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“Its very illuminating to think about the fact that some — abshfour hundred — years
ago, professors at European universities would tell thiédmi students that if they were
very diligent, it was notimpossible to learn how to do longision. You see, the poor guys
had to do it in Roman numerals. Now, here you see in a nutsheit e difference there is
in a good and bad notation.”

— Edsger W. Dijkstra
DatamationVol.23, No.5, p.164, 1977

Lecture Il
RECURRENCES

Recurrences arise naturally in the complexity analysisofirsive algorithms and in probabilistic
analysis. We introduce some basic techniques for solviogrrences. A recurrence is a recursive
relation for a complexity functiof’(n). Here are two examples:

Fn)=F(n—1)+ F(n—2) 1)

and Looks familiar...
T(n) =n+2T(n/2). (2)

The reader may recognize the first as the recurrence for dmbmumbers, and the second as the
complexity of the Mergesort, described in Lecture 1. Thesaimrences havehe following “separable
form”:

T(n)=Gn,T(n),...,T(ng)) 3)

whereG(xg, z1, ..., xy) is a function ink + 1 variables and each; (i = 1, ..., k) is a function ofn
that is strictly less than. E.g., in (), we havek = 2 andn; = n —1,ny = n— 2 while in (2), we have
k=1landn; =n/2.

What does it mean to “solve” recurrences such as equatigms(l ¢)? The Fibonacci and Merge-
sort recurrences have the following well-known solutions:

F(n) =0(¢")
whereg = (1 ++/5)/2 = 1.618.. . . is the golden ratio, and Solve up too-order
T(n) = O(nlogn).

In this book, we generally estimate complexity functi@is:) only up to its®-order. If only an upper

bound or lower bound is needed, and we deterrfiifve) up to itsO-order or toQ2-order. In rare cases,
we may be able to derive the exact solution (in fact, this issgie for7T'(n) and F'(n) above). One

benefit of@-order solutions is this — most of the recurrences we tre@tisbook can be solved by
only elementary methods, without assuming differentigbdr using calculus tools.

The variable %" is called thedesignated variableof the recurrenced). If there are non-designated
variables, they are supposed to be held constant. In matlesmae usually reserver” for natural
numbers or perhaps integers. In the above examples, tls isatural interpretation for. But one of
the first steps we take in solving recurrences s to re-inéerp(or whatever is the designated variable) to
range over the real numbers. The corresponding recurrepetien @) is then called aeal recurrence.
For this reason, we may prefer the symbeol ‘as our designated variable, sineés normally viewed All recurrences are real

1 Non-separable recurrences looks l&én, T'(n), T'(n1), . . ., T(ng)) = 0, but these are rare.

Chee-Keng Yap  Fundamental Algorithms, Spring 2011: Basic &rsion  September 6, 2011



Lecture Il Page 2

as a real variable.

What does an extension to real numbers mean? In the FiboreacerenceX), what isF(2.5)? In
Mergesort ), what doed'(w) = T'(3.14159 .. ..) represent? The short answer is, we don't really care.

In addition to the recurrenc&), we generally need tHeoundary conditionsor initial values of the
functionT (n). They give us the values @f(n) beforethe recurrence3) becomes valid. Without initial
valuesT'(n) is generally under-determined. For our examfi)eif » ranges over natural numbers, then
the initial conditions

FO)=0, F(1)=1

give rise to the standard Fibonacci numbeses, F(n) is thenth Fibonacci number. Thug(2) =

1,F(3) = 2,F(4) = 3, etc. On the other hand, if we use the initial conditidn®) = F(1) = 0,

then the solution is trivial:F'(n) = 0 for all n > 0. Thus, our assertion earlier th&{n) = ©(¢™)

is the solution to 1) is nof really true without knowing the initial conditions. On th¢her hand,
T(n) = O(nlogn) can be shown to hold for2] regardless of the initial conditions. For the typical
recurrence from complexity analysis, this will be the case.

Some initial conditions
lead to trivial solutions

EXERCISES

Exercise 0.1: Consider the non-homogeneous version of Fibonacci reccerB(n) = F(n — 1) +
F(n—2)+ f(n) for some functionf (n). If f(n) =1, show thatF'(n) = Q(c") for somec > 1,
regardless of the initial conditions. Try to find the largeslue forc. Does your bound hold if we
havef(n) = n instead? &

Exercise 0.2: LetT'(n) = aT'(n/b) + n, wherea > 0 andb > 1. How sensitive is this recurrence to
the initial conditions? More precisely,1f; (n) andT>(n) are two solutions corresponding to two
initial conditions, what is the strongest relation you caier betweel¥; and7:? &

Exercise 0.3: (Aho and Sloane, 1973) Consider recurrences of the form

T(n) = (T(n—1))*+ g(n). (4)

For this exercise, we assumas a natural numbers and use explicit boundary conditions.
(a) Show that the number of binary trees of height at mo& given by this recurrence with
g(n) = 1 and the boundary conditidf(1) = 1. Show that this particular case @f)(has solution

T(n) = [k (5)
(b) Show that the number of Boolean functionsrowariables is given by4) with g(n) = 0 and
T(1) = 2. Solve this. O

Exercise 0.4: Let T, T’ be binary trees and’| denote the number of nodesTh Define the relation
T ~ T’ recursively as follows: (BASIS) IfT| = 0 or 1 then|T'| = |T”|. (INDUCTION) If
|T| > 1then|T"| > 1 and either (I, ~ T} andTr ~ T}, or (i) I, ~ T, andTr ~ T} . Here
Ty, andTi denote the left and right subtreesTof
(a) Use this to give a recursive algorithm for checking@'if- 7.

(b) Give the recurrence satisfied by the running tifie) of your algorithm.
(c) Give asymptotic bounds aifin). &

2 The reason behind this is that)(is a homogeneous recurrence whi® (s non-homogeneous. For instand&(n) =
F(n—1)+ F(n — 2) + 1 would be non-homogeneous and@ssolution would not depend on the initial conditions.
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Exercise 0.5:Let ¢ = (1+ v/5)/2 ~ 1.618 and¢ = (1 — v/5)/2 ~ —0.618. If F(n) satisfies the
FibonaccirecurrencE(n) = F(n — 1)+ F(n — 2), we said in the text thall'(n) = ©(¢"). Let
us now give the exact solution for this recurrence.

(a) Use induction to show thdt(n) = ¢" //5 — ¢" /\/5 is the solution with the initial conditions
F(n)=nforn=0,1.

(b) Some authors like to begin with(n) = 1 for n = 0,1. Find the constants, b such that
F(n) =a¢" + bg" forall n € N.

(c) In general, how can you give an exact formula fd) given that you know the value of
F(n) at two consecutive values af (sayn = ng andn = ng + 1)? Is it strictly necessary for
no = 0, and &

END EXERCISES

51. Simplification

In the real world, when faced with an actual recurrence toolbeesl, there are usually some simpli-
fications steps to be taken. Here are three general simfiifisathat should be automatically taken:

e Initial Condition. In this book, we normally state recurrence without any ahitionditions.
This is deliberate: we expect the student to supply theainitbnditions, based on the following
assumption: how convenient!

Default Initial Condition (DIC): There is somei; > 0 such that for al
n < ny, T'(n) is assigned arbitrary values. The recurrenceTtin) holds for
all n > n;.

The intent is for the student to make convenient choices:foand the initial values of'(n).
Normally, we make choices so that the resulting solutionehsisple form. Our favorite version
of DIC isT(n) = C for all n < ny; and some constarit. To use DIC, we need not specify
ny or the initial values ofl’'(n) before hand. We just proceed to solve the recurrence, ame at t
appropriate moments, introduce these values.

What is the justification for this approach? It allows us touds on the recurrence itself rather than
the initial conditions. In many cases, this arbitrarinesssinot affect the asymptotic behavior of
the solution. Even if this simplification is not valid, we rhighave learned something about the
recurrence.

e Extension to Real Functions.Even if the functionl'(n) is originally defined for natural num-
bersn, we will now treatT’(n) as a real functionife., n is viewed as a real variable), and defined
for n sufficiently large. See the Exercise for a standard appr@achple domain”) that avoids
extensions to real functions. It is important to realizet tben if we have no interest in real
recurrences, some solution techniques below will tramsfour recurrences into non-integer re-
currences. So we might as well take the plunge from the dBaittthe best recommendation for
this approach is its simplicity and naturalness.

e Converting Recurrence Inequality into a Recurrence Equaton. If we begin with a recur-
rence inequality such @8(n) < G(n,T(n1),...,T(ng)), we simply rewrite this as an equal-
ity relation: T'(n) = G(T(n1),...,T(ng)). Because of this change, our eventual solution
for T'(n) is only an upper bound on the original function. Similarifywie had started with
T(n) > G(n,T(ny1),...,T(ng)), the eventual solution is only a lower bound.
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91. Special Simplifications. Suppose the running time of an algorithm satisfies the folgwin-
equality:

T(n) <T([n/2])+T(|n/2]) + 6n+lgn — 4, (6)
for integern > 100, with boundary condition
T(n) = 3n* —4n + 2 (7)

for 0 < n < 100. Such arecurrence in-equation may arises in some imagined implementation of
Mergesort, with special treatment far< 100. Our general simplification steps tells us to (a) discard
the specific boundary conditions)(in favor of DIC, (b) treatl’(n) as a real function, and (c) write the
recurrence as a equation.

What other simplifications might apply here? Let us conv@rir{to the following
T(n) =2T(n/2) + n. (8)
This represents two additional simplifications: (i) We ea@d the term 4+6n + lgn — 4” by some

simple expression (n”) with same©-order. (ii) We have removed the ceiling and floor functions.
Step (i) is justified because this does not affect@ierder (if this is not clear, then you can always
come back to verify this claim). Step (ii) exploits the fatat we now treaf’(n) as a real function, so
we need not worry about non-integral arguments when we rertie/ceiling or floor functions. Also,

it does not affect the asymptotic value’Bfn) here.

The justifications for these steps are certainly not obyibusthey should seem reasonable. Ulti-
mately, one ought to return to such simplifications to jystifem.

EXERCISES

Exercise 1.1: Show that our above simplifications of the the recurreiéwith its initial conditions)
cannot affect the asymptotic order of the solution. [Show thr ANY choice of Default Initial
Condition.] &

Exercise 1.2: We seek counterexamples to the claim that we can replacz| by n/2 in a recurrence
without changing th@®-order of the solution.
(a) Construct a functiom(n) that provides a counter example for the following recureenc
T(n) =T([n/2]) + g(n). HINT: makeg(n) depend on the parity of.
(b) Construct a different counter example of the fdfitm) = h(n)T'([2]) for a suitable function
h(n). &

Exercise 1.3: Show examples where the choice of initial conditions camgkahe©-order of the
solutionT' (n). HINT: ChooseT'(n) to increase exponentially. &

Exercise 1.4: Supposer, n are positive numbers satisfying the following “non-sepéeaecurrence”
equation,
2T = g2n,
Solve forz as a function of:, showing
xz(n) = [1 + o(1)]2nlogy(2n).

HINT: take logarithms. This is an example of a bootstrapgngument where we use an ap-
proximation ofz(n) to derive yet a better approximation. See, e.g., Purdom apndB[16].

&
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Exercise 1.5: [Ample Domains] Our approach of considering real functimson-standard. The stan-
dard approach to solving recurrences in the algorithmsalitee is the following. Consider the
simplification of @) to (8). Suppose, instead of assumifign) to be a real function (so tha8)
makes sense for all values of, we continue to assumeis a natural number. It is easy to see
thatT'(n) is completely defined bygj iff » is a power o2. We say that§) is closed over the set
Dy := {2* : k € N} of powers of2. In general, we say a recurrence is “closed over @set R”
if for all n € D, the recurrence fdf' (n) depends only on smaller valugsthat also belong iD
(unlessn; lies within the boundary condition).

(a) Letus call a seb C R an “ample set” if, for somex > 1, the setD N [n, « - n] is non-empty
for all n € N. Here[n,an] is closed real interval betweenandan. If the solutionT’(n) is
sufficiently “smooth”, then knowing the values ®fn) at an ample seb gives us a good ap-
proximation to values where ¢ D. In this question, our “smoothness assumption” is simply:
T (n) is monotonic non-decreasing§uppose thaf'(n) = n* for n ranging over an ample sél.
What can you say abo(t(n) for n ¢ D? What ifT(n) = ¢* over D? What ifT'(n) = 22" over

D?
(b) Supposé’(n) is recursively expressed in termsBfn,) wheren, < n is the largest prime
smaller tham. Is this recurrence defined over an ample set? &

Exercise 1.6: Consider inversions in a sequence of numbers.
(a) The sequencd, = (1,2,3,4) has no inversions, but sequenge = (2,1,4,3) has two
inversions, namely the paifd, 2} and{3,4}. Now, the sequenc§, = (2,3, 1,4) also has two
inversions, namely the paifd, 2} and{1, 3}. Let I(.S) be the number of inversions if. Give
anO(nlgn) algorithm to computd(S). Hint: this is a generalization of Mergesort.
(b) We next distinguish between the quality of the inversiofiS; andS,. The inversiong1, 2}
and{3,4} in S; are said to have weight of 1 each, so tireighted inversionof S; is W (S;) =
2 =1+ 1. Butfor Sy, the inversior{1, 2} has weigh® while inversion{1, 3} has weightl. So
the weighted inversion i8/(S2) = 3 = 2 4+ 1. Thus the “weight” measures how far apart the
two numbers are. In general, $f = (a1, ...,a,) then a paif{a;, a;} is aninversionif i < j
anda; > a;. The weight of this inversion ig — i. Let W (S) be the sum of the weights of all
inversions. Give a®(n lgn) algorithm for weighted inversions. &

Exercise 1.7: We might consider following form of DIC where we assume tih&tré existd) < ng <
n1, and constants < Cy < 4 such that

(Vno <n<ny)[Co <T(n) <Chl. 9)

Solve the Fibonacci and mergesort recurrences using thésoveof DIC. Your solutions should
be stated in terms of the parametéts Cs. &

END EXERCISES

62. Divide-and-Conquer Algorithms

In this section, we see some other interesting recurrehegstise in a divide-and-conquer algo-
rithms. First, we look at Karatsuba’s classic algorithmrfarltiplying integers {(]. Then we consider
a modern problem arising in searching for key words.
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OK, you learned itin

92. Example from Arithmetic. To motivate Karatsuba'’s algorithm, let us recall the classigh-
gradeschool

school algorithm” for multiplying integers. Given posgiintegersX, Y, we want to compute their
productZ = XY. This algorithm assumes you know how to do single-digit iplittation and multi-
digit additions (“pre-high school”). The algorithm mullgs X by each digit ofY". If X andY haven
digits each, then we now haweproducts, each having at most+ 1 digits. After appropriate left-shifts
of thesen products, we add them all up. Itis not hard to see that thisrihgn takesO (n?) time. Can

we improve on this? ,
Recall the introductory

remark from Dijkstra
on the importance of
notation for algorithms

Usually we think of X, Y in decimal notation, but the algorithm works equally wellany base.
We shall assume bagdor simplicity. For instance, i’ = 19 then in binaryX = 10011. To avoid the
ambiguity from different bases, we indicatie base using a subscripf, = (10011),. The standard
convention is that decimal base is assumed when no baseéated. Thus a plain00” without any
base represents one hundred, (100), represents four.

AssumeX andY has length exactly: wheren is a power of2 (we can pad witl)’s if necessary).
Let us split upX into a high-order halfX; and low-order halfX,y. Thus

X = Xy + 22X,
whereX, X; aren/2-bit numbers. Similarly,

Y =Y, + 2V,
Then

Z = (Xo+2V2X1)(Yo +2"*v1)
= XoYo+2"3(X1Yy + XoY1) + 2" X1Y;
Zo+ 2272, + 2" Z,,

whereZ, = XYy, etc. Clearly, each of thesg;’s have at mos2n bits. Now, if we compute the 4
products
X()}/Ov X1}/07 Xoifla X1Y1

recursively, then we can put them together (“conquer step?)(n) time. To see this, we must make
an observation: in binary notation, multiplying any numbB&by 2* (for any positive integek) takes
O(k) time, independent oK. We can view this as a matter of shifting left By or by appending a
string ofk zeros toX .

Hence, ifT'(n) is the time to multiply twon-bit numbers, we obtain the recurrence
T(n) <4T(n/2)+ Cn (10)
for someC > 1. Given our simplification suggestions, we immediately iienthis as
T(n) =4T(n/2) + n.

As we will see, this recurrence has solutiditn) = ©(n?), so we have not really improved on the
high-school method.

Karatsuba observed that we can proceed as follows: we capwtetd, = XYy andZ; = X1Y;
first. Then we can computé, using the formula

Zy=(Xo+X1) Yo+ Y1) — Zy — Zs.

3 By the same token, we may writ§ = (19)10 for basel0. But now the base10” itself may be ambiguous — after all
“10” in binary is equal to two. The convention is to write the basdecimal.
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Thus Z; can be computed with one recursive multiplication plus sewmitionalO(n) work. From
Zy, Z1, Z2, We can again obtaif in O(n) time. This gives us thKaratsuba recurrence,
firstimprovementin
T(n) =3T(n/2) +n. (11) 1000 years? According
to Wikipedia, high
school multiplication is
equivalent to the
“lattice method” which

There is an even faster algorithm from Schdnhage and 8tgd971) that runs in is at least 1000 years
O(nlognloglogn) time. This has withstood improvements for almost 20 years| b old.

in recent years, thibg log n factor has begun to be breached (they can be replaced

by log* n). Many theoretical computer scientists believe thaOdn log n) algorithm
should be possible. There is an increasing need for muéipéin of arbitrarily large
integers. In cryptography or computational number thefoy,example. These are
typically implemented in software in a “big integer” packagror instance]Java has
a Bi gl nt eger class. A well-engineered big integer multiplication aigan will
typically implement the High-School algorithm far < no, and use Karatsuba for
ng < n < ni, and use Schonhage-Strassenfar n;. Typical values fomg, n, are
30, 200.

We shall show thal'(n) = ©(n*) wherea = 1g3 = 1.58 ---. This is clearly an improvement of the
high school method.

