§1. MINIMUM PATH PROBLEMS Lecture XIV Page 1

“The shortest path between two truths in the real domain gsaghrough the complex
domain.
—Jacques Salomon Hadamard (1865-1963)

Lecture XIV
MINIMUM COST PATHS

We study digraphs with edge cost functions. Several probkodied under “pure” graphs in Chap-
ter 4 is thereby generalized. Connectivity becomes coralidgmore interesting in the presence of cost
functions. Connectivity has to do with paths. Supplse, v) denote the set of all paths from vertex
to vertexv. The basic problem here is to find a patte II(«, v) whose cost is minimum. The dynamic
programming principle is at work in such problems. Minimuostpath algorithms can take advantage
of the special nature of the cost function in the followingest

All edges have unit cost

e Positive edge costs

Sparse graph (i.e., most edges have cokt

Edge costs are symmetric (i.e., we are dealing with bighaphs

We have already studied the case of unit edge costs — theithlgonere is breadth first search
(BFS). The key algorithmic feature of BFS is the use of a FI@ug. When generalized to arbitrary
positive edge costs, we must replace this FIFO queue by dtgripueue. We will also see how to take
advantage of sparse graphs as well as bigraphs.

We can generalize shortest path problems to computatiarssewnirings. The important problem
of transitive closure problem arises through this geneaéibtn.

51. Minimum Path Problems

91. Costed Graphs. LetG = (V, E; C) be a digraph with edge cost function
C: EFE—-R
We may extend the cost functi@ito thecost matrix C’ : V2 — R U {oo} where
C(u,v) if (u,v) € E,
C'(u,v) =< 0 if u=nuv,
00 else

Normally, we continue to writ&€' for C’. The simplest cost function isnit cost whereC'(e) = 1 for
all e € E; this can be generalized fsitive cost functionswhereC'(e) > 0. In constrast to positive
costs, we may speak of “general” cost functions to emphals&eossibility of negative costs.

© Chee Yap Basic Version October 24, 2011

§1. MINIMUM PATH PROBLEMS Lecture XIV Page 2

92. Convention. The size parameters for complexity considerations are,saslun = |V| and
m = |E|. We usually lel = {1,...,n}.

93. Minimum cost paths. Letp = (vop—---—vy) beapath o6z, i.e.,(v;—1,v;) € Efori=1,... k.
The C-cost ofp is defined to be
k
ZC Uz 17UZ

1=

In case of the empty patlt (= 0), we defineC'(p) = 0. Call p aC-minimum cost path if there are no
other paths fromy, to v; with smaller cost; in this cas€;(p) is the C-minimum cost from vy to v.
We use the notatiod (v, vy) for this cost:

dc (vo, v):=C(p).

Reference t@ may be omitted when it is understood or irrelevant. For shegtsay “minimum path”
(or min-paths) instead of “minimum cost path”. Although it is very commansay “shortest path” for
min-paths, but we prefer to restrict this usage only to theeaa unit cost. If there is no path froin
to j, letd(i, j):=oc0. A cycle[vg—, ..., —uvg] is called anegative cycleif Zf:o C(v,vi+1) < 0 (here,
vk+1 = vp). In case there exist paths frarno j with arbitrarily negative costs, we defing, j):=— co.
This situation obtains if there is a path frarto j that contains a negative cycle. Thus we can vieas
a matrix, theC-minimum cost matrix

—

shortest path = min
cost + unit cost

S : V? = RU {#+o0}.

94. Minimum path problems. There are three basic versions:

e Single-pair minimum paths Given an edge-costed digraph= (V, E; C, s, t) with source and
sink s, t € V, find the minimum path from to ¢.

e Single-source minimum pathsGiven an edge-costed digragh = (V, E; C, s) with source
s € V, find the minimum paths fromto eacht € V.

e All-pairs minimum paths Given an edge-costed digraph= (V, E; C), find the minimum paths
between frons to ¢t forall s,¢ € V.

When there is no minimum path frointo j for one of the pairgi, j) that is asked for, we are
expected to detect this and outpit, j) = oo or é(4, j) = —oo; in the latter case, we further output a
path from: to j containing a negative cycle. Usually, these problems atedtor digraphs. Although
the bigraphs can be viewed as special cases of digraphsfputiposes of these problems, we need to
be careful in the presence of negative edges. Otherwiseneggtive bi-directional edge immediately
give us a negative cycle. Special techniques can be usedjiaphs (se§8 and§9).

Clearly the three problems are in order of increasing diffgcuBut you will not encounter any
algorithm that is expressedly designed for the first prob(simgle-pair case). This is because every
knownalgorithm for the single-pair problem is essentially alsmhution to the single-source problem.
It would be nice to prove that this is necessarily so.

95. Minimum cost versions. There is a simpler version of each of the above problemswhere we
ask for the minimum cosi(:, j) instead of the minimum path froirto j (for variousi, j depending on

© Chee Yap Basic Version October 24, 2011

§1. MINIMUM PATH PROBLEMS Lecture XIV Page 3

the problem). We call this thenin-cost versionof the corresponding shortest path problem. Usdally
the min-cost algorithms can easily be modified to also comthg min-path as a by-product, without

affecting the asymptotic complexity. Intuitively, thishecause the minimum costs constitute the critical
information that drives these algorithms. So it is pedagalyi advantageous to present only the min-
cost version of these algorithméle generally adopt this strategy.

96. Dynamic programming principle. The dynamic programming principle (Chapter 7) applies
to minimum paths: subpaths of minimum paths are minimumspathdeed, the simplification from
minimum solution instances to minimum costs is also a feadfidynamic programming.

q7. Path Length and Link Distance. If C'is the unit costthe(p) = k is just thelength of the path

p = (vo,...,vr). Consistent with this “length” terminology, we might calighs of minimum length a
“shortest path”. Unfortunately, the literature also udedisest path” for the general min-path. To avoid
ambiguity, we adopt another terminology found in the litera: the minimum length of a path froin
to 7 may be called thénk distance fromi to j. Sayj is reachablefrom if the link distance from to

7 is finite.

98. Link-bounded minimum paths. Letk be a non-negative integer. We define a path to bexiaet
k-link minimum path if it has minimum cost among ak-link paths from its source to its terminus.
Let (=) (i, j) denote the cost of an exaetink minimum path fromi to j and we again have trexact
E-link minimum cost matrix §(=*). We can also considet mostk links: the corresponding matrix is
given by

k
0" (i,) = min 69 (i, j).

call 6% the k-link minimum cost matrix . Unlike thed matrix, 5(*) never attain-oo. If there are no
negative cycles, it is easy to see that
= — .

99. Minimum path tree. Our single-source path algorithms construct a set of mininpaths that
comes from a single tree rooted at the source. Byieimum path tree of G = (V, E; C) we mean

a finite rooted tred" such that the paths from the root to every vertex in the treermgnimum path;
moreover, every node reachable from the root appedrs Wnder unit cost, this tree is just the a breadth
first search (BFS) tree. K can reach a negative cycle, then the minimum path tree radteds not
defined. The following is a characterization of minimum pages.

LEMMA 1 (minimum path tree) Suppose thaf’ C F is a tree rooted at € V andT spans the set of
nodes reachable from For any node in the tree, letd(i) denote the cost fromto i along a path of
T. ThenT is a minimum path tree iff for alli, j) € E, d(j) < d(i) + C(i, j).

EXERCISES

Exercise 1.1: Considers the following minimum path problem: each nedeas a weight?V(u) and
the cost of edgé¢u, v) is W (v) — W(u). Give anO(m) algorithm to solve theninimum cost
versionof the single source minimum path problem. Can you convestalgorithm into one that
actually produce the minimum paths? &

1 see the Exercises for exceptions to this remark.

© Chee Yap Basic Version October 24, 2011

§2. SNGLE-SOURCEPROBLEM: GENERAL COST Lecture XIV Page 4

Exercise 1.2: Another variation of minimum paths is to assign costs to tediees. The cost of a
path is the sum of the costs of the vertices along the pathudeethisvertex-costedversion of
minimum paths to the originadge-costedersion. &

Exercise 1.3: Let B:=min{C/(e) : e € E} < 0 and letp be a path with cost'(p) < (n — 1)B. Show
the following:
(a) The pathp contains a negative cycle.
(b) The boundn — 1)B is the best possible.
(c) If Z is a negative cycle thed@ contains a simple negative subcycle. The same is true of
positive cycles. &

Exercise 1.4: Prove the minimum path tree lemma. &

END EXERCISES

62. Single-source Problem: General Cost

We begin with an algorithm for general cost functions, duBetdiman (1958) and Ford (1962). We
assume that the input digraph has the adjacency-list reptason. Assuming” = {1,...,n} andl is
the source, we want to compuiél, i) = 6, (i) foreachi = 1,...,n.

