
Lecture VII Page 1

Lecture VII
DYNAMIC PROGRAMMING

We introduce an algorithmic paradigm calleddynamic programming. It was popularized by
Richard Bellman, circa 1954. The word “programming” here isthe same term as found in “linear
programming”, and has the connotation of a systematic method for solving problems. The term is even
identified1 with the filling-in of entries in a table. The semantic shift from this to our contemporary
understanding of the word “programming” is an indication ofthe progress in the field of computation.

In this chapter, we introduce dynamic programming techniques on several string problems, abstract
polygon triangulation problems, and the problem of optimalbinary search trees.

¶1. From Google to Genomics. Dynamic programming is particularly effective for computating with
objects that have some underlying linear structure: strings, polygons and certain problems on trees. We
will see such examples in this chapter. Currently, there aretwo major consumers of string algorithms:
search engines such as Google, and computational biology. Thus, if you ask Google to search the word
strnigs, it will ask if you meantstrings. You can be sure that a slew of string algorithms are
at work behind this innocent response. Or, when I search forCGTAATCC, Google asked if I meant
CCGTCC. It turns out thatCCGTCC.com is the homepage for members ofCasino Chip & Gaming
Token Collectors Club. But a biologist might submit the sequenceCGTAATCC to a database engine to
find the closest match. This is because in computational genomics, a DNA sequence is just a string over
the symbolsA,C,T,G. The strings in Google and genomics have different characteristics: Google
strings are words or phrases – these are much shorter than strings in biology which represent DNA
or RNA sequences whose lengths go into millions. Google strings have medium size alphabets while
strings in genomics have small alphabet (size 4). If we were looking at protein sequences, the alphabet
size would be20. The corresponding algorithms should try to exploit such properties.

¶2. Divide and Conquer with a twist. Dynamic programming is a form of divide-and-conquer be-
cause it is based on solving subproblems. But it has some rather distinctive features. A simple illustra-
tion is provided by the computation of Fibonacci numbers,F (n) = F (n − 1) + F (n − 2). On input
n > 1, the obvious recursive algorithm calls itself twice on the argumentsn−1 andn−2. The returned
results are added together. The running time is given by the recurrenceT (n) = T (n−1)+T (n−2)+1.
ThusT (n) is exponential (§III.6, AVL trees). A little reflection shows that linear timesuffices: instead
of computingF (n), let us define a new functionF2(n) to compute the pair(F (n), F (n − 1)) of con-
secutive Fibonacci numbers. To computeF2(n), we only need one recursive call toF2(n− 1):

F2(n):
If (n = 1), Return(1, 0) ⊳ Assume inputn is≥ 1
(a, b)← F2(n− 1) ⊳ Recursive call!
Return(a+ b, a)

The running time recurrence now satisfies the recurrenceT2(n) = T2(n − 1) + 1 = n. Here we see
the seed of the dynamic programming idea — that by keeping around solutions to subproblems, we
can avoid what would otherwise be an exponential complexity. Fibonacci, as such, is not a typical
dynamic programming problem because it needs only a constant number (i.e., two) subproblems. We
next consider a more typical situation.

1 Such tables are sometimes filled out by deploying a row of human operators, each assigned to filling in some specific table
entries and to pass on the partially-filled table to the next person.

Chee-Keng Yap Basic Version April 26, 2011

Lecture VII Page 2

¶3. Joy Ride, again. Recall the joy ride or linear bin packing problem in Chapter V. The input a
queue of riders whose weights arew1, . . . , wn. We want to place these riders into a minimum number
of cars, where each car has a weight capacity ofM . Riders must be placed into cars in their queue
order. The new twist is that we allow negative weights (clearly our joy ride interpretation is stretched
by this generalization). In any case, the greedy algorithm breaks down. For instance letM = 5 and

Ah, negative weights
are children with
helium balloons!w = (5, 5, 5, 5,−20). The greedy solution has 4 cars(5), (5), (5), (5,−20) but the optimal solution

uses only one car. But to achieve this optimal solution, we must give up our online requirement (i.e.,
to decide on each rider without looking at what comes after inthe queue). In this example, the optimal
solution has to look at the entire queue before it can properly decide on the second rider (whether this
rider should be in the first or second car). Thus, we must content ourselves with designing anoffline
algorithm in which each decisions can be based on the whole input.

We will now give anO(n2) solution. But first, we must generalize the problem so that, instead
of just solving the instancePn = (w1, . . . , wn), we simultaneously solve the subproblem instances
Pi = (w1, . . . , wi) for all i = 1, . . . , n. Let bi be the minimum number of cars for instancePi. Now
the last car for instancePn has the form(wi, . . . , wn) for somei andwi+wi+1 + · · ·+wn ≤M . This
justifies the following formula:

bn = 1 + min
i=1,...,n−1

{bi :
n
∑

j=i

wj ≤M}. (1)

Sinceb1, . . . , bn−1 is known, this formula shows that we can computebn in O(n) time. We may
program this solution as follows:

L INEAR BIN PACKING WITH NEGATIVE WEIGHTS:
Input: arrayw[1..n] containing weights andM
Output: arrayb[0..n] to store the values of optimal valuesbi

b[0]← 0.
for i = 1, . . . , n

W ← w[i]
B ← b[i− 1] ⊳ B is current min value ofbj ’s
for j = i− 1, . . . , 1

W ←W + w[j]
If (W ≤M) then B ← min {B, b[j − 1]}

b[i]← 1 +B

The overall complexity isT (n) = T (n− 1) + n = O(n2).

For instance, supposeM = 5 andw = (1, 5,−2, 5, 1) Thenb1 = 1 (obviously),b2 = 2, b3 = 2 and
b4 = 3. Let us computeb5 using the formula (1):

b5 ← min {1 + b4, 1 + b2} = min {4, 3} = 3.

This example is typical of dynamic programming: in order to solve a problem instancePn, we solve
a polynomial number of subproblems (in this case,P1, . . . , Pn). In comparison, the problems with
running times that satisfy the Master recurrence only have abounded number of subproblem instances.

¶4. String Notations. Let us fix some common terminology for strings. Analphabet is just a finite
setΣ; its elements are calledletters (or characters or symbols). Astring (or word) is just a finite

Chee-Keng Yap Basic Version April 26, 2011

§1. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 3

sequence of letters. The set of strings overΣ is denotedΣ∗. Let X = x1x2 · · ·xm be a string where
xi ∈ Σ. The length of X is m, denoted|X |. Note that|X | should not be confused with the usual
notation|S| for the cardinality of a setS. Theempty string is denotedǫ and it has length|ǫ| = 0. The
ith letter ofX is denotedX [i] = xi (i = 1, . . . ,m). Concatenation of two stringsX,Y is indicated by
juxtaposition,XY . Thus|XY | = |X |+ |Y |.

§1. Longest Common Subsequence

Many string problems come down to comparing two strings for similarity. We look at one such
similarity measure. AsubsequenceZ = z1z2 · · · zk of X = x1, . . . , xm is a string such that for some

1 ≤ i1 < i2 < · · · < ik ≤ m

we haveZ[ℓ] = X [iℓ] for all ℓ = 1, . . . , k. For example,ln, lg andlog are subsequences of the string
long.

A common subsequenceof X,Y is a stringZ = z1z2 · · · zk that is a subsequence of bothX and
Y . We callZ a longest common subsequenceif its length |Z| = k is maximum among all common
subsequences ofX andY . Since the longest common subsequence may not be unique, letLCS(X,Y)
denote the set of longest common subsequences ofX,Y . Also, let lcs(X,Y) denote2 any element of
LCS(X,Y): so lcs(X,Y) ∈ LCS(X,Y). Define the numerical functionsL(X,Y) := |lcs(X,Y)|
(length function) andλ(X,Y) := |LS(X,Y)| (cardinality function). Note thatλ(X,Y) ≥ 1 since “at
worst”,LCS(X,Y) is the singleton comprising the empty stringǫ.