93. A Google Problem. The Google Phenomenon is possible because of efficientitlos: every
files on the web can be searched and indexed. Searching isytypfas. Let us suppose that Google
pre-processes every file in its database for keywords. Herwawser may ask to search files for two or
more keywords. We will reduce this multi-keyword search f@computed single-keyword index.

Let F' be a file, viewed as a sequence of words (ignoring punctuatapitalization, etc). We first
pre-procesg’ for the occurrences of keywords. For each keywordve precompute amdex which
amounts a sorted sequenéw) of positions indicating where occurs inF. E.g.,

P(divide) = (11,16,42, 101,125, 767)

means that the keyworéivide occurss times inF, at positiondl 1, 16, etc. Suppose we want to search

the file using a conjunction df keywords,w, ..., w;. Aninterval.J = [s,t] is called acover for
wy, ..., wy if eachw; occurs at least once within the positions.in The size of a covejs, ¢] is just
t — s. A cover isminimal if it is not contained in some larger cover; it isinimum if its size is
smallest among all covers. Note thafsf, ¢;] are minimal covers fotr = 1,2,..., and ifs; < s;41
thent; < t;41. Thekeyword cover problemis this: given the indice®(w,), ..., P(wy) for a set
W = {wy,...,w} of keywords in a file, to compute a minimum cover 0.

P(divide)

11 16 42 101 125 767
— 5 - —— L~ positions
2 44 289 300
P(conquer)

Figure 1: Minimal Covers

E.g., letk = 2 with wy = divide andws = conquer. With P(divide) as before, leP(conquer) =
(2,44,289,300). Then the minimal covers afe, 11], [42, 44], [44, 101], [125, 289], [289, 767]. This is
illustrated in Figurel. The minimum cover i$42, 44].
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Before attempting to solve this problem, consider how Geagight use the minimum cover so-
lutions: suppose a user wants to search for det {w,...,w;} of key words. For each fil¢;
(j = 1,2,...) we use the algorithm to compute a minimum cojegr d;] (if one exists) forlV in f;.
The indicesP(w;) for each key wordw, are assumed to have been precomputed. The search results
will be a list of all files for which covers exist, but we ordéese files in order of non-decreasing cover
sized; — ¢;. The actual covefe;, d;] can be used by Google to display a snippet of theffile

Let us now consider algorithms. Let be the length of listP(w;) (i = 1,...,k) andn = ny +
---+ny. The casé& = 2 is relatively straightforward, and we leave it for an exseciConsider the case
k = 3. First, mergeP(wy ), P(w2), P(ws) into the arrayA[1..n]. Recall thatin Lecture I, we discussed
the merging of sorted lists. Merging takes ti@én; + ns + n3) = O(n). To keep track of the origin
of each number iM, we may also construct an arrd@{1..n] such thatB[i] = j € {1,2,3} iff Alj]
comes from the lisP(w;).

We use a divide-and-conquer approach. Recursively, camguhinimum cover ofd[1..(n/2)]
and A[(n/2) + 1..n] (for simplicity, assume: is a power of2). LetC, ,,/» andCy, 241, be these
minimum covers. We now need to find a minimal cover that stield[(n/2)] and A[(n/2) + 1]. Let
C = [A][i], A[j]] be such a minimal cover, wheie< (n/2) andj > (n/2) + 1. There are 6 cases. One
case is wher = C" U C”, whereC’ = [A]i], A[n/2]] is the rightmost cover fow, in A[l..(n/2)],
andC” = [A[(n/2) + 1], A[j]] is the leftmost cover fows, ws in A[(n/2) + 1,n]. We can findC” and
C” in O(n) time. The remaining 5 cases can similarly be foun®im) time. ThenC'is the cover that
has minimum size among these 6 cases. Hence, the overalledtppf the algorithm satisfies

T(n) =2T(n/2) + n.

We have seen this recurrence before, as the Mergesort eacer?). The solution isT'(n) =
O(nlogn). See exercise for a general solutior((n log k) time.

94. Master Recurrence and Divide-and-Conquer Algorithms. The recurrence<?j and (L1) are
instances of th&laster Recurrencewhich has the form:

T(n) = aT(n/b) +d(n) (12)

wherea > 0 andb > 1 are constants and is any function, usually called theriving or forcing
function. Below, we shall solve this recurrence under fairly geneoalditions.

The idea of solving a problem by reducing it to smaller subjgms is a very general one. In
this chapter, we mainly focus on reductions from problemsizén to subproblems of siz& ¢n for
some fixed: < 1. If there are a finite number of such subproblems, the runtiings can be bounded
using solutions to the Master recurrend€)( In other problems, we reduce a problem of sizé
several subproblems that of sizen — ¢ for some fixed: > 1. Such solutions would be exponential
time without additional properties; we study these underttpic of dynamic programming (Chapter
7). In applications, we havé(n) > 0, representing the cost of merging solutions of subprobliems
divide-and-conquer algorithms.

EXERCISES

Exercise 2.1: Carry out Karatsuba’s algorithm fof = 6 = (0110); andY = 11 = (1011)s. Itis
enough to display the recursion tree with the correct argusi®r each recursive call, and the
returned values. &
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[ NumBits  AvgTime  Exponent |[ NumBits — AvgTime  Exponent |
4000 4.358 0.0 9600 23.034 1.9017905239616146
4200 4.696 1.531002145103799| 9800 24.055 1.9064306092855442
4400 5.194 1.841260577604784| 10000 24.986 1.905838802838664
4600 5.517 1.687304811025434f 10200 25.987 1.907484076203623

N

4800 5.983 1.73818655049995
5000 6.51 1.798511394725176|

>
=
o
i
o
S

26.948 1.906723206778199
10600 28.108 1.912700793571859

5200 6.988 1.799715966302600]1 10800 29.111 1.9120055203582398
5400 7.509 1.812998128928515| 11000 30.221 1.9143159996069712
5600 8.01 1.8089977665618309 11200 31.534 1.922120988851413

5800 8.684 1.85558837393382 || 11400 31.542 1.8898795547030012
6000 9.183 1.838236378924439| 11600 32.67 1.8920105894497718
6200 9.769 1.8418523402197158 11800 33.703 1.8908891117429292
6400 10.365 1.843435785284795B 12000 34.67 1.8877101089855162
6600 11.088 1.864808884276074| 12200 36.082 1.8955269064390694
6800 11.717 1.863880296957110p 12400 37.218 1.89568258439075¢3
7000 12.413 1.8704459319724756 12600 38.049 1.88849305740309(07
7200 13.092 1.87140706960353(0B 12800 39.242 1.8894663931349043

7400 13.843 1.87872794770107
7600 14.532 1.87634585344405
7800 15.297 1.88018608611955

13000 40.553 1.892493164635264
13200 41.696 1.891573384417087
13400 42.951 1.892573815512394

8000 16.054 1.88119470115075 44.159 1.892327187180827
8200 16.905 1.888438357099489¢ 13800 45.533 1.894761730707521
8400 17.644 1.884771747444963P 14000 46.816 1.895180371724137
8600 18.498 1.8885827751677746 14200 48.1 1.895318270447568

8800 19.283 1.88622837071105
9000 20.225 1.89277227032401
9200 21.17 1.89765222291543
9400 22.063 1.89824398902585

14400 49.401 1.895458878679031
14600 50.873 1.897943563657486
14800 52.364 1.900285660081644
15000 53.537 1.897748200727304
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Figure 2: Timing as a function of number of bits

Exercise 2.2: Suppose an implementation of Karatsuba’s algorithm aelsig\n) < Cn'-°® where
C = 1000. Moreover, the High School multiplication E(n) = 30n2. Beyond what value of;
does Karatsuba definitely becomes competitive with the ISigimool method? &

Exercise 2.3: Consider the recurrenc®(n) = 37'(n/2) +n andT’(n) = 3T7"([n/2]) + 2n. Show
that7'(n) = ©(T"(n)). %

Exercise 2.4: The following is a programming exercise. It is best done gisipprogramming language
such as Java that has a readily available library of big ereg
(a) Implement Karatsuba'’s algorithm using such a programgiia@inguage and using its big integer
data structures and related facilities. The only resticts that you must not use the multipli-
cation, squaring, division or reciprocal facility of thédary. But you are free to use its addi-
tion/subtraction operations, and any ability to perforfiviight shifts (multiplication by powers
of 2).
(b) Let us measure the running time of your implementatioKafatsuba’s algorithm. For in-
put numbers, use a random number generator to produce nsiobany desired bit length. If
T(n) < Cn®thenlgT(n) < lgC + algn. Theexponenta is thus the slope of the curve ob-
tained by plottindg 7'(n) againsfig n, we should get a slope of at mast Plot the running time
of your implementation to verify that its exponentis1.58.
(c) What is the exponent in Java’s native implementation@l&ir your data.
(d) My 1999 undergraduate class in algorithms did the priegedxercise, using the
j ava. mat h. Bi gl nt eger package. One timing from this class is shown in TahleThe
“exponent” in this table is computing with a crude formuj ZZ‘féﬁi%:ZZ‘fgﬁiﬁ where
numBitsy = 4000 and avgTimeg = 4.358 (the initial trial). This crude exponent hovers
aroundl1.9. What would be the empirical exponent if you do a proper regjon analysis? This
data suggests that in 1999, the library only implementeéiigh School algorithm. By 2001, the
situation appeared to have improved. &
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Exercise 2.5: Suppose the running time of an algorithm is an unknown femotif the formT'(n) =
An® + Bn® wherea > b and A, B are arbitrary positive constants. You want to discover the
exponentz by measurement. How can you, by plotting the running timehefdlgorithm for
variousn, find a with an error of at most? Assume that you can do least squares line fittiny.

Exercise 2.6: Try to generalize Karatsuba’s algorithm by breaking up eadfit number into3 parts.
What recurrence can you achieve in your approach? Does gourrence improve upon Karat-
suba’s exponentdg3 = 1.58---? O

Exercise 2.7: To generalize Karatsuba'’s algorithm, consider splittinguebit integerX into m equal
parts (assumingn dividesn). Let the parts b&Xy, X1, ..., X,,_1 whereX = Zﬁgl X, 2in/m,
Similarly, lety = S7 ' v;2"/™. Let us defineZ; = 22:0 X,Y;_jfori=0,1,...,2m — 2.
In the formula forZ;, assumeX, = Y; = 0 when/ > m.

(i) Determine the9-order of f(m, n), defined to be the time to compute the proddct XY
when you are givewy, Z1, . .., Zom—o. Remember that(m, n) is the number of bit operations.
(i) It is known that we can comput€¢Zy, Z1, ..., Zam—2} from the X;’s and Y;’s using
O(mlogm) multiplications andO(m logm) additions, all involving(n/m)-bit integers. Us-
ing this fact with part (i), give a recurrence relations fbe ttime7'(n) to multiply two n-bit
integers.

(iii) Conclude that for every > 0, there is an algorithm for multiplying any twe-bit integers
intime T'(n) = ©(n!*%). NOTE: part (iii) is best attempted after you have studiesl Master
Theorem in the subsequent sections. &

Exercise 2.8: In the Google problem, we need to merge several sorted R&tsall from Lecture | that
we can merge a two lists of sizes andn in time ©(m + n). SupposeXy,...,X,, aren > 1
sorted lists, each with > 1 elements. Here; andk are independent parameters.
() We want to analyze the complexify(n, k) of sorting the sefX = J"_, X;. At each phase,
we merge pairs of lists. With lists of sizek, we takeO(nk) time to merge, and produce/2
lists each of siz&€k. Set up the recurrence f@i(n, k) based on this repeated merging algorithm.
(b) Show thatl'(n, k) = O(nklg(l + n)) (we say ‘1 + n” to ensure that the logarithm does
not vanish whem = 1). HINT: you could use domain transformation (Sg8 but this is not
necessary.
(c) Use the Information Theoretic Lower Bound from Lecturéolshow a lower bound of
Q(nklg(l+n)). O
Adapted from a
Google interview
Exercise 2.9: Recall the Google multi-keyword search. This was reducecbtaputing a minimum guestion (the
cover for a selW = {w,...,w;} of key words in a file. For each key word € W, we are interviewed student
given an indexP(w) which is just a sorted list of positions wheweoccurs in the file. was hired)
(a) Solve the minimum cover fdr = 2 in linear time.
(b) SupposeP(w;) = (s;,t;) for eachi = 1,...,k, i.e., each keyword has just two positions.
Give anO(klog k) algorithm to find the minimum cove? for wy, ..., wg. HINT: suppose the
minimal covers ar€’y, .. ., C,, for somem > 1. Give an algorithm to list all the minimal covers.
If C; = [¢;,d;] and assuming; < ¢2 < -+ < ¢, how do you findC;? How do you find”; ;4
givenC;?
(c) Solve the general Google problemié arbitrary and each word can have arbitrarily many
occurrences in the file). HINT: if you used the hint from (k)should be possible to generalize
your solution. &

Exercise 2.10: Write a program to solve the Google multi-keyword for theeclas= 3 as described in
the text. Use your favorite programming language (C or Jatrzowt any Object-Oriented fanfare
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is recommended). Initially, assumds a power of2. Indicate how to adapt your algorithm when
n is not a power of. &

Exercise 2.11:Consider the following problem: we are given an arefl..n] of numbers, possibly
with duplicates. Letf(x) be the number of times (“frequency”) a numhepccurs. Given a
numberk > 1, we want to know whether there akedistinct numbersey, ...,z such that
S f(x) > n/2. Call{x1,. .., x;} ak-majority set.

(a) Solve this decision problem fér= 1.

(b) Solve this decision problem fér= 2.

(c) Instead of the previous decision problem, we consideofitimization version: find the small-
estk such that there arenumbersey, . . ., x; with Zle fz;) >n/2. O

END EXERCISES

3. Rote Method

We are going to introduce two “direct methods” for solvinguerences: rote method and induction.
They are “direct” as opposed to other transformation methvaisich we will introduce later. Although
fairly straightforward, these direct methods may call fome creativity (educated guesses). We begin “...at last, a method
with the rote method, as it appears to require somewhat lesssgvork. named after mé&l—
Gunter Rote

95. Whatisrote? The “rote method” refers to the idea of solving a recurrencespeated expansion
of a recurrence. Since such expansions can be done medhaniéa method has been characterized
as rote.

Let us illustrate this method using the merge-sort recaee®): 7'(n) = 27(n/2) + n. The
important thing is that we can replaaen this by any expression: plugging 2 for n in the recurrence,
we getT'(n/2) = 2T (n/4) + n/2. If we plug this back into the original recurrence, we get second
expansion in the following derivation:

T(n) = 2 +n (first expansion)
= 2 +n (second expansion
= 4T(n/4)]+2n (simplify) (13)
= 4 + 2n  (third expansion)
= 8T (n/8)+3n (simplify)

This is the expansion step. At this point, we may guess tleatlhexpansion, the formula is
(G)i: T(n)=2T(n/2") +in. (14)

To verify our guess, we use natural induction. Note that tirenfila (L4) is true fori = 1 (it also
holds fori = 2 and3, but this is not logically necessary). We need an inducttep:sThis amounts to
expanding the formula once more:

T(n) = 2i+m (guessedth expansion)

22T (n/2"Y) + n/2 |+ in (i + 1st expansion) (15)
2 1T (/2 + (i + 1)n,  (simplify)
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and noting that this confirms that the formula holds:fer 1 (cf. formula(G); 1 in (14)).

Finally, we must choose a valuedt which to stop this expansion. First consider the ideahsibn
wheren is a power of2 and we choosé = lgn. Then (L4) yields T'(n) = 2iT(n/2%) + in =
nT(1) + (Ign)n. Invoking DIC to makeT'(1) = 0, we obtain the solutiofi’(n) = nlgn. Thisis a
beautiful solution, except for one problemmust be an integer, and it will not work whenis not a
power of2. It makes no sense to pretend thé a real variable (as we did far). In general, we may
choose an integer closelign: [1gn] or [lgn | will do. Let us choose

i=|lgn] (16)

as our stopping value. With this choice, we obtaig n/2! < 2. Under DIC, we can choose the initial
condition to be
T(n) =0, forn < 2. (a7)

This yields theexactsolution that fom > 2,

T(n)=nllgn]. (18)

96. Isis really rote? To recap, there are four distinct stages in the rote method:

(E) Expansion steps as ii§). This is the rote part. You can expand as many times as yeuwliiktil
you see the general pattern.

(G) Guessing of a formula for thé&h expansion, as inl@). This guess may require some creativity.
Indeed, if we had not re-arranged the terms in our exampledrstiggestive manner, one might
not see the pattern readily. So perhaps “rote” is a misnomer.

(V) Verification of the formula as in15). This step should be mechanical, and amounts to one more

expansion step and re-arranging the terms into the desired fOne problem is that students
sometimes do not do this step “honestly” (i.e., do the jumilnéoconclusion which you expect).

(S) Stopping criteria choice as il6). You need to know when to stop expansion! Note you must

choose to be a natural number. Thus, you cannot pick="1gn" in (16), but need something like
i = [lgn] ori = |lgn]. According to DIC, you can pick anylarge enough that the recursive
termT (k) has an argumeritthat is below some fixed constant (e/g<< 1). Using DIC, you can
declareT (k) to be any value you like (usuallf(k) = 0 is good).

In general, your guess for thieh expansion is in the form of a summati@;;}J f(4) for some
function f. If you stop atm-th expansion, you are left with the suE;’:Ol f(4). Itjust happens

that for Mergesortf (¢) is identically equal ta:, and so theZZ’;_Ol nis justmn (m = |lgn|).
Unfortunately, in general, you cannot leave the answer asaand you will need some summa-
tion techniques. Summation techniques will be taken ugsiovtn section below. In view of this

additional feature, the fourth and last stage might be dale Stop-and-Sum stage.

Since the four stages are Expand, Guess, Verify and Stofsand we may also refer to the Rote
Method as th&aGVS method When the method works, it can give you the exact solutionw Idan
this method fail? It is clear that you can always perform egiens, but you may be stuck at the next
step. For instance, try to expand the recurrefige) = 27'([n/2]) + n in an exact form. The only way
out is to give up exact solution, and guess reasonable uppérrdower bounds.

The appearance of the floor function in the soluti@8) (makesT'(n) discontinuous whenever
is a power of2. We can make the solution continuous if we fully exploit oteefdom in specifying
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boundary conditions. Let us now assume that) = nlgn for 1 < n < 2. Then the above proof gives
the solution
T(n)=mnlgn (29)

for n > 1. This solution is the “ultimate” in simplicity for the reaance 8). In the exercises, we see
more examples of the influence of DIC7) on our solution.