910. Simple Bellman-Ford Algorithm. The Bellman-Ford algorithm is simple, and uses only an
arrayc[1..n] as data structure. At the conclusion of the algorithfi},= 4;(¢). To bring out the main
ideas, we first give a simplified version that is corrpatvided no negative cycle is reachable from
vertex1. In fact, we can say somewhat more about the output of thelifiegpalgorithm in general
(negative cycle or no):

Correctness CriteriaThe arrayc at the end of the algorithm is a realizalgpte— 1)-bound.

For anyk > 0, we callc[1..n] arealizable k-bound if for eachi € [1..n],
(a) (Lower boundy[i] < 6%’” (7).
(b) (Upper bound/Realizability) There is a path frarto ¢ with costc|[i].
Thus a realizablé-bound is both a lower bound and an upper bound, given by
6 (0) > cli] > 61(1), i€ L],

From (a) and (b), we conclude thdi] = co means there is no path frohto .

SIMPLE BELLMAN -FORD ALGORITHM:
Input: (V, E;C,s)whereV = [1.n] ands = 1.
Output: Array ¢[1..n] as described above.
> INITIALIZATION
c[l] <0
forall i < 2ton, c[i] — oo
> MAIN LOOP
fork—1ton—1
PHASE() < see below

© Chee Yap Basic Version October 24, 2011

§2. SNGLE-SOURCEPROBLEM: GENERAL COST Lecture XIV Page 5

The main loop consists of — 1 identicalphasesdescribed as follows:

PHASE()
for all (u,v) € £
c[v] « min{c[v], clu] + C(u,v)}

The initialization is regarded as the zeroth phase. It iardleat each phase tak€gm) time for an
overall complexity ofO(mn).

LEmMMA 2 (Invariance).At the end of théth phase k > 0), the arrayc[1..n] is a realizablek-bound.

Proof. This is immediate fok: = 0 so assumé& > 1. Letv € [1..n] andc[v] < co. First we show
thatc[v] is realizablej.e., there is a path fronh to v with costc[v]. If ¢[v] is unchanged in thith phase,
then this follows by induction. Otherwise it is updated-a§ + C(u, v) for someu. Clearlyc[u] < oo
and so it represents the cost of some peftiom 1 to w. Thusc[v] is now the cost op; (u, v). This proves
realizability ofc. Next we must show thafv] < 6% (v). If §(¥)(v) represents the cost of a path fram
to v of length less thai, then the desired inequality follows by inductiarie] < 51 (v) = (%) (v).
Otherwise %) (v) is the cost of a path of length Let this path be; (u, v) for someu. By induction,
the previous value of[u] is < C(p). Because of our update methady] < c[u] + C(u,v). Hence
clv] < C(p) + C(u,v) = 5®) (v). Q.E.D.

In the absence of negative cyclés= 6("~1). Then the output arrayrepresents,, as desired.

911. Bellman-Ford with negative cycles. We now remove our assumption about no negative cycles.

LEMMA 3 (Negative Cycle Test)Letc¢[1..n] be a realizablgn — 1)-bound.
(a) If there are no negative cycles reachable frothen for alli, j € [1..n], c[j] < c[i] + C(4, j).
(b) If Z is a negative cycle reachable frolithenc[j] > c[i] + C(i, j) holds for some edgg, j) in Z.

Proof. (a) If no negative cycle is reachable, then no optimum paimft has length more than
n — 1. Hencecli] < 6"V (i) impliesc[i] = 6" " (i) = &, (/). The desired inequality follows from
5(j) <6(i) + C(4,5)- (b) By way of contradiction, supposgj| < c[i] + C(3, j) for all edgeqs, j) in
a reachable negative cycle Summing over all edges i,

S il < 3 (il +C)

(i.j)eZ (i.))eZ
< C2)+ > il
(4,9)€Z
Canceling the summation on each side, we seeftkat’(~7), a contradiction. Q.E.D.

We can use this lemma to detect if there are any negative cyebchable from in the simple
Bellman-Ford algorithm. We can also use it to justifgeneral Bellman-Ford algorithm which com-
puted; for an arbitrary input graph.

© Chee Yap Basic Version October 24, 2011

§2. SNGLE-SOURCEPROBLEM: GENERAL COST Lecture XIV Page 6

GENERAL BELLMAN -FORD ALGORITHM:

Input: (V, E;C,s)withV = [l.n] ands = 1.
Output: Array c[1..n] representing; .
> INITIALIZATION

(as in Simple Bellman-Ford Algorithm)
> MAIN LOOP

(as in Simple Bellman-Ford Algorithm)
> END LOOP:

fork — 1ton

PHASE() < as before
END PHASE() < see below

The BND PHASE is a simple modification of theHASE computation:

END PHASE()
for all (u,v) € £
If (c[v] > c[u] + C(u,v)) then c[v] «— —oc.

After n iterations of this, it is easy to see thdl..n| represent$,;. Moreover, the asymptotic
complexity of the original algorithm is preserved.

912. Minimum paths. We indicate how the minimum paths can be computed by a simplgi-m
fication to the above algorithm. We maintain another agrgy.n], initialized tonil. Each time we
updatec[v] to somec[u] + C(u,v), we also update[v] «— w. It is easy to see that the set of edges
{(v,p[v]) : v € V, p[v] # nil} forms a minimum path tree.

EXERCISES

Exercise 2.1: After phasek in the simple Bellman-Ford algorithmv] is the cost of a path from to
v of length at mostm (m = |E|). O

Exercise 2.2:
(a) Show that using — 1 phases, followed by end phases in the general Bellman-Ford algorithm
is the best possible.
(b) Suppose we mark a vertgxto beactive (for the next phase) if the valugj] is decreased
during a phase. In the next phase, we only need to look at thdges out of active vertices.
Discuss how this improvement affect the complexity of thérBan-Ford algorithm. &

Exercise 2.3: SupposeR is ann x n matrix whereR; ; > 0 is the amount of currencythat you can
buy with 1 unit of currency. E.qg., ifi represents British pound andepresents US dollar then
R; ; = 1.8 means that you can get 1.8 US dollars for 1 British poundukency transaction is
asequencey, ci, . . ., ¢y, Of m > 1 currencies such that you start with one unit of currefcgnd
use it to buy currency;, then use the proceeds (which is a certain amount in curr@ndg buy
currencyes, etc. In general, you use the proceeds ofithéransaction (which is a certain amount

© Chee Yap Basic Version October 24, 2011

§3. SNGLE-SOURCEPROBLEM: POSITIVE COSTS Lecture XIV Page 7

of currencye;) to buy currency:; 1. Finally, you obtain a certain amouftco, c1, . . ., ¢;,) Of
currencyc,, .
(a) We call(¢g, ¢, - .., cm) anarbitrage situation if ¢,, = c¢o andT(co,c1,...,¢m) > 1.

Characterize an arbitrage situation in terms of the magrix

(b) Give an efficient algorithm to detect an arbitrage sitrafrom an input matrixz. What is the
complexity of your algorithm? NOTE: Assuming no transagtiosts, it is clear that international
money bankers can exploit arbitrage situations.

&

Exercise 2.4:In the previous question, the algorithm outputs any arpérasituation. Let
(0,41, ...,1m) be an arbitrage situation wheig = iy and T (ig, i1, ...,im) < 1 as before.
We define thenefficiency of this arbitrage situation to be the produet x T'(ig, i1, .. ., im)-
Thus the largen or T'(io, . . ., im) iS, the less efficient is the arbitrage situation. Give arcieffit
algorithm if detect the most efficient arbitrage situation. &

END EXERCISES

63. Single-source Problem: Positive Costs

We now solve the single-source minimum cost problassuming the costs are positiviehe algo-
rithm is from Dijkstra (1959). The input graph is again asedrto have adjacency-list representation.

913. Dijkstra’s Algorithm: two invariants ~ The idea is to grow a set of vertices, withS initially
containing just the source node, The setS is the set of vertices whose minimum cost from the sourc

e
. . . = source or $able,
is known (as it turns out). Ldt:=V \ S denote the complementary set of “unknown” vertices. 5= =

U = unknown

This algorithm has the same abstract structure as Primdgitiigh for minimum spanning tree. We
maintain an arrayl[1..n] of real values wher€[;] is the current approximation & (j). Initially, the
array is giveni[j] = C(1, j). In particulard[1] = 0 andd[j] = o if (1—j) ¢ E. Inductively, the array
d[1..n] satisfies the following invariants:

Invariant (A) For eachu € U, we have

dlu] = mig{d[v] + C(v,u)}. 1)

ve
Note that this invariant holds initially sincg = {1} andd[1] = 0.

