending on which is
more convenient. Generally, we avoid drawing the nil nodiesesthey just double the number of nodes
without conveying new information. In fact, nil nodes cahstore data or items. One reason we
explicitly introduce them is that it simplifies the descigpt of some algorithms (e.g., red-black tree
algorithms). They serve as sentinels in an iterative loope Til node” terminology may be better
appreciated when we realize that in conventional reatimadf binary trees, we allocate two pointers to
every node, regardless of whether the node has two childreato The lack of a child is indicated by
making the corresponding pointer take ttievalue.

The concept of a “leaf” of an extended binary tree is apt tosseaabme confusion: we shall use
the “leaf” terminology so as to be consistent with standandty trees. A node of an extended binary
tree is called deafif it is the leaf of the corresponding standard binary tretiedvatively, a leaf in an
extended binary tree is a node with two nil nodes as childféns a nil node is never a leaf.

931. Exogenous versus Endogenous Search StructureThe above notion of extended binary tree
is purely structural, as there is no discussion of its useamch structures. But clearly we can associate
keys/items with nodes of the extended search to turn theortliret corresponding notion eiktended
binary search tree Here, the non-nil nodes store keys in the usual nodes butitheodes do not
hold keys. So extended BST does not really add anything niesvnil nodes are just place holders or
sentinels. In the following, we take this idea one step frthinstead of nil nodes, we replace them
by nodes that can store items, and moreover, we ban itemstfrerimternal nodes. This is the idea
of “external search structures” which we next describe.sTarminology for standard, extended and
external binary search trees is illustrated in Figlite

Recall that each key is associated with some data, and syetidta pairs constitute the items for
searching. There are two ways to organize such items. Onésaaydirectly store the data with the
key. The other way is for the key to be paired with a pointeri® data. Following Tarjan [], we
call the latter organization a@xogenous search structurén contrast, if the data is directly stored
with the key, it is anendogenous search structure What is the relative advantage of either form?
The exogenous case has an extra level of indirection (th&tqrdiwhich uses extra space. But on the
other hand, it means that the actual data can be freely @ed more easily, independently of the
search structure. In databases, this freedom is impogadtthe exogenous search structure are called
“indexes”. Database users can freely create and destrdyisdexes for the set of items. This allows
a collection of items can be searched using different seaitdria. The concept ofa, b)-trees below
illustrates such exogenous search structures.

More precisely, arexternal BST is a full binary tree in which every internal nodestores a key

6 He used this classification for linked lists data structure.
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u.Key, and every leaf, stores an itenfu.Key, u.Data). Moreover, the usual BST property holds:
ur.key < u.key <ug.key

whereu;, (resp.ur) is a node in the left (resp., right) subtree:aiNote that:;, andur may be internal Now | understand why
nodes or leaves. The leaves in an external BST may be attednal nodes ‘internal’ nodes are
so-called...

932. Duplicate keys. We normally assume that the keys in a BST are distinct unkb&swise noted.
But let us now briefly consider BST whose keys are not necigsarique or distinct. One way to
handle duplicate keys is to require the followiright-path rule : all items with the same key must lie
on consecutive nodes of some right-pattie can view all the equal-key nodes on this right-path as a
super-node for the purposes of maintaining height-balhtrees such as AVL trees. Before discussing
how to maintain this right-path rule, let us discuss Homok Up must be modified. When we look up
on a keyk, we can just return the first node that contains theikeklternatively, if there is a secondary
key besides the (primary) key which might distinguish amtirgydifferent items with primary key,

we can search the right-path for this secondary key. Now w&t modify all our algorithms to preserve
the right-path rule. In particular, insertion and rotat&irould be appropriately modified. What about
deletion? If the argument of deletion is the node to be dé)étés clearly easy to maintain this property.
If the argument of deletion is a kéy we can either delete all items whose ke isr rely on secondary
keys to distinguish among the items with kiey

Instead of the right-path rule, we could put all the equalikems in an auxiliary linked list attached
to a node. There are pros and cons in either approach. TH# fragh” organization of duplicate keys
do not need any auxiliary structures. If the expected nurobduplicated keys is small, it may be the
best solution.

933. Auxiliary Information.  In many applications, additional information must be maimed at
each node of the binary search tree. We already mentionguaiédecessor and successor links. Another
information is the the size of the subtree at a node. Someagifitformation is independent, while other
is dependent oderived. Maintaining the derived information under the variousragiens is usually
straightforward. In all our examples, the derived inforimatis local in the following sense thahe
derived information at a node can only depend on the information stored in the subtree &ve will

say that derived information &rongly local if it depends only on the independent information at node
u, together with all the information at its children (whetlderived or independent).

934. Parametric Binary Search Trees. Perhaps the most interesting variation of binary sear@stre
is when the keys used for comparisons are only implicit. Tifiermation stored at nodes allows us to
make a “comparison” and decide to go left or to go right at aenlmat this comparison may depend on
some external data beyond any explicitly stored infornmatidVe illustrate this concept in the lecture on
convex hulls in Lecture V.

935. Implicit Binary Trees. By an implicit tree, we mean one that does not have expliditteos
which determine the parent/child relationships of nodes. ekample is thédeap structure: this is
defined to be binary tree whose nodes are indexed by integiraiiing this rule: the root is indexed
1, and if a node has indeX then its left and right children are indexed dyand2i + 1, respectively.
Moreover, if the binary tree has nodes, then the set of its indices is the §&t2,...,n}. A heap
structure can therefore be represented naturally by awg aifa.n], whereA[i] represents the node of
indexi. If, at theith node of the heap structure, we store a Kgi| and these keys satisfy tleap
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order property foreachi =1,...,n,
HO(i):  Ali] < min{A[2], A[2i 4+ 1]}. @)

In (7), itis understood that i > n (resp.,2i + 1 > n) thenA[27] (4[2i + 1]) is taken to bex. Then
we call the binary tree beap Here is an array that represents a heap:

A[1.9] = [1,4,2,5,6,3,8,7,9].

In the exercises we consider algorithms for insertion ardtide from a heap. This leads to a highly
efficient method for sorting elements in an array, in place.

In general, implicit data structures are represented byriay avith some rules for computing the
parent/child relations. By avoiding explicit pointersg¢hustructures can be very efficient to navigate.

EXERCISES

Exercise 5.1: Describe what changes is needed in our binary search tredthlgs for the exogenous
case. &

Exercise 5.2: Suppose we insist that for exogenous binary search tregsoéshe keys in the internal
nodes really correspond to keys in stored items. Describ@éitessary changes to the deletion
algorithm that will ensure this property. &

Exercise 5.3: Consider the usual binary search trees in which we no longgrmae that keys in the
items are unique. State suitable conventions for what thewsoperations mean in this setting.
E.g.,l ookUp(K) means find any item whose keyis or find all items whose keys are equal to
K. Describe the corresponding algorithms. &

Exercise 5.4: Describe the various algorithms on binary search treesstioa¢ the size of subtree at
each node. &

Exercise 5.5: Recall the concept of heaps in the text. L&E1..n] be an array of real numbers. We call
A analmost-heap ati there exists a number such thatiifi] is replaced by this number, theh
becomes a heap. Of course, a heap is automatically an alreastt any.

(i) SupposeA is an almost-heap at Show how to convertl into a heap be pairwise-exchange
of array elements. Your algorithm should take no more tham exchanges. Call this the
Heapify(A,1i) subroutine.

(i) SupposeA[l..n] is a heap. Show how to delete the minimum element of the heapasthe
remaining keys ind[1..n — 1] form a heap of sizee — 1. Again, you must make no more than
lgn exchanges. Call this thBelete Min(A) subroutine.

(iii) Show how you can use the above subroutines to sort aayanrplace inO(nlogn) time.

%

Exercise 5.6: Normally, each node: in a binary search tree maintains two fields, a key value and
perhaps some balance information, denatd¢EY and«.BALANCE, respectively. Suppose we
now wish to “augment” our tre&' by maintaining two additional fields calledPRIORITY and
u.MAX. Here,u.PRIORITY is an integer which the user arbitrarily assasatith this node, but
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u.MAX is a pointer to a node in the subtree at such that.PRIORITY is maximum among
all the priorities in the subtree at (Note: it is possible that = v.) Show that rotation in such
augmented trees can still be performed in constant time.

O

END EXERCISES

56. AVL Trees

AVL trees is the first known family of balanced trees. By defari, an AVL tree is a binary search
tree in which the left subtree and right subtree at each niff dy at mostl in height. They also have
relatively simple insertion/deletion algorithms.

More generally, define thiegalanceof any nodeu of a binary tree to be the height of the left subtree
minus the height of the right subtree:

balance(u) = ht(u.l ef t) — ht(u.ri ght).

The node igerfectly balancedif the balance i9. It is AVL-balanced if the balance is eithey or +1.
Our insertion and deletion algorithms will need to know thédance information at each node. Thus we
need to store at each AVL node a 3-valued variable. TheaiBtichis space requirement amounts to
lg 3 < 1.585 bits per node. Of course, in practice, AVL trees will rese2\@ts per node for the balance
information (but see Exercise).

