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“The shortest path between two truths in the real domain passes through the complex
domain.”

– Jacques Salomon Hadamard (1865–1963)

Lecture XIV
MINIMUM COST PATHS

We study digraphs with edge cost functions. Several problems studied under “pure” graphs in Chap-
ter 4 is thereby generalized. Connectivity becomes considerably more interesting in the presence of cost
functions. Connectivity has to do with paths. SupposeΠ(u, v) denote the set of all paths from vertexu
to vertexv. The basic problem here is to find a pathπ ∈ Π(u, v) whose cost is minimum. The dynamic
programming principle is at work in such problems. Minimum cost path algorithms can take advantage
of the special nature of the cost function in the following cases:

• All edges have unit cost

• Positive edge costs

• Sparse graph (i.e., most edges have cost∞)

• Edge costs are symmetric (i.e., we are dealing with bigraphs)

We have already studied the case of unit edge costs — the algorithm here is breadth first search
(BFS). The key algorithmic feature of BFS is the use of a FIFO queue. When generalized to arbitrary
positive edge costs, we must replace this FIFO queue by a priority queue. We will also see how to take
advantage of sparse graphs as well as bigraphs.

We can generalize shortest path problems to computations over semirings. The important problem
of transitive closure problem arises through this generalization.

§1. Minimum Path Problems

¶1. Costed Graphs. Let G = (V, E; C) be a digraph with edge cost function

C : E → R.

We may extend the cost functionC to thecost matrix C′ : V 2 → R ∪ {∞} where

C′(u, v) =






C(u, v) if (u, v) ∈ E,
0 if u = v,
∞ else.

Normally, we continue to writeC for C′. The simplest cost function isunit cost whereC(e) = 1 for
all e ∈ E; this can be generalized topositive cost functionswhereC(e) > 0. In constrast to positive
costs, we may speak of “general” cost functions to emphasizethe possibility of negative costs.
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¶2. Convention. The size parameters for complexity considerations are, as usual, n = |V | and
m = |E|. We usually letV = {1, . . . , n}.

¶3. Minimum cost paths. Letp = (v0− · · ·−vk) be a path ofG, i.e.,(vi−1, vi) ∈ E for i = 1, . . . , k.
TheC-cost ofp is defined to be

C(p):=
k∑

i=1

C(vi−1, vi).

In case of the empty path (k = 0), we defineC(p) = 0. Call p aC-minimum cost path if there are no
other paths fromv0 to vk with smaller cost; in this case,C(p) is theC-minimum cost from v0 to vk.
We use the notationδC(v0, vk) for this cost:

δC(v0, vk):=C(p).

Reference toC may be omitted when it is understood or irrelevant. For short, we say “minimum path”
(or min-paths) instead of “minimum cost path”. Although it is very common to say “shortest path” for
min-paths, but we prefer to restrict this usage only to the case of unit cost. If there is no path fromi shortest path = min

cost + unit cost
to j, let δ(i, j):=∞. A cycle [v0−, . . . ,−vk] is called anegative cycleif

∑k

i=0 C(vi, vi+1) < 0 (here,
vk+1 = v0). In case there exist paths fromi to j with arbitrarily negative costs, we defineδ(i, j):=−∞.
This situation obtains if there is a path fromi to j that contains a negative cycle. Thus we can viewδ as
a matrix, theC-minimum cost matrix

δC : V 2 → R ∪ {±∞}.

¶4. Minimum path problems. There are three basic versions:

• Single-pair minimum paths Given an edge-costed digraphG = (V, E; C, s, t) with source and
sinks, t ∈ V , find the minimum path froms to t.

• Single-source minimum pathsGiven an edge-costed digraphG = (V, E; C, s) with source
s ∈ V , find the minimum paths froms to eacht ∈ V .

• All-pairs minimum paths Given an edge-costed digraphG = (V, E; C), find the minimum paths
between froms to t for all s, t ∈ V .

When there is no minimum path fromi to j for one of the pairs(i, j) that is asked for, we are
expected to detect this and outputδ(i, j) = ∞ or δ(i, j) = −∞; in the latter case, we further output a
path fromi to j containing a negative cycle. Usually, these problems are stated for digraphs. Although
the bigraphs can be viewed as special cases of digraphs for the purposes of these problems, we need to
be careful in the presence of negative edges. Otherwise, anynegative bi-directional edge immediately
give us a negative cycle. Special techniques can be used for bigraphs (see§8 and§9).

Clearly the three problems are in order of increasing difficulty. But you will not encounter any
algorithm that is expressedly designed for the first problem(single-pair case). This is because every
knownalgorithm for the single-pair problem is essentially also asolution to the single-source problem.
It would be nice to prove that this is necessarily so.

¶5. Minimum cost versions. There is a simpler version of each of the above problems,viz., where we
ask for the minimum costδ(i, j) instead of the minimum path fromi to j (for variousi, j depending on
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the problem). We call this themin-cost versionof the corresponding shortest path problem. Usually1

the min-cost algorithms can easily be modified to also compute the min-path as a by-product, without
affecting the asymptotic complexity. Intuitively, this isbecause the minimum costs constitute the critical
information that drives these algorithms. So it is pedagogically advantageous to present only the min-
cost version of these algorithms.We generally adopt this strategy.

¶6. Dynamic programming principle. The dynamic programming principle (Chapter 7) applies
to minimum paths: subpaths of minimum paths are minimum paths. Indeed, the simplification from
minimum solution instances to minimum costs is also a feature of dynamic programming.

¶7. Path Length and Link Distance. If C is the unit cost thenC(p) = k is just thelength of the path
p = (v0, . . . , vk). Consistent with this “length” terminology, we might call paths of minimum length a
“shortest path”. Unfortunately, the literature also use “shortest path” for the general min-path. To avoid
ambiguity, we adopt another terminology found in the literature: the minimum length of a path fromi
to j may be called thelink distance from i to j. Sayj is reachablefrom i if the link distance fromi to
j is finite.

¶8. Link-bounded minimum paths. Letk be a non-negative integer. We define a path to be theexact
k-link minimum path if it has minimum cost among allk-link paths from its source to its terminus.
Let δ(=k)(i, j) denote the cost of an exactk-link minimum path fromi to j and we again have theexact
k-link minimum cost matrix δ(=k). We can also considerat mostk links: the corresponding matrix is
given by

δ(k)(i, j) =
k

min
ℓ=0

δ(=ℓ)(i, j).

Call δ(k) thek-link minimum cost matrix . Unlike theδ matrix,δ(k) never attain−∞. If there are no
negative cycles, it is easy to see that

δ(n−1) = δ.

¶9. Minimum path tree. Our single-source path algorithms construct a set of minimum paths that
comes from a single tree rooted at the source. By aminimum path tree of G = (V, E; C) we mean
a finite rooted treeT such that the paths from the root to every vertex in the tree isa minimum path;
moreover, every node reachable from the root appears inT . Under unit cost, this tree is just the a breadth
first search (BFS) tree. Ifs can reach a negative cycle, then the minimum path tree rootedat s is not
defined. The following is a characterization of minimum pathtrees.

LEMMA 1 (minimum path tree).Suppose thatT ⊆ E is a tree rooted ats ∈ V andT spans the set of
nodes reachable froms. For any nodei in the tree, letd(i) denote the cost froms to i along a path of
T . ThenT is a minimum path tree iff for all(i, j) ∈ E, d(j) ≤ d(i) + C(i, j).

EXERCISES

Exercise 1.1: Considers the following minimum path problem: each nodeu has a weightW (u) and
the cost of edge(u, v) is W (v) −W (u). Give anO(m) algorithm to solve theminimum cost
versionof the single source minimum path problem. Can you convert this algorithm into one that
actually produce the minimum paths? ♦

1 See the Exercises for exceptions to this remark.
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Exercise 1.2: Another variation of minimum paths is to assign costs to the vertices. The cost of a
path is the sum of the costs of the vertices along the path. Reduce thisvertex-costedversion of
minimum paths to the originaledge-costedversion. ♦

Exercise 1.3: Let B:= min{C(e) : e ∈ E} < 0 and letp be a path with costC(p) < (n− 1)B. Show
the following:
(a) The pathp contains a negative cycle.
(b) The bound(n− 1)B is the best possible.
(c) If Z is a negative cycle thenZ contains a simple negative subcycle. The same is true of
positive cycles. ♦

Exercise 1.4: Prove the minimum path tree lemma. ♦

END EXERCISES

§2. Single-source Problem: General Cost

We begin with an algorithm for general cost functions, due toBellman (1958) and Ford (1962). We
assume that the input digraph has the adjacency-list representation. AssumingV = {1, . . . , n} and1 is
the source, we want to computeδ(1, i) = δ1(i) for eachi = 1, . . . , n.

