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Lecture XllI
DISJOINT SETS

Let U be a set of items, and let be an equivalence relation @dh. We want to make two kinds
of requests on this equivalence relation: suppesge € U. First, we want to know ifz andy are
equivalent: ist = y? Second we want to modify the equivalence relation by diegjahat, from now
on, z andy will be equivalent.

This equivalence maintenance problem is caillatbn-find problem because the two requests can
be reduced the Find operation and the Union operation. Qiheres for this includeet union, dis-
joint set or set equivalence Underlying the best solutions to this problem is a datacttme called
compressed trees. The algorithms are this data structrathisr simple and easy to implement. Never-
theless, the complexity analysis of these algorithms ikliigon-trivial, requiring a rather sophisticated
form of amortization argument.

There are many practical applications of union find. We slualk at three applications: in the
implementation of Kruskal's algorithm for minimum spangitiee, a problem of reducing numerical
expressions, and the problem of computing Betti numberoimilitational Topology.

1. Union Find Problem

LetU be a set (the universe) of items.partition of U is a collection
P={S5y,...,5}

of pairwise disjoint non-empty sets such that= U¥_, S;. We sayz,y € [1..n] areequivalent, denoted

x = y if they belong to the same set iA. EachsS; € P is also called arquivalence classFor any

x € U, letset(x) denote the equivalence classiofThe items inJ have no particular properties except
that two items can be checked for equality. In particularéhis no ordering property on the items.

In order to facilitate computation, we will assume that eagthas a uniqueepresentative item
x; € S;. Letrep(S;) denote this representative item. The choice of this representative item is
arbitrary. Because of this representative item, we can refinel theFind operation, wherdind(x)
will return the representative item in the equivalencestzfsc. Hence the

r=y <= rep(x)=reply) <= selx)=sely).
The problem of checking if, y € U are equivalentis now reduced to computiigud(z) andFind(y)
and checking whetherind(xz) = Find(y).
In the following, it is convenient to assume that
U=[1l.n]:={1,2,...,n}.

The partitionP is dynamically changing because of the second operatiomairl If z,y € U, then
the Union operation declares that hencefoittandy are equivalent. This reduces to the problem of
replacingset(x) and set(y) in P by their unionset(x) U set(y). Thus, the number of equivalence
classes can only decrease, not increase.

TheUnion Find problem is the problem of processing a sequence of Find/Union résjoesa set
U in which the equivalence relation is initially trivial (i,eeach equivalence class is the singleton set
{z} wherez € U).
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91. Example. Letn = 4 andP consists initially of the singleton sefs = {i} fori € [1..4]. Let the
sequence of requests be

Union(2,3), Find(2), Union(1,4), Union(2,1), Find(2).

The partitionP finally consists of just one equivalence class, the entirglsd|. The two Find requests
return (respectively) the representatives of the §2t8} and{1, 2, 3, 4} that exist at the moment when
the Finds occur. To be specific, suppose we choose the striatkgger in a set to be the representative
item. Then these two Find requests retdrand1, respectively.

Each Union (resp., Find) requests can be viewed asqaivalence assertior(resp.,equivalence
guery). The original motivation for this problem is in FORTRAN cgiters, where one needs to process
the EQUIVALENCE statement in the FORTRAN language. Thisestent assert the equivalence of
two programming variables. Another application is in firgltonnected components in bigraphs. For
more information, see Tarjaf,[8] and a survey from Galil and ItalianG].

92. Physical Representation of Sets. In most of our solutions to the Union Find Problem, aSe$
“physically” represented by a rooted unordered ffe@hose node set iS, with the root serving as the
representative of. To represent’, each itemz has aparent pointer z.p. The treeT’ is completely
determined by these pointers. The root is the unique nodeS such thatz.p = z, and it serves as
representativeof S. We callT" a compressed tregepresentation of the sét This data structure is
from Galler and Fischer (1964). It is important to realizattthere are no pointers from a noderofo
any of its children, and the set of children are unorderetik@im binary trees where the two children
of a node are ordered as left- and right-child).

Using compressed trees, we can now represent any colle@tafrdisjoint sets by a forest of com-
pressed trees. For instance, fet= {0, 5,6,8,9},{3},{1,2,4,7}. The underlined items.&., 5,3 and
7) are representatives of the respective sets. A possiblpi@ssed tree representationfofs shown in

. ) : )
2 @/ i\@
®
©®

Figure 1:

If 2,y are roots of compressed trees, then we have the concretbysitpl” operation
Link(z,y)

thatlinks x to y. Basically, this is the assignmenip < y although there might be other book keeping
actions. The result is a new compressed tree rootgdrapresenting the union of the original two sets.
If x =y, thenLink(z,y) is a null operation. Now we can physically implement a Uniequests by
two Finds and a Link:

Union(z,y) = Link(Find(z), Find(y)). 1)

93. Complexity parameters. The complexity of processing a sequence of Union-Find rsigueill
be given as a function of andn, wheren is the size of the univergé..n] andm the number of requests
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(i.e., Union or Find operations). For simplicity, we assutim&t there are initially: singleton sets and
m > n/2. This inequality comes from insisting that every item in tireverse must be referenced in
either a Find or a Union request.

But the parametem in the following discussions will given a slightly differemeaning: recall
that the Union operation can be replaced by two finds and aesiimi as in (1). So we may replace
a sequence ofn Union/Find requests by an equivalent sequence o$m Link/Find requests. Up
to ©-order, the complexity of a sequencef Link/Finds and the complexity of a sequencerof
Union/Finds are equal. Therefore, we will simply analyzeequence ofn Link/Find operations. In
some of our analysis, we use another parametewrhich is the number of Find requests amongsthe
operations; thus:’ < m.

94. Two Solutions to the Link/Find Problem.

Linked List Solution An obvious solution to the Link/Find problem is to represeath set inP by
a singly linked list. We can regard a singly linked list as ad@pl kind of compressed tréé
which has only one leaf. The unique leafBfcorresponds to theeadwhile the root is thdail
of this linked list. Following links from any node will leadsuo the tail of the list. This is like
a traditional singly-linked list where the pointerp plays the role of the “next node” pointer,
with a small exception: traditionally, the tail of the lirdkéist points toni | while in compressed
trees, it points to itself. See Figug€a). Note that linking takes constant timgrovidedthe
head of each linked list storestail pointer that points to its own tail. The tail pointer is easy
to maintain during a link operation. On the other hand, a Kipdration requires a worst case

time proportional to the length of the list. Clearly, the quexity of a sequence of. Link/Find
requests i) (mn).

Hgad Tgil @

oo

(@ (b)

Figure 2: (a) Linked list solution. (b) Anti-list solution.

Anti-list Solution Another solution is to represent each setHras a compressed tree of height one:
thus every non-root is a leaf that points to the root. Seer€ig(b). This data structure is the
antithesis of lists: we will call such treesiti-lists. Clearly a Find request will now take constant
time. On the other hand, linking to y takes time proportional to the size sé{x) since we
need to make every elementse{x) pointtoy. It is easy to see that the overall complexity of
processingn Link/Find requests i€ (m + n?).