EXERCISES

Exercise 3.1: No credit work: Rote is discredited word in pedagogy, so welddike a more dignified
name for this method. We could call this the “4-Fold Path”.g&est your own name for this Pronounce “EGVS” as
method. In a humorous vein, what could EGVS stand for? & “egg-us” (like the
Romans, treat V as U).

Exercise 3.2: Use the EGVS Method to solve the following recurrences
(@T(n) =n+8T(n/2).
(b) T'(n) =n + 16T (n/4).
(c) Can you generalize your results in (a) and (b) to recawesiof the forn?’(n) = n+aT'(n/b)
whena, b are in some special relation? &

Exercise 3.3: Solve the Karatsuba recurrencel) using the Rote Method. HINT: You may want to
look ahead to Section 5 on Geometric series. &

Exercise 3.4: Give the exact solution fof (n) = 27'(n/2) + n for n > 1 under the initial condition
T(n)=0forn < 1. &

Exercise 3.5: Solve (L2) assuming thai(n) = n” for some rea3. NOTE: there will be three different
cases, depending on the relationships betw&enb. &

Exercise 3.6: Let us consider the following form of DIC, where we assume tha
Co<T(n)<C4

for 0 < n < ny, with the recurrence operative far > n;. Here, Cy, C1,n, are positive
constants. Solve the Mergesort Recurrence under thiglingndition, and show how the solution
depends omy, Cy, C. &

END EXERCISES

4. Real Induction

The rote method, when it works, is a very sharp tool in the sémat as it gives us the exact solution
to recurrences. Unfortunately, it does not work for manyreences: while you can always expand,
you may not be able to guess the general formula forittreexpansion. We now introduce a more
widely applicable method, based on the idea of “real inauncti
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To illustrate this idea, we use a simple example: considereburrence
T(z)=T(x/2) +T(x/3) + . (20)

The student is encouraged to attempt the rote method onettisrence. Let us use real induction to
prove an upper bound: suppose we guessitia) < Kz (ev.), for someK > 1. Then we verify it
“inductively™

T(x) = T(z/2)+T(x/3)+« (By definition)
< Kg+K3+x (Inductive hypothesis)
= Ke(3+35+%)
< Kz (ProvidedK > 6)

In the following, we will rigorously justify this method ofrpof.

How did we guess the upper bouiidz) < K? What if we had guesseéli(z) < Kz2? Well, we
would have succeeded as well. In other words, this argun@arfirms a particular guess; it does not
tell us anything about the optimality of the guess (in rgatie proof do yields hints on how tight an
inequality is). We could likewise use real induction to canfia guessed lower bound. The combined
upper and lower bound can often lead to optimal bounds.

97. Natural Induction. Real induction is not a familiar in computing or even math8osa so let
us begin by recalling the related but well-known methodhafural induction. The latter is a proof
method based on induction over natural numbers. In brigipeseP(-) is a natural number predicate,
i.e., foreachm € N, P(n) is a proposition.

For example,P(n) might be “There is a prime number betweenandn + 10 inclusive”. A
proposition is either true or false. Thus, we may vérifiyat P(100) is true because01 is prime,
but P(200) is false becaus@11 is the smallest prime larger tha200. A similar predicate is
P(n) = “there is prime betweem and2n — 1”, called Bertrand’s Postulate (1845).

We simply write “P(n)” or, for emphasis, P(n) holds” when we want to assert that “proposition
P(n) is true”. Natural induction is aimed at proving proposisaf the form
(Vn € N)[P(n) holds. (21)

When @1) holds, we say the predicafe(-) is valid. For instance, Chebyshev proved in 1850 that
Bertrand’s Postulat®(n) is valid. A “proof by natural induction” has three steps:

(i) [Natural Basis Step] Show thdt(0) holds.

(i) [Natural Induction Step] Show that if > 1 andP(n — 1) holds thenP(n) holds:

(n>1)A P(n—1)= P(n). (22)
(iii) [Principle of Natural Induction] Invoke the principlof natural induction, which simply says that

(i) and (i) imply the validity of P(-), i.e., @1).

Since step (iii) is independent of the predic#té), we only need to show the first two steps. A
variation of natural induction is the following: for any maal number predicat®(-), introduce a new
predicate (the “star version @t”) denotedP*(-), defined via

P*(n): (Ym e N)jm <n = P(m)]. (23)
The “Strong Natural Induction Step” replace®)in step (ii) by
(n>1)A P*(n) = P(n). (24)

4 The smallest such thatP(n) is false isn = 114.
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It is easy to see that if we carry out the Natural Basis Steptlh@dbtrong Natural Induction Step, we
have shown the validity of*(n). Moreover,P*(-) is valid iff P(-) is valid. Hence, a proof of the
validity of P*(-) is called astrong natural induction proof of the validity of P(-).

98. Real Induction. Now we introduce the real analogue of strong natural indactUnlike natural
induction, real induction is rarely discussed in standaedivamatical literature, except possibly as a
form of transfinite induction. Nevertheless, this topicdsinhterest in areas such as program verification
[2], timed logic [L3], and real computational modelg]] We regard it is an important technique for
analysis of algorithms.

Real induction is applicable treal predicates i.e., a predicate”(-) such that for each € R,
we have a proposition denotde{z). For example, supposE(x) is a total complexity function that
satisfies the Karatsuba recurrenéé)(subject to the initial conditiod’(z) = 1 for x < 10. Let us
define the real predicate

P(z): [z > 10 = T(z) < 27]. (25)
As in (21), we want to prove thealidity of the real predicat®(-), i.e.,
(Vz € R)[P(x) holds. (26)

In analogy to 23), we transformP(-) into a “star-version of”, defined as follows:
Pi(z): (Vy e R)[y <z — 5= P(y)] (27)

whered is any positive real number. The predicdtg(z) is called theReal Induction Hypothesis
(RIH). When¢ is understood, we may simply write* (x) instead ofP; ().

THEOREM 1 (Principle of Real Induction)Let P(z) be a real predicate. Suppose there exist real
numbers) > 0 (gap constant) and; (cutoff constant) such that

() [Real Basis Stepfor all z < x4, P(x) holds.
(I1) [Real Induction StepFor all x > x1, Py (z) = P(z).

ThenP(x) is valid: for all z € R, P(z) holds.

The proof of this principle is left as an exercise. It amouata reduction to Natural Induction. The
principle behind this reduction is a very intuitive propeof real numbersGiven anys > 0, for every
real numberz there is a smallest natural numbe(z) such thate < n(z)é. Thisis also known as the
Archimedean Property of the reals. We can dividR into the se{Q(k) : k € N} of intervals where
each interval)(i) comprises all those with n(z) = k. This is illustrated in Figur&. We can then
prove that the Principle of Real Induction holds over e@¢h) for &, using natural induction.

“Give me a lever long
enough and | can move

the earth” —

Archimedes

Let us apply real induction to real recurrences. Note tisahfiplication requires the existence of
two constantsy; andd, making it somewhat harder to use than natural induction.

99. Example. Supposé’(x) satisfies the recurrence
T(z) = 2° + T(x/a) + T(x/b) (28)
wherea > b > 1. Givenzy > 1 andK > 0, let P(x) be the proposition

x>xo=T(x) < Kz°. (29)
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Figure 3: Discrete steps in real induction

Define the constarify = a—° 4+ b—°. CLAIM: If ky < 1 then for allzq > 1, there is aK > 0 such that
P(zx) is valid.

Proof: Now for anyxy, if 21 > 2 then our Default Initial Condition says that there i§'a> 0 such
that
T(x)<C

for all zgp < x < z;. If we chooseK such thatk > C/xj then for allzy < = < 1, we have
T(z) < C < Kxj < Ka (sincez > xo > 1). HenceP(z) holds. This establishes the Real Basis
Step (1) forP(z) relative tox;.

To establish the Real Induction Step (ll), we need more ptagssforx; and must choose a suitable
d. First choose
T, = axg. (30)

Thus forz > z1, we havery < z/a < z/b. Next choose

b—1
52171—(171/17):.561

(31)

This ensures that far > x;, we haver/a < /b < « — 6. The Real Induction Hypothesig' (z) says
thatforally <z — 4, P(y) holds, i.e.y > zo = P(y). Suppose: > z; andP; (z) holds. We need to
show thatP(z) holds:

T(x) = 2°+T(x/a)+T(z/b)
< 2+ K- (v/a)’ + K - (z/b)°, (by P§(xz) andzg < z/a < x/b <z —4) (32)
= 2°(1+ K - ko)
< Kab (33)

where the last inequality is true provided our choicgsofibove further satisfies + K - kg < K or
K >1/(1— ko). This proves the Real Induction Step (II). Invoking the Eifte of Real Induction, we
conclude thai(-) is valid.

In a similar vein, we can use real induction to prove a lowarrb there is a constakt> 0 such
thatT(z) > kz® (ev.). Hence, we have show(x) = ©(n®) for the recurrenceXg).

910. Default Real Basis. The last example shows that the direct application of thediyie of Real
Induction can be tedious, as we have to track constants sughraand K. But this tedium is only
associated with justifying the Real Basis (RB); the prooftu# Real Induction (RI) is actually not
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tedious and highly instructive. Our goal is this subsectioto seek ways to avoid RB, so that you can
focus on the interesting part (RI).

There is a simple way out, by fiat! Lgtx) be a complexity function an@’ satisfies some recur-
rence. Suppose we want to show that

T(x) < f(x)
by real induction. This amounts to showing that there exiSts 0 andz; such that
(Vo > 21)T(x) < K f(x). (34)

We ask you to assuma4) holds providedK and x; is sufficiently large.Call this theDefault Real
Basis(DRB). In the next subsection, we will formally justify thier a large class of situations (surely
enough to cover all your applications).

911. Growth Functions. We will now show that under some general conditions, the Raals (RB)
of Real Induction Principle is automatic. The idea is to exthe following property that most natural
complexity functions satisfy. Skip on first reading!

A real functionf : R* — R is said to be ayrowth function if f is eventually defined, eventually
non-decreasing and is unbounded in each of its variablesnf@ance f (x) = 22 — 3z and f(z,y) =
a¥ + x/ log x are growth functions, but(z) = —z andf(x, y, z) = xy/z are not.

THEOREMZ2. Assuméd’(x) satisfies the real recurrence
T(z) = Gz, T(91(x)),- -, T(gk(x)))

and

e G(x,t1,...,tx) and eachy;(x) (i = 1, ..., k) are growth functions.

e There is a constant > 0 such that eacly; (z) < x — J (ev.z).

Supposé (x) is a growth function such that

Gz, Kf(g1(x)), ..., Kf(gk(x))) < K f(x)) (ev. K, x). (35)

Under the Default Initial Condition, we conclude

Proof. Pick zp > 0 and K > 0 large enough so that all the “eventual premises” of the trmor
are satisfied. In particulaf,(x), G(z,t1, . .., t;) andg;(z) are all defined, non-decreasing and positive
when their arguments ate x. Also, g;(zo) < xo — ¢ for eachi. Let P(x) be the predicate

Pz): x> x0=T(z) < Kf(x).

Pick
x1 = max{g; '(zo) :i=1,...,k}. (36)

The inverseyi_1 of g; is undefined at if there does not exisf; such thay; (y;) = o, or if there exists
more than one such. In this case, takg; ' (z¢) in (36) to be anyy; such thaiy; (y;) > zo. We then
conclude that for alk > x4,

x0 < gi(z) <ax—0.
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By the Default Initial Condition (DIC), we conclude that fell « € [z, x1], P(x) holds. Thus, the
Real Basis Step is verified. We now verify the Real Inducti@pSAssume: > z; andP; (x). Then,

T(z) = G T(9:(2)),...,T(gr(x)))
< G, Kf(g(x), ..., Kf(g1(z))) (by P5(x))
< Kf(z) (by (39)).

Thus P(z) holds. By the Principle of Real InductioR(x) is valid. This impliesT' (x)O(f(z)).
Q.E.D.

To apply this theorem, the main property to verify is the i@y (35), since the other properties
are usually routine to check. Let us see this in action on xaenple £8). We basically need to verify
that

1. f(z) = 2%, G(x,t1,t2) = 2° +t1 + t2, g1(x) = x/a andge(z) = x/b are growth functions
2. g1(z) <z —1andgs(z) < 2 — 1 whenz is large enough.

3. The inequality §5) holds whenK > 1/(1 — kg). This is just the derivation of3@) from (32).

From theoren® we conclude thaf’(z) = O(f(x)). The step 85) is the most interesting step of
this derivation.

Itis clear that we can give an analogous theorem which caisée to easily establish lower bounds
onT(x). We leave this as an Exercise.

e One phenomenon that arises is that one often has to intradst®nger induction hypothesis
than the actual result aimed for. For instance, to provefha) = O(xlogx), we may need to
guess thal'(x) = Czlogz + Dx for someC, D > 0. See the Exercises below.

e A real predicateP can be identified with a subsst- of R comprising those: such thatP(z)
holds. The statemer®(x) can be generically viewed as asserting membershipinfSp, viz,
“x € Sp”. Then a principle of real induction is just one that gives@gsary conditions for a set
Sp to be equal tdR. Similarly, a natural number predicate is just a subsé¥.of

In the rest of this chapter, we indicate other systematibways; similar ideas are in lecture notes
of Mishra and Siegell4], the books of Knuth]1], Greene and Knuth]. See also Purdom and Brown
[16] and the survey of Luekeri]].

EXERCISES

Exercise 4.1: Prove theoren, by reduction to natural induction. You can also use a prgafdntra-
diction. &

Exercise 4.2: Supposd ' (x) = 5T (xz/2) + z. Show by real induction th&(z) = O(x'8°). O

Exercise 4.3: Similar to previous problem, but consider the recurrefice) = 57'(x/2) + 2. &
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Exercise 4.4: Show by real induction thaf' (z) = 97 (z/2) + 2® thatT(r) < K9'®* — K'z®. What
is the smallest value dk”’ you can use? &

Exercise 4.5: Consider equatior8}, T'(n) = 27(n/2) + n. Fix anyk > 1. Show by induction that
T(n) = O(n*). Which part of your argument suggests to you that this smiug not tight? ¢

Exercise 4.6: Consider the recurrencE(n) = n + 107'(n/3). Suppose we want to shoW(n) =
O(n?).
(a) Give a proof by real induction.
(b) Supposé’(n) = n + 10T ((n + K)/2) for some constank’. How does your proof in (b)
change? &

Exercise 4.7: Let T'(n) = 2T(3 + c) + n for somec > 0.
(a) By choosing suitable initial conditions, prove the éaling bounds ofT'(») by induction, and
notby any other method:
(@.1)T(n) < D(n — 2c¢)lg(n — 2¢) for someD > 1. Is there a smalledd that depends only
on¢? Explain. Similarly, showW'(n) > D’(n — 2¢) lg(n — 2¢) for someD’ > 0.
(@.2)T(n) =nlgn — o(n).
(@.3)T(n) =nlgn+ 6(n).
(b) Obtain the exact solution B(n).
(c) Use your solution to (b) to explain your answers to (a). &

Exercise 4.8: Generalize our principle of real induction so that the canst is replaced by a real
functiond : R — R. &

Exercise 4.9: (Gilles Dowek, “Preliminary Investigations on Inductionves Real Numbers”,
manuscript 2002).
(a) A setS C R is closed if every limit point ofS belongs toS. Let P(z) be a real predicate
P(z). Assume{z € R : P(x)holds} is a closed set. Suppose

P(a). A .(Ve > a)[P(c). = .(Fe)(Vy)[c <y < c+e= P(y)]]

Conclude thatVz > a)P(x).
(b) Leta,b € Randa, 3 : R — R such that for alk, «(z) > 0 anda(z) > 0. Supposef is a
differentiable function satisfying

fla) =0bf'(z) = —a(x)f(z) + B(x)

then for allz > «, f(z) > 0. Intuition: If f(z) is the height of an object at time then the object
will never reach the grounde., f(z) > 0. &

END EXERCISES

65. Basic Sums

In this section, we discuss some well-known basic sums aidrble in solving recurrences.
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912. Rote expansion of the Master Recurrence. As motivation, let us return to the rote or EGVS
method. We have used it for the Mergesort recurreBgefe now try apply the technique to the more
general Master Recurrencej which is

T(n) =aT(n/b)+d(n)

fora > 0 andb > 1. Expanding, guessing and verifying yields:
T(n) = qT(n/b)|+d(n)
azm + ad(n/b) + f(n)

-
ai + Z ald(n/b7).
=0

Let us stop when = [log, n|. Thenn/b' < b. We may assume DIC witf'(n) = 0 for n < b. This
gives us

[log, n
T(n)= Y ald(n/b)). (37)
j=0
This solution, unlike in the Mergesort case, isagpen sum i.e., a sum with an unbounded number of
summands depending @n We do not regard an open sum as a satisfactory solution. thledast step
in the EGVS method is stop-and-sum. This summing part isahie ©f this section.

913. The Standard Recurrence and Descending SumsBasically, the EGVS method has trans-
formed the Master Recurrence into a recurrence of the form

T(n)=T(n—-1)+ f(n). (38)

We shall call this thestandard recurrence Our goal in the following sections is to show systematic
ways to reduce many recurrences into this standard formiallyi, (38) has the following open sum as
solution

T(n) = Z (@), (39)
assumingdl’(0) = 0 andn is integer.

In the solution 89) we have assumed thatis integer. But what if. is an arbitrary real value? Let
us introduce some general notations that befits our inteutidgoing totally real”. In general, for any

n — —
real numbers, b, we define two kinds of sums gfvalues over this real intervid, b): S0} y> ¢ =31 —3

wherer = 3.1415 ... ..
Shaf@) = JO) + S -1+ -2+ + f(b—|b-a]) (descend) (40)

S @) = fl@)+ fla+ )+ fla+2)+---+ fla+[b—a]) (ascending)
We call these thelescendingandascendingf-summations Such sums are defined to béf a > b.