¶10. Simple Bellman-Ford Algorithm. The Bellman-Ford algorithm is simple, and uses only an
arrayc[1..n] as data structure. At the conclusion of the algorithm,c[i] = δ1(i). To bring out the main
ideas, we first give a simplified version that is correctprovided no negative cycle is reachable from
vertex1. In fact, we can say somewhat more about the output of the simplified algorithm in general
(negative cycle or no):

Correctness Criteria:The arrayc at the end of the algorithm is a realizable(n− 1)-bound.

For anyk ≥ 0, we callc[1..n] a realizablek-bound if for eachi ∈ [1..n],

(a) (Lower bound)c[i] ≤ δ
(k)
1 (i).

(b) (Upper bound/Realizability) There is a path from1 to i with costc[i].
Thus a realizablek-bound is both a lower bound and an upper bound, given by

δ
(k)
1 (i) ≥ c[i] ≥ δ1(i), i ∈ [1..n].

From (a) and (b), we conclude thatc[i] =∞ means there is no path from1 to i.

SIMPLE BELLMAN -FORD ALGORITHM:
Input: (V, E; C, s) whereV = [1..n] ands = 1.
Output: Array c[1..n] as described above.
⊲ INITIALIZATION

c[1]← 0
for all i← 2 to n, c[i]←∞

⊲ MAIN LOOP
for k ← 1 to n− 1

PHASE() ⊳ see below
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The main loop consists ofn− 1 identicalphasesdescribed as follows:

PHASE()
for all (u, v) ∈ E

c[v]← min{c[v], c[u] + C(u, v)}

The initialization is regarded as the zeroth phase. It is clear that each phase takesO(m) time for an
overall complexity ofO(mn).

LEMMA 2 (Invariance).At the end of thekth phase (k ≥ 0), the arrayc[1..n] is a realizablek-bound.

Proof. This is immediate fork = 0 so assumek ≥ 1. Let v ∈ [1..n] andc[v] < ∞. First we show
thatc[v] is realizable,i.e., there is a path from1 to v with costc[v]. If c[v] is unchanged in thekth phase,
then this follows by induction. Otherwise it is updated asc[u] + C(u, v) for someu. Clearlyc[u] <∞
and so it represents the cost of some pathp from1 tou. Thusc[v] is now the cost ofp; (u, v). This proves
realizability ofc. Next we must show thatc[v] ≤ δ(k)(v). If δ(k)(v) represents the cost of a path from1
to v of length less thank, then the desired inequality follows by induction:c[v] ≤ δ(k−1)(v) = δ(k)(v).
Otherwise,δ(k)(v) is the cost of a path of lengthk. Let this path bep; (u, v) for someu. By induction,
the previous value ofc[u] is ≤ C(p). Because of our update method,c[v] ≤ c[u] + C(u, v). Hence
c[v] ≤ C(p) + C(u, v) = δ(k)(v). Q.E.D.

In the absence of negative cycles,δ = δ(n−1). Then the output arrayc representsδ1, as desired.

¶11. Bellman-Ford with negative cycles. We now remove our assumption about no negative cycles.

LEMMA 3 (Negative Cycle Test).Let c[1..n] be a realizable(n− 1)-bound.
(a) If there are no negative cycles reachable from1 then for alli, j ∈ [1..n], c[j] ≤ c[i] + C(i, j).
(b) If Z is a negative cycle reachable from1 thenc[j] > c[i] + C(i, j) holds for some edge(i, j) in Z.

Proof. (a) If no negative cycle is reachable, then no optimum path from 1 has length more than
n − 1. Hencec[i] ≤ δ

(n−1)
1 (i) impliesc[i] = δ

(n−1)
1 (i) = δ1(i). The desired inequality follows from

δ(j) ≤ δ(i) + C(i, j). (b) By way of contradiction, supposec[j] ≤ c[i] + C(i, j) for all edges(i, j) in
a reachable negative cycleZ. Summing over all edges inZ,

∑

(i,j)∈Z

c[j] ≤
∑

(i,j)∈Z

(c[i] + C(i, j))

≤ C(Z) +
∑

(i,j)∈Z

c[i].

Canceling the summation on each side, we see that0 ≤ C(Z), a contradiction. Q.E.D.

We can use this lemma to detect if there are any negative cycles reachable from1 in the simple
Bellman-Ford algorithm. We can also use it to justify ageneral Bellman-Ford algorithm which com-
puteδ1 for an arbitrary input graph.
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GENERAL BELLMAN -FORD ALGORITHM:
Input: (V, E; C, s) with V = [1..n] ands = 1.
Output: Array c[1..n] representingδ1.
⊲ INITIALIZATION

(as in Simple Bellman-Ford Algorithm)
⊲ MAIN LOOP

(as in Simple Bellman-Ford Algorithm)
⊲ END LOOP:

for k ← 1 to n
PHASE() ⊳ as before

END PHASE() ⊳ see below

The END PHASE is a simple modification of the PHASE computation:

END PHASE()
for all (u, v) ∈ E

If (c[v] > c[u] + C(u, v)) then c[v]← −∞.

After n iterations of this, it is easy to see thatc[1..n] representsδ1. Moreover, the asymptotic
complexity of the original algorithm is preserved.

¶12. Minimum paths. We indicate how the minimum paths can be computed by a simple modi-
fication to the above algorithm. We maintain another arrayp[1..n], initialized to nil. Each time we
updatec[v] to somec[u] + C(u, v), we also updatep[v] ← u. It is easy to see that the set of edges
{(v, p[v]) : v ∈ V, p[v] 6= nil} forms a minimum path tree.

EXERCISES

Exercise 2.1: After phasek in the simple Bellman-Ford algorithm,c[v] is the cost of a path from1 to
v of length at mostkm (m = |E|). ♦

Exercise 2.2:
(a) Show that usingn−1 phases, followed byn end phases in the general Bellman-Ford algorithm
is the best possible.
(b) Suppose we mark a vertexj to beactive (for the next phase) if the valuec[j] is decreased
during a phase. In the next phase, we only need to look at thoseedges out of active vertices.
Discuss how this improvement affect the complexity of the Bellman-Ford algorithm. ♦

Exercise 2.3: SupposeR is ann × n matrix whereRi,j > 0 is the amount of currencyj that you can
buy with 1 unit of currencyi. E.g., if i represents British pound andj represents US dollar then
Ri,j = 1.8 means that you can get 1.8 US dollars for 1 British pound. Acurrency transaction is
a sequencec0, c1, . . . , cm of m ≥ 1 currencies such that you start with one unit of currencyc0 and
use it to buy currencyc1, then use the proceeds (which is a certain amount in currencyc1) to buy
currencyc2, etc. In general, you use the proceeds of theith transaction (which is a certain amount
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of currencyci) to buy currencyci+1. Finally, you obtain a certain amountT (c0, c1, . . . , cm) of
currencycm.

(a) We call(c0, c1, . . . , cm) an arbitrage situation if cm = c0 and T (c0, c1, . . . , cm) > 1.
Characterize an arbitrage situation in terms of the matrixR.

(b) Give an efficient algorithm to detect an arbitrage situation from an input matrixR. What is the
complexity of your algorithm? NOTE: Assuming no transaction costs, it is clear that international
money bankers can exploit arbitrage situations.

♦

Exercise 2.4: In the previous question, the algorithm outputs any arbitrage situation. Let
(i0, i1, . . . , im) be an arbitrage situation whereim = i0 andT (i0, i1, . . . , im) < 1 as before.
We define theinefficiency of this arbitrage situation to be the product(m × T (i0, i1, . . . , im).
Thus the largem or T (i0, . . . , im) is, the less efficient is the arbitrage situation. Give an efficient
algorithm if detect the most efficient arbitrage situation. ♦

END EXERCISES

§3. Single-source Problem: Positive Costs

We now solve the single-source minimum cost problem,assuming the costs are positive.The algo-
rithm is from Dijkstra (1959). The input graph is again assumed to have adjacency-list representation.

¶13. Dijkstra’s Algorithm: two invariants The idea is to grow a setS of vertices, withS initially
containing just the source node,1. The setS is the set of vertices whose minimum cost from the source
is known (as it turns out). LetU :=V \ S denote the complementary set of “unknown” vertices.

S = source or stable,
U = unknown

This algorithm has the same abstract structure as Prim’s algorithm for minimum spanning tree. We
maintain an arrayd[1..n] of real values whered[j] is the current approximation toδ1(j). Initially, the
array is givend[j] = C(1, j). In particular,d[1] = 0 andd[j] =∞ if (1−j) 6∈ E. Inductively, the array
d[1..n] satisfies the following invariants:

Invariant (A) For eachu ∈ U , we have

d[u] = min
v∈S
{d[v] + C(v, u)}. (1)

Note that this invariant holds initially sinceS = {1} andd[1] = 0.

