
§1. UNION FIND PROBLEM Lecture XIII Page 1

Lecture XIII
DISJOINT SETS

Let U be a set of items, and let≡ be an equivalence relation onU . We want to make two kinds
of requests on this equivalence relation: supposex, y ∈ U . First, we want to know ifx andy are
equivalent: isx ≡ y? Second we want to modify the equivalence relation by declaring that, from now
on,x andy will be equivalent.

This equivalence maintenance problem is calledunion-find problem because the two requests can
be reduced the Find operation and the Union operation. Othernames for this includeset union, dis-
joint set or set equivalence. Underlying the best solutions to this problem is a data structure called
compressed trees. The algorithms are this data structure israther simple and easy to implement. Never-
theless, the complexity analysis of these algorithms is highly non-trivial, requiring a rather sophisticated
form of amortization argument.

There are many practical applications of union find. We shalllook at three applications: in the
implementation of Kruskal’s algorithm for minimum spanning tree, a problem of reducing numerical
expressions, and the problem of computing Betti numbers in Computational Topology.

§1. Union Find Problem

Let U be a set (the universe) of items. Apartition of U is a collection

P = {S1, . . . , Sk}

of pairwise disjoint non-empty sets such thatU = ∪k
i=1Si. We sayx, y ∈ [1..n] areequivalent, denoted

x ≡ y if they belong to the same set inP . EachSi ∈ P is also called anequivalence class. For any
x ∈ U , letset(x) denote the equivalence class ofx. The items inU have no particular properties except
that two items can be checked for equality. In particular, there is no ordering property on the items.

In order to facilitate computation, we will assume that eachSi has a uniquerepresentative item
xi ∈ Si. Let rep(Si) denote this representative itemxi. The choice of this representative item is
arbitrary. Because of this representative item, we can now define theFind operation, whereFind(x)
will return the representative item in the equivalence class ofx. Hence the

x ≡ y ⇐⇒ rep(x) = rep(y) ⇐⇒ set(x) = set(y).

The problem of checking ifx, y ∈ U are equivalent is now reduced to computingFind(x) andFind(y)
and checking whetherFind(x) = Find(y).

In the following, it is convenient to assume that

U = [1..n] :={1, 2, . . . , n}.

The partitionP is dynamically changing because of the second operation of Union. If x, y ∈ U , then
the Union operation declares that henceforthx andy are equivalent. This reduces to the problem of
replacingset(x) andset(y) in P by their unionset(x) ∪ set(y). Thus, the number of equivalence
classes can only decrease, not increase.

TheUnion Find problem is the problem of processing a sequence of Find/Union requests on a set
U in which the equivalence relation is initially trivial (i.e., each equivalence class is the singleton set
{x} wherex ∈ U).

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§1. UNION FIND PROBLEM Lecture XIII Page 2

¶1. Example. Let n = 4 andP consists initially of the singleton setsSi = {i} for i ∈ [1..4]. Let the
sequence of requests be

Union(2, 3), F ind(2), Union(1, 4), Union(2, 1), F ind(2).

The partitionP finally consists of just one equivalence class, the entire set [1..4]. The two Find requests
return (respectively) the representatives of the sets{2, 3} and{1, 2, 3, 4} that exist at the moment when
the Finds occur. To be specific, suppose we choose the smallest integer in a set to be the representative
item. Then these two Find requests return2 and1, respectively.

Each Union (resp., Find) requests can be viewed as anequivalence assertion(resp.,equivalence
query). The original motivation for this problem is in FORTRAN compilers, where one needs to process
the EQUIVALENCE statement in the FORTRAN language. This statement assert the equivalence of
two programming variables. Another application is in finding connected components in bigraphs. For
more information, see Tarjan [6, 8] and a survey from Galil and Italiano [3].

¶2. Physical Representation of Sets. In most of our solutions to the Union Find Problem, a setS is
“physically” represented by a rooted unordered treeT whose node set isS, with the root serving as the
representative ofS. To representT , each itemx has aparent pointer x.p. The treeT is completely
determined by these pointers. The root is the unique nodex ∈ S such thatx.p = x, and it serves as
representativeof S. We callT a compressed treerepresentation of the setS. This data structure is
from Galler and Fischer (1964). It is important to realize that there are no pointers from a node ofT to
any of its children, and the set of children are unordered (unlike in binary trees where the two children
of a node are ordered as left- and right-child).

Using compressed trees, we can now represent any collectionP of disjoint sets by a forest of com-
pressed trees. For instance, letP = {0, 5, 6, 8, 9}, {3}, {1, 2, 4, 7}. The underlined items (i.e., 5, 3 and
7) are representatives of the respective sets. A possible compressed tree representation ofP is shown in
Figure1.

8

0 6

9

35

4

7

2 1

Figure 1:

If x, y are roots of compressed trees, then we have the concrete or “physical” operation
as opposed to ADT

operations
Link(x, y)

that links x to y. Basically, this is the assignmentx.p← y although there might be other book keeping
actions. The result is a new compressed tree rooted aty, representing the union of the original two sets.
If x = y, thenLink(x, y) is a null operation. Now we can physically implement a Union requests by
two Finds and a Link:

Union(x, y) ≡ Link(Find(x), F ind(y)). (1)

¶3. Complexity parameters. The complexity of processing a sequence of Union-Find requests will
be given as a function ofm andn, wheren is the size of the universe[1..n] andm the number of requests

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§1. UNION FIND PROBLEM Lecture XIII Page 3

(i.e., Union or Find operations). For simplicity, we assumethat there are initiallyn singleton sets and
m ≥ n/2. This inequality comes from insisting that every item in theuniverse must be referenced in
either a Find or a Union request.

But the parameterm in the following discussions will given a slightly different meaning: recall
that the Union operation can be replaced by two finds and a single link as in (1). So we may replace
a sequence ofm Union/Find requests by an equivalent sequence of≤ 3m Link/Find requests. Up
to Θ-order, the complexity of a sequence ofm Link/Finds and the complexity of a sequence ofm
Union/Finds are equal. Therefore, we will simply analyze a sequence ofm Link/Find operations. In
some of our analysis, we use another parameterm′ which is the number of Find requests among them
operations; thusm′ ≤ m.

¶4. Two Solutions to the Link/Find Problem.

Linked List Solution An obvious solution to the Link/Find problem is to representeach set inP by
a singly linked list. We can regard a singly linked list as a special kind of compressed treeT
which has only one leaf. The unique leaf ofT corresponds to theheadwhile the root is thetail
of this linked list. Following links from any node will lead us to the tail of the list. This is like
a traditional singly-linked list where the pointerx.p plays the role of the “next node” pointer,
with a small exception: traditionally, the tail of the linked list points tonil while in compressed
trees, it points to itself. See Figure2(a). Note that linking takes constant time,provided the
head of each linked list stores atail pointer that points to its own tail. The tail pointer is easy
to maintain during a link operation. On the other hand, a Findoperation requires a worst case
time proportional to the length of the list. Clearly, the complexity of a sequence ofm Link/Find
requests isO(mn).

TailHead

(b)(a)

Figure 2: (a) Linked list solution. (b) Anti-list solution.

Anti-list Solution Another solution is to represent each set inP as a compressed tree of height one:
thus every non-root is a leaf that points to the root. See Figure 2(b). This data structure is the
antithesis of lists: we will call such treesanti-lists. Clearly a Find request will now take constant
time. On the other hand, linkingx to y takes time proportional to the size ofset(x) since we
need to make every element inset(x) point toy. It is easy to see that the overall complexity of
processingm Link/Find requests isO(m + n2).