We are going to prove that the family of AVL trees is a balanfaedily. Re-using some notations
from binary trees (se€)f and@)), we now defineM (h) andu(h) to be the maximum and minimum
nodes in any AVL tree with heiglit. It is not hard to see thalt/ (h) = 2"*! — 1, as for binary trees. It
is more interesting to determingh): its first few values are

:u(_l) =0, /L(O) =1, M(l) =2, /1(2) =4.

It seems clear that(0) = 1 since there is a unique tree with heightThe other values are not entirely
obvious. To seéthatu(1) = 2, we must define the height of the empty tree te-beThis explains why
u(—1) = 0. We can verifyu(2) = 4 by case analysis.

Consider an AVL tred, of heighth and of sizeu(h) (i.e., it hasu(h) nodes). Clearly, among all
AVL trees of heighth, T}, has the minimum size. For this reason, we call Galla min-size AVL tree
(for heighth). Figure12 shows the first few min-size AVL trees. Of course, we can erghahe roles
of any pair of siblings of such a tree to get another min-sizé &ee. Using this, we could compute
the number of non-isomorphic min-sized AVL trees of a giveight. But we can define treanonical
min-size AVL treesto be the ones in which the balance of each non-leaf nodé .idNote that we draw
such canonical trees in Figui@.

In generalu(h) is seen to satisfy the recurrence

p(h) =1+ ph=1)+puh—-2),  (h=1). (8)

This equation says that the min-size tree of heigltaving two subtrees which are min-size trees of
heightsh — 1 andh — 2, respectively. For instancg(2) =1+ u(1) + u(0) =1+2+1 =4, aswe
found by case analysis above. We similarly check that therrence 8) holds forh = 1.

7 For instance, if we say the height of the empty tree-iso, thenyu (1) = 3. This definition of AVL trees could certainly be
supported. See Exercise for an exploration of this idea.
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o gl SR

Ty T T, 15 n

Figure 12: Canonical min-size AVL trees of heightd, 2, 3 and4.

From @), we haveu(h) > 2u(h —2) for h > 1. Itis then easy to see by induction that) > 2"/2
forall h > 1. Writing C = /2 = 1.4142 .. . ., we have thus shown

p(h) >C" (b >1).

The next lemma improves this simple lower boundudh) and also provide a matching upper bound:

let p = 1*—2‘/5 > 1.6180. This is the golden ratio and it is easily seen to be the pesithot of the
quadratic equation? — x — 1 = 0. Hence$? = ¢ + 1 (in words: to square, you addl).

LEMMA 4. For h > 0, we have
o" < u(h) < 2¢". 9)
Proof. First we proveu(h) > ¢": u(0) =1 > ¢% andu(1) = 2 > ¢*. Forh > 2, we have
p(h) > plh = 1)+ p(h —2) 2 "1+ 6" = (6 + 1)¢" % = ¢".

Next, to proveu(h) < 2¢", we will strengthen our hypothesis tgh) < 2¢" — 1. Clearly,u(0) = 1 <
2¢" —1andu(1) =2 < 2¢! — 1. Then forh > 2, we have

ph) =1+ p(h=1) +p(h=2) <1+ (20" 1 = 1)+ (20" 2 1) =2(¢ +1)¢" > ~1=2¢" — 1.
Q.E.D.
The bounds of this lemma are asymptotically tight; an esertielow derive an exact bound for

wu(h). Actually, it is the lower bound op(h) that is more important. Let us derive a consequence of the
lower bound onu(h). If an AVL tree hasn nodes and heigtit then

pu(h) <n
by definition of.(h). The lower bound ing) then impliesp” < n. Taking logs, we obtain
h <logy(n) = (log, 2)lgn < 1.44041gn.

This constant ot .44 is clearly tight in view of lemma. Thus the height of AVL trees are at mast%
more than the absolute minimum. We have proved:

COROLLARY 5. The family of AVL trees is balanced.

936. Insertion and Deletion Algorithms. These algorithms for AVL trees are relatively simple, as
far as balanced trees go. In either case there are two phases:
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UPDATE PHASE: Insert or delete as we would in a binary search tree. REMARK:assume here
the standarddeletion algorithm, not its rotational variant. Furthemeaahe node containing the
deleted key and the node wpéysicallyremoved may be different.

REBALANCE PHASE: Letx be the parent of node that was just inserted, orphsfsicallydeleted,
in the UPDATE PHASE. We now retrace the path frantowards the root, rebalancing nodes
along this path as necessary. For reference, call thisethedance path

It remains to give details for the REBALANCE PHASE. If evergde along the rebalance path
is balanced, then there is nothing to do in the REBALANCE PHAStherwise, let: be the first
unbalanced node we encounter as we move upwards:framthe root. It is clear that has a balance
of £2. In general, we fix the balance at the “current” unbalanceterand continue searching upwards
along the rebalance path for the next unbalanced node.u lb&t the current unbalanced node. By
symmetry, we may suppose thahas balanc@. Suppose its left child is nodeand has height + 1.
Then its right childv’ has heighti — 1. This situation is illustrated in FigurEs.

expand left subtree

Figure 13: Node: is unbalanced after insertion or deletion.

By definition, all the proper descendantscdire balanced. The current heightois i + 2. In any
case, let the current heights of the childrenvdife 4, andh g, respectively.

937. Insertion Rebalancing. Suppose that this imbalance came about because of anamsafthat
was the heights ofi,v and v’ before the insertion? It is easy to see that the previoushteigre
(respectively)

h+1, h, h-—1. (10)

The inserted node must be in the subtree rootedwatClearly, the heighté, hr of the children ofv
satisfymax(hy,, hr) = h. Sincev is currently balanced, we know thatin (s, hg) = horh — 1. But
in fact, we claim thainin(hy,, hg) = h — 1. To see this, note thatifin(hy,, hr) = h then the height
of v beforethe insertion was alsb+ 1 and this contradicts the initial AVL property at Therefore, we
have to address the following two cases, as illustratedgnreil4.

CASE (l.a):h;, = handhg = h — 1. This means that the inserted node is in the left subtree of
In this case, if we rotate, the result would be balanced. Moreover, the height isfnowh + 1.

CASE (I.b):hy, = h — 1 andhr = h. This means the inserted node is in the right subtree dr
this case let us expand the subt/eend letw be its root. The two children ab will have heights of
h—1andh—1-0 (5 = 0,1). Itturns out that it does not matter which of these is thedbifid (despite
the apparent asymmetry of the situation). If we double eotafi.e. r ot at e(w), r ot at e(w)), the
result is a balanced tree rootediabf heighth + 1.
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r ot at e(v) Q

CASE (l.a)

Dy Dgr

CASE (I.b)

Figure 14: AVL Insertion: CASE (l.a) and CASE (l.b)

In both cases (l.a) and (I.b), the resulting subtree hashgig- 1. Since this was height before the
insertion (seeX0)), there are no unbalanced nodes further up the path to tie Ttwus the insertion
algorithm terminates with at most two rotations.

For example, suppose we begin with the AVL tree in Figlseand we insert the ke9.5. The
resulting transformations is shown in Figuré

938. Deletion Rebalancing. Suppose the imbalance in Figurécomes from a deletion. The previous
heights ofu, v, v must have been
h+2,h+1,h

and the deleted nodemust be in the subtree rootedidt We now have three cases to consider:

CASE (D.a):hy = handhr = h — 1. This is like case (l.a) and treated in the same way, hamely
by performing a single rotation at Now « is replaced by after this rotation, and the new heightof
ish+ 1. Noww is AVL balanced. However, since the original heightis- 2, there may be unbalanced
node further up the root path. Thus, this is a non-terminsé¢ ¢ae., we have to continue checking for
balance further up the root path).

CASE (D.b): hy, = h — 1 andhg = h. This is like case (I.b) and treated the same way, by
performing a double rotation at. Again, this is a non-terminal case.
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InsertQ.5)

Figure 16: Inserting.5 into an AVL tree

CASE (D.c):hy = hgr = h. This case is new, and is illustrated in Figdré We simply rotate ab.
We check thav is balanced and has height- 2. Sincew is in the place of: which has height + 2
originally, we can safely terminate the rebalancing preces

This completes the description the insertion and deletigariihms for AVL trees. In illustration,
suppose we delete kéy from Figurels. After deletingl 3, the nodel 4 is unbalanced. This is restored
by a single rotation at5. Now, the root containing?2 is unbalanced. Another single rotationsatvill
restore balance. The result is shown in Figlige

Both insertion and deletion tak@(logn) time. In case of deletion, we may have to @¢log n)
rotations but a single or double rotation suffices for irieart

Figure 17: CASE (D.c)r ot at e(v)
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Delete(3)

rotate(15)

Figure 18: Deletind 3 from the AVL tree in Figurel5

939. Maintaining Balance Information. In order to carry out the rebalancing algorithm, we need
to check the balance condition at each nadelf node v stores the height ofi in some field,u. H
then we can do this check. If the AVL tree hasiodesu.H may need(lglgn) bits to represent the H "

. o . RSO . e : ey, | thoughtitis
height. However, it is possible to get away with jadiits: we just need to indicate three possible states O(lg n)!
(00,01, 10) for each node:. Let 00 mean that..l eft andw.ri ght have the same height, afd '
mean that..| ef t has height one less thamr i ght , and similarly for10. In simple implementations,
we could just use an integer to represent this informatioa.l&sve it as an exercise to determine how
to use these bits during rebalancing.