Invariant (B) If u ∈ S thend[u] is equal toδ1(u), the minimum cost from1 to u. Again, this is initially
true withS = {1} andd[1] = 0 = δ1(1).

From Invariant (B), we can interpret (1) in Invariant (A) as saying thatd[u] is the minimum cost
ranging over all paths from1 to u whose intermediate vertices are restricted toS. This implies

d[u] ≥ δ1(u), (u ∈ V ). (2)
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LEMMA 4. Assume Invariants (A) and (B). Letu0 ∈ U = V \ S such that

d[u0] = min{d[i] : i ∈ V \ S}.

Thend[u0] = δ1(u0).

Proof. First, we take care of the trivial case whenδ1(u0) =

s

U

v

u

S

Figure 1: Dijkstra’s Invariant

∞. In this case, the lemma is true because (2) impliesd[u] =∞.

Otherwise, there exists a minimum pathp from1 tou0. Then
we can decomposep into the form

p = p′; (v, u); p′′

wherev ∈ S andu ∈ U . This decomposition exists because the
first vertex1 in p is in S and the last vertexu0 in p is in U . See
figure1. Note thatC(p′) = δ1(v). Then

d[u0] ≤ d[u] (choice ofu0 as minimum)
≤ d[v] + C(v, u) (Invariant (B))
= δ1(v) + C(v, u) (Invariant (A))
= C(p′) + C(v, u) (dynamic programming principle)
≤ C(p) (since costs are positive)
= δ1(u0). (choice ofp)

Combined with equation (2), we conclude thatd[u0] = δ1(u0). Q.E.D.

This lemma shows that if we extendS to S′:=S ∪ {u0}, Invariant (A) is preserved. It is easy to see
Invariant (B) can also be preserved by updating the value ofd[i] for eachi ∈ V \S′ using the following
equation:

d[i]← min{d[i], d[u0] + C(u0, i)}. (3)

Moreover, we only need update thosei that are adjacent tou0. The repeated extension of the setS while
preserving Invariants (A) and (B) constitutes Dijkstra’s algorithm.

Let us now summarize the algorithm. First, let the dynamic set U = V \S be stored in a min-priority
queueQ, usingd[i] as the priority of vertexi ∈ U . The queue is assumed2 to support the DecreaseKey
operation, which is needed in updatingd[i] á la equation (3).

2 This assumption is equivalent to the ability to delete an arbitrary element from the queue. For, DecreaseKey ofx can be
viewed as a deletion ofx followed by an re-insertion ofx with the new priority. Conversely, if we have DecreaseKey, then we
can delete an arbitrary element by decreasing its priority to −∞ followed by a removeMin.
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DIJKSTRA’ S ALGORITHM:
Input: (V, E; C, s) whereV = [1..n] ands = 1.
Output: Array d[1..n] with d[i] = δ1(i).
⊲ INITIALIZATION

1. d[1]← 0; Initialize an empty queueQ.
2. for i← 2 to n, d[i]←∞,
3. for i← 1 to n, Q.Insert(i, d[i]).

⊲ MAIN LOOP
4. while Q 6= ∅ do
5. u0 ← Q.DeleteMin()
6. for all i adjacent tou0 do
7. If d[i] > d[u0] + C(u0, i) then
8. d[i]← d[u0] + C(u0, i)
9. Q.DecreaseKey(i, d[i])

end{while}

A

B

C

D

F

G

7

1110

1

2

16

4

9

11

3

7

10

E

Figure 2: Illustrating Dijkstra’s Algorithm

¶14. Hand Simulation. Let us perform a hand-simulation of this algorithm using thegraph in fig-
ure 2. Let the source node beA. The arrayd[i] is initialized to∞ with d[A] = 0. It is updated at
each stage: we have underlined the entry that is the minimum extracted for that stage, and only updated
entries of that stage are explicitly indicated:
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VERTICES A B C D E F G
STAGE 0 0 ∞ ∞ ∞ ∞ ∞ ∞
STAGE 1 0 7 1 10 11
STAGE 2 1 17
STAGE 3 7 9 16
STAGE 4 9 16
STAGE 5 11 15
STAGE 6 15
STAGE 7 16

¶15. Complexity. AssumeQ is implemented by Fibonacci heaps. The initialization (including in-
sertion into the queueQ) takesO(n) time. In the main loop, we don − 1 DeleteMins and at mostm
DecreaseKeys. [To see this, we may charge each DecreaseKey operation to the edge(u0, i) used to
test for adjacency in step 8.] This costsO(m + n log n), which is also the complexity of the overall
algorithm.

We ought to note that if the graph is sparse (say, withΩ(n2/ logn) edges) then a more straightfor-
ward algorithm might be used that dispenses with the queue. Instead, to find the next minimum for the
while loop, we just use an obviousO(n) search. The resulting algorithm has complexityO(n2). The
details are left as an exercise.

EXERCISES

Exercise 3.1: Show thatc[v] is the minimum cost of paths from1 to v whose intermediate vertices are
restricted toS. ♦

Exercise 3.2: Carry the hand-simulation of Dijkstra’s algorithm for the graph in Figure2, but using the
edge costsC9(e) defined as follows:C9(e) = C(e) + 9 if C(e) ≤ 9, andC9(e) = C(e) − 9 if
C(e) > 9. ♦

Exercise 3.3: Show that Dijstra’s algorithm may fail ifG has negative edge weights (even without
negative cycles). ♦

Exercise 3.4: Show that the setS satisfies the additional property that each node inU = V \ S is at
least as close to the source1 as the nodes inS. Discuss potential applications where Dijkstra’s
algorithm might be initialized with a setS that does not satisfy this property (but still satisfy
properties (A) and (B), so that the basic algorithm works). ♦

Exercise 3.5: Give the programming details for the “simple”O(n2) implementation of Dijstra’s algo-
rithm. ♦

Exercise 3.6: Convert Dijkstra’s algorithm above into a minimum path algorithm. ♦

Exercise 3.7: Justify this remark: if every edge in the graph has weight 1, then the BFS algorithm is
basically like Dijkstra’s algorithm. ♦

c© Chee Yap Basic Version October 24, 2011



§4. GOAL -DIRECTEDDIJKSTRA Lecture XIV Page 11

Exercise 3.8: (D.B. Johnson) Suppose thatG have negative cost edges, but no negative cycle.
(i) Give an example that cause Dijstra’s algorithm to break down.
(ii) Modify Dijstra’s algorithm so that each time we delete avertexu0 from the queueQ, we look
atall the vertices ofV (not just the vertices adjacent tou0). For eachi ∈ V , we updatec[i] in the
usual way (line 9 in Dijkstra’s algorithm). Ifc[i] is unchanged, we do nothing, so supposec[i] is
decreased. Ifi is in the queue, we do DecreaseKey oni as before; otherwise we reinserti into Q.
Prove that this modification terminates with the correct answer.
(iii) Choose the vertexu0 carefully so that the algorithm in (ii) isO(n3). ♦

Exercise 3.9: Let C1, C2 be two positive cost matrices on[1..n]. Say a pathp from i to j is (C1, C2)-
minimum if for all pathsq from i to j, C1(q) ≥ C1(p), and moreover, ifC1(q) = C1(p) then
C2(q) ≥ C2(p). E.g., if C2 is the unit cost function then a(C1, C2)-minimum path betweenu
andv is aC1-minimum cost path such that its length is minimum among allC1-minimum paths
betweenu andv. Solve the single-source minimum cost version of this problem. ♦

END EXERCISES

§4. Goal-Directed Dijkstra

Dijkstra’s algorithm can serve as the basis for several important and useful extensions.

¶16. Bidirectional Search. It is interesting to observe that Dijkstra’s algorithm has no particular
goal, in the sense that we seek a path from the source toany target. In many natural settings, we have
a specific target, say vertexn. In this case, an obvious way to speed up Dijkstra is to simultaneously
conduct a similar search “backwards” from the targetn. The forward search from source1 maintains
a setS ⊆ V for which δ1(v) is known for eachv ∈ S; the backward search from targetn maintains a
similar setS′ ∈ V for which δn(v) is known for eachv ∈ S′. We alternately grow the setsS andS′

one element at a time, terminating the momentS ∩ S′ is non-empty. Letz be the first vertex found by
this bidirectional search to be inS ∩ S′. Now, the “standard mistake” according to [1] is to assume that
δ1(n) = δ1(z) + δn(z).