¶5. Naive Compressed Tree Solution. The constrast between the list and anti-list representations is
as sharp as can be: Linking is easy for lists but hard for anti-lists. Conversely, Find is easy using anti-
lists, but hard for lists. Here, “easy” meansΘ(1) and “hard” meansΘ(n). Galler and Fischer (1964)
shows that the relative advantages of both solutions can be exploited if we use the (general) compressed
tree representation. But this advantage may not be immediately apparent. To see why, consider a
straight forward implementation of the Find and Link operations under compressed tree representation.
For Find(x), we just follow parent pointers fromx until the root, which is returned. ForLink(x, y),
we simply setx.p ← y and returny. These “naive” algorithms can lead to a degenerate tree thatis

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§1. UNION FIND PROBLEM Lecture XIII Page 4

a linear list of lengthn − 1. ClearlyΘ(mn) is the worst case bound for a sequence ofm Link/Find
Operations onn items. How can we do better?

EXERCISES

Exercise 1.1: Show the stated upper bounds for the above data structures are tight by demonstrating
matching lower bounds.
(a) When using compressed trees or linked lists, give anΩ(mn) lower bound.
(b) When using anti-lists, give anΩ(m + n2) lower bound. ♦

Exercise 1.2: Generalize any of the above Union-Find data structures to support a new operation ”In-
equiv(x,y)”. This amounts to detachingx from the setset(y), and setting upx as a new singleton
set. Analyze its complexity. ♦

Exercise 1.3: Assume the anti-list representation, let us link two trees using the following “size heuris-
tic”: always append the smaller set to the larger set. To implement this heuristic, we can easily
keep track of the sizes of anti-lists. Show that this scheme achievesO(m + n logn) complexity.
Prove a corresponding lower bound. ♦

Exercise 1.4: We propose another data structure: assume that the total numbern of items in all the sets
is known in advance. We represent each set (i.e., equivalence class) by a tree of depth exactly2
where the set of leaves correspond bijectively to items of the set. Each node in the tree and keeps
track of its degree (= number of children) and maintains three pointers: parent, child and sibling.
Thus there is a singly-linkedsibling list for the set of children of a nodeu; the child pointer ofu
points to the head of this list. The following properties hold:
(i) Each child of the root has degree between1 and2 lg n.
(ii) Say a child of the root isfull if it has degree at leastlg n. At most one child of the root isnot
full .

y y

y’

union

++

’

++++

c xba

xx

a b x

+ + + +

’

++

’ cy

Figure 3: Illustration of Union.

Using this representation, a Find operation takes constanttime. The union of two sets with roots
x, y is done as follows: ifdegree(x) ≥ degree(y) then each full child ofy becomes a child ofx.
Sayx′, y′ are the children ofx, y (respectively) which are not full and assume thatdegree(x′) ≥
degree(y′). [We leave it to the reader to consider the cases wherex′ or y′ does not exist, or when
degree(x′) < degree(y′).] Then we make each child ofy′ into a child ofx′. Note that since
y andy′ do not represent items in the sets, they can be discarded after the union. Prove that the
complexity of this solution is

O(m + n log log n)

wherem is the total number of operations.
HINT: Devise a charging scheme so that the work in a Union operation is charged to items
at depths1 and 2, and the overall charges at depths1 and 2 are (respectively)O(n) and
O(n log log n). ♦

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§2. TWO HEURISTICS Lecture XIII Page 5

Exercise 1.5: Suppose we add to the Union-Find problem a third operation: Delete. Interpret the union
operation as adding an edge to a bigraph that originally has no edges. The delete operation is just
the reverse of union an edge. Of course, deletion has no effect unless the edge has been previously
introduced via a union and has not been deleted. The find operation should again return a unique
name of the connected component of the current bigraph that contains the name of the component.
How efficiently can you solve this problem? ♦

END EXERCISES

§2. Rank and Path Compaction Heuristics

There are several heuristics for improving the performanceof the naive compressed tree algorithms.
They fall under two classes, depending on whether they seek to improve the performance of Links or of
Finds.

¶6. Size and Rank heuristics. Consider how we can improve the performance of Links. For any
nodex, let size(x) be the number of items in the subtree rooted atx. Suppose we keep track of the size
of each node, and in the union ofx andy, we link the root of smaller size to the root of larger size (if
the sizes are equal, this is arbitrary). This rule for linking is called thesize heuristic. Then it is easy to
see that our compressed trees have depth at mostlg n under this heuristic. Hence Find operations take
O(log n) time.

An improvement on the size heuristic was suggested by Tarjanand van Leeuwen: we keep track of
a simpler number calledrank(x) that can be viewed as a lower bound onlg(size(x)) (see next lemma).
Therank of x is initialized to0 and subsequently, whenever we linkx to y, we will modify the rank of
y as follows:

rank(y)← max{rank(y), rank(x) + 1} (2)

Note that the rank ofy never decrease by this assignment. This assignment is the only way by which a
rank changes. If compressed trees are never modified except through linking, then it is easy to see that
rank(x) is simply the height ofx. In general, the rank ofx turns out be just an upper bound on the
height ofx. Using the rank information, we specify a linking order for union:

Rank Heuristic: When forming the union of two trees rooted atx and y,
respectively, linkx to y if rank(x) ≤ rank(y); otherwise linky to x.

Under this heuristic, the assignment (2) increases the rank ofy by at most1.

¶7. Path Compaction heuristics. The size and rank heuristics are applicable to Links. Now consider
heuristics to improve the performance of Finds. The first idea was introduced by McIlroy and Morris.
When we do a Find on an itemx, we traverse some path fromx to the rootu of its tree. This is called the
find-path of x. We specify a transformation of the compressed tree to accompany each Find operation:

Path Compression Heuristic:After performing a Find onx that returns the
root u, modify the parent pointer of each nodez along the find-path ofx to
point tou.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§2. TWO HEURISTICS Lecture XIII Page 6

For example, if the find-path ofx is (x, w, v, u) as in Figure4, then after Find(x), x andw will become
children ofu (note thatv remains a child ofu).

Find(x)

w

x

v

u

wx v

u

Figure 4: Path compression heuristic.

Path compression requires two passes along the find-path, first to locateu and the second time to
change the parent pointer of nodes along the path. Can we do better? Path compression can be seen as
a member of the family ofpath compaction heuristics. Such a heuristic specifies a rule to modify the
parent pointer of each nodez along a find-path to point to some ancestor ofz. Note that ifz is the root
or a child of the root, then the path compaction heuristic hasno effect onz.p.

Split(x)

Half(x)

x

w

v

u

s

t

w

x

v

u

s

t

w

x

v

u

s

t

Figure 5: Path Compaction: Splitting and Halving

The “trivial” path compaction heuristic is the one that never changesz.p for anyz on the path. Path
compression is the other extreme, where eachz.p made to point to the ultimate ancestor, the root. We
now prove two intermediate forms of path compaction, from van der Weide and van Leeuwen (1977).
Thepath splitting heuristic says that for each nodez along the find-path, we should update its parent
pointer to its grandparent:z.p← (z.p).p. Of course,(z.p).p is the grandparent ofz, and it may also be
written as

z.p.p or z.p2.

The effect of this heuristic is to split the find-path into twopaths comprising the odd and even nodes,
respectively. Both the odd and even paths are about half the original length. See Figure5(a) where
the find-path(x−w−v−u−t−s) is split into two paths(x−v−t−s) and(w−u−s). The path split-
ting heuristic can now be implemented with only one pass overthe find-path, and in this sense is an
improvement over path compression. A further improvement is the following variant:

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§2. TWO HEURISTICS Lecture XIII Page 7

Path Halving Heuristic: After performing a Find onx, modify the parent
pointer of every other nodez along the find-path ofx to point its grandparent.

In Figure5(b), we see that the find-path(x−w−v−u−t−s) is halved into the path(x−v−t−s).
The other nodew andu join this half path at intermediate points. This halving heuristic requires only
half the number of pointer assignments used in the path splitting heuristic.

Although the splitting and halving heuristics have the advantage of being 1-pass algorithms, they do
not instantly reduce the find-path of elements along its pathto lengthO(1) like in path compression. So
it is not immediately clear these two heuristics can match the performance of path compression.