940. Relaxed Balancing. Larsen p] shows that we can decouple the rebalancing of AVL trees from
the updating of the maintained set. In the semi-dynamic,¢hsenumber of rebalancing operations is
constant in an amortized sense (amortization is treatethapter 5).

EXERCISES

Exercise 6.1: Let T' be the AVL tree in Figurg(a). This calls for hand-simulation of the insertion and
deletion algorithms. Show intermediate trees after eatdtiom, not just the final tree.
(a) Delete the key0 from T'.
(b) Insert the key.5 into T'. This question is independent of part (a).

Re-do parts (a) and (b), but using the AVL tree in Fig8(le) instead. &

Exercise 6.2: Give an algorithm to check if a binary search tiess really an AVL tree. Your algorithm
should take time)(|T'|). HINT: Use shell programming. O

Exercise 6.3: What is the minimum number of nodes in an AVL tree of height 10? &

Exercise 6.4: Prove thau(h) = a¢" + b — 1 whereg, ¢ = 1i2‘/5 = 1.6180...,—0.6180..., and
a, b are suitable constants. Determing. O

Exercise 6.5: My pocket calculator tells me thaig,, 100 = 9.5699 - - - . What does this tell you about
the height of an AVL tree with 100 nodes? &

Exercise 6.6: Draw an AVL T with minimum number of nodes such that the following is trthere is
anoder in T such that if you delete this node, the AVL rebalancing wifjuee two rebalancing
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acts. Note that a double-rotation counts as one, not twajaabing act. Draw’ and the node:.

O

Exercise 6.7: Consider the AVL tree in Figur#&o.

5/8\1
N

3/ 7 1
2/ \4 6/ l( 3\15 18 9\20
/ / /

10 12 14 17

/
d

Figure 19: An AVL Tree for deletion

(a) Please delete Kay/from the tree, and draw the intermediate AVL trees after eabhlancing
act. NOTE: a double-rotation counts as one act.

(b) Find the sef5 of keys that each deletion of & € S from the AVL tree in Figurel9 requires
requires two rebalancing acts. Be careful: the answer mpgriis on some assumptions.

(c) Among the keys in part (b), which deletion has a doublatioh among its rebalancing acts?

&

Exercise 6.8: Please re-inseft back into the tree obtained in part(a) of the previous egerddo you
get back the original tree of Figuf&? &

Exercise 6.9: (8+6 Points)
Let T be an AVL tree withn nodes. We consider the possible heightsifor
(a) What are the possible heightsbif n = 15?
(b) What if 7" hasn = 16 or n = 20 nodes?
(c) Are there arbitrarily large such that all AVL trees witm nodes have unique height? <

Exercise 6.10: Draw the AVL trees after you insert each of the following kéy® an initially empty
tree:1,2,3.4,5,6,7,8,9and thenl9, 18,17, 16, 15, 14, 13,12, 11. &

Exercise 6.11:Insert into an initially empty AVL tree the following sequem of keys:
1,2,3,...,14,15.
(a) Draw the trees at the end of each insertion as well as @diein rotation or double-rotation.
[View double-rotation as an indivisible operation].
(b) Prove the following: if we continue in this manner, wehkihve a complete binary tree at the
end of inserting kep™ — 1 foralln > 1. &

Exercise 6.12: Consider the range of possible heights for an AVL tree withodes. For this problem,
it is useful to recall the functiond/ (k) in (3) andp(h) in (8).
(a) For instance ifi = 3, the height is necessarily but if n = 7, the height can b2 or 3. What
is the range when = 15? n = 16? n = 19?
(b) Suppose that the height of an AVL trees is uniquely determined by its numlbérof nodes.
Give the exact relation betweeri andh* in order for this to be the case. HINT: use the functions
M(h) andu(h).
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Lecture Ill

§6. AVL TREES
(c) Isit true that there are arbitrarily largesuch that AVL trees withh nodes has a unique height?
¢

insert the following keys in tlggzen order:

Exercise 6.13: Starting with an empty tree,
13,18,19,12,17,14,15,16. Now deletel8. Show the tree after each insertion and deletion.
¢

If there are rotations, show the tree just after the rotation
¢

Exercise 6.14: Draw two AVL trees, withn keys each: the two trees must have different heights. Make

n as small as you can.

Exercise 6.15: TRUE or FALSE: In CASE (D.c) of AVL deletion, we performed angle rotation at
nodev. This is analogous to CASE (D.a). Could we have also havepadd a double rotation
¢

atw, in analogy to CASE (D.b)?

Exercise 6.16:Let 7z(h) be the number ohon-isomorphiamin-size AVL trees of height.. Give a
recurrence fofz(h). How many non-isomorphic min-size AVL trees are there ofh&s3 and4?
¢

Provide sharp upper and lower boundsih).

Exercise 6.17:Improve the lower boungi(h) > ¢" by taking into consideration the effects of 1”
in the recurrenc@(h) =1+ p(h — 1) + p(h — 2).
(@) Show thatu(h) > F(h — 1) + ¢" where F(h) is the h-th Fibonacci number. Recall that
F(h)=hforh=0,1andF(h) = F(h— 1)+ F(h —2) for h > 2.
(b) Further improve (a). &
Exercise 6.18: Prove the following connection between(golden ratio) and,, (the Fibonacci num-

bers):
o" = oF, + F,_1, (n>1)
o

Note that we ignore the case= 0.

Exercise 6.19:Recall that at each nodeof the AVL tree, we can represent its balance state using a

2-bit field calledu. BAL whereu.BAL € {00,01,10}.
(a) Show how to maintain these fields during an insertion.

(b) Show how to maintain these fields during a deletion.

Exercise 6.20: Allocating one bit per AVL node is sufficient if we exploit tHact that leaf nodes are
always balanced allow their bits to be used by the interndésoWork out the details for how to
¢

do this.

Exercise 6.21:1t is even possible to allocate no bits to the nodes of a bisaaych tree. The idea is to

exploit the fact that in implementations of AVL trees, thasp allocated to each node is constant.

In particular, the leaves have two null pointers which argdsdly unused space. We can use this

space to store balance information for the internal nodigstr& out an AVL-like balance scheme
¢

that uses no extra storage bits.

&ptember 26, 2011
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Exercise 6.22:Relaxed AVL Trees
Let us defineAVL(2) balance condition to mean that at each node in the binary tree,
|balance(u)| < 2.
(a) Derive an upper bound on the height of a AVL(2) treenamdes.
(b) Give an insertion algorithm that preserves AVL(2) treby to follow the original AVL inser-
tion as much as possible; but point out differences from tiggral insertion.
(c) Give the deletion algorithm for AVL(2) trees. &

Exercise 6.23:To implement we reserve 2 bits of storage per node to représehalance information.
This is a slight waste because we only use 3 of the four pa&sgithlies that the 2 bits can represent.
Consider the family of “biased-AVL trees” in which the bat@of each node is one of the values
b=-1,0,1,2.

(@) In analogy to AVL trees, defing(h) for biased-AVL trees. Give the general recurrence
formula and conclude that such trees form a balanced family.

(b) Is it possible to give an)(log n) time insertion algorithm for biased-AVL trees? What can be
achieved? &

Exercise 6.24:We introduce a new notion of “height” of an AVL tree based oe thllowing base
case: ifu has no children}’(u):=0 (as before), and if node s null, A’ (u):= — 2 (this is new!).
Recursivelys/ (u):=1 + max {h/(ur), h'(ugr)} as before. Let'AVL' (AVL in quotes) trees refer
be those trees that are AVL-balanced usirigas our new notion of height. We compare the
original AVL trees with 'AVL' trees.

(a) TRUE or FALSE: every 'AVL tree is an AVL tree.

(b) Lety/ (k) be defined (similar ta(2) in the text) as the minimum number of nodes in an ’AVL’
tree of height:. Determineu/ (k) forall b < 5.

(c) Prove the relationshig/ (h) = w(h) + F(h) whereF (h) is the standard Fibonacci numbers.
(d) Give a good upper bound qri(h).