Invariant (B) If u € S thend[u] is equal tdd; (u), the minimum cost from to «. Again, this is initially
true with,S = {1} andd[1] = 0 = §,(1).

From Invariant (B), we can interpret)in Invariant (A) as saying thaf[u] is the minimum cost
ranging over all paths from to « whose intermediate vertices are restrictedstoThis implies

dlu] > 61 (u), (ueV). (2)

© Chee Yap Basic Version October 24, 2011

§3. SNGLE-SOURCEPROBLEM: POSITIVE COSTS Lecture XIV Page 8

LEMMA 4. Assume Invariants (A) and (B). Le§ € U = V' \ S such that
d[up] = min{d[i] : : € V' \ S}.

Thend[uo] =0 (UO)

Proof. First, we take care of the trivial case whér{ug) =
oo. Inthis case, the lemma s true becaweripliesd|u] = oo.

Otherwise, there exists a minimum patfrom 1 to ug. Then
we can decomposeinto the form
v p=p;u);p’
u@
wherev € S andu € U. This decomposition exists because the
first vertexl in p is in .S and the last vertex, in pis inU. See

; F
Figure 1: Dijkstra’s Invariant ~ 19urel. Note thatC'(p) = o, (v). Then

dlug] < dlu] (choice ofug as minimum)
< dv] 4+ C(v,u) (Invariant (B))
= 01(v) +C(v,u) (Invariant (A))
= C@p')+C(v,u) (dynamic programming principle)
< C(p) (since costs are positive)
= 01(uo). (choice ofp)
Combined with equatior2, we conclude thad[ug] = d1 (ug). Q.E.D.

This lemma shows that if we extertito S":=5 U {u}, Invariant (A) is preserved. Itis easy to see
Invariant (B) can also be preserved by updating the valugipfor eachi € V'\ S’ using the following
equation:

Moreover, we only need update thadeat are adjacent t@y. The repeated extension of the Sawhile
preserving Invariants (A) and (B) constitutes Dijkstrdgaaithm.

Let us now summarize the algorithm. First, let the dynami¢/se- '\ S be stored in a min-priority
queueR, usingd[i] as the priority of vertex € U. The queue is assumetb support the DecreaseKey
operation, which is needed in updatidlg] & la equation 8).

2 This assumption is equivalent to the ability to delete aritranty element from the queue. For, DecreaseKey: aan be
viewed as a deletion af followed by an re-insertion aof with the new priority. Conversely, if we have DecreaseKbegntwe
can delete an arbitrary element by decreasing its priavity ¢o followed by a removeMin.

© Chee Yap Basic Version October 24, 2011

§3. SNGLE-SOURCEPROBLEM: POSITIVE COSTS Lecture XIV

Page 9

=

wn

DIJKSTRA S ALGORITHM:

Input: (V, E;C,s)whereV = [1.n] ands = 1.
Output: Array d[1..n] with d[i] = §1(4).
> INITIALIZATION
d[1] < 0; Initialize an empty queu®.
for i < 2to n, d[i] < oo,
for i — 1to n, Q.Insert¢, d[4]).
> MAIN LOOP
while Q # 0 do
ug «— @Q.DeleteMin()
for all i adjacent ta.y do
If d[’L] > d[UQ] + C(Uo, Z) then
d[Z] — d[uo] + C(’U,O, Z)
Q.DecreaseKey(d]i])
end{while}

Figure 2: lllustrating Dijkstra’s Algorithm

914. Hand Simulation. Let us perform a hand-simulation of this algorithm using ghaph in fig-
ure2. Let the source node bé. The arrayd]i] is initialized toco with d[A] = 0. It is updated at
each stage: we have underlined the entry that is the mininxtracted for that stage, and only updated

entries of that stage are explicitly indicated:

© Chee Yap Basic Version

October 24, 2011

§3. SNGLE-SOURCEPROBLEM: POSITIVE COSTS Lecture XIV Page 10

VERTICES||A | B | C | D | E| F | G
STAGE 0 O| oo |oo| o0 || oo| o
STAGE 1 0| 7| 1]10]11

STAGE 2 1 17
STAGE 3 7 9 16
STAGE 4 9 16
STAGE 5 11 15
STAGE 6 15
STAGE 7 16

915. Complexity. Assume(is implemented by Fibonacci heaps. The initialization I(idang in-
sertion into the queu®) takesO(n) time. In the main loop, we da — 1 DeleteMins and at most
DecreaseKeys. [To see this, we may charge each Decreasekestion to the edgéuo, i) used to
test for adjacency in step 8.] This cos¥ém + nlogn), which is also the complexity of the overall
algorithm.

We ought to note that if the graph is sparse (say, With?/logn) edges) then a more straightfor-
ward algorithm might be used that dispenses with the questedd, to find the next minimum for the
while loop, we just use an obviou(n) search. The resulting algorithm has complexityn?). The
details are left as an exercise.

EXERCISES

Exercise 3.1: Show thatc[v] is the minimum cost of paths froito v whose intermediate vertices are
restricted taS. O

Exercise 3.2: Carry the hand-simulation of Dijkstra’s algorithm for theagh in Figure2, but using the
edge cost€’y(e) defined as followsCy(e) = C(e) + 9 if C(e) < 9, andCq(e) = C(e) — 9 if
C(e) > 9. ¢

Exercise 3.3: Show that Dijstra’s algorithm may fail it has negative edge weights (even without
negative cycles). &

Exercise 3.4: Show that the set satisfies the additional property that each nod&is- V' \ S is at
least as close to the sourtes the nodes i¥. Discuss potential applications where Dijkstra’s
algorithm might be initialized with a sef that does not satisfy this property (but still satisfy
properties (A) and (B), so that the basic algorithm works). &

Exercise 3.5: Give the programming details for the “simplé’(n?) implementation of Dijstra’s algo-
rithm. &

Exercise 3.6: Convert Dijkstra’s algorithm above into a minimum path algon. &

Exercise 3.7: Justify this remark: if every edge in the graph has weighh&ntthe BFS algorithm is
basically like Dijkstra’s algorithm. &

© Chee Yap Basic Version October 24, 2011

§4. GOAL-DIRECTEDDIJKSTRA Lecture XIV Page 11

Exercise 3.8: (D.B. Johnson) Suppose th@thave negative cost edges, but no negative cycle.

(i) Give an example that cause Dijstra’s algorithm to breakal

(ii) Modify Dijstra’s algorithm so that each time we deletgertexu, from the queu€), we look
atall the vertices ol (not just the vertices adjacentg). For each € V, we update[:] in the
usual way (line 9 in Dijkstra’s algorithm). H[i] is unchanged, we do nothing, so suppdsgis
decreased. Ifis in the queue, we do DecreaseKeyias before; otherwise we reinseéihto Q.
Prove that this modification terminates with the correctgars

(iii) Choose the vertex, carefully so that the algorithm in (i) i©(n?). &

Exercise 3.9: Let C1, C> be two positive cost matrices oh..n]. Say a path fromi to j is (Cq, C2)-
minimum if for all pathsq from i to j, C1(q) > Ci(p), and moreover, it”;(¢) = Ci1(p) then
Cy(q) > Cs(p). E.g., if Cs is the unit cost function then @, C2)-minimum path between
andv is aCi-minimum cost path such that its length is minimum among aiminimum paths
betweern, andwv. Solve the single-source minimum cost version of this probl &

END EXERCISES

64. Goal-Directed Dijkstra

Dijkstra’s algorithm can serve as the basis for several it@mb and useful extensions.

916. Bidirectional Search. It is interesting to observe that Dijkstra’s algorithm has particular
goal, in the sense that we seek a path from the souraaydarget In many natural settings, we have
a specific target, say vertex In this case, an obvious way to speed up Dijkstra is to semgibusly
conduct a similar search “backwards” from the targefThe forward search from sour¢emaintains
a setS C V for which ¢, (v) is known for eachy € S; the backward search from targemaintains a
similar setS” € V for which §,,(v) is known for eachv € S’. We alternately grow the setsand S’
one element at a time, terminating the momg&mt S’ is non-empty. Let be the first vertex found by
this bidirectional search to be 511 S’. Now, the “standard mistake” according t{ [s to assume that

To illustrate this standard mistake, consider the graphgn F
ure3: initially, S = {1} andS” = {n}. After growing the set§
andsS’ in one round, we ge$ = {1,z} andS’ = {n,y}. Next,

S ={1,z,z} andS’ = {n,y, z}, and we stop. At this point,
51(z) = 3 andd,(z) = 3. The standard mistake is to conclude
d1(n) = 01(2) + dn(2) = 3+ 3 = 6. Of course, we can see that
d1(n) is reallys.