¶8. Analysis of the rank heuristic. We state some simple properties of the rank function. Notice
that the rank function is defined according to equation (2), whether or not we use the rank heuristic for
linking:

LEMMA 1.
The rank function (whether or not the rank heuristic is used,and even in the presence of path compres-
sion) has these properties:

(i) A node has rank0 iff it is a leaf.
(ii) The rank of a nodex does not change afterx has been linked to another node.
(iii) Along any find-path, the rank is strictly increasing. Anode has rank0 iff it is a leaf.

If the rank heuristic is used, then the rank function has additional properties:
(a) rank(x) ≤ degree(x) andrank(x) ≤ lg(size(x)).
(b) No path has length more thanlg n.
(c) In any sequence of Links/Find requests, for anyk ≥ 1, the number of times that the rank of any

item gets promoted fromk − 1 to k is at mostn2−k.

Proof. Parts(i)-(iii) are immediate. Part(a) is shown by induction: it is true whenx is initially a
singleton, sincerank(x) = degree(x) = 0 andsize(x) = 1. We must look at events that causes
the rank, degree or size of any nodex to change. When we linky to x, the degree ofx increases by
one, and the size ofx increased. If the rank ofx did not change (this happens becauserank(y) <
rank(x)) then the truth of property (a) is preserved by the linking. If the rank ofx changes, it must
have increased by1 and this resulted fromy having the same rank asx. Let rank′(x), degree′(x) and
size′(x) be the new rank, degree and size ofx. Thenrank′(x) = 1 + rank(x), degree′(x) = 1 +
degree(x) andsize′(x) = size(x) + size(y). Thusrank′(x) ≤ degree′(x) follows fromrank(x) ≤
degree(x). Also, 2rank′(x) = 2rank(x)+1 = 2rank(x) + 2rank(y) ≤ size(x) + size(y) = size′(x).
Thusrank′(x) ≤ lg size′(x).
(b) Consider a path of lengthℓ in a tree rooted atx. By part(iii), the ℓ ≤ rank(x). By part(a),
rank(x) ≤ lg n. Thusℓ ≤ lg n.
(c) Supposex andy are two items that were promoted from rankk − 1 to k at two different times. Let
Tx andTy be the subtrees rooted atx andy immediately after the respective promotions. ClearlyTx

andTy are disjoint. By part(a),size(x) ≥ 2rank(x) = 2k, and similarlysize(y) ≥ 2k. There can be at
mostn/2k such trees. Q.E.D.

Using the rank heuristic alone, each Find operation takesO(log n) time, by property (b). This gives
an overall complexity bound ofO(m log n). It is also easy to see thatΩ(m log n) is a lower bound if
only the rank heuristic is used.

¶9. Analysis of the path compression heuristic. We will show below (see§3) that with the path
compression heuristic alone, a charge ofO(log n) for each Find is sufficient. Again this leads to a

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§2. TWO HEURISTICS Lecture XIII Page 8

complexity ofO(m log n).

This suggests that path compression heuristic alone and rank heuristic alone give the same complex-
ity results. But closer examination shows important differences: unlike the rank heuristic, we cannot
guarantee thateachFind operation takesO(log n) time under path compression. Thus, thisO(m log n)
bound is a true amortization bound and not a worst case bound.On the other hand, path compression
has the advantage of not requiring extra storage (the rank heuristic requires up tolg lg n extra bits per
item). Hence there is an interesting tradeoff to be made.

To prove a lower bound on path compression heuristic, we use binomial trees. Abinomial tree is
any tree that has the shape of someBi, i ≥ 0, where

B0, B1, B2, . . . ,

is an infinite family of trees defined recursively as follows:B0 is the singleton.Bi+1 is obtained from
two copies ofBi such that the root of oneBi is a child of the other root (see Figure6). Clearly, the size
of Bi is 2i.

Bi+1B0 B1 B3B2

Bi

Bi

Figure 6: Binomial trees

The next lemma shows some nice properties of binomial trees (the arguments are routine and left as
an Exercise).

LEMMA 2.
(i) For i ≥ 1, Bi can be decomposed into its root together with a sequence of subtrees of shapes

B0, B1, . . . , Bi−1.

(ii) Bi has depthi. Moreover, levelj (for j = 0, . . . , i) has
(

i
j

)

nodes. In particular,Bi has a unique
deepest node at leveli.
(iii) Bi has2i nodes.

Property (ii) is the reason for the name “binomial trees”.

¶10. A Self-reproducing Property of Binomial Trees. M.J. Fischer observed an interesting property
of binomial trees under path compression. LetBi,k denote any compressed tree which

• has sizek + 2i,

• contains a copy ofBi, and

• the root of thisBi coincides with the root ofBi,k.

Note thatBi,0 is justBi. A copy ofBi that satisfies this definition ofBi,k is called an “anchoredBi”.
There may be many such anchoredBi’s in Bi,k. A node inBi,k is distinguished if it is the deepest
node of some anchoredBi. The right-hand side of Figure7 shows an instance ofB3,1.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§2. TWO HEURISTICS Lecture XIII Page 9

a
a

c
c

b
b

F ind(x)
d x

d

x

B′3,0 B3,1

Compress(x)

Figure 7: Self-reproducing binomial treeB3.

Also letB′
i,k denote the result of linking the root ofBi,k to a singleton. Distinguished nodes ofB′

i,k

are inherited from the correspondingBi,k. The left-hand side of Figure7 illustratesB′
3,0.

LEMMA 3. Suppose we perform a Find on any distinguished node ofB′
i,k. Under the path compression

heuristic, the result has shapeBi,k+1.

This lemma is illustrated in Figure7 for B′
3,0 (the nodex is the only distinguished node here). We

now obtain a lower bound for path compression heuristics as follows. First perform a sequence of links
to getBi such thatBi contains betweenn/4 andn/2 nodes. Thusi ≥ lg n − 2. Then we perform a
sequence of Links and Finds which reproducesBi in the sense of the above lemma. This sequence of
operations has complexityΩ(m log n). Our construction assumesm = Θ(n) but it can be generalized
to m = O(n2) (Exercise).

Note that if we use path halving heuristic, the resulting tree is a bit harder to analyze.

EXERCISES

Exercise 2.1: Suppose we start out with 5 singleton sets{a}, {b}, {c}, {d}, {e}, and we perform a se-
quence of Link/Find operations. Assume the path compression heuristic, but not the rank heuris-
tic. The cost of a Link is 1, and the cost of a Find is the number of nodes in the find-path.
(a) Construct a sequence of 12 Link/Find operations that achieves the worst case cost.
(b) Suppose the cost of a Find istwice the number of nodes in the find-path (this seems more
realistic in any implementation). This obviously impacts the actual worst case cost, but would
your sequence of 12 operations in (a) have changed? ♦

Exercise 2.2: Show that when the size heuristic is used, then height ofx is at mostlg(size(x)). ♦

Exercise 2.3: We need to allocateO(log log n) extra bits to each node to implement the rank heuristic.
Argue that the rank heuristic only uses atotal of O(n), notO(n log log n), extra bits at any
moment. In what sense is this fact hard to exploited in practice? [Idea: to exploit this fact, we do
not pre-allocateO(log log n) bits to each node.] ♦

Exercise 2.4: Prove lemma2 and lemma3. ♦

Exercise 2.5: (Chung Yung) Assuming naive linking with the path compression heuristic, construct for
everyi ≥ 0, a sequence(l1, f1, l2, f2, . . . , l2i , f2i) of alternating link and find requests such that

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§2. TWO HEURISTICS Lecture XIII Page 10

the final result is the binomial treeBi. Hereli links a compressed tree to a singleton element and
fi is a find operation. ♦

Exercise 2.6: In the lower bound proof for the path compression heuristic,we have to make the follow-
ing basic transformation:

Bi,k −→ B′
i,k −→ Bi,k+1 (3)

Beginning withBi,0, we repeat the transformation (3) to get an arbitrarily long sequence

Bi,1, Bi,2, Bi,3 . . . (4)

(a) The question is: can you always choose your transformations so that of the trees in this
sequence has the formBi+1,k (for somek ≥ 0)? (a) Characterize thoseBi,k ’s that are realizable
using the lower bound construction in the text. HINT: first consider the casei = 1 andi = 2.
If you like, you can restrict the transformation (3) in the sense that the node for Find is specially
chosen from the possible candidates. ♦

Exercise 2.7: Suppose that all the Links requests appear before any Find requests. Show that if both
the rank heuristic and path compression heuristic are used,then the total cost is onlyO(m). ♦

Exercise 2.8: Let G = (V, E) be a bigraph, andW : V → R assign weights to its vertices. Theweight
of a connected componentC of G is just the sum of all the weights of the vertices inC.
(a) Give anO(m+n) algorithm to compute the weight of the heaviest component ofG. As usual,
|V | = n, |E| = m.
(b) Suppose the edges ofE are given “on-line”, in the order

e1, e2, e3, . . . , em.