(e) What is one conceptual difficulty of trying to use the fanoif 'AVL trees as a general search
structure? &

Exercise 6.25: A node in a binary tree is said to fell if it has exactly two children. Aull binary
tree is one where all internal nodes are full.
(a) Prove full binary tree have an odd number of nodes.
(b) Show that 'AVL' trees as defined in the previous questianfall binary trees. &

Exercise 6.26: The AVL insertion algorithm makes two passes over its sepath: the first pass is
from the root down to a leaf, the second pass goes in the edeestion. Consider the following
idea for a “one-pass algorithm” for AVL insertion: duringgtfiirst pass, before we visit a node
u, we would like to ensure that (1) its height is less than ora¢do the height of its sibling.
Moreover, (2) if the height of: is equal to the height of its sibling, then we want to make sure
that if the height ofu is increased by, the tree remains AVL.

The following example illustrates the difficulty of desiggisuch an algorithm:

Imagine an AVL tree with a pattug, u1, . . ., ux) whereu is the root andy; is a child ofu;_;.
We have 3 conditions:

(a) Let: > 1. Thenu; is a left child iff i is odd, and otherwise; is a right child. Thus, the path
is a pure zigzag path.

(b) The height ofu; isk — i (fori = 0,..., k). Thusuy is a leaf.

(c) Finally, the height of the sibling af; ish — i — 1.

Suppose we are trying to insert a key whose search path inther@e is precisely(uo, . . ., ug).
Can we preemptively balance the AVL tree in this case?
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END EXERCISES

§7. (a,b)-Search Trees

We consider another class of trees that is important in jpegatspecially in database applications.
These are no longer binary trees, but are parametrized byieschf two integers,

2 <a<b. (11)

An (a,b)-tree is a rooted, ordered tree with the following requirements:

e DEPTH BOUND: All leaves are at the same depth.

e BRANCHING BOUND: Letm be the number of children of an internal nodeln general, we

have the bounds
a<m<hb. (12)

The root is an exception, with the boudd m < b.

Figure 20: A(2, 3)-tree.

To see the intuition behind these conditions, compare withry trees. In binary trees, the leaves do
not have to be at the same depth. To re-introduce some fligxibiio trees where leaves have the same
depth, we allow the number of children of an internal nodesig\over a larger rangle, b]. Moreover,
in order to ensure logarithmic height, we require= 2. This means that if there leaves, the height is
at mostlog, (n) + O(1). Therefore(a, b)-trees forms a balanced family of trees.

The definition of(a, b)-trees imposes purely structural requirements. Fig0ndustrates an(a, b)-
tree for(a,b) = (2,3). But to use(a, b)-trees as a search structure, we need to store keys and items i
the nodes of the trees. These keys and items must be suitajaypined. Before giving these details,
we can build some intuition by studying an example of suchaacetree in Figur@ 1l The14 items
stored in this tree are all at the leaves, with the Keys 6, . . ., 23,25, 27. As usual, we do not display
the associated data in items. The keys in the internal naglestdcorrespond to items.

Recall that an item is gkey,dat a) pair. We define ar{a, b)-search treeto be an(a, b)-tree
whose nodes are organized as follows. The organizatioraireteare different than in internal nodes,
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Figure 21: A (3,4)-search tree ad items

5 17 19 21 23 25 27

[ (i) [ (b, o) | (s ) oo fol w o] - M n-1}o
o LTS
1<d <m<V 2<a<m<b
(i) Leaf Node Organization (if) Internal Node Organization

Figure 22: Organization of nodes (n, b)-search trees

as illustrated in Figur@2. The leaf organization is controlled by another pair of psetersa’, b’ that
satisfy the inequalities < a’ < /. They are independent afb, but likea, b, they control the minimum
and maximum number of items in leaves. Specifically:

e LEAF: Each leaf stores a sequence of items, sorted by thgs. kKdence we represent a leaf
with m items as the sequence,

U:(kl,dl,kQ,dQ,..-,km,dm) (13)

wherek; < ko < -+ < k. See Figur@2(i). In practiced; might only be a pointer to the actual
location of the data. We must consider two cadd®N-ROOT CASE: suppose leat; is not the
root. In this case, we require

a <m<UV. (14)
ROOT CASE: supposeu is the root. Since it is also a leaf, there are no other nodéiisn
(a, b)-search tree. We now requibe< m < 20’ — 1. This is relaxed compared to non-root leaves
above. The reason for this condition will become clear whendigcuss the insertion/deletion
algorithms.

e INTERNAL NODE: Each internal node witm children stores an alternating sequence of keys
and pointers (node references), in the form:

u:(p17klap2ak2ap3a'"7pm—lakm—lapm) (15)

wherep; is a pointer (or reference) to theh child of the current node. Note that the number of
keys in this sequence is one less than the numbef children. Contrast with the organization
(13) for a leaf-node. See Figug(ii). The keys are sorted so that

ki <ky < <kp_1.

Fori =1,...,m, each key in thei-th subtree of, satisfies
kicy <k <k, (16)
with the convention thaty, = —oco < k; < k,, = +oc. Note that this is just a generalization of

the binary search tree property i) (
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941. Choice of the(a’, ') parameters. Since thea’, b’ parameters are independentab, it is

convenient to choose some default value for our discusdidn,®) trees. This decision is justified  $a’,b) is implicit!
because the the dependence of our algorithms oa’tlheparameters are not significant (and they play

roles analogous ta, b). There are two canonical choices: the simplest'is= ¥’ = 1. This means

each leaf stores exactly one item. All our examples (e.gur€i21) use this default choice. Another

canonical choice i8’ = a, V' =b. As usual, we assume that the set of items irf@r)-search tree

has unique keys. But, as seen in Figlfe the keys in internal nodes may be the same as keys in the

leaves. It is important to realize the different roles thajgdkplay in the leaves and in internal nodes.

[[e[[s1] LLol]  [[sl] [[=[] [[e]]

2 5 6 8 10 13 18 21 23 29 33

Figure 23: A(2, 3)-search tree.

Another(a, b)-search tree is shown in Figu2g, for the caséa, b) = (2, 3). In contrast to Figurél,
here we use a slightly more standard convention of reprieggthie pointers as tree edges.

942. Special Cases ofa, b)-Search Trees. The earliest and simplest, b)-search trees correspond
to the casda,b) = (2,3). These are calle@-3 treesand were introduced by Hopcroft (1970). By
choosing

b=2a—1 (17)

(for anya > 2), we obtain the generalization @f— 3 trees calledB-trees These were introduced
by McCreight and BayerZ]. When (a,b) = (2,4), the trees have been studied by Bayer (1972) as
symmetric binary B-treesand by Guibas and Sedgewickz$8-4 trees Another variant of 2-3-4 trees
isred-black trees The latter can be viewed as an efficient way to implement2+ges, by embedding
them in binary search trees. But the price of this efficiesoyadmplicated algorithms for insertion and
deletion. Thus it is clear that the concept(afb)-search trees serves to unify a variety of search trees.
The terminology ofa, b)-trees was used by Mehlhori][

The B-tree relationshipX7) is optimal in a certaifisense. Nevertheless, there are other benefits in
allowing more general relationships betweeandb. E.qg., if we replaceX7) by b = 2a, the amortized
complexity of such{a, b)-search trees algorithms can improg [

943. Searching. The organization of afu, b)-search tree supports an obvious lookup algorithm that
is a generalization of binary search. Namely, toldmkUp(key k), we begin with the root as the
current node. In general, if is the current node, we process it as follows, depending @thvehn it is a
leaf or not:

8 |.e., assuming a certain type of split-merge inequalityicwlve will discuss below.
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e Base Case: supposss a leaf node given byl@). If £ occurs inu ask; (for somei = 1,...,m),
then we return the associated ddta Otherwise, we return the null value, signifying search
failure.

e Inductive Case: supposeis an internal node given bylf). Then we find thep; such that
ki1 < k < k; (with kg = —o0, k,,, = o0). Setp; as the new current node, and continue by
processing the new current node.

The running time of thé ook Up algorithm isO(hb) whereh is the height of th€a, b)-tree, and we
spendO(b) time at each node. The following bounds the heightaob)-trees:

FIX: itis best to computd/ (h) andu(h) as for AVL trees. This is quite easy/ (h):= ZLO b =

bh’;_ll*l. Foru(h), itis possible for the root to have two children and so
h—1 ah 1
h):=1+2 f=1+2 :
p(h)=1+ ;a +2——

The heighth of an (a, b)-tree withn leaves can be bounded as follows:
logyn < h <1+log,(n/2).
If we take into account the parametefsb’ and letn be the number of items (not leaves), then we have:

LEMMA 6. An(a, b)-tree withn items has height satisfying

log, [n/b"] < h < 1+log, [n/(2d')] . (18)

Proof. The number of leaves clearly lies in the randén/v’|, [n/a’]]. However, with a little
thought, we can improve it to:
te[[n/b7,[n/d']].

(Why?) With height:, we must have at leagt.”~! leaves. Hencen/a'| > ¢ > 2a"~tor|n/d’| /2 >
a"~'. Sincea"~! is integer, we obtain|n/a’| /2| = [n/(2a')| > a""torh < 1 +log,(|n/(2a")]).
For the lower bound oh, a similar (but simpler) argument holds. Q.E.D.