To illustrate this standard mistake, consider the graph in Fig-

3

4 1

41
3

3

3
1

y

x

nz

Figure 3: Bidirectional search from
1 to n

ure3: initially, S = {1} andS′ = {n}. After growing the setsS
andS′ in one round, we getS = {1, x} andS′ = {n, y}. Next,
S = {1, x, z} andS′ = {n, y, z}, and we stop. At this point,
δ1(z) = 3 andδn(z) = 3. The standard mistake is to conclude
δ1(n) = δ1(z) + δn(z) = 3 + 3 = 6. Of course, we can see that
δ1(n) is really5.

What then is the correct bidirectional search algorithm? The
above outline and stopping condition is correct, but we needto
track the potential values ofδ1(n) using a “relaxation variable”

∆. Initially, let ∆ = ∞. Each time we add a vertexv to S, for eachv′ ∈ S′ that is adjacent tov, we
relax∆ as follows:

∆′ ← δ1(v) + δn(v′) + C(v, v′);

∆← min {∆, ∆′} .
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Symmetrically, we update∆ when we addv′ ∈ S′. At the end of the algorithm, when we first found a
z ∈ S ∩ S′, we perform one final relaxation step,

∆← min {∆, δ1(z) + δn(z)} .

We claim that the final value of∆ is δ1(n): It is easy to see that∆ ≤ δ1(n). The converse is also easily
verified because the minimum distance from1 to n must have the formδ1(v) + δn(v′) + C(v, v′) or
equal to theδ1(z) + δn(z) used in our relaxation. In the example Figure3, we would have updated∆
from∞ to 5 when we first addedx to S. The algorithm would correctly terminate with∆ = 5.

¶17. A* Search. What is important in the bi-directional search is the additional information from the
existence of a goal, or a target vertexn. In general, the goal need not be a single vertex but a set of
vertices, In this section, we extend Dijkstra’s algorithm by another “goal-directed” heuristic. This idea
becomes even more important when the underlying graphG is implicitly defined and possibly infinite,
so that termination can only be defined by having attained some goal (E.g. in subdivision algorithms).

Figure 4. US Road Map

Consider a concrete example. Suppose the graphG = (V, E) represents the road network of the
United States withV = {1, . . . , n} representing cities and costC(i, j) representing the minimum
distance road between citiesi andj. Again we start from city1 but our goal set is someW ⊆ V . That
is, we want the minimum cost path from1 to anyj ∈W . Let

δ(j, W ):= min {δ(j, i) : i ∈W} .

Suppose city1 is Kansas City (Kansas/Missouri), near the geographical center of the US, andW is the
set of cities on the West Coast. A standard Dijkstra search would fan out from Kansas City equally in
all directions. Intuitively, our goal-directed search ought to explore the graphG with a westward bias.

How can Dijkstra’s algorithm be modified to serve this purpose? This is the important heuristic
calledA* Search (read “A-star”) from Hart, Nilsson and Raphael [2] in the artificial intelligence litera-
ture. See Goldberg and Harrelson [1] for an updated algorithmic treatment.

Its justification requires only a slight extension of Dijkstra’s algorithm. A functionh : V → R is
called aheuristic cost function. We sayh is admissibleif eachh(j) (j ∈ V ) is a lower bound on the
minimum cost fromj to W :

0 ≤ h(j) ≤ δ(j, W ). (4)
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In our road network example, supposec(i, j) denote the “crow distance” between citiesi andj. This is
the distance “as a crow flies”, or on a flat earth, it is the Euclidean distance betweeni andj. Then we
defineh(j) = min{c(j, i) : i ∈ W}. It is clear that this particular choice ofh(j) is admissible. IfW
is small (e.g.,|W | = 1), thenh(j) is easy to compute. Recall that in Dijkstra’s algorithm, we maintain
an arrayd[1..n]. We now add the value ofh(j) to the value ofd[j] in doing our minimizations and
comparisons. Topeka

Jefferson City

Wichita

Kansas City
St. Louis

Des MoinesOmaha

Search from Kansas City

For instance, suppose we want to find the shortest path from Kansas City to San Francisco. First,
consider the four cities adjacent to Kansas City: Topeka to the west, Omaha and Des Moines to the
north, and Jefferson City to the east. Here are the distances(from Map Quest):

Distance (in miles) Topeka Omaha Des Moines Jefferson City Wichita

Kansas City 61 184 197 161 197
San Francisco 1780 1669 1800 1968 1680

1841 1853 1997 2129 1877

Ordinary Dijkstra would begin by considering the distance of Kansas City to the four neighboring cities
(Topeka, Omaha, Des Moines, Jefferson City). Since Topeka is the closest of the three cities at61 miles,
we would expand the setS = {KansasCity} to S = {KansasCity, T opeka}. For our A* search,
suppose our goal is to reach San Francisco, i.e.,W = {SanFrancisco}. Then we must add to these
distances an additional “heuristic distance” (i.e., namely their respectively distance to San Francisco).
For the sake of argument, suppose we added the actual distance of these cities to San Francisco. We see
that A* would still choose Topeka to be added toS because its value of1841 is still minimum. Next,
ordinary Dijkstra would choose Jefferson City (at161 miles). But when the heuristic distance is taking
into account, we see that Omaha is the next added city:S = {KansasCity, T opeka, Omaha}. A*
will choose Wichita next. The obvious bias of the search towards the west coast is thus seen.

We now justify the use of heuristic functions (also known aspotential functions). We need a
crucial property which is best approached as follows: suppose our original cost functionC : E → R≥0

is modified byh to become
Ch(i, j):=C(i, j)− h(i) + h(j). (5)

Let δh(i, j) denote the minimum cost fromi to j using the modified cost functionCh. Comparing this
with the original minimum costδ(i, j), we claim:

δh(i, j) = δ(i, j)− h(i) + h(j). (6)

This relation is immediate, by telescopy. It follows that a path is minimum cost underC iff it is minimum
cost underCh.

By theA* Algorithm for cost functionC and heuristic functionh, we mean the algorithm that runs
Dijkstra’s algorithm usingCh as cost function. Clearly, A* Algorithm is a generalizationof Dijkstra’s
algorithm since Dijkstra amounts to using the identically0 heuristic function.

From our preceding discussion, we know that the minimum costpath will also be found by the A*
algorithm. What is new is that the order in which we add nodes to the setS can be rather different!
There is one important caveat: since Dijkstra’s algorithm is only justified when the cost function is
non-negative, the A* Algorithm is only justify ifCh is non-negative. This amounts to the requirement
C(i, j)− h(i) + h(j) ≥ 0, or we prefer to write this as a kind of triangular inequality:

C(i, j) + h(h) ≥ h(i). (7)

This property has various names in the literature: Following Goldberg and Harrelson [1], we sayh is
feasibleif (7) holds. The literature also callsh monotone or consistent instead of feasible.
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We note some basic properties of feasible potential functions. We call the setSh ⊆ V constructed
by the A* Algorithm thescanned set.

LEMMA 5. Leth andh′ be two feasible heuristic functions.
(i) If h(j) ≤ 0 for all j ∈W , thenh is admissible.
(ii) The functionmax {h, h′} is also feasible.
(iii) Let S (resp.S′) be the final scanned set when the A* Algorithm is searching for the target noden
using the heuristic functionh (resp.h′). If h ≥ h′ andh(n) = h′(n) = 0 thenS ⊆ S′.

¶18. Subdivision Robot Motion Planning. We can apply the goal directed search to the problem of
robot motion planning: finding a path from an initial position α to a final positionβ amidst obstacles.
The space we are searching in is now a continuum, not a graph. Nevertheless, we can superimpose a
hierarchical grid in the form of a quadtree (in2-D) or a subdivision tree in general. We can keep track of
adjacent boxes that are free, and those that are blocked. Those “mixed” boxes can be further expanded.
We can keep track of the connected components of free boxes, and of the “holes” of the blocked boxes.
How can we include this heuristic intoA∗ search?

EXERCISES

Exercise 4.1: In the worst case sense, the improvement of bi-directional Dijkstra’s algorithm is at most
a factor of2. Construct instances where this improvement factor is arbitrarily large. ♦

Exercise 4.2: Construct an example where the A* Algorithm is incorrect when the heuristic function
is infeasible. ♦

Exercise 4.3: Prove Lemma5. ♦

END EXERCISES

§5. Semirings

Before considering the all pairs minimum cost problems, letus recall some facts about matrix rings.

Let us first informally review some college algebra: a ring isa setR with two special values0, 1 ∈ R
and three binary operations+,−,× defined satisfying certain axioms. The integersZ is the simplest
example of a ring. Indeed, a ring basically obeys all the algebraic laws you expect to hold for integers
Z under the usual+/−/× operations. E.g., the distributive lawx(y + z) = xy +xz holds for integers,
and it is an axiom for rings. Theonly exception is the commutative law for multiplication,xy = yx.
This law need not hold in rings. The rings that satisfy this law is called a commutative ring.