95. Naive Compressed Tree Solution. The constrast between the list and anti-list represemsi®

as sharp as can be: Linking is easy for lists but hard forlats- Conversely, Find is easy using anti-
lists, but hard for lists. Here, “easy” mea@¢1) and “hard” mean®(n). Galler and Fischer (1964)
shows that the relative advantages of both solutions canfdeited if we use the (general) compressed
tree representation. But this advantage may not be imnedgliapparent. To see why, consider a
straight forward implementation of the Find and Link ope&nas under compressed tree representation.
For Find(z), we just follow parent pointers from until the root, which is returned. Fdrink(z,y),

we simply setr.p «— y and returny. These “naive” algorithms can lead to a degenerate treeighat
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a linear list of lengthn — 1. Clearly©(mn) is the worst case bound for a sequenceroLink/Find
Operations om items. How can we do better?

EXERCISES

Exercise 1.1: Show the stated upper bounds for the above data structwedigyht by demonstrating
matching lower bounds.
(a) When using compressed trees or linked lists, givR@nn) lower bound.
(b) When using anti-lists, give an(m + n?) lower bound. &

Exercise 1.2: Generalize any of the above Union-Find data structurespgpat a new operation "In-
equiv(x,y)”. This amounts to detachingfrom the sese(y), and setting up: as a new singleton
set. Analyze its complexity. &

Exercise 1.3: Assume the anti-list representation, let us link two tregagithe following “size heuris-
tic”: always append the smaller set to the larger set. Toémgint this heuristic, we can easily
keep track of the sizes of anti-lists. Show that this schechéesesO(m + nlogn) complexity.
Prove a corresponding lower bound. &

Exercise 1.4: We propose another data structure: assume that the totdderunof items in all the sets
is known in advance. We represent each Bet, gquivalence class) by a tree of depth exa2tly
where the set of leaves correspond bijectively to items@&#t. Each node in the tree and keeps
track of its degree (= number of children) and maintainsehoeinters: parent, child and sibling.
Thus there is a singly-linkesibling list for the set of children of a node the child pointer ofu
points to the head of this list. The following propertiesdiol
(i) Each child of the root has degree betwdesmd2 Ig n.
(ii) Say a child of the root igull if it has degree at least n. At most one child of the root isot

/K % g

ém ii PO S W W

Figure 3: lllustration of Union.

Using this representation, a Find operation takes constaat The union of two sets with roots
x,y is done as follows: iflegree(x) > degree(y) then each full child of, becomes a child of.
Sayz’,y’ are the children of, y (respectively) which are not full and assume ttiegree(z') >
degree(y'). [We leave it to the reader to consider the cases wheoey’ does not exist, or when
degree(z’) < degree(y’).] Then we make each child ef into a child of2’. Note that since
y andy’ do not represent items in the sets, they can be discardedlagtenion. Prove that the
complexity of this solution is

O(m + nloglogn)

wherem is the total number of operations.

HINT: Devise a charging scheme so that the work in a Union atpmn is charged to items
at depthsl and 2, and the overall charges at depthsand 2 are (respectivelyD(n) and
O(nloglogn). &
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Exercise 1.5: Suppose we add to the Union-Find problem a third operati@tet®. Interpret the union
operation as adding an edge to a bigraph that originally basdges. The delete operation is just
the reverse of union an edge. Of course, deletion has nd effiézss the edge has been previously
introduced via a union and has not been deleted. The find tipeshould again return a unique
name of the connected component of the current bigraphdmdains the name of the component.
How efficiently can you solve this problem? &

END EXERCISES

62. Rank and Path Compaction Heuristics

There are several heuristics for improving the performanfitiee naive compressed tree algorithms.
They fall under two classes, depending on whether they seieidrove the performance of Links or of
Finds.

96. Size and Rank heuristics. Consider how we can improve the performance of Links. For any
nodez, let size(x) be the number of items in the subtree rooted.&uppose we keep track of the size
of each node, and in the union efandy, we link the root of smaller size to the root of larger size (if
the sizes are equal, this is arbitrary). This rule for lirkis called thesize heuristic Then it is easy to
see that our compressed trees have depth atlmastnder this heuristic. Hence Find operations take
O(logn) time.

An improvement on the size heuristic was suggested by Tarjdnvan Leeuwen: we keep track of
a simpler number callechnk(z) that can be viewed as a lower boundigfsize(z)) (see next lemma).
Therank of z is initialized to0 and subsequently, whenever we linko y, we will modify the rank of
y as follows:
rank(y) < max{rank(y), rank(z) + 1} 2

Note that the rank of never decrease by this assignment. This assignment is thevan by which a
rank changes. If compressed trees are never modified exeepgh linking, then it is easy to see that
rank(x) is simply the height ofc. In general, the rank of turns out be just an upper bound on the
height ofz. Using the rank information, we specify a linking order faian:

Rank Heuristic: When forming the union of two trees rootedsatind y,
respectively, link: to y if rank(z) < rank(y); otherwise linky to .

Under this heuristic, the assignme8} {ncreases the rank gfby at mosti.

97. Path Compaction heuristics. The size and rank heuristics are applicable to Links. Novsictar

heuristics to improve the performance of Finds. The firsaideas introduced by Mcllroy and Morris.
When we do a Find on an item) we traverse some path franto the rootu of its tree. This is called the
find-path of 2. We specify a transformation of the compressed tree to apaagneach Find operation:

Path Compression Heuristic: After performing a Find o that returns the
root v, modify the parent pointer of each nodealong the find-path of to
point tow.
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For example, if the find-path af is (z, w, v, u) as in Figuret, then after Find(), + andw will become
children ofu (note that remains a child ofi).

o RE s RRRD

B/A

Path compression requires two passes along the find-pathtdfitocatex and the second time to
change the parent pointer of nodes along the path. Can wettwb®ath compression can be seen as
a member of the family gbath compaction heuristics Such a heuristic specifies a rule to modify the
parent pointer of each nodealong a find-path to point to some ancestoroNote that ifz is the root
or a child of the root, then the path compaction heuristicrimsffect onz.p.

Figure 4: Path compression heuristic.

Figure 5: Path Compaction: Splitting and Halving

The “trivial” path compaction heuristic is the one that nesteanges.p for any z on the path. Path
compression is the other extreme, where eaphmade to point to the ultimate ancestor, the root. We
now prove two intermediate forms of path compaction, from gdar Weide and van Leeuwen (1977).
The path splitting heuristic says that for each nodealong the find-path, we should update its parent
pointer to its grandparent.p < (z.p).p. Of course{z.p).p is the grandparent of, and it may also be
written as

z.p.p oOr z.pg.

The effect of this heuristic is to split the find-path into twaths comprising the odd and even nodes,
respectively. Both the odd and even paths are about halfrigaal length. See Figurg(a) where
the find-path(z—w—v—u—t—s) is split into two pathgz—v—t—s) and (w—u—s). The path split-
ting heuristic can now be implemented with only one pass tverfind-path, and in this sense is an
improvement over path compression. A further improvemetiié following variant:

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version Nvember 21, 2011



§2. TWo HEURISTICS Lecture Xl Page 7

—

Path Halving Heuristic: After performing a Find onr, modify the paren
pointer of every other nodealong the find-path af to point its grandparent

In Figure5(b), we see that the find-path—w—v—u—t—s) is halved into the patliz—v—t—s).
The other nodev andw join this half path at intermediate points. This halving hstic requires only
half the number of pointer assignments used in the pathisgliieuristic.