What then is the correct bidirectional search algorithm& Th
above outline and stopping condition is correct, but we rieed
track the potential values @f (n) using a “relaxation variable”
A. Initially, let A = co. Each time we add a vertexto S, for eachv’ € S’ that is adjacent te, we
relax A as follows:

Figure 3: Bidirectional search from
1ton

A" —61(v) + 0,(v") + C(v,0');
A — min {A,A'}.

© Chee Yap Basic Version October 24, 2011

§4. GOAL-DIRECTEDDIJKSTRA Lecture XIV Page 12

Symmetrically, we updat& when we add’ € S’. At the end of the algorithm, when we first found a
z € SN.S’, we perform one final relaxation step,

A — min {A,51(2) + dn(2)}.

We claim that the final value dk is 6, (n): Itis easy to see thak < §;(n). The converse is also easily
verified because the minimum distance frarto n must have the form; (v) + 6, (v') + C(v, ") or
equal to they; (z) + J,,(z) used in our relaxation. In the example Fig@eve would have updated
from oo to 5 when we first added to S. The algorithm would correctly terminate with = 5.

917. A* Search. What is important in the bi-directional search is the addidl information from the
existence of a goal, or a target vertex In general, the goal need not be a single vertex but a set of
vertices, In this section, we extend Dijkstra’s algorithyndmother “goal-directed” heuristic. This idea
becomes even more important when the underlying gtahimplicitly defined and possibly infinite,

so that termination can only be defined by having attainecesgpoal (E.g. in subdivision algorithms).

ol i 1 NORTH DAKCITA

Leetl FINMESOTA
B M- ONT A N A "
| (ke o kL
Partiandts ey =¥
. TH DAKCKA 4 3
e Mlnnaspatn,
e e
A D WYOMING
orecon PAHO R S
NEBRASK A
A "Sal Lk Oy _——
EVapa alenvar Kanisa Oy
o ANSAS TES o
COLORADO kr.
ot e " e
Py
CRLAHDMA
o
- y

- -‘____:_. ¥ Wk- ety e
ek N\ by e e P ATLANTIC
A -~ L M“..___:- _w“?“w T 3 OCEAN
. - e Gulf of ki
F—a ! 2 T it Mezico y i SN Py

Figure 4. US Road Map

Consider a concrete example. Suppose the géaph (V, E) represents the road network of the
United States with” = {1,...,n} representing cities and coét(i, j) representing the minimum
distance road between citieand;. Again we start from cityl but our goal set is som@” C V. That
is, we want the minimum cost path frohrto any;j € . Let

0(3,W):=min{d(j,7) : i € W}.

Suppose cityl is Kansas City (Kansas/Missouri), near the geographicgkcef the US, andll is the
set of cities on the West Coast. A standard Dijkstra searalldvMan out from Kansas City equally in
all directions. Intuitively, our goal-directed search bttp explore the grapt’ with a westward bias.

How can Dijkstra’s algorithm be modified to serve this puggdsThis is the important heuristic
calledA* Search (read “A-star”) from Hart, Nilsson and Raphaé] |n the artificial intelligence litera-
ture. See Goldberg and Harrelsdhfor an updated algorithmic treatment.

Its justification requires only a slight extension of Dijiess algorithm. A functiom : V' — R is
called aheuristic cost function. We sayh is admissibleif eachh(j) (j € V) is a lower bound on the
minimum cost fromj to W:

0 < h(j) <60, W). 4

© Chee Yap Basic Version October 24, 2011

§4. GOAL-DIRECTEDDIJKSTRA Lecture XIV Page 13

In our road network example, suppasge, j) denote the “crow distance” between citiesnd;j. This is
the distance “as a crow flies”, or on a flat earth, it is the Elgadin distance betweérand;j. Then we
defineh(j) = min{c(j,i) : i € W}. Itis clear that this particular choice 6f;) is admissible. it/
is small (e.g.|W| = 1), thenh(j) is easy to compute. Recall that in Dijkstra’s algorithm, waimtain
an arrayd[1..n]. We now add the value di(;) to the value ofd[j] in doing our minimizations and
comparisons.

Des Moines

St. Louis

Kansas City

Jefferson City

For instance, suppose we want to find the shortest path fromsa&City to San Francisco. First
consider the four cities adjacent to Kansas City: Topekdé¢owest, Omaha and Des Moines to the
north, and Jefferson City to the east. Here are the distgfroes Map Quest):

Search from Kansas City

Distance (in miles)]| Topeka| Omaha| Des Moines| Jefferson City| Wichita |

Kansas City 61 184 197 161 197
San Francisco 1780 1669 1800 1968 1680
|| 1841 | 1853 | 1997 | 2129 | 1877 |

Ordinary Dijkstra would begin by considering the distantEansas City to the four neighboring cities
(Topeka, Omaha, Des Moines, Jefferson City). Since Topekeeiclosest of the three citiestdtmiles,

we would expand the s&t = { KansasCity} to S = {KansasCity, Topeka}. For our A* search,
suppose our goal is to reach San Francisco, e+ {SanFrancisco}. Then we must add to these
distances an additional “heuristic distance” (i.e., ngntlekir respectively distance to San Francisco).
For the sake of argument, suppose we added the actual distétiese cities to San Francisco. We see
that A* would still choose Topeka to be addedYdecause its value df841 is still minimum. Next,
ordinary Dijkstra would choose Jefferson City {&fl miles). But when the heuristic distance is taking
into account, we see that Omaha is the next added Sity: { KansasCity, Topeka, Omaha}. A*

will choose Wichita next. The obvious bias of the search towahe west coast is thus seen.

We now justify the use of heuristic functions (also knownpasential functions). We need a
crucial property which is best approached as follows: sepmur original cost functio@’ : £ — Rxg
is modified byh to become

C"(i, §):=C (i, §) = h(i) + h(j)- (5)
Let 6" (i, j) denote the minimum cost froiito j using the modified cost functiafi”. Comparing this
with the original minimum cosi(:, j), we claim:

§"(i,5) = 6(i,4) — h(i) + h(j). (6)

This relation isimmediate, by telescopy. It follows thatdipis minimum cost unde? iff it is minimum
cost undeC™”.

By the A* Algorithm for cost functionC' and heuristic functioth, we mean the algorithm that runs
Dijkstra’s algorithm using>” as cost function. Clearly, A* Algorithm is a generalizatiohDijkstra’s
algorithm since Dijkstra amounts to using the identicéllyeuristic function.

From our preceding discussion, we know that the minimum pa#t will also be found by the A*
algorithm. What is new is that the order in which we add nodethé setS can be rather different!
There is one important caveat: since Dijkstra’s algoritlsnomly justified when the cost function is
non-negative, the A* Algorithm is only justify i€" is non-negative. This amounts to the requirement
C(i,7) — h(i) + h(j) > 0, or we prefer to write this as a kind of triangular inequality

C(i,j) + h(h) > h(7). (7)

This property has various names in the literature: Follgn@oldberg and Harrelsori], we sayh is
feasibleif (7) holds. The literature also callsmonotone or consistent instead of feasible.

© Chee Yap Basic Version October 24, 2011

§5. SEMIRINGS Lecture XIV Page 14

We note some basic properties of feasible potential funstidVe call the se$” C V constructed
by the A* Algorithm thescanned set

LEMMA 5. Leth andh’ be two feasible heuristic functions.

() If h(j) < Oforall j € W, thenh is admissible.

(i) The functionmax {h, A’} is also feasible.

(iii) Let S (resp.S’) be the final scanned set when the A* Algorithm is searchinghf@target node:
using the heuristic functioh (resp.k’). If h > b’ andh(n) = h/(n) = 0 thenS C 5’.

918. Subdivision Robot Motion Planning. We can apply the goal directed search to the problem of
robot motion planning: finding a path from an initial positia to a final positiond amidst obstacles.
The space we are searching in is now a continuum, not a grapherttieless, we can superimpose a
hierarchical grid in the form of a quadtree ¢i¥D) or a subdivision tree in general. We can keep track of
adjacent boxes that are free, and those that are blockedeThuoxed” boxes can be further expanded.
We can keep track of the connected components of free baxesfdhe “holes” of the blocked boxes.
How can we include this heuristic inté* search?

EXERCISES

Exercise 4.1: In the worst case sense, the improvement of bi-directioijksida’s algorithm is at most
a factor of2. Construct instances where this improvement factor idraniy large. &

Exercise 4.2: Construct an example where the A* Algorithm is incorrect wiilee heuristic function
is infeasible. &

Exercise 4.3: Prove Lemma. &

END EXERCISES

65. Semirings

Before considering the all pairs minimum cost problemsy¢etecall some facts about matrix rings.