The set of squaren× n matrices whose entries are integers forms another ring, theinteger matrix
ring Mn(Z). Note thatMn(R) is no longer commutative forn ≥ 2. A matrixA whose(i, j)-th entry is
Ai,j will be writtenA = [Ai,j ]

n
i,j=1. We often simplify this toA = [Ai,j ] or A = [Aij ] or A = [Aij ]i,j .

This should not be confused with the notation(A)ij denoting the(i, j)-th entry of matrixA. Recall the
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usual multiplication of numerical matrices: ifA = [Aij ], B = [Bij ] then their productAB is C = [Cij ]
where

Cij =

k∑

i=1

AikBkj . (8)

Let us now proceed somewhat more formally: aring

(R, +,×, 0, 1).

By definition3 this means the setR satisfies the following axioms.
(i) (R, +, 0) is an Abelian group,
(ii) (R,×, 1) is a monoid,
(iii) × distributes over+.

We simply refer to the setR as the ring if the other data (+,×, 0, 1) are understood and the product
a× b (for a, b ∈ R) is also written asab or a · b. Forn ≥ 1, we have another ring with unity,

(Mn(R), +n,×n, 0n, 1n)

whereMn(R) is the set ofn-square matrices with entries inR. We callMn(R) a matrix ring overR.
Addition of matrices,A +n B, is defined componentwise. The productA ×n B of matrices is defined
as in equation (8). The additive and multiplicative identities ofMn(R) are (respectively) the matrix0n

with all entries0 and the matrix1n of 0’s except the diagonal elements are1’s.

Let MM(n) denote the number of ring operations inR necessary to compute the product of two
matrices inMn(R). The problem of determiningMM(n) has been extensively studied ever since Strassen
(1969) demonstrated that the obviousMM(n) = O(n3) bound is suboptimal. The current record is from
Coppersmith and Winograd (1987):

MM(n) = O(n2.376).

¶19. Connection to shortest paths. Problems on minimum paths has an underlying algebraic struc-
ture that is similar to matrix multiplication. To see this connection, note that the cost of an exact2-link
minimum path path from vertexi to j is given by

δ(2)(i, j) =
n

min
k=1

C(i, k) + C(k, j).

This expression is analogous to equation (8), except that we have replaced summation by minimization,
and product by summation. Hencecomputing the exact2-link minimum costs between all pairs of
vertices is equivalent to the problem of matrix multiplication where the matrices have elements from a
certain ring-like structure:

(R ∪ {±∞}, min, +,∞, 0)

where∞ and0 are the respective identities for the minimization and addition operation. Also,

(−∞) + x =

{
−∞ if x 6=∞,
∞ if x =∞.

In fact, the only thing this structure lacks to make it a ring isan inverse for minimization. Such structures
are quite pervasive, and is studied abstractly as semirings:

3 All our rings have a multiplicative identity usually denoted 1: x · 1 = 1 · x = x. We call1 theunity element. Algebraists
sometimes consider rings with such a unity element. Algebraic structures such as rings, groups, etc, are setsS together with
operationso1, o2, etc, and are written(S, o1, o2, . . .). A constant is just a0-ary operation. An algebraic structure(M, +, 0)
is a monoid if+ is an associative binary operation onM with 0 as an identity. A standard example of a monoid is the set of
strings over an alphabet under the concatenation operation, with the empty string as identity. Incidentally, droppingthe identity
of a monoid gives us asemigroup. A group(G, +, 0) is a monoid where+ has an inverse relative to0, i.e., for all x there is ay
such thatx + y = 0. We write−x for the inverse ofx. A monoid or group is Abelian when its operation is commutative. When
using ‘+’ for the group operation, we denote the inverse of an elementx by −x.
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DEFINITION 1. A semiring (R,⊕,⊗, 0, 1) is an algebraic structure satisfying the following properties.
We call⊕ and⊗ the additive and multiplicative operations ofR.

1) [Additive monoid] (R,⊕, 0) is an Abelian monoid.
2) [Multiplicative monoid] (R,⊗, 1) is a monoid.
3) [Annihilator] 0 is the annihilator under multiplication:x⊗ 0 = 0⊗ x = 0.
4) [Distributivity] Multiplication distributes over addition:

(a⊕ b)⊗ (x⊕ y) = (a⊗ x)⊕ (a⊗ y)⊕ (b ⊗ x)⊕ (b⊗ y)

The reader may check that semirings are indeed rings save forthe additive inverse.

¶20. Examples of semirings. Of course, a ringR is automatically a semiring. When viewingR as
a semiring, instead of the Abelian group axioms for(R, +, 0), we simply require that it be a monoid
with commutativity. Moreover, the axiom that0 is a multiplicative annihilator must be explicitly stated,
whereas it was previously implied by the ring axioms (exercise above). The following are examples of
semirings that are not rings.

1. The “canonical example” of a semiring is the natural numbers (N, +,×, 0, 1). It is useful to test
all concepts about semirings against this one.

2. Another important semiring is

(R ∪ {±∞}, min, +, +∞, 0) (9)

as noted above. For reference, call this theminimization semiring. Note4 that the annihilator
axiom implies∞+ (−∞) =∞. Any subringS ⊆ R induces a sub-semiringS ∪ {±∞} of this
real minimization semiring. Be careful that the “multiplication” in the minimization semiring is
ordinary addition! To avoid confusion, we may say “semiringmultiplication” to refer to+, or
“semiring addition” to refer tomin, when viewingR ∪ {±∞} as a semiring.

3. Naturally, there is an analogous(real) maximization semiring,

(R ∪ {±∞}, max, +,−∞, 0). (10)

But in this semiring,∞+ (−∞) = −∞.

4. If we restrict the costs to be non-negative, we get a closely-relatedpositive minimization semir-
ing,

(R≥0 ∪ {∞}, min, +,∞, 0). (11)

5. TheBoolean semiringis ({0, 1},∨,∧, 0, 1) where∨ and∧ is interpreted as the usual Boolean-or
and Boolean-and operations. We sometimes writeB2:={0, 1}.

6. Thepowerset semiringis (2S ,∪,∩, ∅, S) whereS is any set and2S is the power set ofS.

7. Thelanguage semiringis (2Σ∗

,∪, ·, ∅, {ǫ}) whereΣ is a finite alphabet and2Σ∗ is the power set
of the setΣ∗ of finite strings overΣ, andǫ is the empty string. For setsA, B ⊆ Σ∗, we define
their concatenationA · B = {a · b : a ∈ A, b ∈ B}.

8. Themin-max semiring is ([0, 1], min, max, 1, 0) with the obvious interpretation. Of course, the
max-min semiring is similar.

4 In standard extensions of the real numbers to±∞, it is stipulated that∞ + (−∞) is undefined.

c© Chee Yap Basic Version October 24, 2011



§6. CLOSED SEMIRINGS Lecture XIV Page 17

We let the reader verify that each of the above structures aresemirings. As for rings, we can generate
infinitely many semirings from an old one:

LEMMA 6. If R is a semiring, then the setMn(R) of n-square matrices with entries inR is also a
semiring with componentwise addition and multiplication analogous to equation (8).

The verification of this lemma is left to the reader. We callMn(R) a matrix semiring (overR).
Note that the multiplication of two matrices inMn(R) takesO(n3) semiring operations; in general,
nothing better is known because the sub-cubic bounds onMM(n) which we noted above exploits the
additive inverse of the underlying ring.

¶21. Complexity of multiplying Boolean matrices. For Boolean semiring matrices, we can obtain
a subcubic bound by embedding their multiplication in the ring of integer matrices. More precisely,
if A, B are Boolean matrices, we view them as integer matrices wherethe Boolean values0, 1 are
interpreted as the integers0, 1. If AB denotes the product overZ, it is easy to see that if we replace
each of the non-zero elements inAB by 1, we obtain the correct Boolean product. To bound the bit
complexity of this embedding, we must ensure that the intermediate integers do not get large. Note
that each entry inAB can be computed inO(log n) bit operations. Thus, ifMM2(n) denotes the bit
complexity of Boolean matrix multiplication, we have

MM2(n) = O(MM(n) lg n). (12)

§6. Closed Semirings

The non-ring semirings we have introduced above can be extended as follows:

DEFINITION 2. A semiring(R,⊕,⊗, 0, 1) is said to beclosedif for any countably infinite sequence
a1, a2, a3, . . . in R, thecountably infinite sum

⊕

i≥1

ai

is defined, and satisfies the following properties:
0) [Compatibility]

a0 ⊕




⊕

i≥1

ai



 =
⊕

j≥0

aj .

1) [Countable Zero] Theai’s are all zero iff
⊕

i≥1 ai = 0.
2) [Countable Associativity] ⊕

i≥1

ai =
⊕

i≥1

(a2i−1 ⊕ a2i).