For example, if
X = longest, Y = length (2)

thenLCS(X,Y) = {lngt}, λ(X,Y) = 1 andL(X,Y) = 4.

Of course, the ultimate in similarity under LCS measure is whenL(X,Y) = min {|X |, |Y |}. We
also mention the related concept of “substring”. A subsequenceZ is asubstring of X if X = Z ′ZZ ′′

for some stringsZ ′, Z ′′. For instance,on andg are substrings oflong butln, lg andlog are not.
Thus, substrings are subsequences but the converse may not hold.

¶5. Versions of LCS. There are several versions of thelongest common subsequence (LCS) prob-
lem. Given two strings

X = x1x2 · · ·xm, Y = y1y2 · · · yn,
the problem is to compute (respectively) one of the following:

• (Length version) ComputeL(X,Y)
e.g.,L(longest,length) = 4.

• (Instance version) Computelcs(X,Y)
e.g.,lcs(longest,length) = lngt.

• (Cardinality version) Computeλ(X,Y)
e.g.,λ(longest,length) = 1.

• (Set version) ComputeLCS(X,Y)
e.g.,LCS(longest,length) = {lngt}.

2 Solcs(X,Y) is not really a functional notation.

Chee-Keng Yap Basic Version April 26, 2011

§1. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 4

We will mainly focus on the first two versions. The last version can be exponential if members of the
setLCS(X,Y) are explicitly written out; we may prefer some reasonably explicit3 representation of
LCS(X,Y). We will consider representations ofLCS(X,Y) below. See the Exercise for the multiset
interpretation ofLCS(X,Y).

¶6. Exponential nature of λ(X,Y). A brute force solution to the cardinality version of the LCS
problem would be to list all subsequences of lengthℓ (for ℓ = m,m− 1,m− 2, . . . , 2, 1) of X , and for
each subsequence to check if it is also a subsequence ofY . This is an exponential algorithm sinceX
has2m subsequences. But canλ(X,Y) be truly exponential? Indeed, here is an example: let

Xn = 01a01a01a . . .= (01a)n, Yn = 10a10a10a . . . = (10a)n. (3)

Then λ(Xn, Yn) = 2n (Exercise). E.g., we have LCS(X3, Y3) =
{0a0a0a, 0a0a1a, 0a1a0a, 0a1a1a, 1a0a0a, 1a0a1a, 1a1a0a, 1a1a1a}. In general,λ(Xn, Yn) ≥ 2n

since in each01-block ofXn, we have 2 choices for matching the corresponding10-block ofYn. This
gives us2n distinct LCS’s.

¶7. Dynamic Programming Solution for LCS. The following is a crucial observation. Let us write
X ′ for the prefix ofX obtained by dropping the last symbol ofX . This notation assumes|X | > 0 so
that|X ′| = |X | − 1. It is easy to verify the following formula forL(X,Y):

L(X,Y) =







0 if mn = 0
1 + L(X ′, Y ′) if xm = yn
max{L(X ′, Y), L(X,Y ′)} if xm 6= yn

(4)

There is a subtlety in this formula whenxm = yn. The “obvious” formula for this case is

L(X,Y) = max{1 + L(X ′, Y ′), L(X ′, Y), L(X,Y ′)}.

The right hand side is simplified to the form in (4) because

L(X ′, Y) ≤ 1 + L(X ′, Y ′),

and also a similar inequality involvingL(X,Y ′). Formula (4) constitutes the “dynamic programming
principle” for the LCS problem – it expresses the solution for inputs of sizeN = |X |+ |Y | in terms of
the solution for inputs of sizes≤ N − 1. We will discuss the dynamic programming principle in§4.

For any stringX and natural numberi ≥ 0, let Xi denote the prefix ofX of lengthi (if i > |X |,
let Xi = X). The dynamic programming principle forL(X,Y) suggests the following collection of
subproblem instances:

L(Xi, Yj), (i = 0, . . . ,m; j = 0, . . . , n).

There areO(mn) such subproblems. Note thatX0 is the empty stringǫ, so that

LCS(X0, Yj) = {ǫ}, L(X0, Yj) = 0. (5)

There are dynamic principles forlcs(X,Y) andLCS(X,Y) that are analogous to (4). Here we

3 We can interpret “reasonably explicit” to mean that we can confirm membership inLCS(X, Y) in linear time, or enumerate
the members ofLCS(X,Y) in an efficient manner. Of course, the pair(X, Y) itself is an implicit representation ofLCS(X,Y),
but it would fail our “reasonableness” test.

Chee-Keng Yap Basic Version April 26, 2011

§1. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 5

treatLCS(X,Y), leavinglcs(X,Y) as an exercise.

LCS(X,Y) =















































{ǫ} if mn = 0
LCS(X ′, Y ′)xm if xm = yn, L(X,Y) > max{L(X ′, Y), L(X,Y ′)}
LCS(X ′, Y ′)xm ∪ LCS(X ′, Y) if xm = yn, L(X,Y) = L(X ′, Y) > L(X,Y ′)
LCS(X ′, Y ′)xm ∪ LCS(X,Y ′) if xm = yn, L(X,Y) = L(X,Y ′) > L(X ′, Y)
LCS(X ′, Y ′)xm ∪ LCS(X,Y ′) ∪ LCS(X ′, Y) if xm = yn, L(X,Y) = L(X,Y ′) = L(X ′, Y)
LCS(X ′, Y) if xm 6= yn, L(X ′, Y) > L(X,Y ′)
LCS(X,Y ′) if xm 6= yn L(X,Y ′) > L(X ′, Y)
LCS(X,Y ′) ∪ LCS(X ′, Y) if xm 6= yn, L(X,Y ′) = L(X ′, Y).

(6)

Simplification: The student should compare Equations (4) and (6) to see the
relative simplicity of the former equation. Also the recurrence (6) tells us
that the flow of control in the algorithm forLCS(X,Y) is determined by the
functionL(X,Y). In particular, we need to computeL(X,Y) if we want to
computeLCS(X,Y). In fact, equations (4) and (6) share a common flow of
control, with some refinements forLCS(X,Y). Our strategy is to develop an
algorithm forL(X,Y) first. Then we indicate the necessary modifications to
yield an algorithm forLCS(X,Y). Such a modification is usually straight-
forward although we will see exceptions: see thelcs(X,Y) in small space
solution below.

¶8. Matrix encoding of subsolutions. To organize the dynamic programming solution forL(X,Y),
we use an(1 +m)× (1 + n) matrixL[0..m, 0..n] whereL[i, j] is to store the valueL(Xi, Yj). We fill
in the entries of this matrix as follows. First fill in the0th column and0th row with zeros, as noted in
(5). Now fill in successive rows, from left to right, using equation (4) above.

In illustration, we extend4 the example (2) to the stringsX = lengthen andY = elongate:

e l o n g a t e

0 0 0 0 0 0 0 0 0
l 0
e 0
n 0 x
g 0 1 + x
t 0
h 0
e 0 u
n 0 v max(u, v)

We illustrate the formula (6) in action in two entries: the entry corresponding to the ‘g’-row and ‘g’-
column is filled with1+xwherex is the entry in the previous row and column. The entry corresponding
to last row and last column ismax(u, v) whereu andv are the two adjacent entries. [It turns out that
x = 2, u = 5, v = 4.] The reader may verify thatL(X,Y) = 5 andLCS(X,Y) = {lngte, engte} in
this example. We leave as an exercise to program this algorithm in your favorite language.

¶9. Complexity Analysis. Each entry is filled in constant time. Thus the overall time complexity is
Θ(mn). The space is alsoΘ(mn).