Note that the difference between these two sums is indidatélde way we write the initial value of the Henceforth, pay close
summation variable: “ZfZG" instead ‘Zf:a". We shall mainly focus on the descending sums, buittention to this minute

sometimes we need to use ascending sums as well. There ipla siomnection between the these two detail!
sums:
b b
S i) => fb—i). (41)
i>a i=a
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Even whenf (x) is a partial function, these sums are well-defined using tiiwention that undefined
summands are replaced byIn recognition of our interest in descending sums, we thige a conve-
nient notation: for any complexity functiofy let

Sp(n) =" f(i). (42)

i>1
and thus the solution to our standard recurre3&i6

T(n) = S;(n). (43)

914. What Does It Mean to Solve a Recurrence? If the open sum in the RHS 080) is unsatisfac-
tory, what is satisfactory? Let us get a hint using a simpbagle. Supposé¢(n) = n in (39). Then
we know how to convert the open sum into elased sum

n n

Tm) =3 fli)=3i= <”’2Ll) _ @ — o(n?).

i=1 =1

Indeed, we would be perfectly happy with the answigff) = ©(n?)” even though the answer is really
(";1) — remember that we are generally intereste®uorder answers in this book. The reason we
are happy with the answé¥(n?) is because:? is a “familiar function”. So this section is about how

we can write some “basic sums” in terms of such familiar fiord. These sums are the ones you must

know. You will not be responsible for summations outside 8mall repertoire of basic sums.

915. Familiar Functions. So we conclude that “solving a recurrence” is relative to fibren of
solution we allow. This we interpret to mean a finite sum ontdiggroduct involving only “familiar”
functions. For our purposes, the functions consideredlif@nmclude

polynomialsf (n) = n*, logarithmsf (n) = logn, and exponentialg(n) = ¢ (¢ > 0). | see! Solving means
to relate to known

functions
Functions such as factoriald, binomial coefficients(Z) and harmonic numberH,, (see below) are

tightly bounded by familiar functions, and are thereforasidered familiar. Finally, we have a rule
saying thathe sum, product and functional composition of familiardiions are considered familiar
Thuslog® n, loglogn, n + 2logn andn™ log n are familiar. For instance, left(n) be the number of
ways an integen can be written as the sum of two integers. Number theoriste Bhown thatf (n)

is (logn)?°&™) which is familiar by our definition. In addition to the abofemctions, two very slow
growing functions arise naturally in algorithmic analysifiese are the log-star functitsg™ = and the
inverse Ackermann functiom(n) (see Lecture XlII). We will consider them familiar, althouginctional
compositions involving such strange functions are onlyriifar” in our very technical sense!

We refer the reader to the Appendix A in this lecture for basiperties of the exponential and
logarithm function. Here are some simple facts that you Ehkwow of some familiar functions:

LEMMA 3.

(i) Forall k < K/, n* = O(n*") andn® # Q(n*").

(i) Forall k£ > 0,1gn = O(n*) andlgn # Q(n*).

(iii) For all kandallc > 1, n* = O(c") andn* # Q(c*).

We ask you to prove these in the exercises.
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916. Arithmetic series. The basic arithmetic series is

o . n+1
Su = ;z—( ! ) (4)
In proof,

2Sn:ii—i—i(n—l—l—i):i(n—l—l):n(n—l—l).

=1 =1 =1

There is a well-known “proof by picture” where you draw twongouent staircases, each representing

the desired sum; you can put these two staircases togetfet torectangle of arexs,, = n(n + 1).

More generally, for fixed: > 1, we have the “arithmetic series of order,
Syi=>iF =) (45)
i=1

In proof, we have

nF >8> N (n/2)F > (n/2)FH
i=[n/2]
For more precise bounds, we bousifi by integrals,

k+1 n n+1 e+
o :/ xkdx<5’,’§</ xkdw:(nL,

yielding
Sk = + Op(n"). (46)

n—1
Sp(x) = in
=0

" —1
— ) 47
o (47)

In proof, note that:S,, () — S, () = 2™ — 1. Next, lettingn — oo, we get the series

Seo(x) = Z z!
i=0

00 if 2>1
= 7 (undefined) ifz < -1
4 if |z <1.

Why is S, (—1) (say) considered undefined? For instance, writing

Seo(=1) = T—T141—-T+1—1+--
= I-D+0-D)+Q—=1)+--
= 04+040+---,
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we concludeS.,(—1) = 0. But writing

Seo(—1) I1—14+1—-14+1—---
= 1-(1-D)4+0Q-1)—---

140404,

we concludeS..(—1) = 1. So that we must consider this sum as having no definite vatiepnde-
fined. Again,

Soo(=1) = 1-14+1-14+1—---
1— S (1), Mathematical analysts
learned this lesson in
and we conclude the (—1) = 1/2. Infact, S, (—1) can take infinitely many possible values in thisthe 19th century: treat
way. This provides a strong case why, (—1) should be regarded as undefined. infinite sums with great
care.
Viewing z as a formal variable, the simplest infinite series $.(z) = > ;- 2. It has a very
simple closed form solution,
oot = L (48)
= 1—a

Viewed numerically, we may regard this solution as a speaat of 47) whenn — oo; but avoiding
numerical arguments, it can be directly derived from then@ridentity So. (z) = 1 + xS (x). We
suggest calling ;- , = the “mother of series” because, from the formal solutiorhte series, we can
derive solutions for many related series, including fingeies. In fact, forlz| < 1, we can derive

equation 47) by plugging equatior4g) into

The one infinite series
to know!

Sp(x) = Soc () — 2" S0 () = (1 — 2™) S ().
By differentiating both sides of the mother series with extfox, we get:
1 = i—1
L ; 1T

oo

a o > iat (49)

=1

This process can be repeated to yield formulasy@fgt , i*z*, for any integerk > 2. Differentiating
both sides of equatiort{), we obtain the finite summation analogue:

= i (n—1)2" —na" 1 +1
Z (55 = @1y ,
i=1
n—1
L (n— 12"t —na" + 2
Z it = @1 , (50)
1=1
(51)
Combining the infinite and finite summation formulas, equadi@9) and 60), we also obtain
>, na"—(n—1)z"*!
Z ixt = e . (52)

5.e., as an uninterpreted symbol rather than as a numesta vThereby, we avoid questions about the sum converging t
some unique numerical value.
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We may verify by induction that these formulas actually Holdall = ## 1 when the series are finite. In

general, for any: > 0, we obtain formulas for thgeometric series of orderk:

n—1
g itz

=1

The infinite series have finite values only wheh < 1.

918. Harmonic series. For natural numbers > 1, thenth harmonic number is defined as

11 1
Hyi=1l+=4 =+ +—.
+o gt

We can give some easy estimatedHf using using calculus:
" dx
1 .T

But /" £¢ = Inn. This proves that
H, =Inn+g(n), where0 < g(n) < 1.

Note thatin is the natural logarithm (appendix A).

(53)

(55)

S — =
@n=2 b)yn=3 c)n=>5

Figure 4: Stacking bricks with maximum overhang: foe= 5, overhang is more than one brick length!

Harmonic numbers arise naturally in the analysis of alparg. But here is a
“physical” application of harmonic numbers: Suppose yoveha set ofn > 2
bricks. The bricks are identical and have unit length. Wettaustack the brick
so that the overhang is as large as possible. For instance; i, the overhang i
1/2 since we can put one brick over the other such that the cehgeawity of the
top brick is above the edge of the bottom brick. This is ilattd in Figurei(a).

The case ofi = 3, we may check that the overhangigt (Figure4(b)). An ob-
vious question is whether we can make the overhang arlyttarge (providech
is large enough)? Somewhat surprisingly, the answer is."{gee Figurei(c) for
the casen = 5: in this case, the overhang§/24, already exceeding the leng
of a single brick! How many bricks do we need to have an ovegtexteeding
two brick lengths? In general, the overhanéﬁn_l (Exercise). AsH,, is about
Inn, the overhang goes to infinity (albeit very slowly)ras— oc.

For more information, see the fascinating book “How Round/asir Circle?
Where Engineering and Mathematics Meet”, by John Bryant@mds Sangwin
(Princeton University Press, 2008). This solution is basedn assumption that
you stack at most one brick on another. What if you allow mbentone? You
can do a lot better than the above classical solution! MikerBan and Uri Zwick
(2009, American Math. Monthly) have investigated the cdsaultiple stacking
The maximum overhang for 8 bricks are illustrated in the rimengre.

(2 2)

h

—
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We can view §5) as a special case of our descending s$m:) wheref(n) = 1/n. Then for all|
realn, H, = Sy(n) = 315, 1. Here is a more precise estimate §¢r.): forn > 1,

1 1 1
7+%—8ﬁ<g(n)<7+% (56)

wherey = 0.577... is Euler's constant See Polya and Szego, Problems and Theorems in Analysis,
Volume |, Springer-Verlag, Berlin (1972).

We can also deduce asymptotic propertieglqfwithout calculus: ifn = 2V, then
H=Y oYY
1 2 N

whereY", is defined a$"2 ., 1. Since)_, has2¥~! terms, and each term is betwegf2* and
1/2%=1, we obtain

1 1

k—1 k—1

j2=2""p <y <2 g =1
k

This proves that
%N <H,<N

for n a power of2. Extrapolating to all values of, we conclude that,, = O(N) = ©(logn). Since
we may chooséV as big as we likewe have also shown that,, andlg(n) are unboundedThis proof
idea can be extended (see below).

919. stirling’s Approximation.  So far, we have treated open sums. If we have an open prodifct su
as the factorial functiom!, we can convert it into an open sum by taking logarithms. Tiéthod of
estimating an open product may not give as tight a bound asiste(why?). For the factorial function,
there is a family of more direct bounds that are collectivedyled Stirling’s approximation. The
following Stirling approximation is from Robbins (1955)&it may be committed to memory:

n n
n! = (—) 2mn e
e

where

1 - - 1
a, < —.
12n+1 12n

Sometimes, the bound, > (12n)~! — (360n?)~! is useful f]. Up to ©-order, Stirling’s approxima-

tion simplifies to
n\"tz
| — bt
o @((e) )

920. Binomial theorem.

I+z)" = 1+ne+ 20" g2 4 g

Il
TEM:
o
N
< 3
N——

gﬂ
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For solving real recurrences, it is useful to generalize theorem td1 + «)? for any real numbep. In
general, the binomial functio@‘) may be extended to all repland integet as follows:

0 if i<0

<?>_ 1 if i=0
(3

W if > 0.

We use Taylor's expansion for a functigiiz) atz = a:

f'(a) f"(a)
%(x—a)—f—z—(!(x—a)z—i—---—i—

f(x) = fla) +

where (") (z) = 4'J  This expansion is defined provided all derivativesfoéxist and the series

drz
converges. Applied tg (z) = (1 + x)P for any realp atz = 0, we get the desired binomial theorem for
real exponents:
(p—1) o pp—1(—2) 5

(1+2) = 1+pr+?Z T+ - P

T (p) .

i>0

See [L1, p. 56] for Abel's generalization of the binomial theorem.

EXERCISES
Exercise 5.1: Show LemmaB. For logarithms, please use direct inequalities (no cakjul &
Exercise 5.2: Strengthen the lower bounds in Lem@&i&om # Q(f(n)) to = o(f(n)). O
Exercise 5.3: Let h(n) denote the maximum overhang forbricks. Prove thab(n) = Z?:’ll 3 =

%Hn_l. Thus,h(2) = 1/2, h(3) = h(2) + 1/4 = 3/4, h(4) = h(3) + 1/6 = 11/12, and
h(5) = h(4) + 1/8 = 25/24. HINT: Let the right edge of théth brick be at position:; where
theith brick is stacked on the+ 1st brick withz; > z;1. Inductively, assume that the optimal
configuration forh(n) is (x1, xo, ..., z,) Wwherex; — x;41 = 1/2i. Moreover, the C.G. of the

optimal configuration foh.(n — 1) is atx,,. Extend this induction hypothesistdn +1).

Exercise 5.4: Let c > 0 be any real constant.
(@) Show thain(n + ¢) — Inn = O(c/n).
(b) Show thatH,,+. — H,| = O(c/n) whereH,, is the generalized Harmonic function.
(c) Bound the sumy_ | ) w7ty &

Exercise 5.5: ConsiderS..(x) as a numerical sum.
(a) Prove that there is a unique value f (z) when|z| < 1.
(b) Prove that there are infinitely many possible valuesstgfz) whena < —1.
(c) Are all real values possible as a solutiorttQ (—1)? &
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Exercise 5.6: Show the following useful estimat&i(n) — (2/n) <In(n — 1) < (Inn) — (1/n). <&

Exercise 5.7:
(a) Give the exact value of""_, m+n HINT: use partial fraction decomposition %1—1)
(b) Conclude that7s ? < 2. o

Exercise 5.8: (Basel Problem) The goal is to give tight bounds fﬁﬁ;ﬂ) = >, %2 (cf. previous
exercise).
(@) LetS(n) = i, ey - Find the exact bound fdf (n).

(b) LetG(n) = S(n) — H? 4+ 1. Nowy/ = G(0) is a real constant,

1 1 1 1

I A

L I O B R DS TN R s oy i D eIl

Show thatG/(n) = v — 0(n=3).

(c) Give an approximate expression thfo) (involving /) that is accurate t@(n~3). Note
thaty’ plays a role similar to Euler’s constanfor harmonic numbers.

(d) What can you say about, given thatH? = 72/6? Use a calculator (and a suitable
approximation forr) to computey’ to 6 significant digits. &

Exercise 5.9: Solve the recurrencE(n) = 5T(n — 1) + n. o

Exercise 5.10: Solve exactly (choose your own initial conditions):
@T(n)=1+2T(n—1).
(b)T(n) =1+ 22T (n —1). &

Exercise 5.11: Show thaty""" , H; = (n + 1)H,, — n. More generally,

3 (o)1= () [ = 1]
= \m m+1 m—+1

Exercise 5.12:(J.van de Lune, 1980) Above, we definéd := >"'* | 1/i (descending sum). A variant
that is neither a descending nor an ascending sum is to défiagh) := ., 1/i where the
summation is over all integer valuesidfi the rang€a, b]. Then this sum is bounded by

> é < In(y/x) + min {1, 1/x}

a<z<b

i, fori < k. Solve exactly fors2. ¢

Exercise 5.13: Give a recurrence fa$* (see ¢5)) in terms ofS

Exercise 5.14: Derive the formula for the “geometric series of ord&rk = 2 in (53). &
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Exercise 5.15: (a) Use Stirling’s approximation to give an estimate of tkganentZ in the expression
28 — (%),
(b) (Felle) Show(’}) = Y7, (3)”. o

Exercise 5.16: Suppose your architecture friend said that your brick todesign in an above exercise
is not realistic (we have to admit this). That design was &osehieve arbitrarily large overhangs
based on the fact that the harmonic numtiégstending to infinity. Here is a sequence of numbers

that tend to infinity but slowerG,, = > 1 “gz Can you design a similar overhanging tower
based on this sequence? Can you convince your architeciemnd that this is stable enough to
build? O

END EXERCISES

66. Standard Form and Summation Techniques

Recall that our goal is to reduce all recurrences tostaedard form:

t(n) =t(n—1)+ f(n). (57)
We have noted that the solution is the descending sum

n

t(n) = Ss(n) =Y _ f(i) (58)

i>1

assume DIC withi(n) = 0 for n < 1. It is perhaps instructive to see this derived in anothdizetg
way known as “telescopy”. Assuming the recurrence is valicefl n > 1, we have

tth—i+1)—tn—i)=f(n—i+1), (i=1,...,[n]).

Adding thesg n | equations together, all but two terms on the left-hand siheel, leaving us
t(n) —t(n—[n—1]) =Y f(i).

(We say the left-hand side is a “telescoping sum”.)

921. Polynomial-type and Exponential-type Sums. Let us consider what is to be done if the open
sum 68) does not readily reduce to one of the basic sums we havesdisdun the previous section.
Traditionally, the sunt(n) (for n € N) is solved using the Euler-Maclaurin summation formulae Th

formula is for ascending sums:
i—1) r=n
/ i dH( 5 B! ())
r=1

whereB; is theith Bernoulli number. See/[ p. 217]. But in this book, we emphasize the solution oo calculus please, we
recurrences using purely elementary arguments, prefetwiavoid calculus. This is possible because are computer
we seek onlyo-order solutions. We now introduce two elementary summatézhniques for this scientists!
purpose. They are based on the following “growth classibodtof real functions: it is assumed that

the functionf in these definitions satisfy > 0 andf > 0 (ev.).
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Polynomial Type: A real functionf is polynomial-typeif f is non-decreasing (ev.) and there is some
C > 0 such that

flx) <C- f(2/2) (ev).
E.g.,

folz) ==, fi(z)=logz, fa(z)= fo(z)fi(x), f3(z)= (fo(x))" (a>0).

Exponential Type: The functionf is exponential-typeif it increases exponentially or it decreases
exponentially:
(a) f increases exponentiallyf there exists real numbe(s > 1 andk > 0 such that

f(x) >C- f(x—k) (ev).
E.g.,
go() =27, gix) ==, g2(z) = go(x)1(x), gs(w) =2
(b) f decreases exponentiallif there exists real numbefs< ¢ < 1 andk > 0 such that

¢ f(x) < flx —k) (ev).

E.g.,
ho(x) =277, hi(z) =2%, he(x) = ho(z)hi(z), hs(zx)= 2"

In proofs, we usually assumie = 1 in the above definition of exponential-types: i.e.g{i) is
increasing exponentially(n) > Cg(n—1) and ifh(n) is decreasing exponentially(n) < ch(n—1).
It should be clear that these arguments generalizes to the gemerak > 0.

We say that the descending sufttn) = Sy(n) := Y7, f(z) is polynomial-type or exponential-
type, depending on the above classificatiorf oT he following theorem gives a simple rule for bounding
such sums.

THEOREM4 (Summation Rules)Consider the sun§s(n):
(i) If fis polynomial-typeS(n) = O(nf(n)).
(i) If fis exponential-type,

S(n) = O(f(n)) Iif fisincreasing exponentially,
)= O(1) if f is decreasing exponentially.