3) [Countable Commutativity] ⊕

i≥1

⊕

j≥1

aij =
⊕

j≥1

⊕

i≥1

aij .

4) [Countable Distribution] Multiplication distributes over countable sums:

(
⊕

i≥1

ai)⊗ (
⊕

j≥1

bj) =
⊕

i,j≥1

(ai ⊗ bj).
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Let us note some consequences of this definition.
1. By the compatibility and countable zero properties, we can view an elementa as the countable sum
of a, 0, 0, 0, . . ..
2. Using compatibility and associativity, we can embed eachfinite sum into a countable sum. E.g.,a⊕b
is equal to the countable sum ofa, b, 0, 0, 0, . . .. Henceforth, we saycountable sumto cover both the
countably infinite and the finite cases.
3. If σ is any permutation of the natural numbers then

⊕

i≥0

ai =
⊕

i≥0

aσ(i).

To see this, defineaij = ai if σ(j) = i, andaij = 0 otherwise. Then
⊕

i ai =
⊕

i

⊕
j aij =⊕

j

⊕
i aij =

⊕
j aσ(j).

4. If b1, b2, b3, . . . is a sequence obtained froma1, a2, a3, . . . in which we simply replaced some pair
ai, ai+1 by ai ⊕ ai+1, then the countable sum of theb’s is equal to the countable sum of thea’s. E.g.,
b1 = a1 ⊕ a2 andbi = ai+1 for all i ≥ 2.

All our examples of non-ring semirings so far can be viewed asclosed semirings by an obvious
extension of the semiring addition to the countably infinitecase. Note that “min” in the real semirings
should really be “inf” when viewed as closed semiring. A similar remark applies for “max” versus
“sup”.

The definition of countable sums in the presence of commutativity and associativity is quite non-
trivial. For instance, in the ring of integers, the infinite sum 1 − 1 + 1 − 1 + 1 − 1 + · · · is undefined
because, by exploiting commutativity, we can make it equal to any integer we like. In terms of minimum
paths, closed semirings represent our interest in finding the minimum costs of paths ofarbitrary length
rather than pathsup to some finite length.

For any closed semiring(R,⊕,⊗, 0, 1), we introduce an important unary operation: forx ∈ R, we
define itsclosureto be

x∗:=1⊕ x⊕ x2 ⊕ x3 ⊕ · · ·

wherexk, as expected, denotes thek-fold self-application of⊗ to x. We callxk thekth power of x.
Note thatx∗ = 1 ⊕ (x ⊗ x∗). For instance, in the real minimization semiring, we see that x∗ is 0 and
−∞, depending on whetherx is non-negative or negative. WhenR is a matrix semiring, the closure of
x ∈ R is usually calledtransitive closure. Computing the transitive closures is an important problem.
In particular, this is a generalization of the all-pairs minimum cost problem. The transitive closure of
Boolean matrices corresponds to the all-pairs reachability problem of graphs.

¶22. Idempotent Semirings. In all our examples of closed semirings, we can verify that the semiring
addition⊕ is idempotent:

x⊕ x = x

for all ring elementsx. Some authors include idempotence as an axiom for semirings. To show that this
axiom is non-redundant, observe that the following structure

(N ∪ {∞}, +,×, 0, 1)

is a closed semiring if we interpret+,× in the ordinary way. This semiring addition is, of course, not
idempotent. For a finitary example of a closed semiring that is not idempotent, consider

({0, 1,∞}, +,×, 0, 1).

Under idempotence, countable sums is easier to understand.In particular,⊕i≥1ai depends only on the
set of distinct elements among theai’s.
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We can introduce a partial order≤ in an idempotent semiring(R,⊕,⊗, 0, 1) by defining

x ≤ y iff (x⊕ y) = y.

To check that this is a partial order: Clearlyx ≤ x. If x ≤ y andy ≤ x thenx = y. Finally, x ≤ y
andy ≤ z impliesx ≤ z (sincex ⊕ z = x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z = y ⊕ z = z). Note that0 is
the minimum element in the partial order, andx ≤ y, x′ ≤ y′ impliesx⊕ y ≤ x′ ⊕ y′. But be warned
that in the minimization semiringR∪ {±∞}, this definition “≤” is the inverse of the usual ordering on
reals! Instead of defining the closurea∗ operation via countable sum, we can now directly introducing
the closure operation to satisfy the axiom

ab∗c = sup
n≥0

abnc.

An idempotent semiring with such a closure operation is called aKleene algebra(see [3]). This algebra
can be defined independently from semirings.

EXERCISES

Exercise 6.1: Show that in a ringR: −x = (−1) · x, andx · 0 = 0 · x = 0 for all x ∈ R. ♦

Exercise 6.2: Give examples of groups that are not Abelian. HINT: considerwords over the alphabet
{xi, x̄i : i = 1, . . . , n} with the cancellation lawxix̄i = x̄ix = ǫ. ♦

Exercise 6.3: Under what conditions does the canonical construction ofZ from N extend to give a ring
from a semiring? ♦

Exercise 6.4: Which of the following is true for the closure operator?
(i) (x∗)2 = x∗.
(ii) (x∗)∗ = x∗.
(iii) For all x, y = x∗ is the only solution to the equationy = 1⊕ (x⊗ y). ♦

Exercise 6.5: Generalize the problem of optimal triangulation (lecture 3) so that the weight function
has values in an idempotent semiring. If the semiring product is not commutative, how do you
make the problem meaningful? ♦

END EXERCISES

§7. All-Pairs Minimum Cost: Dense Case

The input digraphG has a general cost function. Informally, we may take “dense”to mean thatG
satisfiesm = Θ(n2). To solve the all-pairs problem forG, we could, of course, run Bellman-Ford’s
algorithm for a total ofn times, for an overall complexity ofO(n2m) = O(n4). We shall improve on
this.

For this problem, we shall represent the costed graph by its cost matrixC = [Ci,j ]
n
i,j=1. The

underlying semiring is assumed to the minimization semiring (see (9)). An easy generalization of an
earlier observation (for the casek = 2) gives:
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LEMMA 7. LetC be a cost matrix regarded as a matrix over the minimization semiring. If Ck = [C
(k)
ij ]

is the thekth power ofC thenCk is the matrix of the exactk-link minimum cost functionδ(=k): for all
i, j,

δ(=k)(i, j) = C
(k)
ij

As corollary, the all-pairs minimum path problem is equivalent to the problem of computing the
transitive closureC∗ of C since for alli, j:

(C∗)ij = inf
k≥0
{C

(=k)
ij }.

Since semiring matrix multiplication takesO(n3) time, it follows that we can determineCk by k−1
matrix multiplications, taking timeO(n3k). But this can be improved toO(n3 log k) by exploiting
associativity. The method is standard: to computeCk, we first compute the sequence

C1, C2, C4, . . . , C2ℓ

,

whereℓ = ⌊lg k⌋. This costsO(n3ℓ) semiring operations. By multiplying together some subset of these
matrices together, we obtainCk. This again takesO(n3ℓ). This gives a complexity ofO(n3 log n) when
k = n. In caseC has no negative cycles,C∗ = Cn−1 and so the transitive closure can be computed in
O(n3 log n) time.

We next improve this bound using theFloyd-Warshall algorithm 5. Another advantage to the
Floyd-Warshall algorithm is that we do not need to assume theabsence of negative cycles. To explain
this algorithm, we need to define ak-path (k ∈ [1..n]) of a digraph: a path

p = (v0, v1, . . . , vℓ)

is called ak-path if the vertices inp, with the exception ofv0, vℓ, belong to the set[1..k]. Unlike the
k-link cost functionδ(k), we impose no bound on the lengthℓ of the pathp. By extension, we may say
that a0-path is one of length at most1. Let

δ[k](i, j)

denote the cost of the minimum costk-path fromi to j. For instanceδ[0](i, j) = Cij . It follows that the
following equation holds fork ≥ 1:

δ[k](i, j) = min{δ[k−1](i, j), δ[k−1](i, k) + δ[k−1](k, k)∗ + δ[k−1](k, j)} (13)

where we define for anyr ∈ R ∪ {±∞},

r∗ =

{
0 if r ≥ 0,
−∞ if r < 0.