4 No pun in-tended.

Chee-Keng Yap Basic Version April 26, 2011

§1. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 6

¶10. Optimal Instance or Set Computation. We said that it should be relatively easy to modify the
code for computingL(X,Y) to compute eitherlcs(X,Y) or some representation ofLCS(X,Y). We
use this observation: each entryL[i, j] derives its values from one of the values inL[i − 1, j], L[i, j −
1], L[i− 1, j − 1]. We us modifyL into a digraphG which representsLCS(X,Y): the nodes ofG are
(i, j) ∈ {0, 1, . . . ,m}×{0, 1, . . . , n}. For each(i, j), we have an edge to(i− 1, j) (resp.,(i, j− 1)) if
L[i, j] = L[i− 1, j] (resp.,L[i, j] = L[i, j − 1]). We also have an edge from(i, j) to (i− 1, j − 1) iff
xi = yj. Next, we can pruneG so that only vertices and edges that lie in a path from(m,n) to (0, 0) are
kept. Now, given anyZ, we can check ifZ ∈ LCS(X,Y) in O(m + n) time in the obvious manner.

¶11. Small Space Solution. The above algorithm usesO(mn) space. For Google applications, this
may be acceptable; in computational genomics, this is not. We note that to fill in any row, we just need
the values from two rows. In fact the space for one row is all that we need: as new entries are filled in, it
can overwrite the corresponding entry of the previous row. Since a row hasn entries, we just needO(n)
space. As rows and columns are interchangeable, we can also work with columns, soO(min {m,n})
space suffices.

¶12. Backwards Equation. We exploit another symmetry in strings. We had been developing our
equations using prefixes ofX andY . We could have equally worked with suffixes. IfX# denote the
suffix ofX obtained by omitting the first letter, then the analogue of (4) is:

L(X,Y) =







0 if mn = 0
1 + L(X#, Y #) if x1 = y1
max{L(X#, Y), L(X,Y #)} if x1 6= y1

(7)

Let X i denote the suffix ofX lengthi, so |X i| = i. If we use the same matrixL as before, we now Neat!XiX
m−i = X

need to fill in the entries in reverse order as follows:

Let L[i, j] denoteL(Xm−i, Y n−j). Thus, we could fill in the last row and last column with0’s
immediately. If we work in row order, we can next fill in rowi− 1 using (7), assuming rowi is already
filled in. The final entry to be filled in,L[0, 0], contains our answerL(X,Y).

¶13. Recovery of Optimal Instance in Small Space. Now we address the possibility of computing
lcs(X,Y) in small space. Note that the small space solution forL(X,Y) does not easily extend to
recovery of an optimal instancelcs(X,Y). We now describe a solution from Hirshberg (1975) [5]. See
[2] for recent work on space efficient dynamic programming especially for geometric problems.

The solution uses an interesting divide-and-conquer technique. For simplicity, assume thatn is a
power of two. Observe that

L(X,Y) = L(Xi∗ , Yn/2) + L(Xm−i∗ , Y n/2) (8)

for somei∗ = 0, . . . ,m. Indeed,

L(X,Y) = max
i=0,...,n

{

L(Xi, Yn/2) + L(Xm−i, Y n/2)
}

. (9)

How can we compute thei∗ such that (8) holds? We use the usual (forward) recurrence to compute
{

L(Xi, Yn/2) : i = 0, . . . ,m
}

.

We use the backward recurrence (7) to compute
{

L(Xm−i, Y n/2) : i = 0, . . . ,m
}

.

Chee-Keng Yap Basic Version April 26, 2011

§1. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 7

This takesO(m) space andO(mn) time. Then using (9), we can determinei as the value that maximizes
the functionL(Xi, Yn/2) + L(Xm−i, Y n/2).

Knowing thei in (8), we could divide ourlcs problem recursively into two subproblems. The key
observation is that (8) can be extended into an equation for the optimal instance:

lcs(X,Y) =







ǫ if L(X,Y) = 0,
Y [1] if n = 1and L(X,Y) = 1,
lcs(Xi, Yn/2); lcs(X

m−i, Y n/2) if n ≥ 2and L(X,Y) = L(Xi, Yn/2) + L(Xm−i, Y n/2).
(10)

where “;” denotes concatenation of strings.

The space complexity of this solution is easily shown to beO(m). What about the time complexity?
We have

T (m,n) = T (i, n/2) + T (m− i, n/2) +mn.

It is easy to verify by induction thatT (m,n) ≤ 2mn: if n = 1, this is true. Otherwise,

T (m,n) = T (i, n/2) + T (m− i, n/2) +mn

≤ 2
(

i
n

2

)

+ 2
(

(m− i)
n

2

)

+mn = 2mn.

¶14. Other Improvements. We can exploit knowledge about the alphabet. For instance, Paterson
and Masek gave an algorithm withΘ(mn/ log(min(m,n))) time when the alphabet of the strings is
bounded.

Our algorithm fills in the entries of the matrixL in a bottom-up fashion. We can also fill them in
a top-down fashion. Namely, we begin by trying to fill the entry L[m,n]. There are 2 possibilities: (i)
If xm = yn, we must recursively fill inL[m − 1, n − 1] and then use this value to fill inL[m,n]. (ii)
Otherwise, we must recursively fill inL[m− 1, n] andL[m,n− 1] first. In general, while trying to fill
in L[i, j] we must first check if the entry is already filled in (why?). If so, we can return the value at
once. Clearly, this approach may lead to much fewer thanmn entries being looked at. We leave the
details to an exercise.

¶15. Applications. Computational problems on strings has been studied since the early days of com-
puter science. One motivation is their application in text editors. For instance, the problem of finding
a pattern in a larger string is a basic task in text editors. Another interesting application is in computer
virus detection. The growth of the world wide web has been accompanied by the proliferation of com-
puter viruses. It turns out that a virus trying to infect a computer will send messagesX which are similar
to a stringY peculiar to that virus. By computingL(X,Y), we can measure how likely is the messages
X coming from aY -virus. See Exercise below.

The advent of computational genomics in the 1990’s has brought new attention to problems on
strings. The fundamental unit of study here is the DNA, wherea DNA can be regarded as a string
over an alphabet of four letters:A, C, G, T. These correspond to the four bases: adenine, cytosine,
guanine and thymine. DNA’s can be used to identify species aswell as individuals. More generally, the
variations across species can be used as a basis for measuring their genetic similarity. The LCS problem
is one of many that have been formulated to measure similarity. We will see another formulation in the
next section.

EXERCISES

Chee-Keng Yap Basic Version April 26, 2011

§1. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 8

Exercise 1.1: Find the setLCS(X,Y) where

X = 00110011, Y = 10100101.

Show your working (the matrix) and justify your method of extracting the longest common sub-
sequences. ♦

Exercise 1.2: ComputeL(X,Y) whereX = lengthening andY = elongation. ♦

Exercise 1.3: Compute lcs(X,Y) for X = AATTCCCCGACTGCAATTCACGCACC and Y =
GGCTTTTATTCTCCCTGTAAGT. These are parts of DNA sequences from a modern human and a
Neanderthal, respectively. ♦

Exercise 1.4:
(a) Give a direct recursive algorithm for computingL(X,Y) based on equation (4) and show
that it takes exponential time. (In other words, equation (4) alone does not ensure efficiency of
solution.)
(b) Let lcs(X,Y) denote any member ofLCS(X,Y). Give the analogue of (6) for lcs(X,Y).