Although the splitting and halving heuristics have the adage of being 1-pass algorithms, they do
not instantly reduce the find-path of elements along its fmkbngthO(1) like in path compression. So
it is not immediately clear these two heuristics can matetpirformance of path compression.

98. Analysis of the rank heuristic. We state some simple properties of the rank function. Notice
that the rank function is defined according to equat@®nyhether or not we use the rank heuristic for
linking:
LEMMA 1.
The rank function (whether or not the rank heuristic is uged] even in the presence of path compres-
sion) has these properties:

() A node has rank iff it is a leaf.

(ii) The rank of a node: does not change aftar has been linked to another node.

(iii) Along any find-path, the rank is strictly increasing.ndde has rank iff it is a leaf.
If the rank heuristic is used, then the rank function has addal properties:

(@) rank(x) < degree(x) andrank(z) < lg(size(x)).

(b) No path has length more thagn.

(c) In any sequence of Links/Find requests, for &ny 1, the number of times that the rank of any
item gets promoted from — 1 to k is at most2~*.

Proof. Parts(i)-(iii) are immediate. Part(a) is shown by inductiat is true whenz is initially a
singleton, sincerank(xz) = degree(x) = 0 andsize(x) = 1. We must look at events that causes
the rank, degree or size of any nagddéo change. When we link to z, the degree of increases by
one, and the size of increased. If the rank aof did not change (this happens becausek(y) <
rank(x)) then the truth of property (a) is preserved by the linkinfithe rank ofz changes, it must
have increased by and this resulted from having the same rank as Letrank’(x), degree’(z) and
size'(z) be the new rank, degree and sizerof Thenrank’(z) = 1 + rank(z), degree’ (z) = 1 +
degree(x) andsize'(x) = size(x) + size(y). Thusrank’(x) < degree’(x) follows fromrank(x) <
degree(x). Also, 2renk'(z) — grank(z)+1 _ grank(z) 4 grank(y) < gize(z) 4 size(y) = size(x).
Thusrank/(z) < lg size/(x).

(b) Consider a path of lengthin a tree rooted at. By part(iii), the/ < rank(xz). By part(a),
rank(x) <lgn. Thusl <lgn.

(c) Suppose: andy are two items that were promoted from raink- 1 to & at two different times. Let
T, andT, be the subtrees rooted atandy immediately after the respective promotions. Cledrly
andT, are disjoint. By part(a)size(z) > 27*"*(*) = 2% and similarlysize(y) > 2*. There can be at
mostn /2" such trees. Q.E.D.

Using the rank heuristic alone, each Find operation tékiésg n) time, by property (b). This gives
an overall complexity bound @@ (mlogn). Itis also easy to see th@t{m logn) is a lower bound if
only the rank heuristic is used.

99. Analysis of the path compression heuristic. We will show below (se€3) that with the path
compression heuristic alone, a chargeilogn) for each Find is sufficient. Again this leads to a
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complexity of O(mlogn).

This suggests that path compression heuristic alone akdranistic alone give the same complex-
ity results. But closer examination shows important défezes: unlike the rank heuristic, we cannot
guarantee thaachFind operation take®(log n) time under path compression. Thus, ign logn)
bound is a true amortization bound and not a worst case bdbndhe other hand, path compression
has the advantage of not requiring extra storage (the ramiistie requires up tdg lg n extra bits per
item). Hence there is an interesting tradeoff to be made.

To prove a lower bound on path compression heuristic, we ingerbal trees. Abinomial tree is
any tree that has the shape of soBei > 0, where
By, By, By, .. .,

is an infinite family of trees defined recursively as follows; is the singleton B, ; is obtained from
two copies ofB; such that the root of onB; is a child of the other root (see Figuse Clearly, the size

of B; is 2.
* 4F A
ARG
By By By Bz B,

i+1

Figure 6: Binomial trees

The next lemma shows some nice properties of binomial tteesafguments are routine and left as
an Exercise).

LEMMA 2.
(i) For ¢ > 1, B; can be decomposed into its root together with a sequencedtress of shapes

Bo, B1,...,Bi 1.

(i) B; has depth. Moreover, leve)j (for j = 0,...,4) has (;) nodes. In particularB; has a unique
deepest node at level
(i) B; has2’ nodes.

Property (ii) is the reason for the name “binomial trees”.

910. A Self-reproducing Property of Binomial Trees. M.J. Fischer observed an interesting property
of binomial trees under path compression. Bet, denote any compressed tree which

e has sizék + 27,
e contains a copy of3;, and

¢ the root of thisB; coincides with the root oBb; ;.

Note thatB, o is just B;. A copy of B; that satisfies this definition d8; ;. is called an “anchored,”.
There may be many such anchorBgs in B; ;.. A node inB; ;, is distinguishedif it is the deepest
node of some anchord8};. The right-hand side of Figuréshows an instance d#; ;.
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Find(z,

Compress(z)

/
BS‘() B:}Al

Figure 7: Self-reproducing binomial trée;.

Also let B; , denote the result of linking the root &f; ;. to a singleton. Distinguished nodesBf
are inherited from the correspondifyy . The left-hand side of FigurgillustratesBs .

LEMMA 3. Suppose we perform a Find on any distinguished nodﬁg,(,gf Under the path compression
heuristic, the result has shag® ;1.

This lemma is illustrated in Figuréfor B; , (the noder is the only distinguished node here). We
now obtain a lower bound for path compression heuristicelmas. First perform a sequence of links
to getB; such thatB; contains between/4 andn/2 nodes. Thug > lgn — 2. Then we perform a
sequence of Links and Finds which reproduégsn the sense of the above lemma. This sequence of
operations has complexify(m log n). Our construction assumes = O(n) but it can be generalized
tom = O(n?) (Exercise).

Note that if we use path halving heuristic, the resulting isea bit harder to analyze.

EXERCISES

Exercise 2.1: Suppose we start out with 5 singleton sgi$, {b}, {c}, {d}, {e}, and we perform a se-
qguence of Link/Find operations. Assume the path compressgaristic, but not the rank heuris-
tic. The cost of a Link is 1, and the cost of a Find is the numbeodes in the find-path.

(a) Construct a sequence of 12 Link/Find operations thaesaeh the worst case cost.