Proof. (i) For a polynomial-type sum, using the fact tifas non-decreasing, we get the upper bound
Sy(n) < >°0_, f(n) = nf(n). For lower bound, we also need thétr) < C'f(z/2) (ev.) for some
C>0:

> f)

Sp(n) >
z>n/2
> Y /)2 (/2] fnf2)
z>n/2
> (/2 T2~ g,

(ii-a) For an increasing exponential sum, there is s@me- 1, £ > 0 andm > 0 such that for all
n > m+ 1, we havef(n) > Cf(n — k). By increasingc, m, n if necessary, we may assume wlog that
k,n—m € Nandn > m + 1. We can even assume— m is divisible byk. Thus,

Sp(n) = f(n)+ f(n=1) +---+ f(m+1) + 5¢(m)
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We can subdivide the suif(n) + f(n— 1)+ f(n—2) 4+ - -+ f(m + 1) into k different subsums, each
of the form
fin—r)+fin—r=-kK)+fln—rk—=2k)+--+ f(m—r+k) (59)

foreachx = 0,1,...,%k — 1. The lemma then follows since each subsum satisfies
fin—r)+fin—rk=—kK)+fln—rk—=2k)+---+ f(m—Kk+k)

1 1
< f(n—k) 1+C+02+ .
C

— - R
= O(f(n—r)) = O(f(n)).

(ii-b) For a decreasing exponential sum, there is seme 1, £k > 0 andm > 0 such that for all
n > m+ 1, we havef(n + k) < cf(n) andf(m) > f(n). Again wlog,k,n — m € N andk divides
n —m. Then

Sp(n) = Sg(m) + f(m +1) + f(m+2) +--- f(n)

wheref(m + 1) + f(m + 2) + --- + f(n) can be broken up inté subsums, as in5Q). The result
follows since each subsum is bounded as

fm—k+k)+ f(m—Kk+2k)+ f(m—kKk+3k)+---+ f(n— k)
< f(m—Kk+k) [1+c+62+-~-]

< f(m)

1—c¢

Q.E.D.

This theorem say that, to upper bound a polynomial-type Sutw), we can replaceach
termin the sum by its largest terrfi(n). Similarly, to upper bound an exponential-tyjpe

sumSy(n), replacethe entire sunby its largest term. Thus the theorem shifts the buriden
of estimating sums to the simpler task of identifying thevgifotype of the functiory.

Let us illustrate applications of this theorem:

e Polynomial Sums.

n

Zilogz’ = 0(n?logn), Zlogi = O(nlogn) Zz = O(n*™!) (wherea > 0).

i>1 i>1 i>1
(60)

e Exponentially Increasing Sums.

n

Z 2 =002, Y i =0m2"), Yid=e@m) . (61)
i>1 i>1 i>1
e Exponentially Decreasing Sums.

n

> 2 =0(1), Zﬁ T=e(), Y it=e() . (62)

i>1 i>1 i>1
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Summation that does not fit the framework of Theoretan sometimes be reduced to one that does.
A trivial case is where summation we are interested in doebegin withi = 1. As another example,

consider
i
§:=Y (63)

which has terms depending oas well as on the limit. Write S = Y77, f(i,n) where

i!

fli,n) = i

lg'n
We note thaff (¢, n) is increasing exponentially far> 21gn (ev.n), sincef(i,n) = lginf(z' —1,n)>
2f(i — 1,n). Hence we may split the summation into two pads= A + B whereA comprise the
terms for whichi > 21gn and B comprising the rest. SincB is an exponential sum, we have =
O(f(n,n)). We can easily use Stirling's estimate fdrto see thatd = O(log*?n) = O(f(n,n)).
ThusS = O(f(n,n)).

922. A Counter Example. Most common functions we encounter will be either polyndrtype or
exponential-type. But the functiof(n) = n'™" is neither. Showing thaf(n) is not polynomial-type

is easy. The box below proves it is not exponential-type. Howve estimate the suis(n) =

Y oiso f(x) without the benefit of Theored? In this case, techniques similar to polynomial and expo-
nential sums still give reasonably tight bounds (but@etrder): f(n) < S(n) < nf(n) < f(n)l*e

for anye > 0.
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CLAIM: f(n) = n™™ is not exponential-type. By way of contradiction, suppose
there exist€y > 1 such that

f(n) = Cof(n—1) (ev). (64)
A well-known bound (see Appendix A) says that fof < 1
In(1+2) <. (65)
Also from (55) and £6), we conclude that
Inn+~y<H,<lnn+~vy+(1/n) (ev). (66)

All the following inequalities are to hold eventually:

Inn < H,—7vy
< (I/n)+In(n—1)+ (1/n)
= In(n—1)+(2/n), (67)

We now get a contradiction:

f) = [m-na+ 2]

< (n— RO A (by (67))
= fln—1)-(n— 1)/ O

< f(n—1)-22mn=D/n 93 (by (65))
= [fln=1)-Ci(n)

whereC (n) := 92In(n=1)/n.9:™% Sjnceln Cy (n) = (2ln(n—1)/n)+(nn/(n—
1)) — 0 asn — oo, we conclude tha€; (n) < Cy (ev.). This showf(n) <
f(n —1)Cy (ev,), contradicting §4).

To apply the summation rules Theoreimwe want to rapidly classify functions according to their
growth types. For this purpose, the next lemma showing kiesg growth types are closed under various
operations is helpful:

LEMMA 5. Leta € R.

(a) Polynomial-type functions are closed under additiomtiplication, and raising to any positive
powera > 0.

(b) Exponential-type functionsare closed under addition, multiplication and raising toygmowera.
In casea > 0, the functionf® will not change its subtype (increasing or decreasing). ésexn < 0,
the functionf* will change its subtype.

(c) If f is polynomial-type ang > 1 (ev) thenlg f is also polynomial-type. If is exponential-type
anda > 1then so is/.

Proof. All the inequalities in the following proofs are assumed tddeventually:

(@) Assumef(n) < Cf(n/2)andg(n) < Cg(n/2) forsomeC > 1. Thenf(n)+g(n) < C(f(n/2)+
9(n/2)), f(n)g(n) < C*f(n/2)g(n/2), and for anye > 0, f(n)* < C°f(n/2)".

(b) Assumey;(n) > Cg;(n — 1) andh;(n) < ch;(n — 1). for someC > 1,¢ < 1, and fori = 0, 1.
Also, letg = go, h = hg. Closure under additioryo(n) + g1(n) > C(go(n — 1) + g1(n — 1)) and
ho(n)+hi(n) < c¢(ho(n—1)+hi(n—1)). Closure under productiy(n)gi(n) > C2go(n—1)g1(n—1))
andhg(n)hi(n) < cho(n — 1)hy(n — 1). Closure under raising to power If ¢ > 0, theng®(n) >
Ceg°(n—1)andhé(n) < c®h®(n —1) whereC® > 1 andc® < 1. If e < 0, theng®(n) < C¢g°(n—1)
andh®(n) > c®h®(n — 1) whereC® < 1 andc® > 1.
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(c) If  is polynomial-type, thetog(f (n)) < (log C) + log(f(n/2)) < (1 + (log C)/c) log(f(n/2)),
wherelog(f(n/2)) > ¢ > 0 for some constant This provedog f to be polynomial-type.

If g, his exponential type as in (b), then note tiat(n) > (C' — 1) 4+ g(n) sinceg(n) > 1. Thus

p) > pCan=1) > H(C=D+f(n-1)
> pClgf(n=1)

Q.E.D.

923. Generalized Harmonic Numbers. For any reaky, it is useful to define the generalized Har-
monic number

n

H,(f‘) = Z i

i>1

using a descending sum. Thﬂs(fl) is just the Harmonic numbeid,, whenn is integer. But now,
we allown to be any real number. Also whene N, H is just the arithmetic series §i16. When
a < —1, the sumH,(f‘) is bounded as — oo; the limiting vaIueHég‘) is the value of the Riemann
zeta function at-a: ((a) := >0, n~ @ = H . Forinstance((2) = HS? = 72 /6. An exercise
below estimates the sufi\>): we see that a constant analogous to Eulegsises.

Let us determine th@-order ofH,(f‘). For alln, « € R, define thegeneralized Harmonic number

H%n) = n"4+n-1D)%+m0-2)+---+{n}+1)°
= ) a (68)

using the descending sum notatidif), The original harmonic numbers in this notation becomes

H® = H=%(n). “Claim” Inx is
" identically1:
Also, H%(n) = 0 forn < 1. A0t — Land 9l —
d(z®) _ 0-1 _ 1 gg
THEOREMG. Forall a € R, dz T
Inz = 1.
1 if o< -1

HYn)=04¢ lgn if a=-1
notl if a> -1

Proof. It is best to initially assume + 1 is a power of2. Then

Ig(n+1) [ 21

H%n) = Z Z i

k=1 i=2k—1
lg(n+1)
= > 2¢.e(2*)
k=1

lg(n+1)

_ K1)
2@(2 1+)
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Note that the slick use @ in this derivation is capturing upper and lower bounds steméously. If
explicitly spelled out, you would need to consider the cases 0 anda < 0 separately. Now we Exercise: spell it out!
notice that ifl + o = 0 then the sum

lg(n+1)

k(lte)) — n .
; @(2 + ) O(lg(n + 1))

If 1+ a < 0, then the sum is decreasing exponentially and Theargialds

lg(n+1)

> =e.

k=1
If 1+ a > 0, then the sum is increasing exponentially and Theotemelds

lg(n+1)

Z -0 (2lg(n+l)(1+a)) -0 (n”“) .

k=1

Whenn + 1 is not a power o, we can replace by 7 = 2/'¢(*+D1 _ 1 andn = 2lle(»+1] _ 1 for
upper and lower bounds (Exercise). Q.E.D.

Up to ©-order, the result unifies the standard bounds for (a) thleradtic series45), (b) harmonic
numbers $5), and (c) geometric sumgll). Our proof is completely elementary; its basic method
of splitting up the sum into a “geometric sequence” of groigpapplicable to many other estimates
involving logarithms.

Here is an application of generalized Harmonic numbersobeesthe recurt
renceT’(n) = 27 (n/2) + (n/lgn), we convertit to the standard form

t(N)=t(N —1)+1/N (69)

using the substitution( N) = 7'(2") /2, whereN = lgn is a real variable.
According to é3), t(N) = H](V_l). Back solving, the original recurrence has
solutionT'(n) = nHl(g_nl) = 0O(nlnlgn).

924. Grouping: Breaking Up into Big and Small Parts. The above exampl&) illustrates the
technique of breaking up a sum into two parts, one contaithi@gsmall terms” and the other containing
the “big terms”. This is motivated by the wish to apply difet summation techniques for the 2 parts,
and this in turn determines the cutoff point between smalllaig terms. Suppose we want to show

n

Break H,, into two summationsH,, = A,, + B,, where

i>1

comprises the “big terms” (there are at mg&t terms in4,,), andB,, contains the remaining: — /n|
“small terms”. Then

n—Ln—ﬁJl
A, < <
<Y lew
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and
he S ley g
" i T =yn
iantnf\/ﬁJ =1

ThusS,, < 2y/n = O(y/n) as desired.

We can generalize the grouping idea to prove the following:
H, < kn'/* (70)

for any integek > 2. We break the summatiaff,, into k subsumsH,, = A, (1)+ 4, (2)+-- -+ A, (k)
whereA,, (1) comprises the firstn!/*| terms ofH,,, A,,(2) comprises the next?/*| — [n'/*] terms,
etc, where in general,, (j) comprises the nexta’//*] — [nU=1/k] terms. It is easy to see that each
A, (5) is bounded by:!'/* and this proves?0). This proves thatl,, is O(n°) for anyc > 0. This also
implies

H, = o(n°), log, n = o(n®).

EXERCISES

Exercise 6.1: Verify that the examples in6Q), (61) and ©2) are, indeed, as claimed, polynomial type
or exponential type.

Exercise 6.2: Let T,, be a complete binary tree with > 1 nodes. Sov = 2"+ — 1 whereh is the
height ofT;,. Suppose an algorithm has to visit all the node§’pfand at each node of height
i > 0, expendi + 1)? units of work. LetT’(n) denote the total work expended by the algorithm
at all the nodes. Give a tight upper and lower bound¥'Om). O

Exercise 6.3: (a) Show that the summaticE?ZQ(lg n)'8" is neither polynomial-type nor exponential-

type.
(b) Estimate this sum. &

Exercise 6.4: For this problem, please use arguments from first princifpesot use calculus, proper-
ties oflog x such ase/ log x — oo, etc. Show thatf,, = o(n®) foranya > 0. HINT: Generalize
the argument in the text. &

Exercise 6.5: Use the method of grouping to show th#t) = Y7 | % is Q(lg” n). O

Exercise 6.6: Give the®-order of the following sums: if you use our summation ruteen you must
show that the terms has the appropriate growth types.

(a)S = Z?:l \/;

(b) S =>""  1g(n/i). %
Exercise 6.7: Let f(i) = f.(i) = n:}rl. The sumF(n) = > fa(i) is neither polynomial-type

nor exponential-type. Give &-order bound onF'(n). HINT: transform this into something

familiar. &
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Exercise 6.8: Can our summation rules faf(n) = > | f(i) be extended to the case whefig) is
“decreasing polynomially”, suitably defined? NOTE: sucleéiition must somehow distinguish
betweenf (i) = 1/i and f(i) = 1/(i?), since in one casé(n) diverges and in the other it
converges ag — oo. &

END EXERCISES

7. Domain Transformation

So our goal for a general recurrence is to transform it instandard form. You may think of
change of domain as a “change of scale”. Transforming theaitof a recurrence equation may
sometimes bring it into standard form. Consider

T(N) =T(N/2)+ N. (71)
We define
t(n):=T(2"), N =2".
This transforms the origind/-domain into the:-domain. The new recurrence is now in standard form,
t(n) =t(n—1)+2™.

Hey, you should
choose(0) = 1to
obtain the more elegant
solutionT'(N) = 2N

By DIC, we may choose the boundary conditigf) = 0, we gett(n) = Y., 2. This is a geometric
series which we know how to surt(n) = 2"+ — 1; hence'(N) = 2N — 1.

925. Logarithmic transform. More generally, consider the recurrence

T(N) =T (5 _ d) LRV, e, (72)
C
andd is an arbitrary constant. It is instructive to begin with ttessed = 0. Consider the “logarithmic

transformation” of the argumerd¥ to the new argument := log.(N). ThenN/c transforms to SoN = ¢
log.(N/c) =n —1. ThenT(N) = T'(N/c) + F(N) transforms into the new recurrence

t(n) =t(n—1)+ f(n)
where we define
t(n) :=T(c")=T(N), f(n):= F(N).

The preceding manipulation exploits some implicit coni@m: N < n, T < t, I’ < f. This might
be confusing in more complicated situations, so let us mhkecbnnection betweenhand 7" more
explicit. LetT denote thelomain transformation function,

T(N) :=log.(N), 77 n) ="
So “n” is a short-hand
Thent(r(N)) is defined to b&'(V), valid for large enouglV. In order for this to be well-defined, we for “7(N)” in our
needr to have an inverse for large enoughThen we can write convention.

t(n) == T(r~'(n)).
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We now return to the general case wheéris an arbitrary constant. Note thatdf < 0 then we
must assume thayV is sufficiently large (how large?) so that the recurrerd® (s meaningful (e,
(N/e) — d < N). The following “generalized logarithmic transformatfon

cd
c—1

n:=71(N)=log.(N + ) (73)

will reduce the recurrence to standard form. To see thi® titt the inverse transformation is

N = " - cd
c—1
- ')
d
N/c)—d = 1= —
(N/e) o
_ n—1 _ Cd
c—1
= 77 Yn-1).

Writing t(n) for T(7—1(n)) and f(n) for F(7~1(n)), we convert equatiorv@) to

tin) = T(r71(n)) (by definition oft(n))
= T(N) (N=7"1(n))
= T((N/c)—d)+ F(N) (expansion)
= T(r"'(n—1))+ F(r~'(n)) (domain transform)
= tin—1)+ f(n) (definition oft(n) and f(n))
= YL, ) (telescopy and by DIC)

To finally “solve” for t(n) we need to know more about the functiitV). For example, iff (N) is a
polynomially bounded function, thef(n) = F(c" — c%dl) would be©(F(c¢™)). Thisis the justification
for ignoring the additive termd” in the equation 12).

926. Division transform. Notice that the logarithmic transform case does not quipgure the fol-
lowing closely related recurrence

T(N)=T(N —d)+ F(N),d > 0. (74)
Itis easy to concoct the necessary domain transformatéptaceN by n = N/d and substituting
t(n) = T(dn)
will transform it to the standard form,
t(n) =t(n — 1)+ F(dn).

Again, we can explicitly introduce the “division transfdhfanction 7(N) = N/d, etc.

927. General Pattern. In general, we considér(N) = T'(r(N)) + F(N) wherer(N) < N is some
function. We want a domain transform= 7(N) so that

7(r(N)) =7(N) — 1. (75)

The generalized logarithm transform3 is of this type. Here is another exampler{fN) = v/ N we

may choose
T(N) =Iglg(N). (76)
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Then we see that
T(VN) = 1g(lg(VN)) = lg(lg(N)/2) = lglg N — 1 = 7(N) — 1.
Applying this transformation to the recurrence
T(N)=T(VN)+N, (77)

we may defing(n) := T'(r~'(n)) = T(22") = T(N), thereby transforming the recurren@& to to
t(n) =t(n — 1) + 22",

Note that the transformatiofi§) may be regarded as two applications of the logarithmicsfiem.
Domain transformation can be confusing because of theuliffiof keeping straight the similar-looking
symbols, i’ versus ‘N’ and ‘¢’ versus T". Of course, these symbols are mnemonically chosen. When
properly used, these conventions reduce clutter in our ditasa But if they are confusing, you can
always fall back to the use of the explicit transformationdtions such as.

EXERCISES
Exercise 7.1: Solve recurrencer@) in these cases:
(@) F(N) = N*.
(b) F(N) =log N. &

Exercise 7.2: (a) Solve the following four recurrences using domain tfarmsation:

lg N

1
1/1gN
1/1g* N

T(N) =T(N/2) +

(b) Generalize the above result: solve the recurrdi(@€) = T'(N/2) + 1g° N for all real values
of c. &

Exercise 7.3: Justify the simplification step (iv) ifl (where we replacén/2] by n/2). O

Exercise 7.4: Construct examples where you need to compose two or more alttbve domain trans-
formations. &

END EXERCISES

8. Range Transformation

A transformation of the range is sometimes called for. Fetance, consider

T(n)=2T(n—1)+n.
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To put this into standard form, we could define

and get the standard form recurrence

n

o

Telescoping gives us a series of the type in equati®@, (vhich we know how to sum. Specifically,
t(n) = Y41 5 = ©(1) asf(x) = x/2" is exponentially decreasing. Henfgn) = ©(2").

t(n) =t(n—1)+

We have transformed the range Bfn) by introducing a multiplicative facto2™: this factor is
called thesummation factor. The reader familiar with linear differential equationdlsee an analogy
with “integrating factor”. (In the same spirit, the previotrick of domain transformation is simply a
“change of variable”.)