♦

Exercise 1.5: (V.Sharma and Yap) Consider the example in (3).
(a) ComputeL(X2, Y2) by filling in the the usual matrix. Moreover, determine|LCS(X2, Y2)|
by counting the number of maximum paths in the matrix.
(b) Prove thatL(Xn, Yn) = 2n. HINT: use induction onn.
(c) We indicated that|LCS(Xn, Yn)| ≥ 2n. But prove that|LCS(Xn, Yn)| ≥

√
6
n

(assumen is
even). HINT:|LCS(X2, Y2)| = 6.
(d) Generalize the idea of (c) to prove larger lower bounds on|LCS(Xn, Yn)|. ♦

Exercise 1.6: LetS = {X1, . . . , Xk} be a set of strings. A stringZ such that eachXi is a subsequence
of Z is called asuperstring of S. We can consider the corresponding “shortest superstring
problem” for any givenS. In some sense, this is the dual of the LCS problem. Is there a dynamic
programming solution for the shortest superstring problem? ♦

Exercise 1.7: Joe Quick observed that the recurrence (4) for computingL(X,Y) would work just as
well if we look at suffixes ofX,Y (i.e., by omitting prefixes). On further reflection, Joe concluded
that we could double the speed of our algorithm if we work fromboth endsof our strings! That
is, for 0 ≤ i < j, let Xi,j denote the substringxixi+1 · · ·xj−1xj . Similarly for Yk,ℓ where
0 ≤ k < ℓ. Derive an equation corresponding to (4) and describe the corresponding algorithm.
Perform an analysis of your new algorithm, to confirm and or reject the Quick Hypothesis. ♦

Exercise 1.8: Suppose we have a parallel computer with unlimited number ofprocessors.
(a) How many parallel steps would you need to solve theL(X,Y) problem using our recurrence
(4)?
(b) Give a solution to Joe Quick’s idea (previous exercise) of having an algorithm that runs twice
as fast on our parallel computer. Hint: work the last two symbols of each input stringX,Y in one
step. ♦

Chee-Keng Yap Basic Version April 26, 2011

§1. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 9

Exercise 1.9: What are the forbidden configurations in the matrixM? For instance, we have the fol-
lowing constraints:0 ≤ M [i, j] −M [i − 1, j] ≤ 1 and0 ≤ M [i, j] −M [i, j − 1] ≤ 1. Also,
M [i, j] = M [i− 1, j] = M [i, j− 1] = M [i− 1, j− 1] is impossible. Note that these constraints
are based only on adjacency matrix entries. Is it possible toexactly characterize the set of all
allowable configurations ofM based on such adjacency constraints? ♦

Exercise 1.10:
(a) Write the code in your favorite programming language to fill the above table forL(X,Y).
(b) Modify the code so that the program retrieves some memberof LCS(X,Y).
(c) Modify (b) so that the program also reports whether|LCS(X,Y)| > 1. Remember that we
do not count duplicates inLCS(X,Y). ♦

Exercise 1.11:Let X,Y be strings.
(a) Prove thatL(XX,Y) ≤ 2L(X,Y).
(b) Show that for everyn, there areX,Y with L(X,Y) = n and inequality in (b) is an equality.
(c) Prove thatL(XX,Y Y) ≤ 3L(X,Y).
(d) Similar to part (b) but for the inequality of (c). ♦

Exercise 1.12:Let λ(X,Y) denote size of the setLCS(X,Y) and λ(m,n) be the maximum of
λ(X,Y) when|X | = m, |Y | = n. Finally letλ(n) = λ(n, n).
(a) Computeλ(n) for n = 1, 2, 3, 4.
(b) Give upper and lower bounds forλ(n). ♦

Exercise 1.13:Let LCS′(X,Y) be themultisetof all the longest common subsequences ofX andY .
That is, for each longest common subsequenceZ ∈ LCS(X,Y), we sayZ has multiplicitykℓ
whereZ occursk (resp.,ℓ) times as a subsequence ofX (resp.,Y). Let λ′(n,m) andλ′(n) be
defined as in the previous exercise. Re-do the previous exercise forλ′(n). ♦

Exercise 1.14:Modify the algorithm forL(X,Y) to compute the following functions:
(a)λ′(X,Y)
(b) λ(X,Y) ♦

Exercise 1.15: Instead of the bottom-up filling of tables, let us do a recursive top-down approach. That
is, we begin by trying to fill in the entryL[m,n]. If xm = yn, we recursively try to fill in the
entries forL[m − 1, n− 1]; otherwise, recursively solve forL[m − 1, n] andL[m,n− 1]. Can
you quantify the improvements in this approach? ♦

Exercise 1.16: (a) Solve the problem of computing the lengthL(X,Y, Z) of the longest common sub-
sequence of three stringsX,Y, Z.
(b) What can you say about the complexity of the further generalization to computing
L(X1, . . . , Xm) (for m ≥ 3). ♦

Exercise 1.17:A common subsequence ofX,Y is said to bemaximal if it is not the proper subse-
quence of another common subsequence ofX,Y . For example,let is a maximal subsequence of
longest andlength. LetLCS∗(X,Y) denotes the set of maximal common subsequences ofX
andY . Design an algorithm to computeLCS∗(X,Y). ♦

Chee-Keng Yap Basic Version April 26, 2011

§2. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 10

Exercise 1.18:Researchers are using LCS computation to fight computer viruses. A virus that is at-
tacking a machine has a predictable pattern of messages it sends to the machine. We view the
concatenation of all these messages that a potential virus sends as a single string. Call the first
1000 bytes than from any source (i.e., potential virus) thesignatureof that source. LetX be the
signature of an unknown source andY is the signature of a known virus. To test the source is the
Y -virus, we computeL(X,Y). Empirically, suppose it is shown that ifL(X,Y) > 500, then that
our source is likely to beY -virus.
(a) Design a practical and efficient algorithm for the decision problemL(X,Y, k) which outputs
“PROBABLY VIRUS” if L(X,Y) > k and “PROBABLY NOT VIRUS” otherwise. Give the
pseudo-code for an efficient practical algorithm. NOTE: Theobvious algorithm is to use the stan-
dard algorithm to computeL(X,Y) and then comparen to k. But we want you to do better than
this. HINT: There are two ideas we want you to exploit – most students only think of one idea.
(b) Quantify the complexity of your algorithm, and compare its performance to the obvious al-
gorithm (which first computesL(X,Y)). First do your analysis using the general complexity
parameters ofm = |X |, n = |Y | andk, and alsoℓ = L(X,Y). Also discuss this for the special
case ofm = n = 1000 andk = 500. ♦

Exercise 1.19:A Davenport-Schinzel sequence onn symbols(or, n-sequencefor short) is a string
X = x1, . . . , xℓ ∈ {a1, . . . , an}∗ such thatxi 6= xi+1. Theorder of X is the smallest integerk
such that there does not exist a subsequence of lengthk + 2 of the form

aiajaiaj · · · aiajai or aiajaiaj · · · ajaiaj
whereai andaj alternate andai 6= aj . Defineλk(n) to be the maximum length of an-sequence
of order at mostk.
(a) Show thatλ1(n) = n andλ2(n) = 2n − 1. NOTE: for an order2 string, a symbol mayn
times.
(b) SupposeX is ann-sequence of order3 in which an appears at mostλ3(n)/n times. After
erasing all occurrences ofan, we may have to erase occurrencesai (i = 1, . . . , n− 1) in case two
copies ofai becomes adjacent. We erase as few of theseai’s as necessary so that the resultX ′ is
a (n− 1)-sequence. Show that|X | − |X ′| ≤ λ3(n)/n+ 2.
(c) Show thatλ3(n) = O(n log n) by solving a recurrence forλ3(n) implied by (b).
(d) Give an algorithm to determine the order of ann-sequence. Bound the complexityT (n, k) of
your algorithm wheren is the length input sequence andk ≤ n the number of symbols. ♦

Exercise 1.20: (Hirshberg and Larmore, 1987.) A concept of “Set LCS” quite distinct from our defini-
tion goes as follows. We want to compute the “LCS” ofX = x1, . . . , xm andY = y1, . . . , yn
wherexi ∈ Σ (for some alphabetΣ as before) butyj ∈ 2Σ. We viewY as a set of strings overΣ,
Y = {y1 · · · yn} where eachyi is a permutation of the setyi ⊆ Σ. An elementy1 · · · yn ∈ Y is
called aflattening of Y . A SLCSof X andY is defined to be a common ofX and any flattening
of Y of maximum length. Give anO(mN) algorithm for SLCS whereN =

∑n
j=1 |yj |. N.B.