(b) Suppose the cost of a Findtigice the number of nodes in the find-path (this seems more
realistic in any implementation). This obviously impadis actual worst case cost, but would
your sequence of 12 operations in (a) have changed? &

Exercise 2.2: Show that when the size heuristic is used, then heightisfat mostig(size(x)). &

Exercise 2.3: We need to allocat®(log log n) extra bits to each node to implement the rank heuristic.
Argue that the rank heuristic only usegaal of O(n), not O(nloglogn), extra bits at any
moment. In what sense is this fact hard to exploited in pce@t{ldea: to exploit this fact, we do
not pre-allocat&(log log n) bits to each node.] &

Exercise 2.4: Prove lemm& and lemm&B. O

Exercise 2.5: (Chung Yung) Assuming naive linking with the path compressieuristic, construct for
everyi > 0, a sequencéy, f1,ls, f2,...,lsi, foi) Of alternating link and find requests such that
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the final result is the binomial treB;. Herel; links a compressed tree to a singleton element and
fi is afind operation. &

Exercise 2.6: In the lower bound proof for the path compression heurigtechave to make the follow-
ing basic transformation:
Bix — Bj ) — Birs1 3

Beginning withB; o, we repeat the transformatio8) (o get an arbitrarily long sequence
B;1,Bi2,B;i3... (4)

(a) The question is: can you always choose your transfoomatso that of the trees in this
sequence has the forB 1, ; (for somek > 0)? (a) Characterize thodg, ;'s that are realizable
using the lower bound construction in the text. HINT: firshsmler the casé = 1 andi = 2.

If you like, you can restrict the transformatioB) (n the sense that the node for Find is specially
chosen from the possible candidates. &

Exercise 2.7: Suppose that all the Links requests appear before any Fineksts. Show that if both
the rank heuristic and path compression heuristic are tised the total cost is onl§p(m). <

Exercise 2.8: LetG = (V, E) be a bigraph, ant¥’ : V' — R assign weights to its vertices. Theight
of a connected componefitof G is just the sum of all the weights of the vertice<in
(a) Give anO(m+n) algorithm to compute the weight of the heaviest compone6t dks usual,
V| =n,|E| =m.
(b) Suppose the edges Bfare given “on-line”, in the order

€1,€2,€3,...,Em.

After the appearance ef, we must output the weight of the heaviest component of thetgr
G; = (V,E;) whereE; = {e1,...,e;}. Give a data structure to store this information about the
heaviest components and which can be updated. Analyze thplerity of your algorithm. <

Exercise 2.9: For anym > n, we want a lower bound for the union-find problem when the path
compression heuristic is used alone.
(a) Fixk > 1. Generalize binomial trees as follows. Lt = {T; : i > 0} be a family of trees
whereT; is a singleton foi = 0, ...,k — 1. Fori > k, T; is formed by linking al;_; to aT;_.
What is the degred(i) and height(i) of the root of7;? Show that the size df; is at most
(1 + k)G/R)=1,
(i) [Two Decompositions] Show that if the rodf; has degreed thenT; can be constructed by
linking a sequence of trees

tita, ... ta (5)
to a singleton, and eaehbelongs taF},. Show thafl;, ; can also be constructed from a sequence
50,515+, 5p, p= \_(2+1)/1€J (6)

of trees by linkings; to s;_; for j = 1,...,p, and eacls; belongs toFj,. The decompositions
(5) and @) are called thénorizontal andvertical decompositionsof the respective trees. Also,
sp in (6) is called thetip of T ;.

(iii) [Replication Property] Letl” be obtained by linkind’; to a singleton nod&. Show that

there arek leaveszy, ...,z in T’ such that if we do finds omy, ...,z (in any order), path
compression would transforffi’ into a copy ofT; except the root has an extra child. HINT:
Consider the trees), r1, ..., ry—1,7, Wherer; = T;_;,_; (forj =0,..., k—1)andry = T;_.
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Note thatT; can be obtained by linking eachaf, 1, ..., r,_1 torx. Let C be the collection of
trees comprising;, and the trees of the vertical decomposition-pfor eachj = 0,...,k — 1.
What can you say abouat?

(iv) Show a lower bound of2(m log  (;,,/,y ) for the union-find problem when the path com-
pression heuristic is used alone. HINAF:= |m/n|. Note that this bound is trivial when
m = Q(n?). O

Exercise 2.10: Explore the various compaction heuristics. &

END EXERCISES

63. Multilevel Partition

The surprising result is that the combination of both rantk path compression heuristics leads to a
dramatic improvement on th@(m log n) bound of either heuristic. The sharpest analysis of thislres
is from Tarjan, giving almost linear bounds. We give a siffigdi version of Tarjan’s analysis.

911. Partition functions. A function
a:N—N

is apartition function if a(0) = 0 anda(j) < a(j + 1) forall j > 0. Such a function induces a
partition of the natural numbeR$ where each block of the partition has the fojuy)..a(j + 1) — 1].
For instance, it: is the identity functionga(j) = j for all j, then it induces thdiscrete partition where
each block has exactly one number.

A multilevel partition function is A : N x N — N such that:

a) For eachi > 0, A(i, -) is a partition function, which we denote by;. The partition orN induced
by A; is called thdevel: partition .

b) The leveld partition functionA is the identity function, inducing the discrete partition.

c) The level; partition is a coarsening of the leviel- 1 partition.
Letblock(i, j) = [A(i,7)..A(Z, 5 + 1) — 1] denote theith block of the leveli partition. For; > 1, let

b(i,j) >1

denote the number af— 1st level blocks whose union equal®ck(i, 7).

A simple example of a multilevel par-

0 1 2 3 4586 7 8 9 j tition function isA* defined by
of [ T[T [T ][] i oo (i
1 ‘4*(1"3) A (ZM]) :j2 b (Z’] 2 O) (7)
Level: - | A0 A1) For reference, call this theinary (mul-
f A*(3,0) tilevel) partition function . In this case
[}

b(i,j)=2foralli>1,57>0.

Figure 8: Binary Partition Functiom* (4, j)
912. Basic Goal. Ourgoalisto analyze path compaction heurist§®y (without necessarily assuming
that the rank heuristic is usedRecall the rank function is defined as in equatigy &nd is meaningful
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even if we do not use the rank heuristic. Of course, if we daugetthe rank heuristic then we need not
maintain this information in our data structure. In thislgees, we assume some fixed sequence

1,79, ey T (8)

of m Links/Find request on a universeofitems.

913. The eventual rank of an item. Therank of an item is monotonically non-decreasing with time.
Relative to the sequencé)(of requests, we may speak of teeentual rank of an itemz. E.g., if

x is eventually linked to some other item, its eventual ranksgank just before it was linked. To
distinguish the two notions of rank, we will wrigrankx) to refer to its eventual rank. For emphasis,
we say “current rank af” to refer to the time-dependent conceptofik(z).

914. The level of an item. The level notion is defined relative to some multilevel g function
A(i, 7). The functionA(i, ) is used in the analysis only, and does not figure in the actgatithms.

We sayx haslevel: (at any given moment) if is the smallest integer such that the eventual ranks of
2 and of its current parent.p are in the saméth level block. Note the juxtaposition cfirrentparent
with eventuarank in this definition.

For instance, assuming the binary partition functionin (7), if erankz) = 2 anderanKz.p) = 5
thenlevel(z) = 3 (since2, 5 both belong in the level 3 block, 7] but are in different level 2 blocks).
Although erankz) is fixed, z.p can change and consequently the levekrahay change with time.
Notice thatz is a root if and onlyerankKz.p) = erankz). Hencez is a root iff it is at level0.

We leave the following as an easy exercise:

LEMMA 4. Assume that some form of compaction heuristic is used. Tlogviog holds, whether or
not we use the rank compression heuristics:

(i) The erank of nodes strictly increases along any find-path

(i) For a fixedz, eranKz.p) is non-decreasing with time.