After the appearance ofei, we must output the weight of the heaviest component of the graph
Gi = (V, Ei) whereEi = {e1, . . . , ei}. Give a data structure to store this information about the
heaviest components and which can be updated. Analyze the complexity of your algorithm. ♦

Exercise 2.9: For anym ≥ n, we want a lower bound for the union-find problem when the path
compression heuristic is used alone.
(a) Fix k ≥ 1. Generalize binomial trees as follows. LetFk = {Ti : i ≥ 0} be a family of trees
whereTi is a singleton fori = 0, . . . , k − 1. Fori ≥ k, Ti is formed by linking aTi−k to aTi−1.
What is the degreed(i) and heighth(i) of the root ofTi? Show that the size ofTi is at most
(1 + k)(i/k)−1.
(ii) [Two Decompositions] Show that if the rootTi has degreed thenTi can be constructed by
linking a sequence of trees

t1, t2, . . . , td (5)

to a singleton, and eachti belongs toFk. Show thatTi+1 can also be constructed from a sequence

s0, s1, . . . , sp, p = ⌊(i + 1)/k⌋ (6)

of trees by linkingsj to sj−1 for j = 1, . . . , p, and eachsj belongs toFk. The decompositions
(5) and (6) are called thehorizontal andvertical decompositionsof the respective trees. Also,
sp in (6) is called thetip of Ti+1.
(iii) [Replication Property] LetT ′ be obtained by linkingTi to a singleton nodeR. Show that
there arek leavesx1, . . . , xk in T ′ such that if we do finds onx1, . . . , xk (in any order), path
compression would transformT ′ into a copy ofTi except the root has an extra child. HINT:
Consider the treesr0, r1, . . . , rk−1, rk whererj = Ti−k−j (for j = 0, . . . , k− 1) andrk = Ti−k.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§3. MULTILEVEL PARTITION Lecture XIII Page 11

Note thatTi can be obtained by linking each ofr0, r1, . . . , rk−1 to rk. Let C be the collection of
trees comprisingrk and the trees of the vertical decomposition ofrj for eachj = 0, . . . , k − 1.
What can you say aboutC?
(iv) Show a lower bound ofΩ(m log1+(m/n) n) for the union-find problem when the path com-
pression heuristic is used alone. HINT:k = ⌊m/n⌋. Note that this bound is trivial when
m = Ω(n2). ♦

Exercise 2.10:Explore the various compaction heuristics. ♦

END EXERCISES

§3. Multilevel Partition

The surprising result is that the combination of both rank and path compression heuristics leads to a
dramatic improvement on theO(m log n) bound of either heuristic. The sharpest analysis of this result
is from Tarjan, giving almost linear bounds. We give a simplified version of Tarjan’s analysis.

¶11. Partition functions. A function
a : N→ N

is a partition function if a(0) = 0 anda(j) < a(j + 1) for all j ≥ 0. Such a function induces a
partition of the natural numbersN where each block of the partition has the form[a(j)..a(j + 1)− 1].
For instance, ifa is the identity function,a(j) = j for all j, then it induces thediscrete partition where
each block has exactly one number.

A multilevel partition function is A : N× N→ N such that:
a) For eachi ≥ 0, A(i, ·) is a partition function, which we denote byAi. The partition onN induced

by Ai is called thelevel i partition .
b) The level0 partition functionA0 is the identity function, inducing the discrete partition.
c) The leveli partition is a coarsening of the leveli− 1 partition.

Let block(i, j) = [A(i, j)..A(i, j + 1)− 1] denote thejth block of the leveli partition. Fori ≥ 1, let

b(i, j) ≥ 1

denote the number ofi− 1st level blocks whose union equalsblock(i, j).

A simple example of a multilevel par-

0 1 2 3 4 5 6 7 8 9

0

1

2

3

j

i

A∗(3, 0)

A∗(2, 1)

A∗(1, 3)

A∗(2, 0)
Level:

Figure 8: Binary Partition Function,A∗(i, j)

tition function isA∗ defined by

A∗(i, j) := j2i, (i, j ≥ 0). (7)

For reference, call this thebinary (mul-
tilevel) partition function . In this case
b(i, j) = 2 for all i ≥ 1, j ≥ 0.

¶12. Basic Goal. Our goal is to analyze path compaction heuristics (§2),without necessarily assuming
that the rank heuristic is used. Recall the rank function is defined as in equation (2), and is meaningful

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§3. MULTILEVEL PARTITION Lecture XIII Page 12

even if we do not use the rank heuristic. Of course, if we do notuse the rank heuristic then we need not
maintain this information in our data structure. In this analysis, we assume some fixed sequence

r1, r2, . . . , rm (8)

of m Links/Find request on a universe ofn items.

¶13. The eventual rank of an item. Therank of an item is monotonically non-decreasing with time.
Relative to the sequence (8) of requests, we may speak of theeventual rank of an itemx. E.g., if
x is eventually linked to some other item, its eventual rank isits rank just before it was linked. To
distinguish the two notions of rank, we will writeerank(x) to refer to its eventual rank. For emphasis,
we say “current rank ofx” to refer to the time-dependent concept ofrank(x).

¶14. The level of an item. The level notion is defined relative to some multilevel partition function
A(i, j). The functionA(i, j) is used in the analysis only, and does not figure in the actual algorithms.
We sayx haslevel i (at any given moment) ifi is the smallest integer such that the eventual ranks of
x and of its current parentx.p are in the sameith level block. Note the juxtaposition ofcurrentparent
with eventualrank in this definition.

For instance, assuming the binary partition functionA∗ in (7), if erank(x) = 2 anderank(x.p) = 5
thenlevel(x) = 3 (since2, 5 both belong in the level 3 block[0, 7] but are in different level 2 blocks).
Although erank(x) is fixed, x.p can change and consequently the level ofx may change with time.
Notice thatx is a root if and onlyerank(x.p) = erank(x). Hencex is a root iff it is at level0.

We leave the following as an easy exercise:

LEMMA 4. Assume that some form of compaction heuristic is used. The following holds, whether or
not we use the rank compression heuristics:

(i) The erank of nodes strictly increases along any find-path.
(ii) For a fixedx, erank(x.p) is non-decreasing with time.
(iii) The level of nodex is 0 iff x is a root.
(iv) The level of anyx is non-decreasing over time.
(v) The levels of nodes along a find-path need not be monotonic(non-decreasing or non-increasing),

but it must finally be at level0.

¶15. Bound on the maximum level. Let α ≥ 0 denote an upper bound on the level of any item. Of
course, the definition of a level depends on the choice of multilevel partition functionA(i, j). Trivially,
all ranks lie in the range[0..n]. If we use the binary partition functionA∗ in (7) then we may choose
α = lg(n + 1). In general, we could chooseα to be the smallesti such thatA(i, 1) > n. If the rank
heuristic is used, all ranks lies in the range[0.. lg n]. Hence if we again choose the binary partition
functionA∗, we will obtain

α = lg lg(2n). (9)

¶16. Charging scheme. We charge one unit for each Link operation; this is sufficientto pay for the
cost of Linking. The cost of a Find operation is proportionalto the length of the corresponding find-
path. To charge this operation, we introduce the idea of alevel accountfor each itemx: for eachi ≥ 1,
we keep acharge account forx at leveli. Wechargethe Find operation in two ways:
• Upfront Charge: we simply charge this Find1 + α units.
• Level Charges: For each nodey along the find-path, ify.p 6= root andlevel(y.p) ≥ level(y)

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§3. MULTILEVEL PARTITION Lecture XIII Page 13

then wecharge one unit toy’s account at leveli for eachi ∈ [level(y)..level(y.p)].
Thusy incurs a total debit oflevel(y.p)− level(y) + 1 units over all the levels.