The motivation comes from computer-driven music where a “polyphonic score” is defined to be
a sequence of sets of notes (represented byY). Eachyj ⊆ Σ may be viewed as a chord.X is a
solo score that is to be played to accompany the polyphonic score. ♦

Exercise 1.21:Consider the generalization of LCS in which we want to compute the LCS for any input
set of strings.
(a) If the input set have bounded size, give a polynomial timesolution.
(b) (Maier, 1978) If the input set is unbounded, show that theproblem isNP -complete. ♦

END EXERCISES

Chee-Keng Yap Basic Version April 26, 2011

§2. EDIT DISTANCE Lecture VII Page 11

§2. Edit Distance

We consider another problem on strings called theedit distance problem. The terminology comes
from the general area of text editing in modern computing, but one could also give this a computational
biology interpretation. Intuitively, the edit distanceD(X,Y) betweenX andY is the minimum cost to
editX so that it turns intoY . To edit a string, we need a set of editing operations: a typical repertoire
would include at least the deletion and insertion of a singlecharacter into a string. We also need to
associate a positive cost with each operation. The ultimatein similarity betweenX andY is then
captured by the relationD(X,Y) = 0. Thus, to find aY in a database of strings that is the closest to
X , we want to findY to minimizeD(X,Y).

It is interesting to compareL(X,Y) in the LCS problem with the edit distanceD(X,Y): In the
LCS problem,X andY are more similar for larger values ofL(X,Y). But in edit distance,X andY
are more similar for smaller values ofD(X,Y). We explore some connection betweenD(X,Y) and
L(X,Y) below.

As usual, we fix the alphabetΣ. For any indexi ≥ 1 and lettera ∈ Σ, we define the following
editing operations

Ins(i, a), Del(i), Rep(i, a).

These operations, when applied to a stringX , will insert the lettera so that it is now in positioni,
deletetheith letter, andreplacetheith letter bya (respectively). Let

Ins(i, a,X), Del(i,X), Rep(i, a,X) (11)

denote the respective results.

For example, supposeX = AATCGA. ThenIns(3,G, X) = AAGTCGA, Del(5, X) = AATCAand
Rep(5,T, X) = AATCTA. In general, ifY = Ins(i, A,X), then|Y | = 1 + |X | and

Y [j] =







X [j] if j = 1, . . . , i− 1
a if j = i
X [j − 1] if j = i+ 1, . . . , |X |

The other operations can be similarly characterized.

Example:D(TAG,CAT) ≤ 2 since

TAG = Rep(3,G, Rep(1,T,CAT).

Moreover,D(TAG,CAT) ≥ 2 since a single edit operation cannot make the two strings equal.

It is clear that
0 ≤ D(X,Y) ≤ max {|X |, |Y |} .

For example, the maximum value is attained with

D(google,search) = 6.

The notations in (11) are unambiguous only wheni is in the “proper range”. For insertion, this
means1 ≤ i ≤ |X |+ 1, but for deletion and replacement, this means1 ≤ i ≤ |X |. But wheni is not
in the proper range, we may introduce conventions for interpreting (11). However, for our purposes,
we declare such operations to be undefined. In the following,we will implicitly assume thati is in the
proper range whenever we apply these operations.

Chee-Keng Yap Basic Version April 26, 2011

§2. EDIT DISTANCE Lecture VII Page 12

The operationsDel(i) andIns(i, a) are inverses of each other in the following sense:

Del(i, Ins(i, a,X)) = X, Ins(i, b,Del(i,X)), (12)

for someb.

LetD(X,Y) be the minimum number of editing operations that will transformX to Y . Clearly, Definition ofD(X,Y)

|(|X | − |Y |)| ≤ D(X,Y) ≤ max{|X |, |Y |}. (13)

Thetriangular inequality holds: for any stringsX,Y, Z, it is clear that

D(X,Z) ≤ D(X,Y) +D(Y, Z). (14)

In fact,D(X,Y) is a metric since it satisfies the usual axioms for a metric:

(i) D(X,Y) ≥ 0 with equality iffX = Y .

(ii) D(X,Y) = D(Y,X).

(iii) D(X,Y) satisfies the triangular inequality (14).

¶16. An Infinite Edit Distance Graph. It is interesting to view the setΣ∗ of all strings over a fixed
alphabetΣ as vertices of an infinite bigraphG(Σ) in whichX,Y ∈ Σ∗ are connected by an edge iff
there exists an operation of the form (11) that transformsX to Y . Paths inG(Σ) are callededit paths.
ThusD(X,Y) is the length of the shortest (link-distance) path fromX to Y in G(Σ).

In analogy to (4), we have the

D(X,Y) =







max{|X |, |Y |} if mn = 0
D(X ′, Y ′) if xm = yn
1 + min{D(X ′, Y), D(X,Y ′), D(X ′, Y ′)} if xm 6= yn

(15)

It is a simple exercise to prove the correctness of this formula. It follows thatD(X,Y) can also be
computed inO(mn) time by the technique of¶8, by filling in entries in am× n matrixM .

Suppose, we want to actually compute the sequence ofD(X,Y) edit operations that convertX to
Y . Again, we expect to annotate the matrixM with some additional information to help us do this. For
this purpose, let us decode equation (15) a little. There are four cases:
(a) In casexm = yn, the edit operation is a no-op.
(b) If D(X,Y) = 1 +D(X ′, Y), the edit operation isDel(m,X).
(c) If D(X,Y) = 1 +D(X,Y ′), the edit operation isIns(m+ 1, yn, X).
(d) If D(X,Y) = 1 +D(X ′, Y ′), the edit operation isRep(m, yn, X).
Hence it is enough to store two additional bits per matrix entry to reconstructonepossible sequence of
D(X,Y) edit operation.

¶17. What is the relation betweenL(X,Y) andD(X,Y)? Here are some inequalities:

LEMMA 1. LetX andY have lengthsm andn. Then

D(X,Y) ≤ m+ n− 2L(X,Y).

and
D(X,Y) ≥ max{m,n} − L(X,Y).

Chee-Keng Yap Basic Version April 26, 2011

§2. EDIT DISTANCE Lecture VII Page 13

Proof.Upper bound: ifZ ∈ LCS(X,Y) then we haveD(X,Z) ≤ m− L(X,Y) andD(Z, Y) ≤
n− L(X,Y), HenceD(X,Y) ≤ D(X,Z) +D(Z, Y) ≤ m+ n− 2L(X,Y).

Lower bound: assumem ≥ n, so it suffices to showL(X,Y) ≥ m − D(X,Y). Suppose we
transformX to Y in a sequence ofD(X,Y) edit steps. Clearly,D(X,Y) ≤ m. But inD(X,Y) steps,
there is a subsequenceZ of X of lengthm−D(X,Y) that is unaffected. HenceZ is also a subsequence
of Y , i.e.,L(X,Y) ≥ |Z| = m−D(X,Y). Q.E.D.

These bounds are essentially the best possible: assumem ≥ n. Then for eachn/2 ≤ ℓ ≤ n, there
are stringsX,Y such thatD(X,Y) = m + n− 2ℓ whereL(X,Y) = ℓ. E.g.,X = am−ℓbℓ andY =
bℓcn−ℓ. For the lower bound, for each0 ≤ ℓ ≤ m, there are stringsX,Y such thatD(X,Y) = m− ℓ.
E.g.,X = am−ℓbℓ andY = bℓ.