(iii) The level of noder is 0 iff x is a root.

(iv) The level of any: is non-decreasing over time.

(v) The levels of nodes along a find-path need not be mondtomicdecreasing or non-increasing),
but it must finally be at levél.

915. Bound on the maximum level. Leta > 0 denote an upper bound on the level of any item. Of
course, the definition of a level depends on the choice ofilend partition functionA(z, 5). Trivially,

all ranks lie in the rangé..n]. If we use the binary partition functioA* in (7) then we may choose
a = lg(n + 1). In general, we could choogeto be the smallestsuch thatA(i, 1) > n. If the rank
heuristic is used, all ranks lies in the ran§e lgn|. Hence if we again choose the binary partition
function A*, we will obtain

a =lglg(2n). )

916. Charging scheme. We charge one unit for each Link operation; this is suffictenppay for the
cost of Linking. The cost of a Find operation is proportiottathe length of the corresponding find-
path. To charge this operation, we introduce the ideale¥@l accountfor each iteme: for eachi > 1,
we keep acharge account fox: at leveli. We chargethe Find operation in two ways:

e Upfront Charge: we simply charge this Fintl + « units.

e Level Charges For each nodg along the find-path, ifi.p # root andlevel(y.p) > level(y)
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then wecharge one unit toy’s account at leveli for eachi € [level(y)..level(y.p)].
Thusy incurs a total debit ofevel (y.p) — level(y) + 1 units over all the levels.

917. Justification for charging scheme.

LEMMA 5. The charge for each Find operation covers the cost of theatjmer.

OFrRr NDNWAOOO

1234567 8 910111213

Figure 9: Plot ofevel(x;) against.

This is best shown visually as follows. Let the find-path(be, zo, ..., z;) wherez,, is the root.
We must show thaF'ind(x;) is charged at least units by the above charging scheme. Plot a graph
of level(z;) againsti. As illustrated in Figure, this is a discrete set;, va, ..., v, of points where
v; = (i,level(x;)). Note that by lemmal(v), the level ofv;, is 0. The graph is a polygonal path
(v1—ve—--- —vp) with h — 1 edges. An edgév; —v;+1) is calledpositive, zeroor negative according
to the sign of its slope. Thus Figughas3 positive edges; negative edges arizero edges. Our level
charges amount to chargiig+ 1 units to a non-negative edge whose slopg is 0; negative edges
have no charges. In FiguBe edge(vs—vy) has slope and so has a level charge &f We color the
vertices with one of three colors:

e v; is black if the slope of(v;—v;41) is non-negative. E.gu , vs, v4, v7, vs, Vg, U19 IN Figure9.
e v; is greenif the slope of(v;_1—wv;) is non-negative. E.gug, vs,v11 in Figure9.

e v; isred otherwise. This means that the slopes®@f ; —v;) (if i > 1) and(v;—v;11) (if i < h)
are both negative. E.gug, v12, v13 in Figure9.

The total cost of a Find operation can be distributed to thigoes, so each vertex has unit cost. The cost
of a black vertex; is covered by the level charges(ta —v;1); likewise, the cost of a green vertex
is covered by the level charges(to 1 —v;). But how do we cover the cost of a red vertg® This is
the key geometrical insight: for each red vertgxwe cast a horizontal ray from to the right. There
are two possibilities.

(1) This ray may never hit any edge, as in the case of the raysdft> andv;3. Note that there are most
1 + « of these rays since < level(z;) < a, and there is at most one ray to infinity at each level.

(2) This ray may hit a point on a positive edge, as in the casigeafay fromug hitting the edgéuvg —uvy).
We will cover the cost ofy; using the level charges associated with the positive edyee# that this is
a valid method, note that a positive edge with slépe 1 may be hit by no more thahrays. Since itis
endowed witht + 1 level charges, and one of these charges is to pay for theiatsibblack vertex, we
are left withk unused charges. One subtlety is that the ray may hit a zemaglgell. For instance, if
the vertexvs in Figure9 were raised one unit higher, it would hit the zero e@ige-v10). Nevertheless,
it still hits a positive edge, and we never have to choose¢he edge for this accounting.

918. The number of level charges. Let  be an item. For each > 1, eranKz) belongs to
block (i, j(i)) for somej(i).
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LEMMA 6. The charges ta: atleveli > 1 is at most (i, j(7)).

To show this, note that whenevelis charged at level, then
level(x.p) > i

holds just preceding that Find. This means é¢nanks of the parentr.p and grandparent.p? belong
to differenti — 1st level blocks. AsranKs are strictly increasing along a find-path, after this stap
new parent ofc haserankin a new: — 1st level block. But the indices of thie— 1st level blocks of
x.p are nondecreasing over time. Thus, after at m@stj(¢)) chargeserankz.p) anderankz) lie in

different leveli blocks. This means the level afhas become strictly greater tharand henceforth:

is no longer charged at level This proves our claim.

Letn(i, j) denote the number of items whosenks lie in block(i, j). Clearly, for anyi,

Zn(z,j) =n. (20)

J=0

The total level charges, summed over all levels, is at most

[e3

>0 nli, 4)b(i, ). (11)
>0

=1

919. Bound for pure path compression heuristic. Suppose we use the path compression heuristic
but not the rank heuristic. Let us choodé(, j) to be the binary partition function and so we may
choosen = 1g(n + 1). Then the level charges, by equatiof§)(and (L1), is at most

lg(n+1)

>3 n(ij)2=2nlg(n+1).

i=1 j>0
If there arem’ Find requests, the upfront charges amour®®{en’ log n). This proves:

THEOREM 7. Assume the path compression heuristic but not the rank $t&uis used to process a
sequence af Link/Find Requests on a universeroitems. If there aren’ Find requests, the total cost
isO(m + (m' 4+ n)logn).

In this result, the numbenr’ of Find operations is arbitrary (in particular, we do notamsm’ > n).
This result has application in a situation where path cosgioa is allowed but not the rank heuristic

(see ]).

Remark: The above definition of level is actually devised to work foyaf the compaction heuris-
tics noted in52. A simpler notion of level will work for path compressionurestic (see Exercise).

EXERCISES

Exercise 3.1: (Chung Yung) Define th&evel of x to be the least such that both: and the root- (of
the tree containing) haveeranls in the saméth level block. Give a charging scheme and upper
bound analysis for path compression using this definiticiewx!.

&
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END EXERCISES

64. Combined Rank and Path Compression Heuristics

We now prove an upper bound on the complexity of Links-Finddse we combine both the rank
and path compression heuristicsNow all ranks lie in the rangéo..1gn]. We noted above that if
we use the binary partition functioA*, then the level of any node lies in the range lglgn] (see
equation )). This immediately gives a bound of

O((m+n)lglgn)

on the problem. To get a substantially better bound, we dlice a new multilevel partition function.