In general, a range transformation converts a recurrentteedbrm
T(n)=c,T(n—1)4 F(n) (78)

into standard form. Here, is a constant depending an Let us discover which summation factor will
work. If C(n) is the summation factor, we get

P )
and hence
t(n) = %
— %T(n — 1)+ %
_ (T;EZ - 3 N ggz; (providedC(n) = ¢,C(n — 1))
= t(n—1)+ %

Thus we need’(n) = ¢,C(n — 1) which expands into

C(n) = cpCp—1---c1.

EXERCISES

Exercise 8.1: Z.H. proposed to transform the recurrefitie:) = 1007 (n — 1) + f(n) by using range
transformatiort(n) = T'(n)/100. Convince Z.H. that this is futile. O

Exercise 8.2: Solve the recurrenc€ ) in the case where, = 1/n andF(n) = 1. O

Exercise 8.3: (a) Reduce the following recurrence

n2
T(n) =4T(n/2) + on

gn
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to standard form. Then solve it exactly wheris a power of.
(b) Extend the solution of part(a) to generalising our generalized Harmonic numbéfg for
realz > 2 (see§2). You may choose any suitable initial conditions, but péestate it explicitly.

o
Exercise 8.4: Repeat the previous question for the following recurrences
(@)T(n)=4T(n/2) + é—n
(b)T(n) = 4T(n/2) + i o

Vign®

END EXERCISES

69. Differencing and QuickSort

Summation is the discrete analogue of integration. Extemthis analogy, we introduce tluhf-
ferencing as the discrete analogue of differentiation. As expect#frdncing is the inverse of sum-
mation. The differencing operatiovi applied to any complexity functiofi(n) yields another function
VT defined by

(VT)(n) =T(n) —T(n—1).
Differentiation often simplifies an equation: thug(xz) = z? is simplified to the linear equation
(Df)(x) = 2z, using the differential operatdd. Similarly, differencing a recurrence equation for
T'(n) may lead to a simpler recurrence {&7')(n).

Indeed, the “standard form5{/) can be rewritten as

Vi(n) = f(n).

This is just an equation involving a difference operator -e dliscrete analogue of a differential equa-
tion.

For example, consider the recurrence

T(n)=n+ iT(z)
i=1

This recurrence does not immediately yield to the previeahniques. But note that
(VT)(n) =1+T(n—1).

HenceT'(n) — T(n—1) = 1+ T(n —1)andT(n) = 2T(n — 1) + 1, which can be solved by the
method of range transformation. (Solve it!)

928. QuickSort. A well-known application of differencing is the analysistb& QuickSort algorithm
of Hoare. In QuickSort, we randomly pick a “pivot” element If p is theith largest element, this
subdivides the: input elements inté — 1 elements less thgnandn — ¢ elements greater than Then
we recursively sort the subsets of size1 andn — i. For a detailed description of QuickSort, including
a different analysis, see Lecture VIII. The recurrence is

n—1

() = n+ % S (TG0 - 1)+ T(n — 1)), (79)
1=0
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since for eachi, the probability that the two recursive subproblems in ®Buart are of sizesandn —i is
1/n. The additive factor of ##” indicates the cost (up to a constant factor) to subdivi@estiibproblems,
and there is no cost in “merging” the solutions to the sublemils. The recurrenc&9) is an example
of afull-history recurrence, so-called becausg(n) depends off’(m) for all smaller values ofn.

Simplifying (79),

T(n) = n+ 230 T0)
nT(n) = 24230 T3) [Multiply by n]
(n—1)T(n—1) = (n—1)24+23072T0) [Substituten by n — 1]
nT(n)—(n—1)T(n—-1) = 2n—142T(n—-1) [Differencing operator fonT'(n)]
nT(n) = 2n—1+ (n +1)T(n—1) [Simplify]
% = n%l - n(n+1) + (” L) [Divide by n(n + 1) (range transform)]
t(n) = 25~ amr T D [Definet(n) = T'(n)/(n+ 1)]

= 2Hp1—-1)->0", z(1+1) +t(0) [Telescoping a standard form]

Thus we see tha{n) < 2H,,4+1 (assuming(0) = 0) and hence we conclude
T(n) =2nlnn+ O(n).

It is also easy to get the exact solution fdr.), by evaluating the sum_" ; m (in a previous
Exercise).

929. QuickSelect. The following recurrence is a variant of the QuickSort reeace, and arises in
the average case analysis of the QuickSelect algorithm:

LT AT@) 4+ T(n—1)

n

T(n) =

(80)

In the selection problem we need to “select il largest” wherek is given (This problem is studied
in more detail in Lecture XXX). Recursively, after splitijithe input set into subsets of sizes 1 and

n — 1 (as in QuickSort), we only need to continue one one of the tiassts (unless the pivot element
is already thekth largest that we seek). This explains why, compared td€) ohly change ing0) is

to replace the constant factor »fto 1. To solve this, let us first multiply the equation by(a range
transform!). Then, on differencing, we obtain

nT(n)—(n—1)Tn-1) = 2n—14+T(n—-1)
nT(n)—nT(n—1) = 2n-1

) 1

)

= 2 —
n

= 2n—Inn+ O(1).

T(n)—T(n-1
T(n

Again, note that we essentially obtain an exact solution.

930. Improved QuickSort. We further improve the constants in QuickSort by first rantjorhoos-
ing three elements, and picking the median of these three tmub pivot. The resulting recurrence is
slightly more involved:

—n—i-ZpZ (t—1)4+T(n—1)] (81)
where (- 1)( )
T
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is the probability that the pivot element gives rise to solbpems of sizeg — 1 andn — i.

See Lecture 8 on Probabilistic Analysis where we discussk3art

EXERCISES

Exercise 9.1: Solve the following recurrences &-order:

n—1
2
T(n) =n+ = ).
(m=n+= > TG
i=|n/2]

HINT: Because of the upper bound /2, the functionvVT'(n) has different behavior depending
on whethem is even or odd. Simple differencing does not seem to work helé. Instead, we
suggest the guess and verify-by-induction approach. &

Exercise 9.2: Generalize the previous question. Consider the recurrence

wherec > 0 and0 < « < 1 are constants.
(a) Solve the recurrence for= 2.
(b) SolveT (n) whenc = 4 anda = 0.

(c) Fix c = 4. Determine the range ef such that’(n) = ©(n). You need to argue why/'(n) is
not©(n) for a outside this range.

(d) Determine the solution of this recurrence for general &

Exercise 9.3: (a) Suppose that in the base case of QuickSort, we do notHiegever the size of the
subarray to be sorted has or less keys. Call thisQui r kSor t .
(i) Describe the nature of the output fraQui r kSort .

(ii) Describe a linear time method to take the outputi r kSort and make it into a sorted
array.

(i) Explain why your method in (i) takes linear time. &

Exercise 9.4:

(a) Show that every polynomial X) of degreel can be written as a sum of binomial coefficients
with suitable coefficients;:

0= (%) s, %) v (V) e

(b) Assume the above form fe(X), expresgVp)(X) as a sum of binomial coefficients. HINT:
whatisV (")? O

END EXERCISES

§10. The Master Theorem
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We first look at a recurrence that does fall under our transétion techniques: theaster recur-
renceis
T(n) = aT(n/b) + f(n) (82)

wherea > 0,b > 1 are constants anfi(n) is the forcing (or driving) function. Our goal is to prove the
so-called Master Theorem which provides a “cookbook” folarfar solutions of the master recurrence.

We have already seen several instances of this recurremcethér famous one is Strassen’s 1969
algorithm for multiplying twon x n matrices in subcubic time. Strassen’s recurrenc®(is) =
7T (n/2) + n?, which has solutior?’(n) = ©(n'87). Evidently, the Master recurrence is the recur-
rence to solve if we manage to solve a problem of siz®y breaking it up intaz subproblems each of
sizen /b, and merging thesesub-solutions in tim¢g (n). The recurrence was systematically studied by
Bentley, Haken and Saxé][ Solving it requires a combination of domain and rangesfarmation.

First apply a domain transformation by defining a new funtti@) from7'(n), wherek = log, (n):
t(k) :=T(b*) (forallk € R).

Then @2) transforms into
t(k) = at(k — 1)+ f(b%).

Next, transform the range by using the summation fatyer*. This defines the function(k) from
t(k):
s(k) == t(k)/a.

Now s(k) satisfies a recurrence in standard form:

s(k)y = —*

Telescoping, we get

k i
s(k) — sk = > L9,

i>1

<

where{k} is the fractional part ok (recall thatk is real). Using the DIC, we chose the boundary
condition
s(z) = f(b%)/a”, for x <1

in order to end up with the simple formula,

k i
s(k) =Y 1) (83)

If we like, we can back substitute to get this solution in temwfthe original functio’(n):

T(n) = t(log,n)
= a"®"s(log, n)
log, n )
_ nlogba Z f([zz) ]
i>1 a
This is the general solution to the master recurrence. Bistatn open sum, and we need a closed
formula.Now, we cannot proceed any further without knowing the reatdithe functiory’.
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Let us call the function
W(n) = n'og @ (84)

the watershed function for our recurrence, antbg;, a the watershed exponent The Master Theo-
rem considers three cases for These cases are obtained by compaying W(n). The easiest
case is wherg’ andW have the sam@®-order (CASKO0)). The other two cases are whefegrows

“polynomially slower” (CASE—)) or “polynomially faster” (CASE+)) than the watershed function.

So the Master Theorem
is a trichotomy, like

many analysis we have
seen so far!

CASE(0) Thisis whenf(n) satisfies
f(n) = ©(n'® %) = ©(a="). (85)
Thenf(b') = ©(a’) and hence

s(k) =Y f(b')/a" = O(k). (86)

CASE(—) This is whenf(n) grows polynomially slowerthan the watershed function:
f(n) = O(n=FloBn ), (87)

for somee > 0. Thenf(bi) = O(b'oge =) = O (a’b~"¢) (using the subscripting notation for
0). Sos(k) = Zpl f(b)/at =3 01(b7) = Oq(1), sinceb > 1 impliesb—¢ < 1. Hence
)

s(k) = O(1). (88)

CASE(+) Thisis whenf(n) satisfies theegularity condition
af(n/b) < cf(n) (ev) (89)

for somec < 1. Expanding this,

rm oz 2 (%)

c

> (9™ )

_ Q(neJrlogb a)7

wheree = —log, ¢ > 0. Thus the regularity condition implies thtn) grows polynomially
faster than the watershed function,
f(n) = Q(ntioen ). (90)
It follows from (89) that f (b¥~%) < (c¢/a)! f(b¥). So
k
sth) = > f()/a
1>1
k—1
= Y fOFY/ar
=0
k—1
< (c/a) F08)/a"*"

N

- f(bk>/ak<_ k)
_o()),
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sincec < 1. But clearly,s(k) > f(b*)/a*. Hence we have

s(k) = O(f(b*)/ad"). (91)
Summarizing,
1, CASE(—), see88),
s(k)y=01< k, CASE(0), see 86),
f(b*)/a*, CASE+), seepl).

Back substituting using(k) = t(k)/a*, we get
a*,  CASE-)
t(k) = a*s(k) =©{ a*k, CASEO0)
f(0¥), CASE(+).

Further back substitution using(n) = t(log, n), we conclude:

THEOREM 7 (Master Theorem)The master recurrencé&®) has solution:

nlogs @ if f(n) = O(n=togv ), for someec >0, CASE(-)
T(n) =01 nl°®logn, if f(n)=0(nle2), CASE(0)
f(n), if af(n/b) <cf(n)forsomec < 1. CASE(+)

Informally, we describe CASE-) as the case when the driving functiffn) is polynomially faster
than” (n). But the actual requirement is somewhat stronger, namelydgularity conditiong9). In
applications of the Master Theorem, this case is usuallyehst convenient to check.

We can take advantage of the fact that checking if a funcfier) is polynomially faster (or slower)
than¥ (n) is usually easier to check (just by “inspection”). Hence wenmally begin by first verifying
the polynomially faster condition, equatio®dj. If so, we then check the stronger regularity condition
(89). To illustrate this process, consider the recurrence

T(n) =3T(n/10) +v/n/lgn.

We note thaty = log;,3 < logyg 3 = 1/2 and son® < /n/lgn (ev.), confirming equatiorfQ). We
now suspect that CASE-) holds, and must verify that

cf(n) = 3f(n/10)

The Master Theorem is powerful but unfortunately, theregaigs between its 3 cases. For instance,
f(n) = nl°&%logn grows faster than the watershed function, but not polyntiyniaster. Thus the
Master Theorem is inapplicable for thign). Yet it is just as easy to solve this case using the transfor-
mation techniques (see Exercise). The polynomial versidimeotheorem is perhaps most useful:

COROLLARY 8. Leta > 0,b > 1 andk be constants. The solution(n) = aT'(n/b) + n* is given

by
nlogve if logya > k
T(n)=0<{ n*, if logya <k

nFlgn, if log,a=k

What if the values:, b in the master recurrence are not constants but depend8 dfor instance,
attempting to apply this theorem to the recurrence
T(n)=2"T(n/2)+n"

(with @ = 2™ andb = 2), we obtain the false conclusion tH8{n) = ©(n™logn). See Exercises.
The paper [d] treats the casé&'(n) = a(n)T'(b(n)) + f(n). For other generalizations of the master
recurrence, seé. f].
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931. Graphic Interpretation of the Master Recurrence. We imagine a recursion tree with branch-
ing factor ofa at each node, and every leaf of the tree is at l&vwg) a. We further associate a “size”
of n/b* and “cost” of f(n/b%) to each node at level(root is at level = 0). ThenT'(n) is just the sum
of the costs at all the nodes. The Master Theorem says thisadae (0), the total cost associated with
nodes at any level i®(n'°2» @) and there aréog, n levels giving an overall cost & (n'°% @ logn). In
case {1), the cost associated with the roo9$7'(n)). In case {1), the total cost associated with thq3 :

: L . s . . . Draw the recursion tree
leaves iSO (T'(n)). Of course, this “recursion tree” is not realizable unlesndlog, « are integers:

i i |
but it is a useful heuristic for remembering how the Masteediem works. with a grain of salt!

932. Beyond the Master Theorem. Several authors have extended the Master Theorem to driving
function f(n) that has the fornf (n) = W(n)log® n for all ¢ € R. This leads to four possible cases:

f(n) if f(n)satisfies the regularity condition CASE)

B W(n)log®™n if ¢>—1 CASE()
T(n)=0 W(n)loglogn if ¢c=—1 CASE(1)
W(n) else CASE(-)

We can further generalize this to infinitely many cases, bynalf () to be any product of powers of
iterated logarithms (these are so-called EL-functionsYhke next section, we consider generalizations
of another nature. EXERCISES

Exercise 10.1: Which is the faster growing functiofT; (n) or T»(n) where
Ti(n) = 6Ty (n/2) +n®, To(n) = 8Tx(n/2) + n?.
o

Exercise 10.2: Use the Master Theorem to solve the following recurrencisggrfrom matrix multi-
plication. Be sure to justify the case you choose.
(a) It is easy to see how to recursively multiply twox n matrices asymptoticall{f’(n) =
8T (n/2) + n? time:

a b a b | | ad+0bd ab+0d
c d d d || ca+dd b +dd

What is the solutiof’(n) using Master theorem?

(b) Strassen (1969) showed that you can actually save ormatrix multiplication, giving the
recurrence(n) = 75(n/2) + n%. Use the Master theorem to determiier).

(c) Coppersmith and Winograd (1990) has the current faatgstithm for matrix multiplication,
achieving a bound o (n2-376) time. Suppose you read in New York Times tomorrow morning,
that someone has discovered a marvelous way of multip/ir@ matrices using only. multi-
plications, and the recurren&n) = aT'(n/2) + n? yields a faster algorithm than Coppersmith-
Winograd. What is the largest possible value8fWhat do you think is the likelihood of such a
result? &

“State” literally means

Exercise 10.3: State thed-order solution to the following recurrences:
no proofs are needed.

T(n) = 10T(n/10)+ log' n.

T(n) = 1007 (n/10)+n'O.

T(n) = 10T(n/100) + (logn)'oslos™,
T(n) = 16T (n/4)+ 48",

&
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Exercise 10.4: Solve the following using the Master’s theorem.
(@)T(n) = 3T(n/25) + log*n
(b) T'(n) = 25T (n/3) + (n/logn)3
(©T(n) =T(yn)+n.

HINT: in the third problem, the Master theorem is applicadfter a simple transformation. <

Exercise 10.5: Sometimes the Master Theorem is not applicable directlyt iBean still be used to
yield useful information. Use the Master Theorem to givegistan upper and lower bound you
can for the following recurrences:

(@) T(n) = n®log®n + 8T(n/2)
(b) T(n) = n?/loglogn + 9T (n/3)
(©)T(n) =4T(n/2) + 3T (n/3) + n. &

Exercise 10.6: Supposé’(n) = n + 3T (n/2) + 2T (n/3). Joe claims thal'(n) = O(n), Jane claims
that7'(n) = O(n?), John claims thal'(n) = O(n®). Who is closest to the truth? You must
justify your answer by appeal to the standard Master Theangsn &

Exercise 10.7:We want to improve on Karatsuba’s multiplication algorithiie managed to subdivide
a problem of sizer into a > 2 subproblems of size/4. After solving these: subproblems, we
could combine their solutions i(n) time to get the solution to the original problem of size
To beat Karatsuba, what is the maximum vaiugan have? &

Exercise 10.8: Suppose algorithml; has running time satisfying the recurrence
Ti(n) =aT(n/2)+n
and algorithmAs has running time satisfying the recurrence
Ta(n) = 2aT(n/4) + n.