¶17. Justification for charging scheme.

LEMMA 5. The charge for each Find operation covers the cost of the operation.

0

6
5
4
3
2
1

121110987654321
i

13

v2

v3

v6

v5 v11

v1

Figure 9: Plot oflevel(xi) againsti.

This is best shown visually as follows. Let the find-path be(x1, x2, . . . , xh) wherexh is the root.
We must show thatFind(x1) is charged at leasth units by the above charging scheme. Plot a graph
of level(xi) againsti. As illustrated in Figure9, this is a discrete setv1, v2, . . . , vh of points where
vi = (i, level(xi)). Note that by lemma4(v), the level ofvh is 0. The graph is a polygonal path
(v1−v2− · · · −vh) with h−1 edges. An edge(vi−vi+1) is calledpositive, zeroor negative, according
to the sign of its slope. Thus Figure9 has3 positive edges,6 negative edges and3 zero edges. Our level
charges amount to chargingk + 1 units to a non-negative edge whose slope isk ≥ 0; negative edges
have no charges. In Figure9, edge(v8−v9) has slope2 and so has a level charge of3. We color the
vertices with one of three colors:

• vi is black if the slope of(vi−vi+1) is non-negative. E.g.,v1, v3, v4, v7, v8, v9, v10 in Figure9.

• vi is green if the slope of(vi−1−vi) is non-negative. E.g.,v2, v5, v11 in Figure9.

• vi is red otherwise. This means that the slopes of(vi−1−vi) (if i > 1) and(vi−vi+1) (if i < h)
are both negative. E.g.,v6, v12, v13 in Figure9.

The total cost of a Find operation can be distributed to the vertices, so each vertex has unit cost. The cost
of a black vertexvi is covered by the level charges to(vi−vi+1); likewise, the cost of a green vertexvi

is covered by the level charges to(vi−1−vi). But how do we cover the cost of a red vertexvi? This is
the key geometrical insight: for each red vertexvi, we cast a horizontal ray fromvi to the right. There
are two possibilities.
(1) This ray may never hit any edge, as in the case of the rays fromv12 andv13. Note that there are most
1 + α of these rays since0 ≤ level(xi) ≤ α, and there is at most one ray to infinity at each level.
(2) This ray may hit a point on a positive edge, as in the case ofthe ray fromv6 hitting the edge(v8−v9).
We will cover the cost ofvi using the level charges associated with the positive edge. To see that this is
a valid method, note that a positive edge with slopek ≥ 1 may be hit by no more thank rays. Since it is
endowed withk + 1 level charges, and one of these charges is to pay for the associated black vertex, we
are left withk unused charges. One subtlety is that the ray may hit a zero edge as well. For instance, if
the vertexv6 in Figure9 were raised one unit higher, it would hit the zero edge(v9−v10). Nevertheless,
it still hits a positive edge, and we never have to choose the zero edge for this accounting.

¶18. The number of level charges. Let x be an item. For eachi ≥ 1, erank(x) belongs to
block(i, j(i)) for somej(i).

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§4. MULTILEVEL PARTITION Lecture XIII Page 14

LEMMA 6. The charges tox at leveli ≥ 1 is at mostb(i, j(i)).

To show this, note that wheneverx is charged at leveli, then

level(x.p) ≥ i

holds just preceding that Find. This means theerank’s of the parentx.p and grandparentx.p2 belong
to differenti − 1st level blocks. Aserank’s are strictly increasing along a find-path, after this step, the
new parent ofx haserankin a newi − 1st level block. But the indices of thei − 1st level blocks of
x.p are nondecreasing over time. Thus, after at mostb(i, j(i)) charges,erank(x.p) anderank(x) lie in
different leveli blocks. This means the level ofx has become strictly greater thani, and henceforthx
is no longer charged at leveli. This proves our claim.

Let n(i, j) denote the number of items whoseerank’s lie in block(i, j). Clearly, for anyi,

∑

j≥0

n(i, j) = n. (10)

The total level charges, summed over all levels, is at most

α
∑

i=1

∑

j≥0

n(i, j)b(i, j). (11)

¶19. Bound for pure path compression heuristic. Suppose we use the path compression heuristic
but not the rank heuristic. Let us chooseA∗(i, j) to be the binary partition function and so we may
chooseα = lg(n + 1). Then the level charges, by equations (10) and (11), is at most

lg(n+1)
∑

i=1

∑

j≥0

n(i, j)2 = 2n lg(n + 1).

If there arem′ Find requests, the upfront charges amount toO(m′ log n). This proves:

THEOREM 7. Assume the path compression heuristic but not the rank heuristic is used to process a
sequence ofm Link/Find Requests on a universe ofn items. If there arem′ Find requests, the total cost
isO(m + (m′ + n) log n).

In this result, the numberm′ of Find operations is arbitrary (in particular, we do not assumem′ ≥ n).
This result has application in a situation where path compression is allowed but not the rank heuristic
(see [7]).

Remark: The above definition of level is actually devised to work for any of the compaction heuris-
tics noted in§2. A simpler notion of level will work for path compression heuristic (see Exercise).

EXERCISES

Exercise 3.1: (Chung Yung) Define thelevel of x to be the leasti such that bothx and the rootr (of
the tree containingx) haveeranks in the sameith level block. Give a charging scheme and upper
bound analysis for path compression using this definition oflevel.

♦

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§4. COMBINED HEURISTICS Lecture XIII Page 15

END EXERCISES

§4. Combined Rank and Path Compression Heuristics

We now prove an upper bound on the complexity of Links-Find incase we combine both the rank
and path compression heuristics.1 Now all ranks lie in the range[0.. lg n]. We noted above that if
we use the binary partition functionA∗, then the level of any node lies in the range[0.. lg lg n] (see
equation (9)). This immediately gives a bound of

O((m + n) lg lg n)

on the problem. To get a substantially better bound, we introduce a new multilevel partition function.

...

Recursive

Boundary
..
.

1 2 3 4 5
i

2

3

4

5

0

0

j

0 0 0 0 0 0

1

2

3

4

5

A(2, 24)

21

23

24

1

224

22

Figure 10: Ackermann’s function

¶20. Ackermann Functions. A number theoretic function
A : N×N→ N is called anAckermann function if satisfies
the following fundamental recurrence:

A(i, j) = A(i− 1, A(i, j − 1)) (12)

for i, j large enough. A particular Ackermann function de-
pends on the choice of the boundary conditions. In the fol-
lowing, we fix the following boundary conditions:















A(i, 0) = 0, i ≥ 0,
A(0, j) = j, j ≥ 0,
A(1, j) = 2j, j ≥ 1,
A(i, 1) = A(i− 1, 2), i ≥ 2.

(13)

The conditions (13) determine the values ofA(i, j) wheni <
2 or whenj < 2. Fori ≥ 2 andj ≥ 2, the general recurrence
(12) is applicable.

Some Values of the Ackermann function.Figure10 is a useful visual aid: the domainN × N is
represented by an infinite array of grid points. The values ofA on the green points are given by the
boundary conditions (13). The values at black points are given by the recurrence (12). It follows that

A(2, j) = A(1, A(2, j − 1)), j ≥ 2

=

{

22, j = 2
2A(2,j−1), j > 2

= exp
(j)
2 (2) = 22

.
.
.
2

(a stack ofj 2’s). Also A(3, 1) = A(2, 2) = A(1, 4) = 16 andA(4, 1) = A(3, 2) = A(2, 16). The last
number is more than the number of atoms in the known universe (last estimated at1080). The dominant
feature of an Ackermann function is its explosive growth – infact, it grows faster than any primitive
recursive function.