Notice thatδ[n](i, j) is precisely equal toδ(i, j). The Floyd-Warshall algorithm simply uses equa-
tion (13) to computeδ[k] for k = 1, . . . , n:

5 The method is similar to the standard proof of Kleene’s characterization of regular languages.
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FLOYD-WARSHALL ALGORITHM:
Input: Cost matrixC which isn by n.
Output: Matrix c[1..n, 1..n] representingδ.
INITIALIZATION

for all i, j = 1 to n do
c[i, j]← Cij

MAIN LOOP
for k = 1 to n do

for all i, j = 1 to n do
(A) c[i, j]← min{c[i, j], c[i, k] + c[k, k]∗ + c[k, j]}

This algorithm clearly takesO(n3) time. The correctness can be proved by induction. Note that
line (A) in the algorithm is not an exact transcription of equation (13) because the matrixc[1..n, 1..n] is
used to store the values ofδ[k] as well asδ[k−1]. Nevertheless (as in the Bellman-Ford algorithm), we
have the invariant that in thekth iteration,

δ(i, j) ≤ c[i, j] ≤ δ[k](i, j).

EXERCISES

Exercise 7.1: The transitive closure of the cost matrixC was computed asCn−1 in caseC has no
negative cycles. Extend this methods to the case whereC may have negative cycles. ♦

Exercise 7.2: Consider the min-cost path problem in which you are given a digraphG = (V, E; C1, ∆)
whereC1 is a positive cost function on the edges and∆ is a positive cost function on the vertices.
Intuitively, C1(i, j) represents the time to fly from cityi to city j and∆(i) represents the time
delay to stop over at cityi. A jet-set business executive wants to construct matrixM where the
(i, j)th entryMi,j represents the “fastest” way to fly fromi to j. This is defined as follows. If
π = (v0, v1, . . . , vk) is a path, define

C(π) = C1(π) +
k−1∑

j=1

∆(vj)

and letMi,j be the minimum ofC(π) asπ ranges over all paths fromi to j. Please show how
to computeM for our executive. Be as efficiently as you can, and argue the correctness of your
algorithm. ♦

Exercise 7.3: Same setting as the previous exercise, but∆ can be negative. (There might be “negative
benefits” to stopping over at particular cities). For simplicity, assume no negative cycles. ♦

Exercise 7.4: An edgee = (i, j) is essentialif C(e) = δ(i, j) and there are no alternative paths fromi
to j with costC(e). The subgraph ofG comprising these edges is called theessential subgraph
of G, and denotedG∗. Let m∗ be the number of edges inG∗.
(i) For everyi, j, there exists a path fromi to j in G∗ that achieves the minimum costδG(i, j).
(ii) G∗ is the union of then single-source shortest path trees.
(iii) Show someC > 0 and an infinite family of graphsGn such thatG∗

n has≥ Cn2 edges.
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(iv) (Karger-Koller-Phillips, C. McGeoch) Assume positive edge costs. Solve the all-pairs min-
imum cost problem inO(nm∗ + n2 log n). HINT: From part (ii), we imagine that we are con-
structingG∗ by runningn copies of Dijkstra’s algorithm simultaneously. But thesen copies are
coordinated by sharing one common Fibonacci heap. ♦

Exercise 7.5: Modify the Floyd-Warshall Algorithm so that it computes thelengths of the first and also
the second minimum path. The second minimum path must be distinct from the minimum path.
In particular, if the minimum path does not exist, or is unique, then the second minimum path
does not exist. In this case, the length is∞. ♦

END EXERCISES

§8. Transitive Closure

The Floyd-Warshall algorithm can also be used to compute transitive closures inMn(R) where
(R,⊕,⊗, 0, 1) is a closed semiring. For any sequencew = (i0, . . . , im) ∈ [1..n]∗, define

C(w):=
m⊗

j=1

C(ij−1, ij), m ≥ 2.

If m = 0 or 1, C(w):=1 (the identity for⊗). For eachk = 0, . . . , n, we will be interested in sequences

in w ∈ i[1..k]∗j, which may be identified withk-paths. We define the matrixC [k] = [C
[k]
ij ] where

C
[k]
ij =

⊕

w∈i[k]∗j

C(w).

LEMMA 8.
(i) C [0] = C and fork = 1, . . . , n,

C
[k]
ij = C

[k−1]
ij ⊕

(
C

[k−1]
ik ⊗ (C

[k−1]
kk )∗ ⊗ C

[k−1]
kj

)
(14)

(ii) C [n] = C∗.

Proof. We only verify equation (14), using properties of countable sums:

C
[k]
ij =




⊕

w∈i[1..k−1]∗j

C(w)



 ⊕




⊕

w∈i[1..k−1]∗k[1..k]∗j

C(w)





= C
[k−1]
ij ⊕








⊕

w′∈i[1..k−1]∗k

C(w′)



⊗




⊕

w′′∈k[1..k]∗j

C(w′′)









= C
[k−1]
ij ⊕



C
[k−1]
ik ⊗




⊕

w′∈k[1..k]∗k

C(w′)



⊗




⊕

w′′∈k[1..k−1]∗j

C(w′′)









= C
[k−1]
ij ⊕



C
[k−1]
ik ⊗




⊕

w∈k[1..k]∗k

C(w)



 ⊗ C
[k−1]
kj



 .
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It remains to determine the elementx =
⊕

w∈k[1..k]∗k C(w). It follows from countable commutativity
that

x = 1⊕ C
[k−1]
kk ⊕ (C

[k−1]
kk )2 ⊕ (C

[k−1]
kk )3 ⊕ · · · = (C

[k−1]
kk )∗,

as desired. Q.E.D.

In practice, we can actually do better than (14). Suppose we do not keep distinct copies of theC [k]

matrix for eachk, but have only oneC matrix. Then we can use the update rule

Cij = Cij ⊕ (Cik ⊗ (Ckk)∗ ⊗ Ckj) . (15)

It may be verified that this leads to the same result. However,we may be able to terminate earlier.

We use the analogue of equation (14) in line (A) of the Floyd-Warshall algorithm. The algorithm
usesO(n3) operations of the underlying closed semiring operations.

¶23. Boolean transitive closure. We are interested in computing transitive closure in the matrix
semiringMn(B2), whereB2 = {0, 1} is the closed Boolean semiring. LetTC2(n) denote the bit
complexity of computing the transitive closure inMn(B2). Here “complexity” refers to the number of
operations in the underlying semiringB2. The Floyd-Warshall algorithm shows that

TC2(n) = O(n3).

We now improve this bound by exploiting the bound

MM2(n) = O(MM(n) log n) = o(n3)

(see equation (12)). We may assume thatMM2(n) = Ω(n2) andTC2(n) = Ω(n2). This assumption can
be verified in any reasonable model of computation, but we will not do this because it would involve
us in an expensive detour with little insights for the general results. This assumption also implies that
MM2(n) is an upper bound on addition of matrices, which isO(n2). Our main result will be:

THEOREM 9. TC2(n) = Θ(MM2(n)).

In our proof, we will interpret a matrixA ∈ Mn(B2) as the adjacency matrix of a digraph onn
vertices. So the transitive closureA∗ represents thereachability matrix of this graph:

(A∗)ij = 1 iff vertex j is reachable fromi.

We may assumen is a power of2. To show thatTC2(n) = O(MM2(n)), we simply note that ifA, B ∈
Mn(B2) then the reachability interpretation shows that if

C =




0 A 0
0 0 B
0 0 0





then

C∗ = I + C + C2 =




I A AB
0 I B
0 0 I



 .
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Thus, we can reduce computing the productAB to computing the transitive closure ofC ∈M3n(B2):

MM(n) = O(TC2(3n)) + O(n2) = O(TC2(n)).

Now we show the converse. Assuming thatA, B, C, D ∈Mn(B2), we claim that

(
A B
C D

)∗

=

(
E∗ E∗BD∗

D∗CE∗ D∗ + D∗CE∗BD∗

)
, (16)

where
E:=A + BD∗C.

This formidable-looking expression (16) has a relatively simple combinatorial explanation using the
reachability interpretation. Assume the matrix of interest has dimensions2n × 2n and it has been
partitioned evenly intoA, B, C, D. If the vertices of the corresponding graphG is [1..2n] then A
represents the subgraph induced by[1..n], D the subgraph induced by[n+1..2n], B the bipartite graph
comprising edges from vertices in[1..n] to those in[n + 1..2n], andC is similarly interpreted. NowE
represents the reachability relation on[1..n] determined by paths ofG that makesat most one detour
outside[1..n]. It is then clear thatE∗ represents the reachability relation ofG, restricted to those vertices
in [1..n]. This justifies the top-left submatrix in the RHS of equation(16). We leave it to the reader to
similarly justify the other three submatrices on the RHS.

Thus, the RHS is obtained by computing, in this order:

D∗ (costing TC2(n)),
E (costing O(MM2(n))),
E∗ (costing TC2(n)),

and finally, the remaining three submatrices on the RHS of equation (16). The total cost of this procedure
is

TC2(2n) = 2TC2(n) + O(MM2(n))

which has solutionTC2(2n) = O(MM2(n)). This showsTC2(n) = O(MM2(n)), as desired.