Let us first informally review some college algebra: a ring g&tR with two special value8, 1 € R
and three binary operations, —, x defined satisfying certain axioms. The integéris the simplest
example of aring. Indeed, a ring basically obeys all thelaigie laws you expect to hold for integers
Z under the usuat/ — / x operations. E.g., the distributive lawy + z) = 2y + xz holds for integers,
and it is an axiom for rings. Thenly exception is the commutative law for multiplicatioty = yx.
This law need not hold in rings. The rings that satisfy thig ia called a commutative ring.

The set of square x n matrices whose entries are integers forms another ringntbger matrix
ring M, (Z). Note that\/,,(R) is no longer commutative for > 2. A matrix A whose(i, j)-th entry is
A; ; will be written A = [A, ;]7;_,. We often simplify this tad = [A; ;] or A = [A;;] or A = [Aj;]i ;.
This should not be confused with the notatiot),; denoting thg4, j)-th entry of matrixA. Recall the

© Chee Yap Basic Version October 24, 2011

§5. SEMIRINGS Lecture XIV Page 15

usual multiplication of numerical matrices: Af = [A;;], B = [B;;] then their produciAB is C' = [C};]
where

k
Cij = Z Aik By (8)
=1

Let us now proceed somewhat more formallyiray
(R7 +7 ><7O7]‘)

By definitior? this means the sét satisfies the following axioms.
() (R,+,0) is an Abelian group,
(i) (R, x, 1) is a monoid,
(iii) x distributes overt.

We simply refer to the seR as the ring if the other data(x, 0, 1) are understood and the product
a x b (fora,b € R) is also written agb or a - b. Forn > 1, we have another ring with unity,

(Mn(R)a Fny Xn, Ona 1n)

wherelM,, (R) is the set ofv-square matrices with entries . We call M,,(R) amatrix ring over R.
Addition of matrices A +,, B, is defined componentwise. The producix,, B of matrices is defined
as in equationg). The additive and multiplicative identities 8f,,(R) are (respectively) the matrix,
with all entries) and the matrix,, of 0's except the diagonal elements are

Let Mn) denote the number of ring operations itinecessary to compute the product of two
matrices inM/,,(R). The problem of determiningMn) has been extensively studied ever since Strassen
(1969) demonstrated that the obvidddn) = O(n?) bound is suboptimal. The current record is from
Coppersmith and Winograd (1987):

M\/(TL) _ O(?’L2'376).

919. Connection to shortest paths. Problems on minimum paths has an underlying algebraic-struc
ture that is similar to matrix multiplication. To see thisnt@ction, note that the cost of an exadink
minimum path path from vertexto j is given by

52 (i, j) = %ﬁ?ca, k) + C(k, 5)-

This expression is analogous to equatig)y) éxcept that we have replaced summation by minimization,
and product by summation. Hencemputing the exac-link minimum costs between all pairs of
vertices is equivalent to the problem of matrix multiplioatwhere the matrices have elements from a
certain ring-like structure:

(RU {#o00}, min, +, 00, 0)

whereoo and0 are the respective identities for the minimization and &oldioperation. Also,

(—oo)—l—x:{ —oo if x # oo,

00 if ©=o0.

In fact, the only thing this structure lacks to make it a risgn inverse for minimizatiarSuch structures
are quite pervasive, and is studied abstractly as semirings

3 All our rings have a multiplicative identity usually dendté: - 1 = 1 - = = x. We call1 theunity element. Algebraists
sometimes consider rings with such a unity element. Algelstiuctures such as rings, groups, etc, are Setsgether with
operationso1, 02, etc, and are writteriS, o1, 02, ...). A constant is just &-ary operation. An algebraic structu(é/, +, 0)
is a monoid if+ is an associative binary operation d with 0 as an identity. A standard example of a monoid is the set of
strings over an alphabet under the concatenation operatitinthe empty string as identity. Incidentally, droppiting identity
of a monoid gives us semigroup. A group(G, +, 0) is a monoid where has an inverse relative @ i.e., for all z there is ay
such thate + y = 0. We write —z for the inverse ofc. A monoid or group is Abelian when its operation is commugtiWhen
using + for the group operation, we denote the inverse of an elermdayt —zx.

© Chee Yap Basic Version October 24, 2011

§5. SEMIRINGS Lecture XIV Page 16

DEFINITION 1. Asemiring (R, ®, ®,0, 1) is an algebraic structure satisfying the following propest
We call® and® the additive and multiplicative operations &f

1) [Additive monoid] (R, @, 0) is an Abelian monoid.

2) [Multiplicative monoid] (R, ®, 1) is a monoid.

3) [Annihilator] 0 is the annihilator under multiplicationz ® 0 = 0 ® = 0.

4) [Distributivity] Multiplication distributes over addion:

(b)) R(xzdy)=0@R2)D(aRy)®blz)d (bRy)

The reader may check that semirings are indeed rings satlesfadditive inverse.

920. Examples of semirings. Of course, a ringR is automatically a semiring. When viewirfgjas

a semiring, instead of the Abelian group axioms f&; +,0), we simply require that it be a monoid

with commutativity. Moreover, the axiom th@is a multiplicative annihilator must be explicitly stated,
whereas it was previously implied by the ring axioms (ex&@bove). The following are examples of
semirings that are not rings.

1. The “canonical example” of a semiring is the natural nurab¥, +, x, 0, 1). It is useful to test
all concepts about semirings against this one.

2. Another important semiring is
(R U {00}, min, +, 400, 0))

as noted above. For reference, call this shi@imization semiring. Noté* that the annihilator
axiom impliesco + (—o0) = co. Any subringS C R induces a sub-semiring U {+o00} of this
real minimization semiring. Be careful that the “multi@iton” in the minimization semiring is
ordinary addition! To avoid confusion, we may say “semirimgltiplication” to refer to+, or
“semiring addition” to refer tanin, when viewingR U {400} as a semiring.

3. Naturally, there is an analogo(real) maximization semiring,
(RU {#o0}, max, +, —00,0). (10)
But in this semiringpo + (—o0) = —oc.
4, .If we restrict the costs to be non-negative, we get a gJesdhtedpositive minimization semir-
e (R> U {oc}, min, +, 00, 0). (12)

5. TheBoolean semiringis ({0, 1}, v, A, 0, 1) whereV andA is interpreted as the usual Boolean-or
and Boolean-and operations. We sometimes Vigite={0, 1}.

6. Thepowerset semiringis (2°,U, N,), S) whereS is any set and® is the power set of.

7. Thelanguage semiringis (2>, U, -, 0, {¢}) whereX. is a finite alphabet an2* is the power set
of the set>* of finite strings ovel:, ande is the empty string. For setd, B C >*, we define
their concatenatiod - B={a-b:a € A,b € B}.

8. Themin-max semiring is ([0, 1], min, max, 1, 0) with the obvious interpretation. Of course, the
max-min semiring is similar.

4 In standard extensions of the real numbers-te, it is stipulated thato + (—oo) is undefined.

© Chee Yap Basic Version October 24, 2011

§6. CLOSED SEMIRINGS Lecture XIV Page 17

We let the reader verify that each of the above structuresaamgrings. As for rings, we can generate
infinitely many semirings from an old one:

LEMMA 6. If R is a semiring, then the sét/,,(R) of n-square matrices with entries iR is also a
semiring with componentwise addition and multiplicatiorabbgous to equatiors.

The verification of this lemma is left to the reader. We cdll,(R) a matrix semiring (over R).
Note that the multiplication of two matrices i, (R) takesO(n?®) semiring operations; in general,
nothing better is known because the sub-cubic boundsMn) which we noted above exploits the
additive inverse of the underlying ring.

