
§1. Class Notes

In the last recitation, our Teaching Assistant (Ziyao Wei) covered three topics:

• Harmonic numbers Hn. It is shown that Hn = Θ(lg n). This material is in ¶18 of Lecture II.

• Stirling’s approximation for n!. There are many forms of this approximation, but Ziyao presented
the one I found most useful, which is found in ¶19 of Lecture II.

• The Heuristic Method of comparing complexity functions by taking logarithms. Below, we will
go over this method systematically.

¶1. The Heuristic of Taking Logs.

Jack: My algorithm has time complexity O((lg n)n).

Jill: Oh, with a new tweak, mine now runs in O(nlg n).

Who has the faster algorithm – Jack or Jill? An effective way to compare the growth rates of two
complexity functions is to compare the growth rates of their logarithms. To compare the running times
of Jack and Jill,

(lg n)n versus nlg n, (1)

let us compare their logs:

n lg lg n versus lg2 n. (2)

Perhaps you already see that the former dominates the latter. If not, you could take logs again:

lg n + lg lg lg n versus 2 lg lg n. (3)

It is now clear that the left-hand side super-dominates the right-hand side, since

lg n �� lg lg n. (4)

Working backwards to the original comparison, we conclude that

(lg n)n �� nlg n. (5)

Thus Jack’s algorithm is slower than Jill’s. Is this argument rigorous? Well, the above idea of taking
logs amounts to an application of the following “backwards” inference rule:

(f �� g)⇐ (lg f �� lg g). (6)

Here, “A ⇐ B” reads “A holds provided B holds”. Logically, A ⇐ B and B ⇒ A are equivalent,
but the backwards formulation seems more natural in proofs of (super-)dominance, such as in (5). See
Lecture I (Appendix A) for discussion of logical proofs.

Unfortunately, the rule (6) is not sound. Here is a counter example: let g = 1 and f = 2. Then Close, but not quite!
1 = lg f �� lg g = 0, but it is not true that f �� g. What is needed is some additional guarantee that
lg f is growing fast enough. E.g., lg f �� 1. We now prove this:

c© Chee Yap Fundamental Algorithms, Spring 2011: Basic Version September 19, 2011

LEMMA 1. Let f, g be complexity functions. If lg f super-dominates both 1 and lg g, then f super-
dominates g. In symbols,

(f �� g)⇐ (lg f �� 1) ∧ (lg f �� lg g).

Proof.

(f �� g) ⇔ (∀C > 0)[Cf ≥ g (ev.)]
⇔ (∀C > 0)[lg C + lg f ≥ lg g (ev.)]
⇐ (∀C > 0)[lg C + 1

2 lg f ≥ 0 (ev.)] ∧ (1
2 lg f ≥ lg g (ev.)) (Split lg f in half!)

⇐ (lg f �� 1) ∧ (lg f �� lg g).

Q.E.D.

Returning to our heuristic argument that Jill’s algorithm is better than Jack’s, we see that the heuristic
rule (6) just needs an additional precondition that “lg f �� 1” holds. These preconditions amount to
n lg lg n �� 1 and lg n �� 1. But we knew these to be true. In general, we need the following fact as
the base case:

LEMMA 2. For all k ≥ 1,
lg(k) n �� lg(k+1) n �� 1.

c© Chee Yap Fundamental Algorithms, Spring 2011: Basic Version September 19, 2011

	 Class Notes