¶18. The Generalized Editing Problem. Let us generalize the editing distance problem. Suppose
X,Y are two strings. You are allowed to insert, delete and replace, just as before. What is new is the
cost function. Thealignment cost functionis given by

∆ : (Σ ∪ {∗})2 → R

where∗ is a symbol not in the alphabetΣ. The interpretation is that∆(x, y) is the cost to replacex by
y. If x = ∗, it means insertingy and ify = ∗ it means deletingx. The only requirement placed on∆ is
symmetry:

∆(x, y) = ∆(y, x). (16)

This requirement simplifies our discussions below and is natural in our applications. It is also natural to
impose

∆(∗, ∗) =∞. (17)

Thealignment distancebetween stringsX,Y under this cost function is denotedA∆(X,Y), or simply
A(X,Y), if ∆ is understood.

A further simplification is to postulate a numberδ∗ such that

∆(∗, x) = ∆(x, ∗) = δ∗ (18)

for all x ∈ Σ. The valueδ∗ is called thegap penalty. Indeed, in our examples, we like to postulate two
other constantsδ= andδ 6= so that these 3 constants completely determine our cost function:

∆(x, y) =







δ= If x = y,
δ 6= If x 6= y
δ∗ If x = ∗or y = ∗

(19)

How can we computeA(X,Y) under any cost function∆? The method is reminiscent of the LCS
problem. SupposeX = x1 . . . xm = X ′xm andY = y1 . . . yn = Y ′yn. Then we have the recursive
rule:

A(X,Y) =

{

2(m+ n) if mn = 0
min {A(X ′, Y ′) + δ(xm, yn), A(X

′, Y) + δ(∗, xm), A(X,Y ′) + δ(yn)} else.
(20)

To systematically carry out the computation, we set up a(m + 1) × (n + 1) matrixM . The first row
and first column corresponds the the base case, and can be filled in first using the base case of (20). The
remaining entries ofM is filled in a row by row fashion, using the general case of (20). The desired
valueA(X,Y) is found in the(m+ 1, n+ 1)-entry ofM .

Chee-Keng Yap Basic Version April 26, 2011

§2. EDIT DISTANCE Lecture VII Page 14

Example. Assume that∆ in (19) is given by

δ= = −1, δ 6= = 1, δ∗ = 2. (21)

LetX = GCAT andY = AATTC. Then

M =

ε A A T T C
ε 0 2 4 6 8 10
G 2 1 3 5 7 9
C 4 3 2 4 6 6
A 6 3 2 3 5 7
T 8 5 4 1 2 4

This proves thatA(X,Y) = 4.

¶19. Alignment Problem. It may not be obvious why we call the string editing costA∆(X,Y) the
“alignment distance”. Intuitively, the alignment distance can be modeled as the least cost path fromX to
Y using appropriate costs for edges of the infinite graphG(Σ) used in edit distance. There is, however,
a problem in the presence of negative costs. For instance, weshall see that a natural assumption is
∆(a,a) < 0 for anya ∈ Σ. ThenA(abb,acc) = −∞ since we can indefinitely replacea by itself.
This is becasueG(Σ) has a negative cycle. One way to get around this is that to compute an edit
sequence fromX to Y , we begin by “marking” each letter inX . As we apply the edit operations to
transformX toY , we can only replace a marked version of a lettera by its unmarked version, with cost
∆(a,a). But we next give a more natural interpretation of alignmentdistance.

The original alignment problem came from5 S. Needleman and C. Wunsch (1970), in the first appli-
cation of dynamic programming to computational biology. The cost function∆ is called the similarity
matrix. For DNA sequences, a possible similar matrix is

∆ A G C T
A −3 2 3 1
G 2 −3 2 1
C 3 2 −3 1
T 1 1 1 −3

. (22)

with the gap penaltyδ∗ separately given. Note the negative scores along the diagonal. The idea is that
X,Y are two somewhat similar DNA sequences, and we want to “alignthem” so as to minimize the
number of mismatches. Mismatches can be fixed by deletions, insertions or replacements, at a positive
cost. Matches have a negative cost if the diagonal of the similarity matrix is negative (as in our example).
To compute the alignment distance forX,Y , we first inserting zero or more∗’s intoX andY so that the
resulting stringsX∗, Y ∗ have the same length. We call the pair(X∗, Y ∗) analignment of X,Y . Now,
theith characterX∗[i] in X∗ is aligned with theith characterY ∗[i] in Y ∗. The cost of this alignment is
the sum of the cost of replacing theith character inX∗ by theith character inY ∗:

∆∗(X∗, Y ∗) :=
ℓ

∑

i=1

∆(X∗[i], Y ∗[i]).

We then define thealignment costfor X,Y to be6 the minimum of∆∗(X∗, Y ∗) over all alignments
(X∗, Y ∗). We call (X∗, Y ∗) an optimal alignment if ∆∗(X∗, Y ∗) achieves this minimum. Under

5 “A general method applicable to the search for similaritiesin the amino acid sequence of two proteins”, J.Molecular Biology,
48(3):443-53.

6 In other formulations of this problem, we want tomaximizethe amount of alignment. Basically, this means we have to
negate each entry of the similarity matrix. Now, the gap penalty and off-diagonal entries are negative, and the diagonalentries are
positive.

Chee-Keng Yap Basic Version April 26, 2011

§2. EDIT DISTANCE Lecture VII Page 15

assumption (17), we may assume thatX∗[i] 6= ∗ or Y ∗[i] 6= ∗ for all i. Thus, we must have|X∗| =
|Y ∗| ≤ |X |+ |Y |.

E.g., LetX = AATTC andY = GCAT, as in a previous example. IfX∗ = AATTC andY ∗ =
GCAT*, thenδ∗(X∗, Y ∗) = 1 + 1 + 1− 1 + 2 = 4. If the alignment cost ofX,Y is equal toA(X,Y)
as we have been trying to suggest, then this particular alignment(X∗, Y ∗) must be optimal. That is
because we have previously computedA(X,Y) = 4. This is the result to be shown next.

We prove that our new alignment formulation agrees with the original edit distance formulation:

LEMMA 2. A∆(X,Y) is equal to the minimum of∆∗(X∗, Y ∗), over all alignments(X∗, Y ∗) ofX,Y .

Proof.Assume that we have a sequenceσ of edit operations that transforms (a marked version of)
X to Y , as discussed above. Each operation inσ is an edit operation of the type

Del(i,X), Ins(i+ 1, yj, X) Rep(i, yj, X).

SinceX is understood, we may simply writeDel(i), Ins(i + 1, yj) or Rep(i, yj). It is convenient to
also letδ≤(i, j) be the Kronecker Delta function whereδ≤(i, j) = 1 iff i ≤ j andδ≤(i, j) = 0 other
wise. We sayσ is normalized if all the insertions comes before the replacements and deletions, and all
the deletions comes after replacements and insertions. We can convert any sequenceσ into a normalized
sequence by repeatedly application of the following transformations:

Del(i), Ins(j, b) → Ins(j + δ≤(i, j), b), Del(i+ δ>(i, j)) (23)

Del(i), Rep(j, b) → Rep(j + δ≤(i, j), b), Del(i− δ>(i, j)) (24)

Rep(i, a), Ins(j, b) → Ins(j, b), Rep(i+ δ>(i, j), a). (25)

Using (23), if a deletion is followed by an insertion inσ, we can replace these two operations by an
insertion followed by a deletion. Similarly for the other two transformation rule. When no more trans-
formations are possible,σ is normalized. The justification of (23)-(25) is an Exercise. We can also verify
that the cost of each pair of operations (as given by∆(x, y)) is unchanged after our transformation.

Supposeσ is a normalized sequence of operations. We can splitσ into σI ;σR;σD correspond to
the insertions, followed by replacements, followed by deletions. SupposeσI transformsX to XI , and
σR transformsXI to XR. Clearly,σD transformsXR to Y . We now define an alignment(X∗, Y ∗) of
X,Y as follows: We apply the insertions ofσI to transformX intoX∗ as follows: instead of inserting
a character, we simply insert∗. We apply the deletions ofσD to transformXR toY ∗ as follows: instead
of deleting a character, we simply replace it with∗. Now it is clear that the cost of the operationsσ
is equal to∆∗(X∗, Y ∗). Conversely, given any alignment(X∗, Y ∗), we can construct a normalized
sequence of editing operations of the formσI ;σR;σD to transformX to Y with cost∆∗(X∗, Y ∗).