This lemma implies
[log,, [n/b']] < 1+ |log, [n/(2a")]] . (19)

For instance, witm = 10° (a billion), (a,b) = (34,51) anda’ = b’ = 1, this inequality is actually an
equality (both sides are equal @. It become a strict inequality for sufficiently large. For smalk,
the inequality may even fail. Hence it is clear that we neatitamhal inequalities on our parameters.

This lemma shows thdt ' determine the lower bound anda’ determine the upper bound on
h. Our design goal is to maximize b, a’, b’ for speed, and to minimizk/a for space efficiency (see
below). Typicallyb/a is bounded by a small constant close@s inB-trees.

944. Organization within a node. The keys in a node of afu, b)-search tree must be ordered for
searching, and manipulation such as merging or splitting ltst of keys. Conceptually, we display
them as in {5) and (L3). Since the number of keys is not necessarily a small cohdtenorganization
of these keys is an issue. In practiéa@s a medium size constant (séy< 1000) anda is a constant
fraction of b. These ordered list of keys can be stored as an array, a simgtjoubly-linked list, or
even as a balanced search tree. These have their usuabffad&Vith an array or balanced search
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tree at each node, the time spent at a node improvesdr@imto O(log b). But a balanced search tree
takes up more space than using a plain array organizatienwiti reduce the value ob. Hence, a
practical compromise is to simply store the list as an amagich node. This achievéXlgb) search
time but each insertion and deletion in that node requit@s time. When we take into account the
effects of secondary memory, the time for searching withimode is negligible compared to the time
accessing each node. This argues that the overriding gtia idesign ofa, b)-search trees should be
to maximizeb anda.

945. The Standard Split and Merge Inequalities for(a, b)-Search trees. To support efficient in-
sertion and deletion algorithms, the parameteismust satisfy an additional inequality in addition to
(11). This inequality, which we now derive, comes from two losw| operations ofu, b)-search tree.
Thesesplit andmerge operations are called as subroutines by the insertion alediate algorithms
(respectively). There is actually a family of such ineqtiedi, but we first derive the simplest one (“the
standard inequality”).

During insertion, a node with children may acquire a new child. We say the resulting node is
overfull because it now has+ 1 children. An obvious response is $plit it into two nodes with
[(b+1)/2] and[(b+ 1)/2] children, respectively. In order that the result is(anb)-tree, we require

the following split inequality:
a< LH—IJ . (20)

2

Similarly, during deletion, we may remove a child from a naldat has only: children. We say the
resulting node withu — 1 children isunderfull . Again, we may consider borrowing a child from one
of its siblings (there may be one or two siblings), provided the sibling hasathana children. If this
proves impossible, we are forcedrteergea node witha, — 1 children with a node witla, children. The
resulting node ha8a — 1 children, and to satisfy the branching factor bound«af)-trees, we have
2a — 1 < b. Thus we require the following merge inequality:

ag_bgl. (21)

Clearly 0) implies 21). However, sincex andb are integers, the reverse implication also holds!
Thus Q0) and Q1) are equivalent, and they will be known as #pit-merge inequality. The smallest
choices of parameters b subject to the split-merge inequality and al&d)(is (a,b) = (2, 3); this case
has been mentioned above. The case of equalitYiphgnd 1) gives ush = 2a — 1; this is another
special case mentioned earlier, and in the literature(¢h®n — 1)-search trees are known &strees
Sometimes, the conditiolh = 2a is used to define3-trees; this behaves better in an amortized sense
(see [, Chap. 111.5.3.1]).

946. How to Split, Borrow, and Merge. Once(a, b) is known to satisfy the split-merge inequality,
we can design algorithms for insertion and deletion. Howewne will first describe the subroutines of
split, borrow and merge first. We will begin with tlgeneral casef internal nodes that are non-root.
The special case of leaves and root will be discussed later.

Suppose we need split an overfull nodeV with b+ 1 children. This is illustrated in Figurz4. We
split V into two new nodesVy, N», one node witH (b + 1)/2| pointers and the other witi(b + 1)/2]
pointers. The parent d¥ will replace its pointer taV with two pointers taV; and V,. But what is the
key to separate the pointersda and N,? The solution is to use a key fromi: there are keys in the
original node, but only — 1 will be needed by the two new nodes. The extra key can be movexbi
parent node as indicated.
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| [ofol7] ] [ofef = o] 7]

split \\
_—=

(o[ 2]o] 2[of 2je[ 4[] s]e] & no:o 2l 2fe] .. [e[4fe[ 5]o] 6o

b =t+1)/2= —Ff(b+1)/2—

Figure 24: Splitting:N splits intoNy, N,. Case of(a, b) = (3, 6).

Next, supposeV is an underfull node witlw — 1 children. First we try tdoorrow from a sibling Do not borrow from a

if possible. This is because after borrowing, the rebalamprocess can stop. To borrow, we look to
a sibling (left or right), provided the sibling has more thaohildren. This is illustrated in Figure5s.
SupposeV borrows a new from its sibling/. After borrowing,/NV will have a children, but it will need

a key to separate the new pointer from its adjacent pointas Key is taken from its parent node. Since
M lost a child, it will have an extra key to spare — this can b geits parent node.

| [ols[2p]e] | | [ofsf= 18]

borrow
donate /
vo[o1le] i [esle[4fe[5]e Nie1le2]e Mo 4 o] 5o

- - s ——— - g —= -— >aq

a—1

Figure 25: Borrowing:N borrows from}/. Case of(a,b) = (3, 6).

If N is unable to borrow, we resort toerging: let M be a sibling ofN. Clearly M hasa children,
and so we can merge/ and N into a new nodéV’ with 2a — 1 children. Note thafV’ needs an extra
key to separate the pointers &f from those ofM. This key can be taken from the parent node; the
parent node will not miss the loss because it has lost ond phihter in the merge. This is illustrated
in Figure26.

[ole[2/8]s] | | [ofef5] |

/ merge /
—_—
N/

o 2fof 3 e[« o

-~ qg—— 2a —1
a—1 @ ¢

Figure 26: MergingN and M merges intaV’. Case of(a, b) = (3, 6).

The careful reader will notice an asymmetry in the abovedip@cesses. We have the concept of
borrowing, but it as much sense to talk about its inverseaijwat, donation. Indeed, if we simply
reverse the direction of transformation in Fig@® we have the donation operation (naedonates
a key to nodel/). Just as the operation of merging can be preempted by bimgotihe operation of
splitting can be preempted by donation! Donation is not ligdéscussed in algorithms in the literature.
Below we will see the benefits of this.
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947. Treatment of Leaves and Root. Now we must take care of these split, borrow, merge, donate
operations for the special case of roots and leaves. Carsptlting a root, and merges of children of
the root:

(i) Normally, when we split a node, its parent gets one extra child. But whens the root, we
create a new root with two children. This explains the exioepive allow for roots to have betweén
andb children.

(i) Normally, when we merge two siblingsandwv, the parent loses a child. But when the parent is
the root, the root may now have only one child. In this casegelete the root and its sole child is now
the root.

Note that (i) and (ii) are thenly means for increasing and decreasing the height ofdhig-tree.

Now consider leaves: in order for the splits and merges aflgto proceed as above, we need the

analogue of the split-merge inequality,
/
o < ;r L 22)

But otherwise, they proceed as for the other internal notHesvever, a rather unique case arise when
the leaf is also a root! We cannot treat it like an ordinary leaving between’ to b’ items. So let us
introduce the parametet§, b, to control the minimum and maximum number of items in a reaif!
Let us determine constraints @, b(,) relative to(a’, ). Initially, there may be no items in the root,
so we must allows, = 0. Also, when the number of items excelé we must split into two or more
children with at least’ items. The standard literature allows the root to have 2iofil and this requires
2a’ < b}, + 1 (like the standard split-merge inequality). Hence we regui

by < 2a’ — 1. (23)

In practice, it seems better to allow the root to have a ladlggree than a smaller degree. Thus, we
might even want distinguish between leaves that are nots-eoal the very special case of a root that is
simultaneously a leaf. Such alternative designs are es@lorExercises.

948. Mechanics of Insertion and Deletion. We are finally ready to describe insertion and deletion.
It is very important that we describe these algorithms in H® ‘aware” manner, meaning that we
acknowledge that the nodes are normally in secondary stdeag., a disk) and they need to be swapped
in or out main memory. For that matter, the LookUp algoritharlier should also be thought of in this
manner: as we descend the search tree, we are really brimgonghain memory each new node to
examine. In the case of Lookup, there is no need to write tlde back into secondary storage.