921. Complexity of multiplying Boolean matrices. For Boolean semiring matrices, we can obtain
a subcubic bound by embedding their multiplication in thegrof integer matrices. More precisely,
if A, B are Boolean matrices, we view them as integer matrices wther@&oolean value§, 1 are
interpreted as the integetsl. If AB denotes the product ové, it is easy to see that if we replace
each of the non-zero elementsA3 by 1, we obtain the correct Boolean product. To bound the bit
complexity of this embedding, we must ensure that the inégliate integers do not get large. Note
that each entry idB can be computed i (logn) bit operations. Thus, iMk(n) denotes the bit
complexity of Boolean matrix multiplication, we have

M/b(n) = O(MV(n) lg n) (12)
66. Closed Semirings

The non-ring semirings we have introduced above can be @atkas follows:

DEFINITION 2. A semiring(R, ®,®,0, 1) is said to beclosedif for any countably infinite sequence
ai,as,as,...iN R, thecountably infinite sum

Da
i>1

is defined, and satisfies the following properties:
0) [Compatibility]

aw® | Pa | =Das
i>1 >0
1) [Countable Zero] The;'s are all zero iff@,~, a; = 0.
2) [Countable Associativity] B
@ai = @(a%fl ® ag;).

i>1 i>1

3) [Countable Commutativity]

DD =DDo

i>1 j>1 §>1 i>1

4) [Countable Distribution] Multiplication distributeswer countable sums:

(@ a) o (@Pb) = P lasby).

i>1 j>1 i5>1

© Chee Yap Basic Version October 24, 2011

§6. CLOSED SEMIRINGS Lecture XIV Page 18

Let us note some consequences of this definition.
1. By the compatibility and countable zero properties, wewaw an element as the countable sum
ofa,0,0,0,....
2. Using compatibility and associativity, we can embed daite sum into a countable sum. E.g$ b
is equal to the countable sum @fb, 0,0, 0, Henceforth, we sagountable sumto cover both the
countably infinite and the finite cases.
3. If o is any permutation of the natural numbers then

@ai = @aa(i).

i>0 i>0

To see this, define;; = a; if o(j) = 4, anda,;; = 0 otherwise. Ther®®, a; = P, EBj a;j =
D, D, aij = B, as(j)-

4. If by, bo, bs, ... Is a sequence obtained from, as, as, . . . in which we simply replaced some pair
a;,a; 11 by a; @ a;41, then the countable sum of th is equal to the countable sum of this. E.g.,
b1 = a1 D as andbi = Qi1 forall 7 > 2.

All our examples of non-ring semirings so far can be viewedlased semirings by an obvious
extension of the semiring addition to the countably inficise. Note thatihin” in the real semirings
should really be thf” when viewed as closed semiring. A similar remark applies“inax” versus

“ ”

sup”.

The definition of countable sums in the presence of comnwittatind associativity is quite non-
trivial. For instance, in the ring of integers, the infinites1 —1+1—-1+4+1— 14 --- is undefined
because, by exploiting commutativity, we can make it equahly integer we like. In terms of minimum
paths, closed semirings represent our interest in findiagrtimimum costs of paths airbitrary length
rather than pathsp to some finite length

For any closed semirin@R, ®, ®, 0, 1), we introduce an important unary operation: foe R, we
define itsclosureto be
r=lozo?ele- -

wherez*, as expected, denotes thdold self-application of2 to z. We callz* the kth power of .
Note thatr* = 1 @ (x ® z*). For instance, in the real minimization semiring, we se¢ #tias 0 and
—o00, depending on whetharis non-negative or negative. Whéhis a matrix semiring, the closure of
x € Ris usually calledransitive closure. Computing the transitive closures is an important problem
In particular, this is a generalization of the all-pairs iminm cost problem. The transitive closure of
Boolean matrices corresponds to the all-pairs reachgabpildblem of graphs.

922. Idempotent Semirings. In all our examples of closed semirings, we can verify thats&miring
addition® is idempotent
rdbr=x

for all ring elements:.. Some authors include idempotence as an axiom for semirfiagshow that this
axiom is non-redundant, observe that the following strectu

(NU {0}, +, x,0,1)

is a closed semiring if we interpret, x in the ordinary way. This semiring addition is, of courset no
idempotent. For a finitary example of a closed semiring thabit idempotent, consider

({0,1, 00}, 4+, x,0,1).

Under idempotence, countable sums is easier to underdtapdrticular,®;>1a; depends only on the
set of distinct elements among thgs.

© Chee Yap Basic Version October 24, 2011

§7. ALL-PAIRS MINIMUM COST. DENSE CASE Lecture XIV Page 19

We can introduce a partial orderin an idempotent semiringR, &, ®, 0, 1) by defining
x<y iff (zdy) =y.

To check that this is a partial order: Cleanty< x. If z < y andy < z thenxz = y. Finally,z < y
andy < zimpliesz < z(sincez @z =@ (y®z2) = (r®y) ®z =y ® 2z = 2). Note that0 is
the minimum element in the partial order, an&l y, 2’ < ¢/ impliesz @ y < 2’ @ y'. But be warned
that in the minimization semirin® U {+oco}, this definition “<” is the inverse of the usual ordering on
reals! Instead of defining the closuré operation via countable sum, we can now directly introdgcin
the closure operation to satisfy the axiom

ab*c = sup ab™c.

n>0

An idempotent semiring with such a closure operation issckdKleene algebra(see B]). This algebra
can be defined independently from semirings.

EXERCISES

Exercise 6.1: Show thatinaring?: —z = (—1)-z,andz-0=0-x = 0forall x € R. &

Exercise 6.2: Give examples of groups that are not Abelian. HINT: conswerds over the alphabet
{z;,z; : i =1,...,n} with the cancellation law;;z; = T;x = e. O

Exercise 6.3: Under what conditions does the canonical constructidhfvbm N extend to give a ring
from a semiring? &

Exercise 6.4: Which of the following is true for the closure operator?

(i) (2%)2 = a".
(i) (z*)* = z™.
(iii) For all z, y = x* is the only solution to the equation=1& (z ® y). O

Exercise 6.5: Generalize the problem of optimal triangulation (lectuyes® that the weight function
has values in an idempotent semiring. If the semiring protucot commutative, how do you
make the problem meaningful? &

END EXERCISES

67. All-Pairs Minimum Cost: Dense Case

The input digraphG has a general cost function. Informally, we may take “densehean thatz
satisfiesm = ©(n?). To solve the all-pairs problem far, we could, of course, run Bellman-Ford’s
algorithm for a total of: times, for an overall complexity ab(n?m) = O(n*). We shall improve on
this.

For this problem, we shall represent the costed graph byoss matrixC' = [C; ;];_;. The
underlying semiring is assumed to the minimization sergisee 9)). An easy generalization of an
earlier observation (for the cage= 2) gives:

© Chee Yap Basic Version October 24, 2011

§7. ALL-PAIRS MINIMUM COST. DENSE CASE Lecture XIV Page 20

LEMMA 7. LetC be a cost matrix regarded as a matrix over the minimizationisag. If C* = [Cff)]
is the thekth power ofC' thenC* is the matrix of the exadt-link minimum cost functiod=*): for all
(2WE

00, 5) = ¢

As corollary, the all-pairs minimum path problem is equérglto the problem of computing the
transitive closure&* of C' since for alli, j:

*\ s (=Fk)
(C)ij = Ig%{cij b

Since semiring matrix multiplication takéyn?) time, it follows that we can determir@* by k — 1
matrix multiplications, taking timeJ(n®k). But this can be improved t@(n3 log k) by exploiting
associativity. The method is standard: to compiife we first compute the sequence

cre?. ot o

wherel = |1g k|. This cost®)(n?¢) semiring operations. By multiplying together some subttese
matrices together, we obtaii. This again take®(n3¢). This gives a complexity ab(n? logn) when

k = n. In caseC' has no negative cycle€’* = C™~! and so the transitive closure can be computed in
O(n?logn) time.

We next improve this bound using tidoyd-Warshall algorithm®. Another advantage to the
Floyd-Warshall algorithm is that we do not need to assumeabisence of negative cycles. To explain
this algorithm, we need to defingtapath (k € [1..n]) of a digraph: a path

p = (vo,v1,...,07)

is called ak-path if the vertices i, with the exception ofy, v, belong to the sefil..k]. Unlike the
k-link cost functions(*), we impose no bound on the lengtiof the pathp. By extension, we may say
that a0-path is one of length at most Let

sk (4, 5)

denote the cost of the minimum cdspath fromi to j. For instancé!’! (i, j) = C;;. It follows that the
following equation holds fok > 1:

080, 5) = min{o=1(i, 7), 610, k) + 0k, k)" + 61 (K,)} (13)
where we define for any € R U {£+o0},

« |0 if »>0,
"7 —x ifr<o.

Notice thaté™l (i, j) is precisely equal td(i, j). The Floyd-Warshall algorithm simply uses equa-
tion (13) to computest®! for k = 1,... n:

5 The method is similar to the standard proof of Kleene’s attarization of regular languages.

© Chee Yap Basic Version October 24, 2011

§7. ALL-PAIRS MINIMUM COST. DENSE CASE Lecture XIV Page 21

FLOYD-WARSHALL ALGORITHM:
Input: Cost matrixC' which isn by n.
Output: Matrix ¢[1..n, 1..n] representing.
I NI TI ALI ZATI ON
foralli,j =1tondo
cli, j] < Cy;
MAI N LOOP
for k =1tondo
foralli,j =1tondo
(A) cli, j] < min{c[i, j], c[i, k] + c[k, k]* + c[k, j]}

This algorithm clearly take®(n?) time. The correctness can be proved by induction. Note that
line (A) in the algorithm is not an exact transcription of atjan (L3) because the matri{1..n, 1..n] is
used to store the values &f! as well ass/*~ . Nevertheless (as in the Bellman-Ford algorithm), we
have the invariant that in theth iteration,

8(i, §) < cfi, j] < ™ (i, 5).