Q.E.D.

¶20. Example. Let us give a non-biological example, motivated by string editing. Let Σ =
{a,b,c ,..., ,x,y,z} be the letters of the English alphabet. Define

∆(x, y) =















δ∗ if x = ∗ or y = ∗,
δ= if x = y,
δ1 if x, y are both consonants or both vowels,
δ2 else.

(26)

This cost function generalizes the editing distance cost inwhich we take into account the nature of
letters that cause mismatch. For instance, with the choice

δ∗ = 3, δ= = 0, δ1 = 1, δ2 = 2, (27)

Chee-Keng Yap Basic Version April 26, 2011

§2. EDIT DISTANCE Lecture VII Page 16

thenA(there,their) = 4 since we can replace the last two letters in the first word by their corre-
sponding letter in the second word. This has cost4 since using∆(r,i) = ∆(e,r) = 2. There is no
cheaper way to effect this transformation.

The introduction of∆ is a significant generalization of the edit distance problemin two ways: first,
the cost of each operation depends on the particular lettersbeing operated upon. Second, we allow
negative costs. Here are some reasons why such generalizations make sense:

1. In genomics, one might have a reason to think that the replacement of certain symbols by others
are more likely and hence have a lower cost. Generally, deletions or insertions are costly.

2. In string editing over the alphabet{a,b,c,...,x,y,z}, we may think of∆(v,b) to be less than
∆(a,b) because in many keyboard layouts, it is easy confuse the keysfor v andb, but less
likely to confusea andb.

3. In the standard text-editing view, it is natural to define∆(a, a) = 0 for a ∈ Σ. But negative costs
for∆(a, a) allows us to associate value to positive matches, as opposedto absence of mismatches.
But imagine that the FBI has a DNA bank containing the DNA sequences collected at all crime
scenes. To correlate these crimes, the FBI wants to compute all pairs of DNA’s in the bank whose
alignment costs are minimum. We would like to ensure, for instance, that

A(cg,cgg) > A(cgataa,cggataa), (28)

A(cg,cc) > A(cgataa,ccataa). (29)

In (28), the pair(cg,cgg) and the pair(cgataa,cggataa) each requires only one deletion
to achieve optimal alignment. But the second pair has many more matches, and we would
like this to yield a lower alignment cost. Similarly, in (29), the pair(cg,cc) and the pair
(cgataa,ccataa) each requires only a single letter replacement to achieve optimal alignment.
Again, the second pair has many more matches. We can achieve the inequalities (28) if we define
negative costs,α(x, x) < 0 for all x ∈ Σ.

¶21. Generalizations. There are many possible generalizations of the above stringproblems.

• We can introduce costs associated to each type of editing operations. The implicit cost model
above is the unit cost for every operation.

• The fundamental primitive in these problems is the comparison of two letters: is letterX [i] equal
to letterY [j] (a “match”) or not (a “non-match”)? We can generalize this byallowing “approxi-
mate” matching (allowing some amount of non-match) or allowgeneralized “patterns” (e.g., wild
card letters or regular expressions).

• We can also generalize the notion of strings. Thus “multidimensional strings” is just an arrays of
letters, where the array has some fixed dimension. Thus, strings are just 1-dimensional arrays. It
is natural to view 2-dimensional arrays as raster images.

• Another generalization of strings is based on trees. Astring tree is a rooted treeT in which
each nodev is labeled with a letterλ(v) (from some fixed alphabet). The tree may be ordered or
unordered. In a natural way,T represents a collection (order or unordered) of strings. Let P and
T be two string trees. We say thatP is a (string) subtree of T if there is 1-1 mapµ from the
nodes ofP to the nodes ofT such that

– µ is label-preserving:v ∈ P andµ(v) ∈ T has the same label.

Chee-Keng Yap Basic Version April 26, 2011

§2. EDIT DISTANCE Lecture VII Page 17

– µ is “parent preserving”: ifu is the parent ofv in P thenµ(u) is the parent ofµ(v) in T .
For ordered trees, we further insist thatµ be order preserving.

In particular, ifv0 is the root ofP thenµ(P) is a subtree (in the usual sense of rooted trees) of
T rooted aµ(v0). We say there is a “match” atµ(v0). Hence a basic problem is, givenP andT ,
find a match ofP in T , if any. Consider the edit distance problem for string trees. The following
edit operations may be considered: (1) Relabeling a node. (2) Inserting a new childv to a nodeu,
and making some subset of the children ofu to be children ofv. In the case of ordered trees, this
subset must form a consecutive subsequence of the ordered children ofu. (3) Deleting a childv
of a nodeu. This is the inverse of the insertion operation. We next assign some costγ to each of
these operations, and define the edit distanceD(T, T ′) between two string treesT andT ′ to be
the minimum cost of a sequence of operations that transformsT to T ′. A natural requirement is
hatD(T, T ′) is a metric: so,D(T, T ′) ≥ 0 with equality iff T = T ′, D(T, T ′) = D(T ′, T) and
the triangular inequality be satisfied.

• Let D = {Y1, . . . , Yn} be a fixed set of strings, called the dictionary. DefineA(X,D) =
min {A(X,Yi) : i = 1, . . . , n}. We would like to preprocessD so that for any givenX , we can
quickly compute the set of words in the dictionary that is closest toX according to the alignment
distance.

Remarks: Levenshtein (1966) introduce the editing metric for strings in the context of binary codes.
Needleman and Wunsch (1970), “A general method applicable to the search for similarities in the amino
acid sequence of two proteins” (J.Mol.Biol., 48(3)443-53), is considered to be the first application of
dynamic programming to biological sequence comparisons. Smith and Waterman (1981) proposed
a variation of the Needleman-Wunsch algorithm to find alllocal alignments between two sequences.
In contrast, the Needleman-Wunsch algorithm addresses theglobal alignment problem. Sankoff and
Kruskal (1983) considered the LCS problem in computationalbiology applications. Applications of
string tree matching problems arise in term-rewriting systems, logic programming and evolutionary bi-
ology. The volume by Apostolico and Galil [1] contains a state-of-the-art overview for pattern matching
algorithms, circa 1997.

EXERCISES

Exercise 2.1: Compute the edit distancesD(X,Y) whereX,Y are given:
(a)X = 00110011 andY = 10100101.
(b)X = AGACGTTCGTTAGCA andY = CGACTGCTGTATGGA. ♦

Exercise 2.2: Compute the alignment distance betweenX = google andY = yahoo using the
alignment cost (26) and (27). For this purpose, assumey is a consonant. Also, express∆(X,Y)
as a direct alignment cost.