Here,a > 0 is a parameter which the designer of the algorithm can chd@smpare these two
running times for various values af &

Exercise 10.9: Suppose
To(n) = 18Ty(n/6) 4+ n'®
and
Ti(n) = 32T1(n/8) + n'.

Which is the correct relationTy(n) = Q(T1(n)) or To(n) = O(T1(n))? We want you to
do this exercise without using a calculator or its equivglémstead, use inequalities such as
logg(x) < logg(x) (for z > 1) andlogg(2) < 1/2. &

Exercise 10.10:How is the regularity condition orf(n) and the condition thaf (n) increase poly-
nomially related? What can you say about the syifi , f(i) when f satisfies the regularity
condition for somex, b, ¢? O

Exercise 10.11:Solve the master recurrence whgfm) = n'°% “log" n, for anyk > 1. &
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Exercise 10.12:Show that the master theorem applies to the following viarabf the master recur-

rence: nie
T(n) = a-T("25) + f(n)

wherea > 0,b > 1 andc is arbitrary. &

Exercise 10.13:
(a) SolveT'(n) = 2"T'(n/2) 4+ n™ by direct expansion.
(b) To what extent can you generalize the Master theorem talleasome cases df (n)
ap,T(n/by) + f(n) wherea,, b, are both functions of?

<l

Exercise 10.14:Let W (n) be the watershed function of the master recurrence. In wéragesis the
“watershed function” of the next order equallié(n)/ Inn? &

Exercise 10.15:
(a) Let

" g
s(n) = Z -
i=1

Prove thats(n) = ©(Ig” n). For the lower bound, we want you to use real induction, asdahbt
that forn > 2, we have

In(n) — (2/n) <In(n —1) < (Inn) — (1/n).

(b) Using the domain/range transformations to solve thewiehg recurrence:

Igl
T(n) = 2T(n/2) +n glggn".
¢
Exercise 10.16:Consider the recurren&(n) = aT'(n/b) + h?;n wherea > 0 andb > 1. Describe
the setS of all pairs(a, b) for which the Master Theorem gives a solution for this reence. Do
not describe the solutions. You must describe the&datthe simplest possible terms. &

Exercise 10.17:The following recurrences arises in the analysis of a paralgorithm for hidden-
surface removal (Reif and Sen, Proc. ACM Symp. on Comp. Gagni®88):

T(n)=T(2n/3)+1gnlglgn
Another version of the algorithm. ] leads to
T(n)=T2n/3) + (Ign)/lglgn.

Solve forT'(n) in both cases. O

END EXERCISES
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611. The Multiterm Master Theorem

The Master recurrenc@%) can be generalized to the followimgultiterm master recurrence:

k
n
T(n) = T — 92
=+ 3t (§) (92)
wherek > 1,a; > 0 (foralli = 1,...,k) andby > by > --- > by > 1. Whenk = 2, we have the
following examples oR-term master recurrences:

T(n) = T(cin)+T(can) +n, (c1 +ec2 <1). (93)
T(n) = T(n/2)+T(n/4)+ logn. (94)

The first recurrenced@) arise in linear time selection algorithms (see Chapter Xhere are many
versions of this algorithm with different choices for thenstantscy, co. E.g.,c1 = 7/10,¢0 = 1/5.
The second recurrence arose in Computational Geometrisiitdaner and Welzlg] introduced a data
structure calledonjugation tree for solving thepoint retrieval problem. The exercises will go over
this data structure.

933. Reducing multiterm to single term master recurrence. Before providing the general solution,
let us see how our previous techniques would fare here. d¢figdl, rote expansion seems hopeless, even
for a two-term master recurrence. On a more positive notetethod of real induction can provide
us with confirmations of guessed upper and lower bounds — Wealaady seen such examples. The
catch is how do we go about guessing these bounds. But harériteaesting method to use the Master
Theorem to provide upper and lower bounds. The idea is toarbimur multiterm recurrence into a
master recurrence: let:= Zle a;, b:=min{b; :i=1,...,k},andc := max{b; : i =1,...,k}.
This defines two master recurrences

The student is invited
to expand the 2-term
recurrences...

Un) = f(n)+aU(n/b), (95)
L(n) = f(n)+aL(n/o). (96)
Clearly, T(n) = O(U(n)) andT'(n) = Q(L(n)). Then the Master Theorem implies the bound
n)logn + nlog @
T = { gl ©7)

Applying this to the conjugation tree recurren®é); we obtain

o),
o) ={ o,

But suppose we first expand our recurrence once:

T(n) = |T(n/2)|+T(n/4)+logn

| T(n/4) + T(n/8) + log(n/2) |+ T(n/4) +logn
= 2T(n/4)+T(n/8) + ©(logn).

Now the application of{7) yields the sharper bound:

nlog4
T(n) = { g((nlogg ;))’

Itis clear that this trick can be repeated. We remark thaloiver bound can sometimes be improved by
omitting terms before taking the maximum to foemE.g., forT'(n) = T'(n/2)+ T (n/3)+T(n/9)+1,

the above scheme yield@¥n) = Q(y/n), but if we first drop the terii’(n/9), we get the improvement
T(n) = Q(n'o8s2),
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934. Multiterm Generalization of Master Theorem. To state the multiterm analogue of the Master
Theorem, we must generalize two concepts from the MasteorEng (a) Associated with the recur-
rence 02) is thewatershed constanta real numbet such that

k w
;b_ =1. (98)

Clearly« exists and is unique since the sud8)tends td) asa — oo, and tends tec asa — —oo. As
usual, lefV (n) = n™ denote the watershed function. (b) The recurre@ggdives rise to generalized
regularity condition on the driving (or forcing) functiorf (n), namely,

)

k
Y aif(n/bi) < cf(n) (99)

=1
for some0 < ¢ < 1.
THEOREM9 (Multiterm Master Theorem).
n®logn if f(n)=0(n")

T(n)=0<¢ n* if f(n)=0O(n>¢),forsomes > 0,
f(n) if f satisfies the regularity conditiof9).

Before proving this result, let us see its application to ¢bajugation tree recurrenc84). The
watershed constant satisfies the equatiogl; + 4% = 1. Writing z = 2% we get the equation
x 4+ 2 = 1. The positive solution to this quadratic equatiomis- 2= = (—1 + v/5)/2. This yields
a = lg(—1++/5) —1 ~ 0.695. Edelsbrunner and Welzl obtainedy using an analogy with Fibonacci
recurrences, but we now see that it can be systematicailyederThey proved thaf'(n) = O(n®); our

theorem further shows that their boundistight.
Proof of Multiterm Master TheorenwWe use real induction.
CASE(): Assume thaif (n) = ©1(W(n)). We will show thatT'(n) = O (W (n) logn). We have

T(n) = f(n)+Xi &l (bﬂ)

= 0O1(n%)+ Zle ;94 ((bﬁ)a log (bﬂ ) (by induction)

= Ou(n") + Ox(n") [T, & los (2)

= 01(n%) + 6O3(n*) [logn — D], (whereD = Zle p& log(b;) and using 98))
O2(n*logn). '

Let us elaborate on the last equality. Suppgp&e) = ©,(n*) amounts to the inequalities W (n) <
f(n) < C1W(n) (ev.). We must choose, Cs such that2 W (n)logn < T'(n) < CoW (n)logn (ev.).
The following choice suffices:

szcl/D, C2:C1/D.

CASE(-): Assume0 < f(n) < Din® ¢ for somee > 0. The lower bound is easy: assume
T(n/b;) > c1(n/b;)* (ev.) for each. Therf

f0) + S aT ()

S aica(2)° (sincef(n) > 0 and by induction)
cin®.

T(n)

v

6 The factf(n) > 0 (ev.) is a consequence of “€ O(n®~<)” and the definition of the big-Oh notation.
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The upper bound needs a slightly stronger hypothesis: asginyb;) < Cin*(1 —n~¢) (ev.). Then

T() = f)+35 ol (§)
Din® + 3% 4y (g)“ [1 - (bﬂ)} (by induction)
= Cin®—-Cn®>* [Zk Dl/cl}

=1 ba €
< Cin*—-Cin%>=

IN

provided>"F | a,/b%7° > 1 4 (D1 /C}). Sinced r | a;/b3~¢ > 1, we can certainly choose a large
enoughC to satisfy this.

CASE(+): The lower bound’(n) = Q(f(n)) is trivial. As for upper bound, assumirig(m) <
D1 f(m) (ev.) whenevem = n/b;,

T(n) = fn)+Xh, T (2)
< f(n)+ ¥ a;Dif(n/b;)  (byinduction)
= f(n)+ Dicf(n) (by regularity)
< Dif(n) (if D1 > 1/(1—¢))

This concludes the proof of the Multiterm Master Theorem.

The use of real induction appears to be necessary in thid:puotike the master recurrence, the
multiterm version does not yield to transformations. Ag#ie generalized regularity condition implies
that f(n) = Q(n>*¢) for somes > 0. This is shown by induction:

f(n) : Zle aif(n/bi)
1F 4 (n/b yete  (by induction, for someD > 0)
D 06+E Zz 1 ba+€

DnaJrE (If we choose: = Zl 1 ba+a)

v v

Smcezl 1 ga = 1, we should be able to choose a> 0 to satisfy the last condition. Note that this

derivation imposes no condition dp, and soD can be determined based on the initial conditions.

EXERCISES

Exercise 11.1:Recall the 2-term recurrence from the analysis of conjogétiee:
T(n)=T(n/2)+T(n/4)+1gn.

Numerically determine the watershed constann this recurrence. Show up to 5 decimal
places. We don’t presume any particular way to do this, exttegh you can only use an ordinary
scientific calculator. Tell us how you obtained your constan &

Exercise 11.2: To understand the recurreritén) = T'(n/2)+T(n/3) + T (n/4) +n, we will explore
numerically the functiomh(z) = 27% + 37* 4+ 47*. We want to determine the such that
h(«) = 1. For a simple way to do this, use a user-friendly, powerftiveare like MATLAB. For
instance, consider the following two linesATLAB code:

>> h=@(x)2."(-x) + 3.7 (-x) + 4.” (-x);
>> forx=0.9:0.1:1.2, display([x, h(x)]), en

| =
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Thefirstline defines the functidr(z). The second line is a for-loop wherdegins with the value
0.9 and each iteration increases the value: &y 0.1 until z = 1.2. Each iteration simply prints
the pair(x, h(z)) of values. This loop produces the values shown in the firdi@fallowing four
tables:

(& [ @ @[ & e ]
0.9000| 1.1951|| 1.0700| 1.0119|| 1.0810| 1.0011}|| 1.0820| 1.0001
1.0000| 1.0833|| 1.0800| 1.0021| 1.0820| 1.0001| 1.0821| 1.0000
1.1000| 0.9828|| 1.0900| 0.9924 | 1.0830| 0.9992|| 1.0822| 0.9999
1.2000| 0.8923|| 1.1000| 0.9828|| 1.0840| 0.9982( 1.0823| 0.9998

By changing the stepsize and limits of the for-loop, we cainngere correct digits with run of
the for-loop. Each successive table above is obtained thys @ach time giving us an extra digit
in the decimal expansion af. Thus,a ~ 1.0821. How would you continue this experiment to
determine the first00 digits of «? O

Exercise 11.3:Let T'(n) = 27T'(n/3) + T'(n/10) + 1. Use the Master Theorem to derive a sublinear
upper bound off’(n). O

Exercise 11.4:In the text, we sharpened our bounds for the conjugatiorr&egrrence functioff’(n)
by expanding the recurrenc@4) just once, and then applyin§?),
(a) Let us now expandd) twice before applyingq7). Verify that the new bounds are further
improvements.
(b) Show that this improvement be repeated indefinitely? &

Exercise 11.5:ConsidelT'(n) = T'(n/b1)+T (n/bs) +T(n/bs)+ 1 wherel < b; < by < bs. Whatis
the lower bound of’(n) using ©7)? Under what conditions o , b2, b3 can you obtain a better
bound by omitting the smallest term? &

END EXERCISES

§12. Other Recurrences

There is a wide variety of recurrences which we have bareiteliat. For instance, the typical
recurrences arising in counting combinatorial structhieag an exponential (e.g’(n) = 2T (n— 1)+
f(n)) or double exponential growth (e.dl\(n) = T'(n — 1) + f(n)). We refer to Knuth for such
examples. In this section, we focus on some other types afrecces.

612.1.Recurrences with Max or Min

Many recurrences in computer science involve the Max or Mieration. Here we give three ex-
amples.
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935. QuickSort Variant. Consider the following variant of QuickSort: each time aftee partition
the problem into two subproblems, we will solve the subpeabthat has the smaller size first (if their
sizes are equal, it does not matter which order is used). Wk toanalyze the depth of the recursion
stack. If a problem of size is split into two subproblems of sizes, n, thenn; + no = n — 1.
Without loss of generality, let; < ns. S00 < n; < |[(n —1)/2]. If the stack contains problems of
sizes(ny > ns > --- > ny > 1) whereny, is the problem size at the top of the stack, then we have

Ng—1 = Nj + Njy1.

Sincen; < n, this easily impliesiy; 1 < n/2% ork < 21gn. A tighter bound isk < log, n where
¢ = 1.618...is the golden ratio. This is not tight either.

The depth of recursion satisfies

= il fmax{1 + D(m). D(n2)}]

ni

D(n)

This recurrence involving max is actually easy to solve.uhsiig D(n) < D(m) for all n < m, and
foranyreak:, D(x) = D(|z]), itis easy to see thd®(n) = 1+ D(n/2). Using the fact thaD(1) = 0,
we obtainD(n) < lgn. [Note: D(1) = 0 means that all problems on the stack has siz&

936. Solving a Problems on a Binary Tree. Consider this recurrence which involves both Max and
Min:

C(n) = max 1{C’(m)—i—C(n—m—1)—i—min{m—i—1,n—m}} (100)
This represent the cost to solve a recursive problem repteddy a binary tre&” onn nodes, where
the left and right subtrees have sizasandn — m — 1, respectively. To solve the problem @n we

recursively solving the problem on the left and right sue$teand then marry the two sub-solutions at a
cost ofmin {m + 1,n — m}. We claim that

C(n) < KnH, (101)

whereH,, is thenth Harmonic number ané > 1 is sufficiently large. By DIC, we can assunt(l)
is true for alln < nq (for someng > 1). Inductively, forn > ng, we have

Cn) < KmHp,+Kn—-—m—1)H,_pm_1+min{m+1,n—m} (102)
forsomem = 0,...,n — 1. Note thatn <> n —m — 1 are interchangeable in the RHS @D@). Hence
wlog, assumen > n—m—1. ThenT' (n) < KnHy,+n—m. Butn(H,—Hy,) = Y /2" 7 > n—m.

Thereforel'(n) < KnH,, + n(H, — H,,) < KnH,, (sinceK > 1).

This prove<”(n) = O(nlogn). This bound exploits the Min in100). For instance, if we replace
the Min by a Max, then the solution i§(n) = ©(n?) (Exercise). We find thi$)(nlogn) solution
instructive: in effect, it says that the worst case valuenoh (100 is whenm ~ n/2, thus reducing
the recurrence to look liké'(n) = 2C(n/2) + n, yielding the©(n log n) solution. So the Min has the
effect of ensuring that the balanced binary tfées the worst case solution.

Fredman §] considered the general class of recurrences of the form

M(n) = g(n)+ min {aM(k)+BM(n—k—1)}

which arises from analysis of binary search trees.
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937. Analysis ofe-Nets. The following recurrence arise in the analysis of a classabé dtructures
callede-nets, first studied by Haussler and Welzl. Assuniing ¢ < 1 andm > 2 are fixed,

T(n)=1+ max T(n; 103
(M) =1+ max ; (n:) (103)
where the maximum ranges over &ll;, ..., n,,) satisfyingn; > 0 and)_." , n; < en. Thereis a

trivial solution to this: the constant function

T(n)=1/(1—m)

for all n. ButT'(n) < 0 in this case and we seek a non-negative solution. Assumatd/in) is a
convex cap, it is easy to see that

T(n) =1+ mT(en/m) = O(n!8m/e™).

To showT'(n) is a convex cap, we note that it is continuous (Exercise) androtonic non-decreasing
function. Then it suffices (Exercise) to prove that

T(x)+T(y) <2T((x+y)/2) (104)

where we now regar@’(«) as a real function defined for all > 0. This turns out to be easy to show
inductively, assuming the base case whEfe) = = (or T'(x) = 0) forall 0 < z < 1.

§12.2.A Log-square Solution

Consider the recurrence n
Tn)=14+TMn——). (105)

logn

This does not yield to our standard techniques. To probeateapte some simple bounds. It is easy
to see thafl'(n) < n since this is the solution to the recurreritén) < 1 + T(n — 1). Likewise
T(n) > lgn since this is the solution t6'(n) > 1 + T'(n/2).

To get a better upper bound, we note that

7t - ( ( m))

IN
/\
cT
o
3
l\’)
~
g
>
N
=

IN

k
k+T< )
1ogn

using monotonicity off’'(n). HenceT'(n) = k if we assumel'(n) = 0 forn < 1 andk is chosen so

that
1 k 1 k+1
1- <1 1- :
( 1ogn> - /n<< logn>

7 We say a real functiorf (z) is convex capif forall 0 < o < 1, f(z) + f(y) < 2f(az + (1 — @)y). For completeness,
we sayf(x) is convex cupif forall 0 < a < 1, f(z) + f(y) > 2f(az + (1 — a)y).
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Taking natural logs, and assuming for simplicity that = In in (105, we see that

(k+1)In (1—%) > —lnn,

nn
1 .
(k+1) (—1—) > —lnn, (since In(1+z) <z for |z| < 1),
nn
k+1 < Inn.

Up to a constant factor, this is also the lower bound: we sthatt(n) > C'In® n by induction:

T(n) > 1—|—C’ln2<n<1— ! ))
logn
= 1—|—C’(lnn—|—1n<1—L>)2
logn
2 .
> 1—|—C(lnn—1—)2, sinceln(1 +z) >z — 22 /2for |z| < 1
nn
> Cln®n.

ThusT'(n) = ©(In®n).

REMARK: If we were told from the beginning to verify th&t(n) = ©(In’n), this would be
routine. What we are demonstrating here is the process obwlising thatO(In ) is the correct
answer.