We can unify the insertion/deletion algorithm by viewingbas a repeated application of the fol-
lowing while-loop:
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INSERT/DELETE Algorithm
> INITIALIZATION
To insert an itenk, d) or delete a ke, first do a lookup ork.
Letu be the leaf node whetreis inserted, or located for deletion.
Bring u into main memory and perform the insertion/deletion.
Call v thecurrent node.
> MAIN LOOP
while « is overfull or underfull, do:
1. Ifuisroot, handle as a special case and terminate.
2. Bring the parent of « into main memory.
3. Bringsibling(s)u;’'s (j = 1,2, ...) of w into main memory.
4. Do the necessary transformations:of:;’s andw.
< In main memory, nodes may temporarily havé or less than< a children
< We may have created a new node or deleted a node
5.  Write back into disk any modified node.
6. Makewv the new current node (rename it@sand repeat this loop.
Write the current node to secondary memory and terminate.

Insert(14)

pl 6 [o[ 12]o] 20]e ol 6 [ol12]o] 20]a
ol 2 ol 5 o] [ol o lofiofe] lolsslolsololirle] [of22]o]2s o] 251 ol Lol o] lolo loliolel [pl1sle] 11 ]e] 16 el 17 o] W W w W
o 12 13 15 17 19 21 23 25 2T 8 10 12 13 14 15 17 19
reen ol 6 lol 13]o] 20]e

Y Y A S Y

bl

8 10 12 13 14 15 17 19

Figure 27: Inserting4 into (3, 4, 2)-tree.

Observe that the INSERT/DELETE Algorithm holds in main meynat most three nodes at any
moment in time. Note that in Step 5, we do not write a nadeack into disk unless it has been
modified. In particular, ifs is split into two nodes:; , u-, then bothu; andus must be written back to
disk.

Insertion Example: Consider inserting the item (represg:by its key)l 4 into the tree in Figur@1.
This is illustrated by Figur@7. Note thata’ = o/ = 1. After insertingl4, we get an overfull node with
5 children. Suppose we first try to donates to our left sibliimgthis case, this is possible since the left
sibling has less tha#i children.

But imagine that a slightly different algorithm which trigsfirst donate to the right sibling. In this
case, the donation fails. Then our algorithm requires useémgmwith the right sibling and then split
into 3 nodes. Of course, it is also possible to imagine a mavidnere we try to donate to the left sibling
if the right sibling is full. This variant may be slower siniténvolves bringing an additional disk 1/0.
The tradeoff is that it leads to better space utilization.
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949. Achieving2/3 Space Utility Ratio. A node withm children is said to béull whenm = b; for

in general, a node with: children is said to bém /b)-full. Hence, nodes can be as smallagb)-full.

Call the ratioa : b the space utilization ratio. This ratio is< 1 and we like it to be as close tbas
possible. The standard inequaliBAf on (a, b)-trees implies that the space utilization in such trees can
nevef be better thar(b + 1)/2] /b, and this can be achieved trees. This ratio is as large as 3
(achieved whe = 3), but asb — oo, it is asymptotically only slightly larger thah : 2. We now
address the issue of achieving ratios that are arbitrdolsectol, for any choice of:, b. First, we show
how to achiever/3 asymptotically.

Consider the following modified insertion: to remove an nadeith b + 1 children, we first look at
a siblingv to see if we camlonatea child to the sibling. I is not full, we may donate to. Otherwise,
v is full and we can take theb + 1 children inu andwv, and divide them into 3 groups as evenly as
possible. So each group has betweé&b + 1)/3] and[(2b + 1)/3] keys. More precisely, the size of
the three groups are

[20+1)/3], [(26+1)/3], [(2b+1)/3] For any integer, we
where “(2b + 1)/3]” denotesounding to the nearest integer. Forinstange/3|+ (4/3]|+[4/3] = have|n/3]| + [n/3] +
1+1+2=4and|5/3] + |5/3] + [5/3] = 1+ 2+ 2 = 5. Nodesu andv will (respectively) have [n/3] =n

one of these groups as their children, but the third groupbsichildren of a new node. See Figa@

w/,u\\ . wl lol¥lelel |
I | IR I
o ‘ s i T I S

Figure 28: Generalized (2-to-3) split

We want these groups to have betweeandb children. The largest of these groups has at most
children (assuming > 2). However, for the smallest of these groups to have at leasildren, we

require
2b+1
a< {TJFJ . (24)
This process of merging two nodes and splitting into thregesas calledyeneralized splitbecause it
involves merging as well as splitting. Letbe the parent of, andv. Thus,w will have an extra child
v’ after the generalized split. 16 is now overfull, we have to repeat this processat

Next consider a modified deletion: to remove an underfulleowith « — 1 nodes, we again look
at an adjacent sibling to borrow a child. If v hasa children, then we look at another sibling to
borrow. If both attempts at borrowing fails, we merge 8ae— 1 children'® the nodes:, v, v" and then
split the result into two groups, as evenly as possible. Adais is ageneralized mergethat involves
a split as well. The sizes of the two groups &(8a — 1)/2] and[(3a — 1)/2] children, respectively.
Assuming

a > 3, (25)
v andv’ exists (unless is a child of the root). This means

9 The ratioa : b is only an approximate measure of space utility for varimasons. First of all, it is an asymptotic limit as
b grows. Furthermore, the relative sizes for keys and paraéso affect the space utilization. The radia b is a reasonable
estimate only in case the keys and pointers have about the siam

10 Normally, we expect, v’ to be immediate siblings af (to the left and right of.). But if « is the eldest or youngest sibling,
then we may have to look slightly farther for the second sibli
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Because of integrality constraints, the floor and ceilinmisgls could be removed in botB4) and @6),
without changing the relationship. And thus both ineqyalite seen to be equivalent to

a§2b+1

- @7)

As in the standarda, b)-trees, we need to make exceptions for the root. Here, thebaum of
children of the root satisfies the boudd< m < b. So during deletion, the second siblingmay not
exist if u is a child of the root. In this case, we can simply merge thellewodesyu andwv. This merger
is now the root, and it ha&: — 1 children. This suggests that we allow the root to have batwesnd
max{2a — 1, b} children.

Delete(4)

o[ 6 [of 12[o] 20 oL 6 o] 12]0]20o]
ol 2 fol 5 lo] oo [ol0fa] [oluslal1clol17le] [o[22]0]os o] 25 o] [oblel ol To[ lof  [of Tol To[ o ol la| lo] Il
2 4 6 8 10 12 13 15 17 19 21 23 25 27 2 6
3to 1 merge Hn 1to 3 split
ol o o[ 11]o]20 o
‘?‘2‘?‘6‘9‘9‘?‘10 ‘9‘12‘9‘14‘9‘16‘9‘17‘?‘ M H M M MQHGH ‘9‘10‘9‘12‘9‘ ‘9‘16‘9‘17‘9‘ H H H H

l

6 8 10 12 13 15 17 19 2 6 8 10 12 13

Figure 29: Deletingl from (3, 4, 2)-tree.

950. Example of Generalized Merge. Consider deleting the item (represented by its kiefypm the
tree in Figure2l. The is illustrated in Figur@9. After deleting4, the current node is underfull. We
try to borrow from the right sibling, but failed. But the rigibling of the right sibling could give up
one child.

One way to break down this process is to imagine that we mengith the 2 siblings to its right
(a 3-to-1 merge) to create supernode. This requires bigngpme keysq and12) from the parent of
u into the supernode. The supernode has 9 children, which wesgit evenly into 3 nodes (a 1-3
split). These nodes are inserted into the parent. Note #hettkand14 are pushed into the parent. An
implementation should be able combine this merge-theihsipps into one more efficient process.

Sharing with cousins?In the above attempt to fix an overfull nodevith b+ 1 children, we first
try see to donate a child to a sibling Likewise, to fix an underfull node with ¢ — 1 children, we
first try to borrow a child from a sibling. By definition, two nodes., v are siblings of each other if
v andu share a common pareat Now, the children ofv are linearly ordered; < us < -+ < um,
in a natural way, based on their keys. We sayu;;1 aredirect siblings for: = 1,...,m — 1.
So each node; (1 < ¢ < m) has 2 direct siblings; but; andu,, has only 1 direct sibling. Itis
important to realize thad node carshare (i.e., borrow or donate) with a direct sibling onlyn an
Exercise, we consider a relaxed sharing condition, whesélaying can be done betweerandw if
they aredirect cousins

If we view b as a hard constraint on the maximum number of children, themnly way to allow
the root to havenax{2a — 1, b} children is to insist thaa — 1 < b. Of course, this constraint is
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just the standard split-merge inequalil); so we are back to square one. This says we must treat the
root as an exception to the upper bound.ofndeed, one can make a strong case for treating the root
differently:

(1) Itis desirable to keep the root resident in memory atialés, unlike the other nodes.

(2) Allow the root to be larger thalhvcan speed up the general search.

The smallest example of@/3)-full tree is where(a, b) = (3,4). We have already seen(3, 4)-
tree in Figure21. The nodes of such trees are actualiyt-full, not 2/3-full. But for larged, the “2/3”
estimate is more reasonable.