LEMMA 8. The Ackermann functionA(i, j) is a multilevel partition function.

Proof. Conditions a) and b) in the definition of a multilevel partition function are immediate. For
condition c) we must show that theith level partition determined byA is a coarsening of thei − 1st

1 Our multi-levels directly uses the the Ackermann functionA(i, j); Tarjan uses a related functionB(i, j).

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§4. COMBINED HEURISTICS Lecture XIII Page 16

level partition. This amounts to noting that for alli ≥ 1, j ≥ 1, we can expressA(i, j) asA(i − 1, j′)
for somej′. Q.E.D.

Let us note some simple properties the Ackermann function.
• The1st level partition consists of exponentially growing blocksizes,

block(1, j) = [2j..2j+1 − 1].

• We want to determine an upper boundα on the level of an item. This can be taken to be the
smallesti such that

[0.. lg n] ⊆ block(i, 0).

Clearly, this is the smallesti such thatA(i, 1) > lg n. In fact, let us define the followinginverse
Ackermann function:

α(n) := min{i : A(i, 1) > lg n}.
It follows that the level of every item is at mostα = α(n). The dominant feature ofα(n) is its very
slow growth rate. For all practical purposes,α(n) ≤ 4 (see exercise below).
• The number ofi− 1st level blocks that formblock(i, j) is given by the following:

b(i, j) =

{

2 if j = 0,
A(i, j)−A(i, j − 1) if j ≥ 1.

(14)

To see thatb(i, 0) = 2, we note thatA(i, 1) = A(i − 1, 2). For j ≥ 1, we note thatA(i, j + 1) =
A(i− 1, A(i, j)).
• The numbern(i, j) of items whoseeranks lie in block(i, j) is bounded by:

n(i, j) ≤
A(i,j+1)−1

∑

k=A(i,j)

n

2k
≤ 2n

2A(i,j)
,

where the first inequality comes from lemma1(c).
• It follows that the number of charges at leveli ≥ 1 is bounded by

∑

j≥0

b(i, j)n(i, j) ≤ b(i, 0)n(i, 0) +
∑

j≥1

A(i, j) · 2n

2A(i,j)
≤ 2n + 2n

∑

k≥2

k

2k
≤ 5n,

using the basic summation
∞
∑

j=i

j

2j
=

i + 1

2i−2
.

Since there areα(n) levels, there is a bound ofO(nα(n)) on all the level charges. Combined with the
O(α(n)) Upfront charge for each Find, we conclude:

THEOREM 9. When the rank and path compression heuristics are employed,any sequence ofm
Links/Find request incurs a cost of

O((m + n)α(n))

The other operations are at mostO(m).

¶21. Amortization Framework. In Lecture VI, we presented the potential framework. We briefly
review this in the setting of the Union-Find problem. We are given a sequencep1, . . . , pm of requests
to process. Our amortization scheme establishes a finite setof accountsA1, . . . , As such that the cost

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§4. COMBINED HEURISTICS Lecture XIII Page 17

of each requestpi is distributed over theses accounts. More precisely, the scheme specifies acharge
by pi to each accountAj .

In our Link/Find analysis, we set up an account for each operation pi (this is called the up-front
charges for find requests) and for each itemx at each levelℓ, we have an accountAx,ℓ. Note that the
charges to each account is non-negative value (these are pure debit accounts).

If Charge(Aj , pi) is charged toAj by pi, we require

s
∑

j=1

Charge(Aj , pi) ≥ Cost(pi). (15)

If Charged(Aj) is the sum of all the charges toAj , then the amortization analysis amounts to obtaining
an upper bound on

∑s
j=1 Charged(Aj).

We may combine the charge account framework with the potential framework. We now allow an
account to becredited as well as debited. To keep track of credits, we associate apotential Φ(Aj) to
eachAj and let∆Φ(Aj , pi) denote the increase in potential ofAj after requestpi. Then (15) must be
generalized to

s
∑

j=1

(Charge(Aj , pi)−∆Φ(Aj , pi)) ≥ Cost(pi). (16)

Without loss of generality, assume thatΦ(Aj) is initially 0 and letΦj denote the final potential ofAj .
The total cost for the sequence of operations is given by

s
∑

j=1

(Charged(Aj)− Φj).

If we are interested in the “amortized cost” of each type operation, this amounts to having an account
for each operationpi and charging this account an “amortized cost” corresponding to its type. We insist
that

∑s
j=1 Φj ≥ 0 in order that the amortized cost is meaningful.

EXERCISES

Exercise 4.1: Verify the claim thatA(4, 1) > 1080 (number of atoms in the known universe). ♦

Exercise 4.2: ComputeA(3, 3). ♦

Exercise 4.3: What is the smallestj such thatA(2, j) is larger than a virgintillion (the number1063)?
Larger than a googleplex (the number1010100

)? ♦

Exercise 4.4:
(i) ShowA(i, j) is strictly increasing in each coordinate.
(ii) When isα(m, n) ≤ 1? When isα(m, n) ≤ 2?
(iii) Compute the smallestℓ such thatα(ℓ) is equal to0, 1, 2, 3, 4. ♦

Exercise 4.5: (Tarjan) Define a two argument version of the inverse Ackermann function,α′(k, ℓ),
k ≥ ℓ ≥ 1, where

α′(k, ℓ) := min{i ≥ 1 : A(i,

⌊

k

ℓ

⌋

) > lg ℓ}.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§5. THREE APPLICATIONS Lecture XIII Page 18

The one-argument functionα′(ℓ) may be defined asα′(ℓ, ℓ), and could be used instead of the
α(ℓ) function used in the text. Note thatα′(k, ℓ), for fixedℓ, is actually a decreasing function in
k. Improve the amortized upper bound toO(mα′(m + n, n)). ♦

Exercise 4.6: Consider the following multilevel partition function:A(i, j) =
⌊

lg(i)(j)
⌋

(i-fold appli-

cation of lg to j). Fix your own boundary conditions in this definition ofA(i, j). Analyze the
union-find heuristic using this choice of multilevel partition function. ♦

Exercise 4.7: Prove similar upper bounds of the formO(mα(n)) when we replace the path compres-
sion heuristic with either the splitting or halving heuristics. ♦

END EXERCISES

§5. Three Applications of Disjoint Sets

There are many applications of the disjoint set data structure. Three will be given here. The first
problem is in the implementation of Kruskal’s algorithm forminimum spanning tree. The second prob-
lem concerns restructuring of algebraic expressions, a problem which arise in optimizing compilers and
in Exact Geometric Computation. The last problem concerns the computation of Betti numbers in in
Computational Topology.

¶22. 1. Implementing Kruskals’ Algorithm. In Lecture V, we presented Kruskal’s algorithm for
minimum spanning tree (MST). We now show how to implement it efficiently using the Union Find
data structure.

Recall the problem of computing the MST of an edge-costed graphG = (V, E; C), with edge costs
C(e), e ∈ E. The idea of Kruskal is to sort all edges inE in increasing order of their costs, breaking ties
arbitrarily. We initializeS = ∅ and at each step, we consider the next edgee in the sorted list. We will
inserte into the setS provided this does not create a cycle inS (otherwisee is permanently discarded).
Thus, inductively,S is a forest. When the cardinality ofS reaches|V | − 1, we stop and outputS as the
MST.

Implementation and complexity. We must be able to detect whether addinge to a forestS will create
a cycle. This is achieved using a Union-Find structure to represent the connected components ofS. If
e = (u, v), thenS∪{e} creates a cycle iffFind(u) = Find(v). Moreover, ifFind(u) 6= Find(v), we
will next form the union of their components viaUnion(u, v). To initialize, we must set up the Union-
Find structure for the setV using the trivial relation where each vertex is forms its ownequivalence
class. The algorithm makes at most2m Finds andn Unions. But since each union onu, v is performed
right after aFind(u) andFind(v), we can replace each Union by a single link. The amortized cost for
these Link/Finds is

O(mα(n)).