EXERCISES

Exercise 7.1: The transitive closure of the cost matiix was computed a€™~* in caseC has no
negative cycles. Extend this methods to the case whiarey have negative cycles. &

Exercise 7.2: Consider the min-cost path problem in which you are givergeaghhGG = (V, E'; C1, A)
where(is a positive cost function on the edges akibs a positive cost function on the vertices.
Intuitively, C1 (1, j) represents the time to fly from citiyto city j andA(¢) represents the time
delay to stop over at city. A jet-set business executive wants to construct matfixvhere the
(i, 7)th entry M; ; represents the “fastest” way to fly froirto j. This is defined as follows. If
m = (vo,v1,...,v) IS a path, define

k—1

C(r) = Ci(m) + > Alvy)

J=1

and let); ; be the minimum ofC(7) asw ranges over all paths fromto j. Please show how
to computeM for our executive. Be as efficiently as you can, and argue ¢hexctness of your
algorithm. &

Exercise 7.3: Same setting as the previous exercise,buan be negative. (There might be “negative
benefits” to stopping over at particular cities). For siroipyi assume no negative cycles. <

Exercise 7.4: An edgee = (i, j) is essentialif C(e) = J(i, j) and there are no alternative paths from
to j with costC/(e). The subgraph off comprising these edges is called tssential subgraph
of G, and denoted:*. Letm* be the number of edges *.

(i) For everyi, j, there exists a path fromto j in G* that achieves the minimum ca%t (¢, j).
(iiy G* is the union of the: single-source shortest path trees.
(iii) Show someC' > 0 and an infinite family of graph&',, such thatz has> Cn? edges.

© Chee Yap Basic Version October 24, 2011

§8. TRANSITIVE CLOSURE Lecture XIV Page 22

(iv) (Karger-Koller-Phillips, C. McGeoch) Assume poséiedge costs. Solve the all-pairs min-
imum cost problem irO(nm* + n?logn). HINT: From part (ii), we imagine that we are con-
structingG* by runningn copies of Dijkstra’s algorithm simultaneously. But theseopies are
coordinated by sharing one common Fibonacci heap. &

Exercise 7.5: Modify the Floyd-Warshall Algorithm so that it computes teagths of the first and also
the second minimum path. The second minimum path must bediftom the minimum path.
In particular, if the minimum path does not exist, or is ur@gthen the second minimum path
does not exist. In this case, the lengtixis &

END EXERCISES

§8. Transitive Closure

The Floyd-Warshall algorithm can also be used to computesitiige closures inV/,,(R) where
(R,®,®,0,1) is a closed semiring. For any sequence- (ig, ..., i) € [1..n]*, define

C(w):=@Q) Clij-1,i;), m>2.
j=1

If m =0orl, C(w):=1 (the identity for®). For eachk = 0, ..., n, we will be interested in sequences
inw € i[1..k]*j, which may be identified witit-paths. We define the matrx* = [CZ.[;“]] where

k
cl= @ c).
weilk]*j
LEMMA 8.
() ¢ = C andfork =1,...,n,
o = it g (0l (Ol &) e

(i) ") = C.

Proof. We only verify equationX4), using properties of countable sums:

oM = b cw|e) C(w)
weill..k—1]*j weill. k—1]*k[1..k]*j

_ e (D c<w'>)®(T c<w">))
w'€ill. k—1]*k W €R[1..k]*j
ol @ ew)o(@, o)
1*j

w' Ek[L..k]*k w" Ek[L..k—1
= cile|ciel @ cw|eci .
wek[l..k]*k

© Chee Yap Basic Version October 24, 2011

§8. TRANSITIVE CLOSURE Lecture XIV Page 23

It remains to determine the element= @, ;1. 4+, C'(w). It follows from countable commutativity
that
k—1 k—1 k—1 k—1]\x*
r=1ech Vel ek e =),

as desired. Q.E.D.

In practice, we can actually do better tham), Suppose we do not keep distinct copies of (&
matrix for eachk, but have only on€ matrix. Then we can use the update rule

Oij = Oij (&) (Oik & (Ckk)* ® ij) . (15)

It may be verified that this leads to the same result. Howsvemay be able to terminate earlier.

We use the analogue of equatidr) in line (A) of the Floyd-Warshall algorithm. The algorithm
usesO(n?) operations of the underlying closed semiring operations.

923. Boolean transitive closure. We are interested in computing transitive closure in therimat
semiring M,,(B2), where By = {0, 1} is the closed Boolean semiring. L&C,(n) denote the bit
complexity of computing the transitive closureli, (B2). Here “complexity” refers to the number of
operations in the underlying semiriti¢p. The Floyd-Warshall algorithm shows that

TCy(n) = O(n®).
We now improve this bound by exploiting the bound
M (n) = O(MMn)logn) = o(n?)

(see equationl(?)). We may assume theVk(n) = Q(n?) andTCy(n) = Q(n?). This assumption can
be verified in any reasonable model of computation, but weneil do this because it would involve
us in an expensive detour with little insights for the gehegaults. This assumption also implies that
MW () is an upper bound on addition of matrices, whicidig:?). Our main result will be:

THEOREMY. TG (n) = O(MVk(n)).

In our proof, we will interpret a matrid € M, (B>) as the adjacency matrix of a digraph on
vertices. So the transitive closuse represents theeachability matrix of this graph:

(A*);; = 1 iff vertex j is reachable from.

We may assume is a power of2. To show thaffC,(n) = O(MVk(n)), we simply note that ifA, B
M, (Bs) then the reachability interpretation shows that if

0 A 0
c=|0 0 B
0 0 0
then
I A AB
C*=I+C+C?>=| 0 I B
0o 0 I

© Chee Yap Basic Version October 24, 2011

§9. ALL-PAIRSMINIMUM COST. SPARSECASE Lecture XIV Page 24

Thus, we can reduce computing the proddét to computing the transitive closure 6f€ Ms,, (Bs):

M) = O(TC:(3n)) + O(n?) = O(TCy(n)).

Now we show the converse. Assuming thatB, C, D € M, (B2), we claim that
A B\ _ E* E*BD* (16)
C D ~ \ D*CE* D*+ D*CE*BD*)’

E:=A+ BD*C.

This formidable-looking expressiori) has a relatively simple combinatorial explanation using t
reachability interpretation. Assume the matrix of intéreas dimension&n x 2n and it has been
partitioned evenly intad, B, C, D. If the vertices of the corresponding graphis [1..2n] then A
represents the subgraph inducedbyn|, D the subgraphinduced by + 1..2n], B the bipartite graph
comprising edges from vertices fih..n] to those inn + 1..2n], andC' is similarly interpreted. NowF
represents the reachability relation @nn| determined by paths a¥ that makesit most one detour
outside[1..n]. Itis then clear thak* represents the reachability relation@frestricted to those vertices
n [1..n]. This justifies the top-left submatrix in the RHS of equat{®f). We leave it to the reader to
similarly justify the other three submatrices on the RHS.

where

Thus, the RHS is obtained by computing, in this order:

D* (costing TCy(n)),
E (costing O(MW(n))),
E* (costing TCy(n)),

and finally, the remaining three submatrices on the RHS cd&gu(L6). The total cost of this procedure
is

TG (2n) = 2TCy(n) + O(MVk(n))
which has solutiomC;(2n) = O(MVk(n)). This showsTC,(n) = O(MVk(n)), as desired.

EXERCISES

Exercise 8.1: Rewrite update rulel@) that corresponds to the improved rul&). In other words, show
when the update (ﬁi‘l[f] is sometimes using an “advance value” on the right-hand side <

Exercise 8.2: Give similar interpretations for the other three entriethef RHS of equationlf). <

Exercise 8.3: Express the RHS of equatioh@) as a product of three matrices

I 0 E* 0 I BD*
D*C 1 0 D= 0 1 ’

and give an interpretation of the three matrices as a decsitiggo of paths in the underlying
graph. &

END EXERCISES

© Chee Yap Basic Version October 24, 2011

§9. ALL-PAIRSMINIMUM COST. SPARSECASE Lecture XIV Page 25

69. All-pairs Minimum Cost: Sparse Case

Donald Johnson gave an interesting all-pairs minimum dgstrihm that runs irO(n? log n+mn)
time. This improves on Floyd-Warshall when the graph is spgsaym = o(n?)). Assume that there
are no negative cycles in our digragh = (V, E; C). The idea is to introduce potential function

¢p:V—-R

and to modify the cost function to

C(i,j) = C(i,) + #(i) = d())- (17)
We want the modified cost fugcticﬂa to be non-negative so that Dijkstra’s algorithm is applleadn
the modified graplez = (V, E; C).