EXERCISES

Exercise 8.1: Rewrite update rule (14) that corresponds to the improved rule (15). In other words, show
when the update ofC [k]

ij is sometimes using an “advance value” on the right-hand side. ♦

Exercise 8.2: Give similar interpretations for the other three entries ofthe RHS of equation (16). ♦

Exercise 8.3: Express the RHS of equation (16) as a product of three matrices
(

I 0
D∗C I

) (
E∗ 0
0 D∗

) (
I BD∗

0 I

)
,

and give an interpretation of the three matrices as a decomposition of paths in the underlying
graph. ♦

END EXERCISES
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§9. All-pairs Minimum Cost: Sparse Case

Donald Johnson gave an interesting all-pairs minimum cost algorithm that runs inO(n2 log n+mn)
time. This improves on Floyd-Warshall when the graph is sparse (saym = o(n2)). Assume that there
are no negative cycles in our digraphG = (V, E; C). The idea is to introduce apotential function

φ : V → R

and to modify the cost function to

Ĉ(i, j) = C(i, j) + φ(i)− φ(j). (17)

We want the modified cost function̂C to be non-negative so that Dijkstra’s algorithm is applicable on
the modified grapĥG = (V, E; Ĉ).

But how are minimum paths in̂G and inG related? Notice that ifp, p′ are two paths from a common
start to a common final vertex then

Ĉ(p′)− Ĉ(p) = C(p′)− C(p).

This proves:

LEMMA 10. A path is a minimum cost path in̂G iff it is minimum cost path inG.

Supposes is a vertex that can reach all the other vertices of the graph.In this case, we can define
the potential function to be

φ(v):=δ(s, v).

Note thatφ(v) 6= −∞ since we stipulated thatG has no negative cycle. Alsoφ(v) 6= ∞ sinces can
reachv. The following inequality is easy to see:

φ(j) ≤ φ(i) + C(i, j)

Thus we have:

LEMMA 11. Assuming there are no negative cycles, ands ∈ V can reach all other vertices, the above
modified cost function̂C is non-negative,

Ĉ(i, j) ≥ 0.

In particular, there are no negative cycles inĜ. To use the suggested potential function, we need a
vertex that can reach all other vertices. This is achieved byintroducing an artificial vertexs 6∈ V and
using the graphG′ = (V ∪ {s}, E′; C′) whereE′ = E ∪ {(s, v) : v ∈ V } and for alli, j ∈ V , let
C′(i, j) = C(i, j), C′(s, j) = 0 andC′(i, s) = ∞. Call G′ theaugmentation ofG with s. Note that
G′ has no negative cycle iffG has no negative cycle; furthermore, for a pathp between two vertices in
V , p is a minimum path inG iff it is a minimum path inG′. This justifies the following algorithm.

JOHNSON’ S ALGORITHM:
Input: Graph(V, E; C) with general cost, no negative cycle.
Output: All pairs minimum cost matrix.
INITIALIZATION

Let (V ′, E′; C′) be the augmentation of(V, E; C) by s 6∈ V .
Invoke Bellman-Ford on(V ′, E′; C′, s) to computeδs.
Abort if negative cycle discovered; else, for allu, v ∈ V ,

let Ĉ(u, v)← C(u, v) + δ(s, u)− δ(s, v)
MAIN LOOP

For eachv ∈ V , invoke Dijkstra’s algorithm on(V, E; Ĉ, v)
to computeδv.
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The complexity of initialization isO(mn) and each invocation of Dijkstra in the main loop is
O(n log n + m). Hence the overall complexity isO(n2 log n + mn).

§10. All-pairs Minimum Link Paths in Bigraphs

We consider all-pairs minimum paths in bigraphs with unit costs. Hence we are interested in min-
imum length paths. LetG be a bigraph on vertices[1..n] and A be its adjacency matrix. For our
purposes, we will assume that the diagonal entries ofA are1. Let dij denote the minimum length of a
path betweeni andj. Our goal is to compute the matrixD = [dij ]

n
i,j=1. We describe a recent result of

Seidel [4] showing how to reduce this to integer matrix multiplication. For simplicity, we may assume
thatG is a connected graph sodij <∞.

In order to carry out the reduction, we must first consider the“square ofG”. This is the graphG′ on
[1..n] such that(i, j) is an edge ofG′ iff there is a path of length at most2 in G betweeni andj. Let
A′ be the corresponding adjacency matrix andd′ij denote the minimum length of a path inG′ between
i andj. Note thatA′ = A2, where the matrix product is defined over the underlying Boolean semiring.

The following lemma relatesdij andd′ij . But first, note the following simple consequence of the
triangular inequality for bigraphs:

dik − djk ≤ dij ≤ dik + djk, ∀i, j, k.

Moreover, for alli, j, ℓ, there existsk such that

ℓ ≤ dij =⇒ ℓ = dik = dij − djk. (18)

In our proof below, we will chooseℓ = dij − 1 and sok is adjacent toj.

LEMMA 12.
0) d′ij =

⌈
dij

2

⌉
.

1) dij =even impliesd′ik ≥ d′ij for all k adjacent toj.
2) dij =odd impliesd′ik ≤ d′ij for all k adjacent toj. Moreover, there is ak adjacent toj such that
d′ik < d′ij .

Proof. 0) We have2d′ij ≥ dij because given any path inG′ of lengthd′ij , there is one inG between
the same end points of length at most2d′ij . We have2d′ij ≤ dij + 1 because given any path inG of
lengthdij , there is one inG′ of length at most(dij + 1)/2 between the same end points. This shows

dij ≤ 2d′ij ≤ dij + 1,

from which the desired result follows.
1) If k is adjacent toj thendik ≥ dij − djk = dij − 1. Hence

d′ik ≥

⌈
dij − 1

2

⌉
=

⌈
dij

2

⌉
= d′ij .

2) If k is adjacent toj thendik ≤ dij + 1 and hence

d′ik ≤

⌈
dij + 1

2

⌉
=

⌈
dij

2

⌉
= d′ij .

Moreover, by equation (18), there is ak adjacent toj such thatdik = dij − 1. Then

d′ik =

⌈
dij − 1

2

⌉
=

⌈
dij

2

⌉
− 1 = d′ij − 1.
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Q.E.D.

As a corollary of 1) and 2) above:

COROLLARY 13. For all i, j, the inequality

∑

k:dkj=1

d′ik ≥ deg(j) · d′ij

holds if and only ifdij is even.

Notice that
∑

k:dkj=1 d′ik is equal to the(i, j)th entry in the matrixT = D′ ·A. So to determine the
parity ofdij we simply compareTij to deg(j) · d′ij .

We now have a simple algorithm to computeD = [dij ]. Thediameter diam(G) is the maximum
value in the matrixD. Let E be the matrix of all1’s. Clearlydiam(G) = 1 iff D = E. Note that the
diameter ofG′ is ⌈r/2⌉.

SEIDEL ALGORITHM

Input: A, the adjacency matrix ofG.
Output: The matrixD = [dij ].
1) ComputeA′ ← A2, the adjacency matrix ofG′.
2) If A′ = E then the diameter ofG is≤ 2,

and returnD ← 2A′ −A− I whereI is the identity matrix.
3) Recursively compute the matrixD′ = [d′ij ] for A′.
4) Compute the matrix product[tij ]← D′ ·A.
5) ReturnD = [dij ] where

dij ←

{
2d′ij if tij ≥ deg(j)d′ij
2d′ij − 1 else.

¶24. Correctness. The correctness of the output whenA′ has diameter 1 is easily verified. The
inductive case has already been justified in the preceding development. In particular, step 5 implements
the test for the parity ofdij given by corollary13. Each recursive call reduces the diameter of the graph
by a factor of2 and so the depth of recursion is at mostlg n. Since the work done at each level of the
recursion isO(MM(n)), we obtain an overall complexity of

O(MM(n) log n).

We remark that, unlike the other minimum cost algorithms, itis no simple matter to modify the above
algorithm to obtain the minimum length paths. In fact, it is impossible to output these paths explicitly
in subcubic time since this could haveΩ(n3) output size. But we could encode these paths as a ma-
trix N whereNij = k if some shortest path fromi to j begins with the edge(i, k). Seidel gave an
O(MM(n) log2 n) expected time algorithm to computeN .

EXERCISES

Exercise 10.1:We consider the same problem but for digraphs:
(a) Show that if we have a digraph with unit cost then the following is true for alli 6= j: dij is
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even if and only ifd′ik ≥ d′ij holds for allk such thatdkj = 1.
(b) Use this fact to give an algorithm usingO(MM(n) log n) arithmetic (+,−×) operations on
integers. HINT: replaceD′ = [d′ij ] by E = [eij ] whereeij = nn−d′

ij . ♦

END EXERCISES
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