951. Exogenous and Endogenous Search StructuresSearch trees store items. But where these
items are stored constitute a major difference betw@eh)-search trees and the binary search trees
which we have presented. Itemg(in b)-search trees are stored in the leaves only, while in bireaych
trees, items are stored in internal nodes as well. Tafjap.[9] calls a search structuexogenousf it
stores items in leaves only; otherwise ieisdogenous

The keys in the internal nodes i, b)-search trees are used purely for searching: they are not
associated with any data. In our description of binary setnees (or their balanced versions such as
AVL trees), we never explicitly discuss the data that areeissed with keys. So how do we know that
these data structures are endogenous? We deduce it frorhgbevation that, in looking up a keyin
a binary search tree, i is found in an internal node, we stop the search and return Implicitly, it
means we have found the item with kkyeffectively, the item is stored in). For (a, b)-search tree,
we cannot stop at any internal node, but must proceed untiéaeh a leaf before we can conclude that
an item with keyk is, or is not, stored in the search tree. It is possible to fgdidhary search trees so
that they become exogenous (Exercise).

Can’t we require the
keys in internal nodes
to correspond to keys

of stored items?

There is another important consequence of this dual roleys kn(a, b)-search trees. The keys in
the internal nodeseed not be the keys of items that are stored in the leaVéss is seen in Figurg3
where the ke in an internal node does not correspond to any actual iterhertree. On the other
hand, the key 3 appears in the leaves (as an item) as well as in an internal nod

952. Database Application. One reason for treatinu, b)-trees as exogenous search structures
comes from its applications in databases. In databasertelogly,(a, b)-search tree constitute amdex

over the set of items in its leaves. A given set of items carelmagre than one index built over it. If
that is the case, at most one of the index can actually stereriginal data in the leaves. All the other
indices must be contented to point to the original data, the.d; in (13) associated with key; is not

the data itself, but a reference/pointer to the data stdsesvlere. Imagine a employee database where
items are employee records. We may wish to create one indedbzn social security numbers, and
another index based on last names, and yet another basedm@sad/\Ve chose these values (social se-
curity number, last name, address) for indexing becauséseasches in such a data base is presumably
based on these values. It seems to make less sense to builtkarbased on age or salary, although we
could.

953. Disk I/0 Considerations: How to choose the parameteb. There is another reason for pre-
ferring exogenous structures. In databases, the numbé&ro§iis very large and these are stored in
disk memory. If there are items, then we need at leastd’ internal nodes. This many internal nodes
implies that the nodes of th@:, b)-trees is also stored in disk memory. Therefore, while $eagc
through the(a, b)-tree, each node we visit must be brought into the main merinory disk. The 1/0
speed for transferring data between main memory and dighaswely slow, compared to CPU speeds.
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Moreover, disk transfer at the lowest level of a computeraigation takes place in fixed sibéocks
(or pages). E.g., in UNIX, block sizes are traditionally 3#%2es but can be as large as 16 Kbytes. To

minimize the number of disk accesses, we want to pack as neysyjikto each node as possible. So the Parameteb is
ideal size for a node is the block size. Thus the parantedér(a, b)-trees is chosen to be the largest determined by block
value so that a node has thisck size. Below, we discuss constraints on how the paramésechosen. size

If the number of items stored in the, b)-tree is too many to be stored in main memory, the same
would be true of the internal nodes of the b)-tree. Hence each of these internal nodes are also stored
on disk, and they are read into main memory as needed. ThakUp, i nsertanddel et e are
known assecondary memory algorithmsbecause data movement between disk and main memory
must be explicitly invoked. Typically, it amounts to bringi a specific disk block into memory, or
writing such a block back to disk.

954. On(a,b, c)-trees: Generalized Split-Merge for (a, b)-trees. Thus insertion and deletion al-
gorithms uses the strategy of “share a key if you can” in otdeavoid splitting or merging. Here,
“sharing” encompasses borrowing as well as donation. ZFBespace utility method will now be gen-
eralized by the introduction of a new parameter 1. Call thesga, b, c)-trees We use the parameter
c as follows.

e Generalized Splitof u: When node. is overfull, we will examine up te — 1 siblings to see if we
can donate a child to these siblings. If so, we are done. @therwe merge nodes (node plus
c— 1 siblings), and split the merger inte+ 1 nodes. We viewe of these nodes as re-organizations
of the original nodes, but one of them is regarded as new. W& imsert this new node into the
parent ofu. The parent will be transformed appropriately.

We stress that there is no sharp distinction between danatid splitting: we view of them as
different possibilities for a singlgeneralized split subroutine starting from an overfull node
u, We successively bring into main memory a sequence of ceatig siblings of: (they may be
right or left siblings) until we either (i) find one that hass$etharb children, or (ii) brought in the
maximum number of — 1 siblings. In case (i), we do donation, and in case (ii) wet$pésec
siblings intoc + 1 siblings.

e Generalized Mergeof u: When nodeu is underfull, we will examine up te siblings to see if
we can borrow a child of these siblings. If so, we are done.e@ilse, we merge + 1 nodes
(nodew plusc siblings), and split the merger intonodes. We view: of the original nodes as
being re-organized, but one of them being deleted. We mustdklete a node from the parent of
u. The parent will be transformed appropriately.

Again, we view borrowing and merging as two possible pobsés for a singlegeneralized
mergesubroutine: starting from an underfull nodewe successively bring into main memory a
sequence of contiguous siblingswfintil we either (i) find one that has more thachildren, or
(i) brought in the maximum number efsiblings. In case (i), we do borrowing, and in case (ii)
we merge: + 1 siblings intoc siblings.

In summary, the generalized merge-split(afb, ¢)-trees transforms nodes intoc + 1 nodes, or
vice-versa. Whemr = 1, we have theB-trees; where = 2, we achieve th@/3-space utilization ratio
above. In general, they achieve a space utilization ratia @f+- 1 which can be arbitrarily close to(we
also need — o0). Our(a, b, ¢)-trees must satisfy the followingeneralized split-merge inequality

b+ 1
ct1<a< @ (28)
c+1
The lower bound on ensures that generalized merge or split of a node will always enough siblings.
In case of merging, the current node has 1 keys. When we fail to borrow, it means thasiblings
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havea keys each. We can combine all thege + 1) — 1 keys and split them inte new nodes. This
merging is valid because of the upper boufi8) (on a. In case of splitting, the current node Has 1
keys. If we fail to donate, it means that- 1 siblings have) keys each. We combine all thegle+ 1
keys, and split them inte+ 1 new nodes. Again, the upper bound@(28) guarantees success.

We are interested in the maximum valueaah (28). Using the fact that is integer, this amounts
b+ 1
- r + J . (29)
c+1

The corresponding, b, ¢)-tree will be called @eneralized B-tree Thus generalized B-trees are spec-
ified by two parameters,andc.

to

Example: What is the simplest generalized B-tree whete3? Thenb > a > ¢+ 1 = 4. So the
smallest choices for these parameters(aré, c) = (4,5, 3).

955. Using thec parameter. An (a, b, ¢)-trees is structurally indistinguishable from @n b)-tree. In
other words, the set of alk, b, ¢) trees and the set of gk, b) trees are the same (“co-extensive”). For
any(a, b) parameter, we can compute the smaltestich that this could be @, b, c)-tree.

Therefore, we can freely modify theas we wish. The-parameter is only used during algorithm
insertion/deletion, and this can be stored as a global b&riakE.g.,c can be a static member of the
(a, b, ¢) class, if we implement this usir@t++). Why would we want to modify? Increasing improves
space utilization but slows down the insertion/deletioocgiss. Therefore, we can begin with= 1,
and as space becomes tight, we slowly increagend conversely we can decreasas space becomes
more available. This flexibility a great advantage of ¢hgarameter.

956. A Numerical Example. Let us see how to choose thig, b, ¢c) parameters in a concrete setting.
The nodes of the search tree are stored on the disk. The ras$uisned to be always in main memory.
To transfer data between disk and main memory, we assume &-likél environment where memory
blocks have size 0512 bytes. So that is the maximum size of each node. The readingiting

of one memory block constitute one disk access. Assume Hudit pointer ist bytes and each key
6 bytes. So each (key,pointer) pair usésbytes. The value ob must satisfyl0b < 512. Hence
we choosé = |512/10] = 51. Suppose we want = 2. In this case, the optimum choice afis

a=| 2| =31

To understand the speed of using s@h 51, 2)-trees, assume that we store a billion items in such
a tree. How many disk accesses in the worst is needed to lakitpm? The worst case is when the
root has2 children, and other internal nodes Itaischildren (if possible). A calculation shows that the
height is6. Assume the root is in memory, we need ofillock 1/Os in the worst case. How many
block accesses for insertion? We need to readdes and write out+ 1 nodes. For deletion, we need
to readc + 1 nodes and write nodes. In either case, we hae+ 1 nodes per level. Witk = 2 and
h = 6, we have a bound of 30 block accesses.