But how are minimum paths i@ and inG related? Notice that i, p’ are two paths from a common
start to a common final vertex then

~

Cw) = Cp) =)~ C).
This proves:
LEMMA 10. A path is a minimum cost path @ iff it is minimum cost path iids.

Supposss is a vertex that can reach all the other vertices of the grapthis case, we can define
the potential function to be
d(v):=0(s,v).
Note thatg(v) # —oo since we stipulated tha@ has no negative cycle. Alsp(v) # oo sinces can
reachv. The following inequality is easy to see:

o(j) < o(i) + C(i, j)
Thus we have:

LEMMA 11. Assuming there are no negative cycles, anel V' can reach all other vertices, the above
modified cost functio’ is non-negative,

~

C(i,j) > 0.

In particular, there are no negative cycleﬁn To use the suggested potential function, we need a
vertex that can reach all other vertices. This is achievenhtogducing an artificial vertex ¢ V" and
using the grapl’ = (V U {s}, E’;C") whereE’ = E U {(s,v) : v € V} and for alli,j € V, let
C'(i,5) = C(i,7), C'(s,7) = 0andC’(i, s) = co. Call G’ theaugmentation of G with s. Note that
G’ has no negative cycle ifff has no negative cycle; furthermore, for a pathetween two vertices in
V, pis a minimum path irf7 iff it is a minimum path inG’. This justifies the following algorithm.

JOHNSON S ALGORITHM:
Input: Graph(V, E; C) with general cost, no negative cycle
Output: All pairs minimum cost matrix.
I NI TI ALI ZATI ON
Let (V', E’; C") be the augmentation ¢¥/, E; C) by s ¢ V.
Invoke Bellman-Ford oV’ E’; C’, s) to computes.
Abort if negative cycle discovered; else, forallv € V,
let C(u, v) — C(u,v) + 8(s,u) — &(s, v)
MAI N LOOP
For eachv € V, invoke Dijkstra’s algorithm onlV, E; 5‘, v)
to compute),,.

© Chee Yap Basic Version October 24, 2011

§10. ALL-PAIRSMINIMUM LINK PATHS IN BIGRAPHS Lecture XIV Page 26

The complexity of initialization isO(mn) and each invocation of Dijkstra in the main loop is
O(nlogn + m). Hence the overall complexity 8(n? log n + mn).

610. All-pairs Minimum Link Paths in Bigraphs

We consider all-pairs minimum paths in bigraphs with unitso Hence we are interested in min-
imum length paths. Lef: be a bigraph on verticeld..n] and A be its adjacency matrix. For our
purposes, we will assume that the diagonal entried afel. Letd;; denote the minimum length of a
path betweeri and;j. Our goal is to compute the matri = [d;;]},_,. We describe a recent result of
Seidel f] showing how to reduce this to integer matrix multiplicatid-or simplicity, we may assume
thatG is a connected graph sf; < oco.

In order to carry out the reduction, we must first consider'siggiare ofG”. This is the grapiG’ on
[1..n] such that(i, j) is an edge of¥ iff there is a path of length at mostin G betweeni and;. Let
A’ be the corresponding adjacency matrix afiddenote the minimum length of a pathd between
i andj. Note thatd’ = A2, where the matrix product is defined over the underlying Banlsemiring.

The following lemma related;; andd;,. But first, note the following simple consequence of the
triangular inequality for bigraphs:

dir, — djr, < dij < dige + djig, Vi, j, k.
Moreover, for alli, j, ¢, there existg such that
(< dij =0 =dy, = dij — djp.. (18)
In our proof below, we will choosé= d;; — 1 and sok is adjacent tg.
LEMMA 12.

0)d; = | %]

1) d;; =even impliesl;, > d;, for all k adjacent toj.
2) d;; =odd impliesd;; < d;; for all k adjacent toj. Moreover, there is & adjacent toj such that
djy, < dij.

7 1]

Proof. 0) We have2d;; > d;; because given any pathdi of lengthd;;, there is one it between

the same end points of length at masf,. We have2d;; < d;; + 1 because given any path @ of
lengthd;;, there is one i’ of length at mostd;; + 1)/2 between the same end points. This shows
dij < 2dj; < dij +1,

from which the desired result follows.
1) If k is adjacent tg thend;,, > d;; — d;i. = d;; — 1. Hence

di; — 1 dy
o> | i — % — g
ez [=[] -4

2) If k is adjacent tg thend;;, < d;; + 1 and hence

di; + 1 dy;
P iy I N R

Moreover, by equationl@), there is & adjacent tgj such thatl;;, = d;; — 1. Then

dij — 1 dij
A e g e)
]

© Chee Yap Basic Version October 24, 2011

§10. ALL-PAIRSMINIMUM LINK PATHS IN BIGRAPHS Lecture XIV Page 27

Q.E.D.

As a corollary of 1) and 2) above:
COROLLARY 13. For all , j, the inequality
S djy > deg(y) - d
k}:dkal

holds if and only iZ;; is even.

Notice thaty ;. , _, d;, is equalto thei, j)th entry in the matrix(” = D’ - A. So to determine the
parity of d;j we simply comparé’;; to deg(j) - d;;.

We now have a simple algorithm to compude= [d;;]. Thediameter diam(G) is the maximum
value in the matrixD. Let E be the matrix of alll’s. Clearlydiam(G) = 1iff D = E. Note that the
diameter ofG" is [r/2].

SEIDEL ALGORITHM
Input: A, the adjacency matrix af.
Output: The matrixD = [d;;].
1) Computed’ «— A2, the adjacency matrix af’.
2) If A’ = F then the diameter af is < 2,
and returnD «— 2A’ — A — I wherel is the identity matrix
3) Recursively compute the matri¥’ = [d];] for A",
4) Compute the matrix produft;;] < D’ - A.
5) ReturnD = [d;;] where
dij = { 2dgj- —1 else ’

924. Correctness. The correctness of the output wheti has diameter 1 is easily verified. The
inductive case has already been justified in the precedivgjalement. In particular, step 5 implements
the test for the parity of;; given by corollaryl3. Each recursive call reduces the diameter of the graph
by a factor of2 and so the depth of recursion is at mish. Since the work done at each level of the
recursion iSO(MV(n)), we obtain an overall complexity of

O(MM(n)logn).

We remark that, unlike the other minimum cost algorithmss ito simple matter to modify the above
algorithm to obtain the minimum length paths. In fact, itngpiossible to output these paths explicitly
in subcubic time since this could haggn?) output size. But we could encode these paths as a ma-
trix N whereN,; = k if some shortest path fromto j begins with the edgé;, k). Seidel gave an
O(MMn) log® n) expected time algorithm to compulé.

EXERCISES

Exercise 10.1:We consider the same problem but for digraphs:
(a) Show that if we have a digraph with unit cost then the feilg is true for alli # j: d;; is

© Chee Yap Basic Version October 24, 2011

§10. ALL-PAIRSMINIMUM LINK PATHS IN BIGRAPHS Lecture XIV Page 28

even if and only ifd;, > d;; holds for allk such thatly; = 1.
(b) Use this fact to give an algorithm usii@(MMn)logn) arithmetic (+, — x) operations on
integers. HINT: replac®’ = [d};] by E = [e;;] wheree;; = n" %, O

END EXERCISES

References
[1] A. V. Goldberg and C. Harrelson. Computing the shorteghp A* search meets graph theory. In
Proc. 16th ACM-SIAM Symp. on Discrete Algorithms (SODA, 0&. 2005.

[2] P. Hart, N. Nilsson, and B. Raphael. A formal basis for tieiristic determination of minimum
cost pathslEEE Trans. on Systems Science and Cybernet{@3:100-107, 1968.

[3] D. Kozen. On Kleene algebras and closed semiring®rérc. Math. Foundations of Computer Sci.
pages 26—47. Springer-Verlag, 1990. Lecture Notes in Gl&452.

[4] R. Seidel. On the all-pairs-shortest-path probleACM Symp. Theory of CompuR4:745-749,
1992.

© Chee Yap Basic Version October 24, 2011

	 MINIMUM COST PATHS
	 Minimum Path Problems
	 Single-source Problem: General Cost
	 Single-source Problem: Positive Costs
	 Goal-Directed Dijkstra
	 Semirings
	 Closed Semirings
	 All-Pairs Minimum Cost: Dense Case
	 Transitive Closure
	 All-pairs Minimum Cost: Sparse Case
	 All-pairs Minimum Link Paths in Bigraphs