920. Ackermann Functions. A number theoretic function
A :NxN — Nis called amAckermann function if satisfies
the following fundamental recurrence:

Al g) = A(i = 1, A, 5 — 1)) 12) L e Boundary
for i, j large enough. A particular Ackermann function de* e ® Recursive
pends on the choice of the boundary conditions. In the fal-|4e
lowing, we fix the following boundary conditions: s %

jEZ,O)) = 0, 12> 0, 2 |20 °
07j = ja .7 >0,

ALj) = P, ES A

A, 1) = A(i—1,2), i>2. o |0

The conditions{3) determine the values of(i, j) wheni < o 1 2 3 4 5

2 or\_/vhenj < 2. Fori > 2 andj > 2, the general recurrence Figure 10: Ackermann’s function
(12) is applicable.

Some Values of the Ackermann function.Figure10is a useful visual aid: the domait x N is
represented by an infinite array of grid points. The valued @h the green points are given by the
boundary conditionsl@3). The values at black points are given by the recurrehgg (t follows that

- 22, j=2
- 2A(2 j—1) ,] > 2
— engj) (2) _ 22

(a stack ofj 2's). Also A(3,1) = A(2,2) = A(1,4) = 16 andA(4,1) = A(3,2) = A(2,16). The last
number is more than the number of atoms in the known univéasedstimated at0®"). The dominant
feature of an Ackermann function is its explosive growth faat, it grows faster than any primitive
recursive function.

LEMMA 8. The Ackermann functioA(i, 7) is a multilevel partition function.

Proof. Conditions a) and b) in the definition of a multilevel paditifunction are immediate. For
condition ¢) we must show that thigh level partition determined byl is a coarsening of the— 1st

1 Our multi-levels directly uses the the Ackermann functié, j); Tarjan uses a related functid®(i, 5).
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level partition. This amounts to noting that for al> 1,7 > 1, we can expresd (i, j) asA(i — 1,5")
for somey’. Q.E.D.

Let us note some simple properties the Ackermann function.
e Thelst level partition consists of exponentially growing blsikes,

block(1,7) = [27..29TF —1].

e We want to determine an upper bouadn the level of an item. This can be taken to be the
smallesti such that
[0..1gn] C block(i,0).

Clearly, this is the smallestsuch thatA(i, 1) > lgn. In fact, let us define the followingwerse
Ackermann function:
a(n):=min{i: A(;,1) > Ilgn}.

It follows that the level of every item is at most= «(n). The dominant feature af(n) is its very
slow growth rate. For all practical purposegn) < 4 (see exercise below).
e The number of — 1st level blocks that formhlock(i, j) is given by the following:

2 it j =0,
v = { Al j) = A j=1) T G > 1. (1)
To see thab(i,0) = 2, we note thatd(i, 1) = A(i — 1,2). Forj > 1, we note thatd(i,j + 1) =
A(i — 1, A(i, 7).

e The numben(i, j) of items whoseeranis lie in block(i, j) is bounded by:

AGgn-1 on
)< DL 3 S ganay
h=A(i.j)

where the first inequality comes from lemg).
o It follows that the number of charges at levet 1 is bounded by

Con , , A, j) - 2n k
Zb(z,y)n(z,g) < b(i,0)n(i,0) + Z At <2n+ 2nz o" < 5n,
>0 i>1 K>2

using the basic summation

Since there are((n) levels, there is a bound @?(na(n)) on all the level charges. Combined with the
O(a(n)) Upfront charge for each Find, we conclude:

THEOREM 9. When the rank and path compression heuristics are employeygl,sequence of,
Links/Find request incurs a cost of
O((m +n)a(n))

The other operations are at md@3tm).

921. Amortization Framework. In Lecture VI, we presented the potential framework. Wefhyrie
review this in the setting of the Union-Find problem. We areeg a sequencg, .. ., p,, of requests
to process. Our amortization scheme establishes a finitf secountsA, ..., A, such that the cost
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of each requegs; is distributed over these accounts. More precisely, the scheme specifiesaage
by p; to each account;.

In our Link/Find analysis, we set up an account for each djmara; (this is called the up-front
charges for find requests) and for each iterat each level, we have an account, ,. Note that the
charges to each account is non-negative value (these ar@ephit accounts).

If Charge(A;,p;) is charged ta4; by p;, we require

Z Charge(Aj, p;) > Cost(p;). (15)

j=1

If Charged(A;) is the sum of all the charges #;, then the amortization analysis amounts to obtaining
an upper bound ob~’_, Charged(A;).

We may combine the charge account framework with the patefitimework. We now allow an
account to beredited as well as debited. To keep track of credits, we associptaential (A;) to
eachA; and letA®(A;, p;) denote the increase in potential &f after requesp,;. Then (L5) must be
generalized to

S

Y (Charge(4;,pi) — A®(A;,py)) = Cost(pi). (16)
j=1
Without loss of generality, assume thatA,) is initially 0 and let®; denote the final potential of,.
The total cost for the sequence of operations is given by

S

Z(C’harged(Aj) — ;).

j=1

If we are interested in the “amortized cost” of each type apen, this amounts to having an account
for each operatiop; and charging this account an “amortized cost” correspantdirits type. We insist
thatd>%_, ®; > 0in order that the amortized cost is meaningful.

EXERCISES

Exercise 4.1: Verify the claim that4(4, 1) > 10%° (number of atoms in the known universe). ¢
Exercise 4.2: ComputeA(3, 3). &

Exercise 4.3: What is the smallest such thatA(2, j) is larger than a virgintillion (the numbean®3)?
Larger than a googleplex (the numhber'*’)? O

Exercise 4.4:
(i) Show A(4, j) is strictly increasing in each coordinate.
(i) When isa(m,n) < 1? When isa(m, n) < 2?
(iii) Compute the smallegt such thaiv(¢) is equal ta0, 1, 2, 3, 4. &

Exercise 4.5: (Tarjan) Define a two argument version of the inverse Ackemmtunction,«/(k, £),
k> ¢ >1,where

o' (k,0):= min{i > 1: A(4, {%J) > 1gl}.
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The one-argument function’ (¢) may be defined a&’(¢, ¢), and could be used instead of the
a(¢) function used in the text. Note that(k, ¢), for fixed ¢, is actually a decreasing function in
k. Improve the amortized upper bound®ma’(m + n,n)). &

Exercise 4.6: Consider the following multilevel partition functiomi (i, j) = {1g(i) (j)J (i-fold appli-

cation oflg to j). Fix your own boundary conditions in this definition d{i, 7). Analyze the
union-find heuristic using this choice of multilevel padit function. &

Exercise 4.7: Prove similar upper bounds of the fo@ma(n)) when we replace the path compres-
sion heuristic with either the splitting or halving heuidst &

END EXERCISES

5. Three Applications of Disjoint Sets

There are many applications of the disjoint set data stractlihree will be given here. The first
problem is in the implementation of Kruskal’s algorithm famimum spanning tree. The second prob-
lem concerns restructuring of algebraic expressions, bBl@mwhich arise in optimizing compilers and
in Exact Geometric Computation. The last problem concdrascomputation of Betti numbers in in
Computational Topology.

922. 1. Implementing Kruskals” Algorithm. In Lecture V, we presented Kruskal's algorithm for
minimum spanning tree (MST). We now show how to implemenffitiently using the Union Find
data structure.