EXERCISES
Exercise 12.1: Solve forC(n) where
C(n) = _max {C(m)+Cn—m—1)+max{m+1,n—m}}.
Note that this is similar tol(00) except that the Min has been replaced by a Max. &

Exercise 12.2: Try to obtain tight constants for the recurrend®%. What if log is not the natural
logarithm in the original equation? &

Exercise 12.3: Show thatl'(z) in (104) is continuous by exploiting the fact that the addition arekm
imum functions are continuous. &

Exercise 12.4: Prove that ifl'(z) is continuous and satisfies equatia4) then itis a convex cap.<$

Exercise 12.5:Bound the solution to the recurren@&n) = T(n — 1) + 27(n/2) + n. This is an
interesting mixture of linear recurrence and the mastarrreace. &

Exercise 12.6:(Leighton 1996) Show thaf (n) = 27'(3 — ) has solutiorl’(n) = O(n log®W n).
Assume thafl'(n) = 1 for n < 5, and the recurrence holds far> 5. ThusT'(5 + ¢) = 2, so

this function is discontinuous. &
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Exercise 12.7: Analyze the behavior of the functioff’(n) defined by the recurrenc&(n) =
nT (logn). Give upper and lower bounds f@f(n) using “closed form expressions” in terms
of the functionslog(“ n, ¢ > 0. Note: This recurrence arises from an early version of the fast
integer multiplication algorithm of Schonhage and Steass &

Exercise 12.8: Solve the recurrencB(n) = 1+ max(,, nyng,na) 11 (1) +T(n2) +T(n3) + T (n4) }

where(nq,...,n4) ranges over all non-negative numbers such ml n; = 37” and each

n; <n/2. ¢

Exercise 12.9: Solve the following recurrences &-order:
(@7T(n)=14+2T(n — ).

logn
(b) T (n) =2"T(n/2) + n™.
©T(n)=1+ T(log ).
HINT: these recurrences are considerably harder than niaghat we encounter. First guess

non-tight upper and lower bounds and verify by inductionef kry to tighten these bounds<)

END EXERCISES

612.3.Multivariable Recurrences

So far, our recurrences involve only one variable. But mattable recurrences arise in several
ways: one source of such recurrences is multidimensioohl@ms in computational geometry (one of
the variable is the dimension).

The pre-processing problem pbint dominance queriesin d-dimensions is as follows: given a set
S C RY of n points, construct a data structuf®S) such that for any query point € R?, we can
quickly determine if there is any point € S thatdominatesp (this meansc > p, componentwise).
One solution is to pick some € R such thatS splits into two subsets', S, of sizen/2 each, where
the first component of each e 5, is < ¢, and the first component of each € S5 is > ¢. To answer
the query forp, begin by comparing the first componentof p to c: if p; > ¢ then it is sufficient to
recursively check if some € S, dominate®. If p; < ¢, we must do two searches: (i) check if some
x € S1 dominategp and (ii) check if somer € S, dominateg. The search in (i) is, however, done
in d — 1 dimensions since we may ignore the first components. Thusrtteefor answering queries
satisfies the recurrence

T(n,d)=1+T(n/2,d)+T(n/2,d—1).

Itis not hard to see thaf(n, 1) = O(1). Then we may verify the solutiofi(n, d) = ©(log? ' n).

938. Output-sensitive algorithms. Multivariable recurrences arise in the analysis of “output
sensitive” algorithms. Such algorithms has, besides #ittonalinput parameter n, an (implicit)
output parameter h, which is the measures the size of the output for the giventimstance. The
computational complexity of such algorithms depends oh haindh. An example is the problem of
computing the convex hull of a set afpoints in the plane. The output size is just the number ofgoin
in the actual convex hull. There are well-kno€}{n logn) algorithms for this problem. Kirkpatrick
and Seidel has given an algorithm whose time complexitgfasi the following recurrence:

n n
T(n,h)=0(m)+, max {T(5.h)+T(5.ha)]}.
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Here, h; are positive integers. We may assuffie:, h) = O(n) for h < 3. To see thafl'(n,h) =
O(nlogh), we could of course just substitute and verify. But it is miogructive to argue as follows:
consider a “recursion tree” corresponding to a possibl@esjon of the recurrence relation f6(n, h).
There are exactly nodes in this binary tree, where each internal node at defttfe root is deptid)
carries a “cost” ofn/2¢. The “cost” of the tree just the sum of these costs at therniatemodes. So
T'(n, h) is the maximum cost over all possible recursion trees.cl&ien7'(n, h) = O(nlog h) follows

if we prove that the maximum cost occurs when the tree hashdgphostlog, h (since the total cost
of all nodes at any depthis invariablyn). For the sake of contradiction, suppose we have a maximum
cost tree with deptd > log, h. Then there is a node at depth- 1 whose children are leaves at depth
d. We can transfer these two children to become the childreonmie other node at depthd — 2. This
would increase the cost for the tree, contradiction.

EXERCISES

Exercise 12.10:Show that if S(n,d) is the space requirement for the above data structure, then
S(n,d) =142S(n/2,d)+ S(n/2,d — 1). Solve this recurrence. What$§n, 1)? O

Exercise 12.11:Consider the following recurrence

T(n,h) =0(n)+ {T(e1n, h1) + T(can, ha)} .

max
hi+he=h—1;c1+c2=1

(a) Solve forT'(n, h) with only the assumptioh; > 1,¢; > 0 in the above.
(b) Solve forT'(n,h) with the additionalassumption that; < « where0 < a < 1 is fixed.
Generalize the above argument about the shape of the maxamsimecursion tree. &

Exercise 12.12:(Sharir-Welzl) The following recurrence arises in anatgrithe diameter ofn-
dimensional polytopes with: facets:

f(mm):f(n—l,m—l)—i—%Zf(n—1,i).
i=1

Solve the recurrence. &

END EXERCISES

613. Orders of Growth

The reader should first review the basic properties of theoagptial and logarithm func-
tions in the appendix.

Learning to judge the growth rates of complexity functionigifundamental skill in algorithmics.
This section is a practical one, designed to help studerntaethis skill.

Most complexity functions in practice are the so-callegarithmico-exponential functions (for
short, L-functions): such functiong(x) are real and defined for all > x, for somez, depending
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of f. An L-function is either the identity functiom or a constant € R, or else obtained as a finite
composition with the functions
A(z), In(z), e’

where A(x) denotes a real branch of an algebraic function. For instafi¢ce) = /x is the function
that picks the real square-root of The reader may have noticed that all the common complexity
functions are totally ordered in the sense that for fny, eitherf < g or g < f. A theoreni of Hardy

[9] confirms this:if f and g are L-functions thenf < ¢ (ev) or g < f (ev.). In particular, each
L-function f is eventually non-negative,< f (ev.), or non-positivef < 0 (ev.).

The following are the common categories of functions you @ricounter:

CATEGORY SYMBOL EXAMPLES
vanishing term | o(1) L2
constants (1) 1, 2-41
polylogs log® n (foranyk > 0) | H,, log’n
polynomials n* (for anyk > 0) nd,  n
non-polynomials| n®(") n!, 2, ploglegn

Note thatn! and H,, are notL-functions, but they can be closely approximatedibfunctions. The
last category forms a grab-bag of anything growing fasten t# polynomial. These 5 categories form a
hierarchy of increasingly largé-order.

939. Rules for comparing functions. We are interested in comparing functions up to titeiorder.
The trick of comparing two functions by taking their logants is this:if log f < log ¢ then clearly
f = g. But students often think the converse is also true.

We list some simple rules. Most comparisons of interest ande reduced to repeated applications
of these rules:

Sum: In a direct comparison involving a sufi{n) + g(n), ignore the smaller term in this sum.
E.g., givenn? + nlogn + 5, you should ignore therflog n + 5” term. However, beware that if
the sum appears in an exponent, the neglected part may tubrealecisive when the dominant
terms are identical.

Product: If 0 < f < f/and0 < g < ¢’ thenfg < f'¢’. (If, in addition, f < f’ then we have
fg=<1'qg.)
E.g., this rule implies® < n° whenb < ¢ (sincel < n°~?, by the logarithm rule next).

Logarithm: 1 < log* ™V n < (log® n)c for any integet: > 0 and reak > 0. Herelog'® n refers to

the k-fold application of the logarithm function aridg(o) n=n.

Exponentiation: If 1 < f < g (ev)thend/ < d9 forany constantl > 1. If 1 < f < cg (ev.) for
somec < 1thend’ < d9.

940. Example. Suppose we want to compai&s ™ versus(logn)”. By the rule of exponentiation,
nlog™ < (logn)" follows if we take logs and show thasg®n < 0.5nloglogn (ev.). In fact, we
show the strongelog?n < nloglogn. Taking logs again, and by the rule of sum, it is sufficient

8 In the literature onL-functions, the notationf < ¢” actually meansf < g (ev.). There is a deep theory involving such
functions, with connection to Nevanlinna theory.
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to show2loglogn < logn. Taking logs again, and by the rule of sum again, it is sufftoeshow
log® n < log'® n. But the latter follows from the rule of logarithms.

EXERCISES

Exercise 13.1: () Simplify the following expressions: (a)!/!s", (b) 22" ", (c) 21— 2/, (d)
2057, (e)4'8™, (f) (V2)'",
(ii) Re-do the above, replacing each occurrence2dfexplicit or otherwise) in the previous ex-
pressions by some constant> 2. Note thatlg is log,, 4 = 2% and\/n = n'/2. So when we
replace these implici?’s by ¢, we getlog;, ¢© andn'/? in the above expressions. &

Exercise 13.2: Order these in increasing big-Oh order:

nlgn, n7t, lgn, n'8", 10n+n®?, g7, on 2ln

&

Exercise 13.3: Order the following 5 functions in order of increasiBgorder: (a)log® n, (b)n/ log* n,
(c)v/n, (d)n27", (e)loglogn. O

Exercise 13.4: Order the following functions (be sure to parse these nestpdnentiations correctly):
@nl=m"™", (b) (lgn)™", () (g m) ™", (d) (n/1gm)™"™". (@) n"™""". o

Exercise 13.5: Order the following set 036 functions in non-increasing order of growth. Between con-
secutive pairs of functions, insert the appropriate ordgerelationship=x, =, <(ev), =.

| 2 | b | |d e | f
1. || lglgn (Ign)em | 27 2lgn 2lg" n 22"
2. (1/3)" n2" nlelen e nl/len [lgn]!
3. || 2v2len | (3/2)» |2 lg(n!) | n Vign
4. | 20sm)? 22" n? nlgn | (n+1)! | 487
5. || 1g(lg*n) | 1g%n (L+2)m | nlem | nl 2(lgn)/n
6. (vV2)s" | lg"n (n/lgn)> | /n) |lg*(lgn) | 1/n
NOTE: to organize of this large list of functions, we ask thati first order each row. Then the

rows are merged in pairs. Finally, perform a 3-way merge ef3Hists. Show the intermediate
lists of your computation (it allows us to visually verify yowork). &

Exercise 13.6: Order the following functions:
n, [gn]!, [lglgn]!, nlserl' 27" 1g*(2m) 1g*(lgn), lg(lg"n).
¢

Exercise 13.7: (Purdom-Brown) Our summation rules already gives @herder of the summations
below. This exercise is interested in sharper bounds:
(@) Show thabd~" | i! = n![1 + O(1/n)].
(b) >, 28Ini = 2" [Inn — (1/n) + O(n~?%)]. HINT: uselni = Inn — (i/n) + O(i*/n?) for
i=1,...,n. O
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Exercise 13.8: (Knuth) What is the asymptotic behavioref/"? ofn(n'/m —1)?
HINT: take logs. Alternatively, expanf[}._, e'/(™). o

Exercise 13.9: Estimate the growth behavior of the solution to this reaueee T (n) = T'(n/2)? + 1

END EXERCISES

5A. APPENDIX: Exponential and Logarithm Functions

Next to the polynomials, the two most important functionsalgorithmics are thexponential
function and its inverse, thibgarithm function . Many of our asymptotic results depend on their basic
properties. For the student who wants to understand thegeegies, the following will guide them
through some exercises. We define tlagural exponential function to be

exp(z) = Z W
=0
for all realx. This definition is also good for complex but we do not need this here. Thase of the
natural logarithm is defined to be the number

=1
e=exp(l) =) 5 =271828...
i=0

The next exercise derives some asymptotic properties axpenential function.

Exercise A.1: Show that
(@) exp(zx) is continuous,
(b) dexp dexp@) — oxp(z) and hencexp(z) has all derivatives,
(c) exp( ) is positive, strictly increasing,
(d) exp(z ) — 0asz — —o0, exp(z) — oo asx — oo,
(€)exp(x + y) = exp(x) exp(y), 5

We often need explicit bounds on exponential functions jusitasymptotic behavior). Derive the
following bounds:

Exercise A.2:
(@)exp(z) > 1 + z for all z > 0 with equality iffz = 0.
(b) exp(z) > (n+1), for z > 0. Henceexp(z) grow faster than any polynomial in
(c) For all realn > 0,
T\ " x\n+(z/2)
(1+5) <er<(1+2) .
n n
It follows that an alternative definition ef is

e’ = lim (l—l—z)n.
n

n—oo

(d) exp(«) (1 _ %) < (1+2)" forallz,n € R, n > 1and|z| < n. See 4. &
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The natural logarithm functionIn(z) is the inverse ofxp(z): In(z) is defined to be the real
numbery such thatxp(y) = «. Note that this is a partial function because it is definedfband only
positivez.

Exercise A.3: Show that

(8) T = 1
(b) In(zy) = In(z) + In(y),
(c) In(z) increases monotonically fromoco to +oo asx increases from to +occ. &

These two functions now allow us to defigeneral exponentiationto any basé: any reala, we
define
exp, () := exp(aIn(b)). (106)

Usually, we writeexp, (o) asb®. Note that ifb = e then we obtair®, a familiar notation foexp(«).

We see from 106) thatb must be positive sincki(b) is otherwise undefined. Moreover, the case
b = 1 is highly degenerate sind¢ is identically equal tal. It is easy to check thatl/b)* = b2,
and hence it is not necessary to explicitly consider the tasé (since we can replace such ay 1/b
which would be> 1.

Sob® andlog,, a are

derived from the
special caseg” and
Ina!

Once we have the definition efp,(z) = b*, thegeneral logarithm for any baseé can be defined:
log, (z) is defined to be the inverse of the functierp,(x) = b*: log,(z) is defined to be thg such
thatd¥ = x. Note that forb > 1, log,(x) is well-defined for allz > 0. But forb < 1, log,(x) is
undefined forz > 1. This gives another reason for avoiding bases 1. Unless otherwise noted, the
baseb of our general logarithm and exponentiation is assumed tisfye > 1.

Exercise A.4: We show some familiar properties: the bass omitted if it does not affect the stated

property.
(a) The most basic properties are the following two:

log(ab) = (loga) + (logd), log,z = (log,z)/(log,b).

(b)logl =0, logyb=1, y=2a'"8Y log(z¥)=ylogu.

(€)log(1/x) = —logx, log,x=1/(log,b), a'°8® = ploea,

(d) g—;”(:va) =az® L.

(e) Forb > 1, the functiorlog, (z) increases monotonically fromoo to +oo asz increases from
0 to co. Atthe same time, fob < b < 1, log, (¢) decreases monotonically frofo to —co.

Notations for Logarithms. The Computer Science Logarithmligs,, which
is denoted bylg. Authors often usd.og := log;, for logarithm to basdo0,
another important base especially in engineering and fsmar@ur default
assumption is that the base of logarithms is séme 1. When the actua
value ofb is immaterial, we simple writddg’ without specifying the base.We
also Writelog(k) x for the k-fold application of the logarithm function te.
Thuslog® z = loglogz, and by definitionlog!® 2 = 2. This is to be
distinguished from log® n” which equals(logn)¥. On the black board, it is
convenient to writ¢fogn, ££¢ogn for log log n, log log log n, etc.

log(k) T VS. 1og]C T

9 This real valuey is called the principal value of the logarithm. That is besgaif we viewexp(-) as a complex function,
thenln(z) is a multivalued function that takes all values of the fayrt 2n7, n € Z.
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941. Bounds on logarithms. For approximations involving logarithms, it is useful tc¢a a funda-
mental series for logarithms:

i

ln(l—i-:v):x—x—-kx__...:_z(_'x)

2 3 7

2 3 e
(107)

i=1

valid for |z| < 1. From this, we obtain the useful bound:— 22/2 < In(1 + z) < z. To see that
In(1+x) < z we must show thak = >"°°, (—x)?/i > 0. This follows because if we pair up the terms
in R we obtain

R=(2%/2 —2%/3) + (2 /4 — 25 /5) + - - -,

which is clearly a sum of positive terms. A similar argumémwsin(1 + x) > z — 2%/2.

The formula (07) allows us to computén(y) for anyy € (0,2). How do we evaluatén(y) for
y > 2? Assume that we have good approximationkit@). Then we can writgy = 2™ (1 + z) (i.e.,n
is the number of times we must divigeby 2 until its value is less thaR). Then we can evaluaia(y)
asnin(2) + In(1 + ). This procedure depends on having a good approximatim®). Can we do
this? Indeed,

=1
In2 = — 108
n ,; o (108)

Using this rapidly converging series, we can quickly coregut2 to any desired accuracy. To derive
this series, note that!~ = >_,. 2" and sof & = 3. a'*!/(i+ 1) = Y ,., «'/i. Putting
y=1-uz [{& =—] % = —Iny = In(1/y). This showdn -~ = > is1 ' /i, and (L09) is just
the special case whete= 1/2.

Mother of Series
again!

Alternatively, to computdny, we can writey = n(1 + z) wheren € N and writeln(y) =
In(n) +In(1 + z). To evaluatén(n) we use the fadn(n) = H,, —y— (2n)~' — O(n~?) (see§5). Of
course, this method requires approximations Euler’s emtstinstead ofin 2. Again, there are rapid
approximations ofy.

942. Log-star function. We define thdog-star function: log* = is the maximum non-negative in-
tegern such thatig™ (z) is defined. Thusog*(z) = 0,1,2iff 2 < 0,0 < 2 < 1,1 < 2 < 2
(respectively). So log-star is integer-valued. Althoughhave used basein its definition, it could be
defined generally for any > 1.
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