This cost is dominated by the initial cost ofO(m log n) for sorting the edges. Hence the complexity of
the overall algorithm isO(m log n).

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§5. THREE APPLICATIONS Lecture XIII Page 19

¶23. 2. Expression Optimization Problem. Suppose you are given an arithmetic expression, rep-
resented by a directed acyclic graph (DAG)G, with operators in the internal nodes and numerical
constants or variables at the leaves. For instance,G might represent the expression

√
2 +
√

3−
√

2 + 3−
√

6

This expression is an instance of the more general expression with variables instead of constants:

√
x +
√

y −
√

x + y −√xy. (17)

Thus one possible representation of the expression (17) is given byG in Figure11. We want to compute
a “reduced expression”G′ that is equivalent toG. In Figure11, we show such aG′. What is “reduced”
aboutG′? Notice that it has one fewer node. But in this application, the more important fact is thatG′

has only three square-root operators, in contrast to the four square-roots inG.

This is an important problem in the area of Exact Geometric Computation where
we are interested in numerical approximations for the values val(G) of ex-
pressions. Note that even if there are variables likex or y in G, it is as-
sumed that we know explicit constants for these variables sothat val(G) is ac-
tually a number. The key problem is to decide whenval(G) is really zero.

G′G

+

+

−

−

√·

y

√·

√·

x

∗ √·+
√·

+

−

−

∗

√·

yx

√·

Figure 11: ReducingG to G′

We can approximate
val(G) to as many
bits of accuracy as we
like (using big number
arithmetic). But if the
expression is really zero,
how do we know to
stop? This problem
can be solved when the
expression involves only
algebraic operations such
as +,−,×,÷,

√·. It
turns out that we can
compute a so-calledzero
bound β(G) > 0 for any
expressionG such that ifval(G) 6= 0 then|val(G)| > β(G). The graphG might
be automatically generated by a program and can be quite large. As a result,β(G)
can be astronomically small, sayβ(G) ≃ 2−10,000. This means that in order
to decide ifval(G) = 0, we need to approximateval(G) to over10, 000 bits.
Suppose we have a reducedG′ whose zero boundβ(G′) is considerably larger
(sic!) thanβ(G), sayβ(G′) ≃ 2−100. The equivalence of expressionsG andG′

simply means thatval(G) = val(G′). In this case, we only need to approximate
val(G′) = val(G) to about100 bits, and thus deciding ifval(G) = 0 is greatly
sped up. The theory behind such zero bounds is beyond our scope.

We assume that the DAGG is represented as an adjacency list. The nodes with indegree0 are called
sources, and the nodes with outdegree0 are called sinks. Each sink ofG is labeled with a distinct
variable name (x1, x2, etc). Each non-sink node ofG has outdegree2 and are labelled with one of four
arithmetic operations (+,−, ∗,÷). See Figure12, where the directions of edges are implicitly from top
to bottom. Thus, every node ofG represents an algebraic expression over the variables. E.g., nodeb
represents the expressionx2 − x3.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§5. THREE APPLICATIONS Lecture XIII Page 20

c

e/f

b

d

a

e

(b) G′

b

(a)G

f

a/c

d

+

−∗∗

− −

+

−∗∗

x3x2x1x3x1 x2

+ +

∗

+ + +

∗

+

Figure 12: Two DAGs:G andG′

The two edges exiting from the ‘−’ and ‘÷’ nodes are distinguished (i.e., labeled as “Left” or
“Right” edges) while the two edges exiting from+ or ∗ nodes The Left/Right order of edges are implicit
in our figures. are indistinguishable. This is because− and÷ are non-commutative (x − y 6= y − x,
andx ÷ y 6= y ÷ x in general) while+ and∗ are commutative (x + y = y + x andx ∗ y = y ∗ x). In
general,G is actually a multigraph because it is possible that there there is more than one edge from a
node to another. E.g., the graphG′ in Figure12(b) has two edges fromd to a.

Define two nodes to beequivalent if they are both internal nodes with the same operator label,and
their “corresponding children” are identical or (recursively) equivalent. This is a recursive definition.
By “corresponding children” we mean that the order (left or right) of the children should be taken
into account in case of− and÷, but ignored for+ and∗ nodes. For instance, the nodesa andc in
Figure12(a) are equivalent. Recursively, this makese andf equivalent.

The problem is to construct areduced DAGG′ from G in which each equivalence class of nodes in
G are replaced by a single new node. For instance withG in Figure12(a) as input, the reduced graph is
G′ in Figure12(b).

The solution is as follows. The height of a node inG is the length of longest path to a sink. E.g.,
height of nodee in Figure12(a) is 3 (there are paths of lengths2 and3 from e to sinks). Note that
two nodes can only be equivalent if they have the same height.Our method is therefore to checking
equivalent nodes among all the nodes of a given height, assuming all nodes of smaller heights have been
equivalenced. To “merge” equivalent nodes, we use a disjoint set data structure. If there arek nodes of
a given height, the obvious approach takesΘ(k2) time.

To avoid this quadratic behavior, we use a sorting technique: let A be the set of nodes of a given
height. For eachu ∈ A, we first find their childrenuL anduR using the adjacency lists of graphG.
Then we computeUL = Find(uL) andUR = Find(uR). HenceUL andUR are the representative
nodes of their respective equivalence classes. Letop(u) be the operator at nodeu. In caseop(u) is + or
∗, we compareUL andUR (all nodes can be regarded as integers). IfUR < UL, we swap their values.
We now construct a 3-tuple

(op(u), UL, UR)

which serves as the key ofu. Finally, we sort the elements ofA using the keys just constructed. Since
the keys are triples, we compare keys in a lexicographic order. We can assume an arbitrary order for the
operators (say′+′ <′ −′ <′ ∗′ <′ ÷′). Two nodes are equivalent iff they have identical keys. After
sorting, all the nodes that are equivalent will be adjacent in the sorted list forA. So, we just go through
the sorted list, and for eachu in the list, we check if the key ofu is the same as that of the next nodev

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§5. THREE APPLICATIONS Lecture XIII Page 21

in the list. If so, we perform amerge(u, v). This procedure takes timeO(k lg k).

We must first compute the height of each node ofG. This is easily done using depth-first search in
O(m) time (see Exercise). Assume that all the nodes of the same height are put in a linked list. More
precisely, if the maximum height isH , we construct an arrayA[1..H] such thatA[i] is a linked list of all
nodes with heighti. Separately, we initialize a disjoint set data structure for all the nodes, where initially
all the sets are singleton sets. Whenever we discover two nodes equivalent, we form a union. We will
now process the listA[i] in the orderi = 1, 2, . . . , H, using the sorting method described above.

Complexity: computing the height isO(m + n) (Exercise). Union Find ismα(n). Sorting of
all the lists is

∑H
i=1 O(ki log ki) = O(n log n) where|A[i]| = ki. Hence the overall complexity is

O(m + n log n).

Remark: We have actually solved a simple form of the general problem.For instance, the example
in Figure11requires an additional transformation,

√
xy → √x ·√y before we can achieve the indicated

reduction.

¶24. 3. Computing Betti Numbers. Let K be a non-empty set of tetrahedra, triangles, edges and
vertices, where eachs ∈ K is a closed set ofR3. Note that a tetrahedron, triangle, edge and vertex is
also known as asimplexof dimension3, 2, 1, 0, respectively. We assume that the relations is aproper
faceof s′ is understood. For instance, a tetrahedron has 3 proper faces of dimension2, 6 proper faces of
dimension1 and4 proper faces of dimension0. The empty set∅ is regarded as a simplex of dimension
−1. Then any simplexs has twoimproper faces, namely itself and∅. All the other faces areproper.