For storage requirement, let us bound the number of bloakdeteto store the internal nodes of this
tree. Let us assume each data iter y/tes (it is probably only a pointer). This allows us to corgu

the optimum value of/’, b’. Thusd' = [512/8] = 64. Also,a’ = {Cb/“J = 43. Using this, we can

c+1
now calculate the maximum and number of blocks needed byatarsiructure (use Lemn@.
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957. Preemptive or 1-Pass Algorithms. The above algorithm uses 2-passes through nodes from the
root to the leaf: one pass to go down the tree and another pags tip the tree. There is a 1-pass
versions of these algorithms. Such algorithms could p@tybe twice as fast as the corresponding
2-pass algorithms since they could reduce the bottlenesdkIdD. The basic idea is to preemptively
split (in case of insertion) or preemptively merge (in cakdedetion).

First consider the standard insertion algorithm (where 1). During the Lookup phase, as we
descend the search path from root to leaf, if the current madelready full (i.e., has children) then
we will pre-emptively splitu. Splitting « will introduce a new child to its parent, We may assume
thatwv is in core, and by induction hypothesisis not full. Sov can accept a new child without splitting.
But this preemptive splitting of is not without I/O cost — since is modified, it must be written back
into disk. This may turn out to be an unnecessary 1/O in ouulaagalgorithm. So, in the worst case,
we could double the number of disk I/O’s compared to the nbmsartion algorithm.

Suppose the height . At the minimum, we need + O(1) disk I/O operations, just to do the
lookup. (Note: The O(1)” is to fudge some details about what happens at a leaf or a aoaok is
not important.) It may turn out that the regular insertiogaaithm uses: + O(1) disk I/O’s, but the
pre-emptive algorithm use¥h + O(1) disk 1/O’s (because of the need to read each no@dad then
write out the two nodes resulting from splitting. So the preemptive insertion algorithm is slower by
a factor of3. Conversely, it may turn out that the regular insertion dthm has to split every node
along the path, using 1/O’s per iteration as it moves up the path to the root. Combiwith theh I/O
operations in Lookup, the totalig: + O(1) /O operations. In this case, the pre-emptive algorithnsuse
only 3k + O(1) disk 1/O’s, and so is faster by a factor ©f3. Similar worst/best case analysis can be
estimated for generalized insertion with> 2.

Hw5 from FunAlgo, Sp2011:

Exercise 7.1: Recall the “standard” insertion ifu, b)-search trees (se$43, p.43, in Lecture Ill). Each
Lookup in a tree of height takesh + O(1) I/O operations where an 1/0O operation can be reading
a node from disk, or writing a node into disk. Note that we domeed to write a node back
to disk unless it has been modified. In the insertion/detegigorithm in946, p.45, we should
have said “write back to secondary memory (i.e., disk) ardetioat has been modifiédin other
words, if a node has not been modified, we need not waste anypé@ation to write it back to
disk.

(a) What is the maximum number of I/O operations when doirtgdard insertion into afa, b)-
search tree of height?

(b) Repeat part (a), but now assume the pre-emptive ingeatgorithm (this was discussed by
Esther in recitation, and also §64, p.50).

(c) In the best case scenario, how much faster is preemptegtion?

(d) In the worst case scenario, how much slower is preemptsartion?

(e) Based on the considerations above, should we do preengptiegular insertion?

O

Exercise 7.2: Do the same analysis as the previous question, but for stauwéetion algorithm. <

For deletion, we can again do a preemptive merge when thergurode: hasa children. Even for
standard deletion algorithna & 1), this may require 4 extra disk 1/0O’s per node: we have todima
sibling w to borrow a key from, and to then write outw and their parent. It might well turn out that
these extra I/O’s are un

But there is another intermediate solution: instead of p@e/e merge/split, we simplgachethe
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set of nodes from the root to the leaf. In this way, the sec@ss ploes not involve any disk /O, unless
absolutely necessary (when we need to split and/or mergejnodern computers, main memory is
large and storing the entire path of nodes in the 2-passitigoseems to impose no burden. In this
situation, the preemptive algorithms may actually be skaiven a 2-pass algorithm with caching.

958. Background on Space Utilization. Using thea : b measure, we see that stand&rdrees have
about50% space utilization. Yao showed that in a random insertion ehatthe utilization is about
lg2 ~ 0.69%. (see []). This was the beginning of a technique called “fringe e’ which Yao [L0]
introduced in 1974. Nakamura and Mizoguc#ij [ndependently discovered the analysis, and Knuth
used similar ideas in 1973 (see the surveyldf.[

Now consider the space utilization ratio of generalizetrees. UnderZ9), we see that the ratio
a:bis fcbjll) : b, and is greater tham: ¢ + 1. In casec = 2, our space utilization that is close 2.
Unlike fringe analysis, we guarantee this utilization ie thiorst case. It seems that most of the benefits

of (a,b, ¢)-trees are achieved with= 2 or ¢ = 3.

EXERCISES

Exercise 7.3: Justify the following statements abdut, b)-search trees:
(a) If we only have insertions into &, b)-tree, then the keys in an internal node are just copies
of keys of items found in the leaves.
(b) Itis possible to maintain the property in part (a) evethére are both insertions and deletions.

O

Exercise 7.4: In the text, we did a worst/best case comparison betweedatdimsertion and preemp-
tive insertion algorithms. Please do the same for the stdrdidetion and the preemptive deletion
algorithms. More precisely, answer these questions:

(a) What is the maximum number of I/O operations when doirtgrdard insertion into afa, b)-
search tree of heighit?

(b) Repeat part (a), but now assume the pre-emptive ingeatgorithm (this was discussed by
Esther in recitation, and also §64, p.50).

(c) In the best case scenario, how much faster is preempegtion?

(d) In the worst case scenario, how much slower is preemptsaztion?

(e) Based on the considerations above, should we do preengptiegular insertion?

Exercise 7.5: Do the same worst/best analysis as the previous questibasbuming an arbitrary >

2:

(I) Compare insertion algorithms (regular and pre-emptive

(D) Compare deletion algorithms (regular and pre-emptive) &
Exercise 7.6: What is the the best ratio achievable und&t)? Under 27)? &

Exercise 7.7: Give a more detailed analysis of space utilization basedarameters for (A) a key
value, (B) a pointer to a node, (C) either a pointer to an itenthe exogenous case) or the data
itself (in the endogenous case). Suppose we kdndes to store a key valug pytes for a pointer
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to a node, and bytes for a pointer to an item or for the data itself. Exprégsdpace utilization
ratio in terms of the parameters
a? b’ k? p’ d

assuming the inequality2(). &

Exercise 7.8: Describe the exogenous version of binary search trees. tBévmsertion and deletion
algorithms. NOTE: the keys in the leaves are now viewed awgates for the items. Moreover,
we allow the keys in the internal nodes to duplicate keys énl¢aves, and it is also possible that
some keys in the internal nodes correspond to no stored item. &

Exercise 7.9: Consider the tree shown in Figu2é. Although we previously viewed it as(8, 4)-tree,
we now want to view it as €2, 4)-tree. For insertion/deletion we further treat it a2a4, 1)-tree.
(a) Insert an item (whose key i$)} into this tree. Draw intermediate results.
(b) Delete the item (whose key ig)from this tree. Draw intermediate results. &

Exercise 7.10: To understand the details of insertion and deletion algoriin(a, b, ¢)-trees, we ask
you to implement in your favorite language (we like Java)ftilowing two (2, 3, 1)-trees and
(3,4, 2)-trees. O

Exercise 7.11:1s it possible to desigfu, b, ¢) trees so that the root is not treated as an exceptiof?

Exercise 7.12: Suppose we want the root, if non-leaf, to have at leastildren. But we now allow
it to have more than children. This is reasonably, considering that the rootshprobably be
kept in memory all the time and so do not have to obeyttleenstraint. Here is the idea: we
allow the root, when it is a leaf, to have updt: — 1 items. Here(a’,?’) is the usual bound
on the number of items in non-root leaves. Similarly, whes & non-leaf, it has betweenand
max{a® — 1, b} children. Show how to consistently carry out this policy. &

Exercise 7.13: Our insertion and deletion algorithms tries to share (denate or borrow) children
from siblings only. Suppose we now relax this condition tmwalsharing among “cousins”.
Consider all the nodes in a given level: two nodes nadesare cousinsof each other if they
belong to the same level but they are not siblings. All theasad (: = 1,..., M) in a given
level can be sorted based on their kayis< vy < - - - < vy If v;,v;,11 are not siblings, then we
call themdirect cousins Modify our insert/delete algorithms so that we try to shaith direct
siblings or cousins before doing the generalized splitfmer &

Exercise 7.14:We want to explore the weight balanced versioriaqb)-trees.
(a) Define such trees. Bound the heights of your weight-le&ldfu, b-trees.
(b) Describe an insertion algorithm for your definition.
(c) Describe a deletion algorithm. &

Exercise 7.15:How can we choose theparameter (se€f)) in generalized-trees in a more relaxed
manner so that the repeated splits/merges during insemtidrleletions are minimized? <

END EXERCISES
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