Recall the problem of computing the MST of an edge-costeplgta= (V, E; C'), with edge costs
C(e),e € E. The idea of Kruskal is to sort all edgeskhin increasing order of their costs, breaking ties
arbitrarily. We initializeS = ) and at each step, we consider the next edigethe sorted list. We will
inserte into the setS provided this does not create a cycleSr{otherwisee is permanently discarded).
Thus, inductivelyS is a forest. When the cardinality 6freachesV| — 1, we stop and outpuf as the
MST.

Implementation and complexity. We must be able to detecthdreadding: to a forestS will create
a cycle. This is achieved using a Union-Find structure togsgnt the connected componentsofif
e = (u,v), thenSu{e} creates a cycle iff'ind(u) = Find(v). Moreover, if Find(u) # Find(v), we
will next form the union of their components vi&nion(u, v). To initialize, we must set up the Union-
Find structure for the sét” using the trivial relation where each vertex is forms its osguivalence
class. The algorithm makes at m@st Finds andr Unions. But since each union env is performed
right after aF'ind(u) and Find(v), we can replace each Union by a single link. The amortizetifoos
these Link/Finds is

O(ma(n)).

This cost is dominated by the initial cost ©fm logn) for sorting the edges. Hence the complexity of
the overall algorithm i€ (mlogn).
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923. 2. Expression Optimization Problem. Suppose you are given an arithmetic expression, rep-
resented by a directed acyclic graph (DAG) with operators in the internal nodes and numerical
constants or variables at the leaves. For instafiaajght represent the expression

V2+V3-1/2+3-6

This expression is an instance of the more general expressib variables instead of constants:

VZ+ Yy —\Jr+y— Ty (17)

Thus one possible representation of the expres&idng given byG in Figurell. We want to compute
a “reduced expressiorf¥’ that is equivalent t@-. In Figurell, we show such &’. What is “reduced”
aboutG’? Notice that it has one fewer node. But in this applicatibe,hore important fact is that’
has only three square-root operators, in contrast to thesfpuare-roots .

This is an important problem in the area of Exact Geometrim@atation where
we are interested in numerical approximations for the \&lu€(G) of ex-
pressions. Note that even if there are variables liker y in G, it is as-
sumed that we know explicit constants for these variablethabval(G) is ac-
tually a number. The key problem is to decide wherd(G) is really zero
We can approximate
val(G) to as many
bits of accuracy as we
like (using big number -
arithmetic). But if the

expression is really zero,
how do we know to

stop? This problem
can be solved when the
expression involves only
algebraic operations such - |
as +,—, X, =,/ It G
turns out that we can

compute a so-calledero Figure 11: Reducing to G’

bound 5(G) > 0 for any

expressiorG such that ifual(G) # 0 then|val(G)| > S(G). The graphG might
be automatically generated by a program and can be quite.|Aga result3(G)
can be astronomically small, sa&(G) ~ 2710000 This means that in orde
to decide ifval(G) = 0, we need to approximate:l(G) to over 10,000 bits.
Suppose we have a reducédl whose zero bound(G’) is considerably large
(sic!) thanB(G), sayB(G’) ~ 27190, The equivalence of expressioGsand G’
simply means thatal(G) = val(G’). In this case, we only need to approximate
val(G') = val(G) to aboutl00 bits, and thus deciding ifal(G) = 0 is greatly|
sped up. The theory behind such zero bounds is beyond oue.scop

=

=

We assume that the DAG is represented as an adjacency list. The nodes with indégnexcalled
sources, and the nodes with outdegdeare called sinks. Each sink @f is labeled with a distinct
variable namex;, x2, etc). Each non-sink node 6f has outdegre2 and are labelled with one of four
arithmetic operationsi, —, %, +). See Figure 2, where the directions of edges are implicitly from top
to bottom. Thus, every node ¢f represents an algebraic expression over the variables, riedeb
represents the expression — xs.
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(a) G (b) el

Figure 12: Two DAGs( andG’

The two edges exiting from the-" and ‘=’ nodes are distinguished (i.e., labeled as “Left” or
“Right” edges) while the two edges exiting frofmor x nodes The Left/Right order of edges are implicit
in our figures. are indistinguishable. This is becausand+ are non-commutativer(— y # y — =z,
andz =y # y =+ x in general) whilet+ andx are commutative{ + y = y + z andx x y = y * x). In
general G is actually a multigraph because it is possible that thegeetis more than one edge from a
node to another. E.g., the graphin Figure12(b) has two edges fromito a.

Define two nodes to bequivalentif they are both internal nodes with the same operator |ae,
their “corresponding children” are identical or (recuediy) equivalent. This is a recursive definition.
By “corresponding children” we mean that the order (left ight) of the children should be taken
into account in case of and--, but ignored for+ andx nodes. For instance, the nodesndc in
Figurel12(a) are equivalent. Recursively, this makeand f equivalent.

The problem is to constructraduced DAG G’ from G in which each equivalence class of nodes in
G are replaced by a single new node. For instance @ith Figure12(a) as input, the reduced graph is
G’ in Figure12(b).

The solution is as follows. The height of a nodednis the length of longest path to a sink. E.g.,
height of nodee in Figure12(a) is 3 (there are paths of lengti2sand3 from e to sinks). Note that
two nodes can only be equivalent if they have the same hei@ht. method is therefore to checking
equivalent nodes among all the nodes of a given height, asglath nodes of smaller heights have been
equivalenced. To “merge” equivalent nodes, we use a disgeindata structure. If there akenodes of
a given height, the obvious approach talg%?) time.

To avoid this quadratic behavior, we use a sorting technitgted be the set of nodes of a given
height. For eachw € A, we first find their children:;, andur using the adjacency lists of grajgh
Then we computé’;, = Find(ur) andUr = Find(ur). HenceUr, andUpr are the representative
nodes of their respective equivalence classesop(et) be the operator at node In caseop(u) is + or
x, we comparé/;, andUg (all nodes can be regarded as integersy/if< Uy, we swap their values.
We now construct a 3-tuple

(op(u), UL, UR)

which serves as the key af Finally, we sort the elements df using the keys just constructed. Since
the keys are triples, we compare keys in a lexicographicroktle can assume an arbitrary order for the
operators (say+’' <’ —' <’ «’ <’ +’). Two nodes are equivalent iff they have identical keys.eAft
sorting, all the nodes that are equivalent will be adjaceithé sorted list ford. So, we just go through
the sorted list, and for eaahin the list, we check if the key af is the same as that of the next nade
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in the list. If so, we perform anerge(u,v). This procedure takes tin@(k 1g k).

We must first compute the height of each nodé&ofThis is easily done using depth-first search in
O(m) time (see Exercise). Assume that all the nodes of the samétherie put in a linked list. More
precisely, if the maximum height &, we construct an arraj[1.. H] such thatd[i] is a linked list of all
nodes with height. Separately, we initialize a disjoint set data structuraflthe nodes, where initially
all the sets are singleton sets. Whenever we discover tweshequivalent, we form a union. We will
now process the listi[i] in the orderi = 1,2, ..., H, using the sorting method described above.