For K to be atriangulation , we require that for alls, s′ ∈ K, (a) any face ofs also belongs to
K, and (b)s ∩ s′ is a face ofs and ofs′. Thus,∅ ∈ K. The underlying space or support space ofK
is given by|K| := ∪s∈K s. Delfinado and Edelsbrunner shows how we can computeβi(K), the i-th
Betti number ofK, using Union Find as follows. The Betti numbers are defined algebraically and is a
topological invariant of|K|. For |K| ⊆ R

3, these numbers have an intuitive meaning:β0 is the number
of connected components of|K|, β1 is the number of holes of|K| (e.g., the donut as well as the torus
hasβ1 = 1), andβ2 is the number of voids on|K| (e.g., the torus and the sphereS2 has one void
(β2 = 1) each, but the donut has none,β2 = 0). Let us just consider the case whereK is just a graph,
i.e., a set of vertices and edges only. The following basic lemma is all that we need:

LEMMA 10. Let K and K ′ be 1-dimensional complexes, andK ′ = K ∪ {s} wheres is an edge
connectingu, v. If u, v lies in the same connected component ofK, thenβ1(K

′) = β1(K) + 1;
otherwiseβ0(K

′) = β0(K)− 1. The other Betti number is unchanged.

Note that ifK ′ = K ∪ {s} ands is a vertex, then it is clear thatβ0(K
′) = β0(K) + 1 and the other

Betti number is unchanged. Armed with this lemma, we can now give a simple incremental algorithm
to maintain Betti numbers ofK: we initialize b0 to n, the number of vertices inK, andb1 to 0. The
n vertices are used to initialize a union-find data structure.Now we process each edge ofK in turn.
For each edge(u, v), if Find(u) = Find(v), then we performUnion(u, v) and updateb1 = b1 + 1;
otherwise we updateb0 = b0 − 1. The final values ofb0, b1 is the Betti number we seek.

The problem with extending this to 2-dimensional complexesK is that we do not have an efficient
way to detect when the addition of a new triangle will create avoid (although this is possible to do,
by using tools of linear algebra). But suppose by embeddingK in another complexL where|L| is a
tetrahedron inR3, then we can exploit duality for this purpose (Exercise).

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§5. THREE APPLICATIONS Lecture XIII Page 22

¶25. Final Remarks. Tarjan has shown that the upper bounds obtained for disjointsets is essen-
tially tight under the pointer model of computation. Ben-Amram and Galil [1] proved a lower bound
of Ω(mα(m, n)) lower bound on Union-Find problem under a suitable RAM modelof computation.
Gabow and Tarjan shows that the problem is linear time in a special case. There are efficient solutions
that are not based on compressed trees. For instance, the exercise below shows a simple data structure in
which Find requests take constant time while Union requeststakes non-constant time. Another variation
of this problem is to ensure that each request has a good worstcase complexity. See [2, 5].

The application to expression optimization arises in the construction of optimizing compilers in gen-
eral. In an application to robust geometric computation [4], such optimizations are critical for reducing
the potentially huge bit complexity of the numerical computations.

EXERCISES

Exercise 5.1: Hand simulate Kruskal’s algorithm on the graph in Figure13. Specifically:
(a) First show the list of edges, sorted by non-decreasing weight. View verticesv1, v2, v3, etc as
the integers1, 2, 3, etc. We want you to break ties as follows: assume each edge has the form
(i, j) wherei < j. When the weights of(i, j) and(i′, j′) are equal, then we want(i, j) to appear
before(i′, j′) iff (i, j) is less than(i′, j′) in the lexicographic order, i.e., eitheri < i′ or (i = i′

andj < j′).
(b) Maintain the union-find data structure needed to answer the basic question in Kruskal’s al-
gorithm (namely, does adding this edge creates a cycle?). The algorithms for the Union and
Find must use both the rank heuristic and the path compression heuristic. At each stage of
Kruskal’s algorithm, when we consider an edge(i, j), we want you to perform the corresponding
Find(i), F ind(j) and, if necessary,Union(Find(i), F ind(j)). You must show the result of
each of these operations on the union-fine data structure. ♦

2

v1 v2

v5

v8 v9 v10 v11 v12

v6 v7

v3 v4

8

72

3 7

647

3

1
6

4
1 3 2

1

86

3 6 2 9

5

Figure 13: Another House Graph

Exercise 5.2: Let G = (V, E; C) be the usual input for MST. We consider a variant where we are also
given a forestF ⊆ E. We want to construct a minimum cost spanning treeT of G subject to the
requirement thatF ⊆ T . Call this theconstrained MST problem. As usual, let us just consider
the cost version of this problem, where we only want to compute the minimum cost. Describe
and prove the correctness of a Kruskal-like algorithm for this problem. Analyze its complexity.

♦

Exercise 5.3: Let us define a setS ⊆ E to beKruskal-safe if (i) S is contained in an MST and (ii)
for any edgee ∈ E \ S, if C(e) < max{C(e′) : e′ ∈ S} thenS ∪ {e} contains a cycle. Note
that condition (i) is what we called “simply safe” in§V.3. Show that ifS is Kruskal-safe ande is
an edge of minimum costs among those edges that connect two connected components ofS then
S ∪ {e} is Kruskal safe.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

§5. THREE APPLICATIONS Lecture XIII Page 23

♦

Exercise 5.4: Describe an algorithm to determine the height of every node in a DAGG. Assume an
adjacency list representation ofG. Briefly show its correctness and analyze its running time.

♦

Exercise 5.5: Let K be a simplicial complex and|K| ⊆ R
3.

(a) Show that we can embedK in another simplicial complexL such that|L| is a tetrahedron.
(b) Suppose we have an incremental algorithm to compute the Betti numbers ofL. Show how we
can obtain use it to compute the Betti numbers ofK.
(c) Suppose that the triangles and tetrahedrons (or cells) of L aret1, . . . , tm andc1, . . . , cn. Con-
sider the simplicial complexKi (i = 0, . . . , m) such thatKi has all the vertices and edges ofK
but only the triangles{t1, . . . , ti}. (Ki has no tetrahedrons. We want to detect the situation when
a transition fromKi−1 to Ki creates a new void. Consider the dual graphGi (i = 0, . . . , m)
whose vertex set is{c1, . . . , cn} and whose edges are{ti+1, . . . , tm}. NOTE that inGi, we iden-
tify a trianglet with the edgec, c′ wherec ∩ c′ = t. Show that addingti to Ki−1 creates a new
void in Ki iff the number of connected components increased by one in going fromGi−1 to Gi.
(d) Show that if we construct the graphGi’s in reverse order (starting fromGm down toG0)
then we can detect all thei’s such that addingti creates a new void. Describe this algorithm’s
implementation using Union-Find.
(e) Conclude that we can maintain the Betti numbers ofL in time O(nα(n)) wheren is the
number of simplices inL. ♦

END EXERCISES

References

[1] A. M. Ben-Amram and Z. Galil. Lower bounds of data structure problems on rams.IEEE Founda-
tions of Comp. Sci., 32:622–631, 1991.

[2] N. Blum. On the single-operation worst-case time complexity of the disjoint set union problem.
SIAM J. Computing, 15:1021–1024, 1986.

[3] Z. Galil and G. F. Italiano. Data structures and algorithms for disjoint set union problems.ACM
Computmg Surveys, 23(3):319–344, 1991.

[4] C. Li and C. Yap. Recent progress in Exact Geometric Computation, 2001.

[5] M. H. M. Smid. A datastructure for the union-find problem having a good single-operation com-
plexity. Algorithms Review, 1(1):1–12, 1990.

[6] R. E. Tarjan.Data Structures and Network Algorithms. SIAM, Philadelphia, PA, 1974.

[7] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22:215–225, 1975.

[8] R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algorithms.J. ACM, 31:245–281,
1984.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version November 21, 2011

	 DISJOINT SETS
	 Union Find Problem
	 Rank and Path Compaction Heuristics
	 Multilevel Partition
	 Combined Rank and Path Compression Heuristics
	 Three Applications of Disjoint Sets