Complexity: computing the height ©(m + n) (Exercise). Union Find isna(n). Sorting of
all the lists isti1 O(k;logk;) = O(nlogn) where|A[i]| = k;. Hence the overall complexity is
O(m + nlogn).

Remark: We have actually solved a simple form of the general problsninstance, the example
in Figurellrequires an additional transformatiqyizy — +/z -/y before we can achieve the indicated
reduction.

924. 3. Computing Betti Numbers. Let K be a non-empty set of tetrahedra, triangles, edges and
vertices, where each € K is a closed set dR®. Note that a tetrahedron, triangle, edge and vertex is
also known as aimplex of dimension3, 2, 1, 0, respectively. We assume that the relatias aproper
faceof s’ is understood. For instance, a tetrahedron has 3 proper édcémensiore, 6 proper faces of
dimensionl and4 proper faces of dimensidn The empty seff is regarded as a simplex of dimension
—1. Then any simplex has twoimproper faces namely itself and). All the other faces arproper.

For K to be atriangulation, we require that for alk, s’ € K, (a) any face of also belongs to
K, and (b)s N s’ is a face ofs and ofs’. Thus,() € K. The underlying space or support spacdsof
is given by|K|:= Ugck s. Delfinado and Edelsbrunner shows how we can comgyt&), thei-th
Betti number ofK, using Union Find as follows. The Betti numbers are defingéladaically and is a
topological invariant of K |. For|K| C R3, these numbers have an intuitive meanifgis the number
of connected components [@{|, 3; is the number of holes 4| (e.g., the donut as well as the torus
has3; = 1), and 3, is the number of voids ohk | (e.g., the torus and the sphe$é has one void
(62 = 1) each, but the donut has norig, = 0). Let us just consider the case whéteis just a graph,
i.e., a set of vertices and edges only. The following basioha is all that we need:

LEMMA 10. Let K and K’ be 1-dimensional complexes, andd = K U {s} wheres is an edge
connectingu,v. If u,v lies in the same connected component@fthen 5, (K’) = (1 (K) + 1;
otherwisely(K') = Bo(K) — 1. The other Betti number is unchanged.

Note that if K’ = K U {s} ands is a vertex, then itis clear that (K’) = Gy(K) + 1 and the other
Betti number is unchanged. Armed with this lemma, we can nie® g simple incremental algorithm
to maintain Betti numbers ak: we initialize by to n, the number of vertices ik, andb, to 0. The
n vertices are used to initialize a union-find data structiMew we process each edge &fin turn.
For each edgéu, v), if Find(u) = Find(v), then we perfornU/nion(u,v) and updaté; = by + 1;
otherwise we updatl, = by — 1. The final values 0by, b; is the Betti number we seek.

The problem with extending this to 2-dimensional compleiXeis that we do not have an efficient
way to detect when the addition of a new triangle will createoml (although this is possible to do,
by using tools of linear algebra). But suppose by embeddinig another complex. where|L| is a
tetrahedron ifR3, then we can exploit duality for this purpose (Exercise).
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925. Final Remarks. Tarjan has shown that the upper bounds obtained for disgaits is essen-
tially tight under the pointer model of computation. Ben-fem and Galil [] proved a lower bound
of Q(ma(m,n)) lower bound on Union-Find problem under a suitable RAM maxfetomputation.
Gabow and Tarjan shows that the problem is linear time in aiapease. There are efficient solutions
that are not based on compressed trees. For instance, ticesexmlow shows a simple data structure in
which Find requests take constant time while Union requakess non-constanttime. Another variation
of this problem is to ensure that each request has a good gasstcomplexity. See[5].

The application to expression optimization arises in thestrwiction of optimizing compilers in gen-
eral. In an application to robust geometric computatinguch optimizations are critical for reducing
the potentially huge bit complexity of the numerical congdians.

EXERCISES

Exercise 5.1: Hand simulate Kruskal’s algorithm on the graph in FigliBe Specifically:
(a) First show the list of edges, sorted by non-decreasinghtieView verticesvy , vs, vs, etc as
the integerdl, 2, 3, etc. We want you to break ties as follows: assume each edgthbdorm
(¢,7) wherei < j. When the weights ofi, j) and(i’, j/) are equal, then we waft, j) to appear
before(’, j') iff (i,7) is less thar(i’, j') in the lexicographic order, i.e., eithéx ' or (i = i’
andj < j').
(b) Maintain the union-find data structure needed to anshebasic question in Kruskal's al-
gorithm (namely, does adding this edge creates a cycle?g algorithms for the Union and
Find must use both the rank heuristic and the path compressaristic. At each stage of
Kruskal’s algorithm, when we consider an edgej), we want you to perform the corresponding
Find(i), Find(j) and, if necessary/nion(Find(i), Find(j)). You must show the result of
each of these operations on the union-fine data structure. &

Figure 13: Another House Graph

Exercise 5.2: Let G = (V, E; C) be the usual input for MST. We consider a variant where we lare a
given a forest' C E. We want to construct a minimum cost spanning tfeef G subject to the
requirement that’ C 7. Call this theconstrained MST problem. As usual, let us just consider
the cost version of this problem, where we only want to cormplié minimum cost. Describe
and prove the correctness of a Kruskal-like algorithm fdg firoblem. Analyze its complexity.

&

Exercise 5.3: Let us define a se¥ C F to beKruskal-safe if (i) S is contained in an MST and (ii)
forany edges € E\ 5, if C(e) < max{C(¢') : ¢’ € S} thenS U {e} contains a cycle. Note
that condition (i) is what we called “simply safe” §V.3. Show that ifS is Kruskal-safe and is
an edge of minimum costs among those edges that connect tvm@ci®d components 6fthen
S U{e} is Kruskal safe.
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Exercise 5.4: Describe an algorithm to determine the height of every node DAG G. Assume an
adjacency list representation 6f. Briefly show its correctness and analyze its running time.

O

Exercise 5.5: Let K be a simplicial complex ands| C R3.
(a) Show that we can embédd in another simplicial complek such thatL| is a tetrahedron.
(b) Suppose we have an incremental algorithm to computediterBimbers of.. Show how we
can obtain use it to compute the Betti numbergof
(c) Suppose that the triangles and tetrahedrons (or cél)yoet, .. ., t,, andcy,...,c,. Con-
sider the simplicial compleX’; (: = 0, ..., m) such thatk; has all the vertices and edgesif
but only the trianglest, . . ., ¢;}. (K; has no tetrahedrons. We want to detect the situation when
a transition fromk(;_; to K; creates a new void. Consider the dual gr&ph(i = 0,...,m)
whose vertex set ik, . . ., ¢, } and whose edges afé; 11, . . ., t,, }. NOTE that inGG;, we iden-
tify a trianglet with the edge, ¢’ wherec N ¢/ = t. Show that adding; to K;_; creates a new
void in K iff the number of connected components increased by oneimgdom G, to G;.
(d) Show that if we construct the graghy’s in reverse order (starting fror@,, down to G)
then we can detect all thés such that adding; creates a new void. Describe this algorithm'’s
implementation using Union-Find.
(e) Conclude that we can maintain the Betti numberd dh time O(na(n)) wheren is the
number of simplices ir.. &

END EXERCISES
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