♦

Exercise 2.3: Suppose we compute optimal alignmentA(X,Y) by filling a matrix M [0..m, 0..n]
where|X | = m, |Y | = n. Let M [i, j] be the optimal cost to alignXi with Yj whereXi is
the prefix ofX of lengthi and similarly forYj . Assume the alignment cost function of the previ-
ous google-yahoo question. SupposeM [i, j] = k. What are the possible values forM [i−1, j−1]
as a function ofk? What aboutM [i− 1, j + 1] as a function ofk? Justify your answer. ♦

Exercise 2.4: ComputeA(X,Y) whereX,Y are the stringsAATTCCCGA andGCATATT. Assume∆
has gap penalty2, ∆(x, x) = −2 and∆(x, y) = 1 if x 6= y. You must organize this computation
systematically as in the LCS problem. ♦

Chee-Keng Yap Basic Version April 26, 2011

§2. EDIT DISTANCE Lecture VII Page 18

Exercise 2.5: Prove (15). This is an instructive exercise. ♦

Exercise 2.6: Let x, y, z be distinct letters, and0 ≤ m ≤ n.
(a) Prove thatD(X,Y) = m+ n− 2ℓ wherem ≥ ℓ ≥ m/2, X = xm−ℓzℓ andY = zℓyn−ℓ.
(b) LetX = xm−ℓzℓ andY = yn−ℓzℓ (0 ≤ ℓ ≤ n) Prove thatD(X,Y) = n− ℓ. ♦

Exercise 2.7: LetX,Y be strings. Clearly,L(XX,Y Y) ≥ 2L(X,Y).
(a) Give an example where the inequality is strict.
(b) Prove thatL(XX,Y) ≤ 2L(X,Y) and this is the best possible.
(c) Prove thatL(XX,Y Y) ≤ 3L(X,Y).
(d) We know from (a) and (c) thatL(XX,Y Y) = cL(X,Y) where2 ≤ c ≤ 3. Give sharper
bounds forc. ♦

Exercise 2.8: You work for Typing-R-Us, a company that produces smart wordprocessing editors.
When the user mistypes a word, you want to lookup the dictionary for the set of closest matching
words.
(a) Design an alignment cost function∆ which takes into account the keyboard layout. Assuming
the QWERTY layout, you would like to define∆(x, y) to be small whenx, y are close to each
other in this layout. Also, row distance is much smaller thancolumn distance. AssumeΣ =
{a,b,c ,..., x,y,z}.
(b) Using your∆ function, computeA(qwerty, quiet) andA(qwerty, quickly). ♦

Exercise 2.9: Recall the transformations (23)-(25) used to normalize a sequence of edit operations. (i)
Verify that these transformations are valid.
(ii) Verify that the costs are preserved by the transformations. ♦

Exercise 2.10:Let D = {Y1, . . . , Yn} be a fixed set of strings, called the dictionary. LetA(X,D) =
min {A(X,Yi) : i = 1, . . . , n} be the minimum alignment distance between a stringX and any
stringY in D. How can you preprocessD so thatA(X,D) can be computed in faster than the
obvious method? ♦

Exercise 2.11:Let Σ∗∗ denote strings of strings. A natural language text can be thought of as an
element ofΣ∗∗. If v, w ∈ Σ∗, let ∆(v, w) = L(v,w)

|v|+|w| . For X,Y ∈ Σ∗∗, let A(X,Y) be the
alignment distance using the above∆ function. Also, the gap penaltyδ∗ is some arbitrary positive
value. ♦

Exercise 2.12:Suppose we allow the operation oftranspose, . . . ab . . . → . . . ba Let T (X,Y) be
the minimum number of operations to convertX to Y , where the operations are the usual string
edit operations plus transpose.
(i) ComputeT (X,Y) for the following inputs:(X,Y) = (ab, c), (X,Y) = (abc, c), (X,Y) =
(ab, ca) and(X,Y) = (abc, ca).
(ii) Show thatT (X,Y) ≥ 1 + min{T (X ′, Y), T (X,Y ′), T (X ′, Y ′)}.
(iii) In what sense can you say thatT (X,Y) cannot be reduced to some simple function of
T (X ′, Y), T (X,Y ′) andT (X ′, Y ′)?
(iv) Derive a recursive formula forT (X,Y). ♦

Exercise 2.13: In computational biology applications, there is interest in another kind of edit operation:
namely, you are allowed to reverse a substring: ifX,Y, Z are strings, then we can transform the

Chee-Keng Yap Basic Version April 26, 2011

§3. POLYGON TRIANGULATION Lecture VII Page 19

XYZ to XY RZ in one step whereY R is the reverse ofR. Assume that substring reversal is
added to our insert, delete and replace operations. Give an efficient solution to this version of the
edit distance problem. ♦

END EXERCISES

§3. Polygon Triangulation

We now address a different family of problems amenable to thedynamic programming approach.
These problems have an abstract structure that is best explained using the notion of convex polygons.

The standard notion of a polygonP is a geometric one, and may be represented by a sequence
(v1, . . . , vn) of verticeswherevi ∈ R

2 is a point in the Euclidean plane. We sayP is convexif no vi
in contained in the interior of the triangle∆(vj , vk, vℓ) formed by any other triple of points. Figure1
shows a convex polygon withn = 7 vertices. Anedgeof P is a line segment[vi, vi+1] between two
consecutive vertices (the subscript arithmetic, “i + 1”, is modulon). Thus[v1, vn] is also an edge. A
chord is an line segment[vi, vj] that is not an edge.

7

6

5
4

3

2

1

Figure 1: A triangulated 7-gon

¶22. Abstract Polygons. We now give an abstract, purely combinatorial version of these terms. Let
P = (v1, . . . , vn), n ≥ 1, be a sequence ofn distinct symbols, called acombinatorial convex polygon,
or an(abstract)n-gon for short. We call eachvi a vertex of P . Since the vertices are merely symbols
(only the underlying linear ordering matters), it is often convenient to identifyvi with the integeri. In
this case, we call(v1, . . . , vn) = (1, . . . , n) the standard n-gon. Henceforth, we assumen ≥ 3 to
avoid trivial considerations.

AssumeP is a standardn-gon. By asegmentof P we mean an ordered pair of vertices,(i, j)
where1 ≤ i < j ≤ n. This is sometimes written “ij”. We classify a segmentij as anedgeof P if
j = i + 1(modn); otherwise the segment is called achord. Thus,1n is an edge. Ifn ≥ 3, there are
exactlyn edges and

(

n−1
2

)

= (n−1)(n−2)/2 chords (why?). We say two segmentsij andkℓ intersect
if

i < k < j < ℓ or k < i < ℓ < j;

otherwise they aredisjoint . Note that an edge is disjoint from any other segment ofP .

¶23. Triangulations. It is not hard to show by induction that amaximalsetT of pairwise disjoint
chords ofP has size exactlyn−3. If n ≥ 3, a setT with exactlyn−3 pairwise disjoint chords is called
a triangulation of P . In the following, it is convenient to consider the degenerate case of a2-gon; the
empty set is, by definition, the unique triangulation of a2-gon. E.g., figure1 shows a triangulation

T = {14, 24, 47, 57}

Chee-Keng Yap Basic Version April 26, 2011

§3. POLYGON TRIANGULATION Lecture VII Page 20

of the standard7-gon. A triangle of P is a triple(i, j, k) (or simply,ijk) where1 ≤ i < j < k ≤ n;
its three edges areij, jk andik. E.g., the set of all triangles of the standard5-gon are

123, 124, 125, 134, 135, 145, 234, 235, 245, 345.

We sayijk belongs toa triangulationT if each edge of the triangle is either a chord inT or an edge of
P . Thus the triangles of theT in figure1 are

{124, 234, 147, 457, 567}.

Every triangulationT has exactlyn − 2 triangles belonging to it, and each edge ofP appears as the
edge of exactly one triangle and each chord inT appears as the edge of exactly two triangles [Check:
n − 2 triangles has a combined total of2(n − 3) + n edges.] In particular, there is a unique triangle
belonging toT which contains the edge1n. This triangle is(1, i, n) for somei = 2, . . . , n − 1. Then
the setT can be partitioned into three disjoint subsets

T = Ti ⊎ T ′
i ⊎ Si

where Si = T ∩ {(1, i), (i, n)}, and Ti, T
′
i are (respectively) triangulations of thei-gon Pi =

(1, 2, . . . , i) and the(n − i + 1)-gonP ′
i = (i, i + 1, . . . , n). E.g., the triangulationT in figure 1

has the partition
T = T4 ⊎ T ′

4 ⊎ S4

whereS4 = {14, 47}, T4 = {24} andT ′
4 = {57}. Note thatSi = {(1, i), (i, n)} iff 2 < i < n − 1,

S2 = {(2, n)} andSn−1 = {(1, n− 1)}. Also, our convention about the triangulation of2-gons is
assumed wheni = 2 or i = n− 1.

Thus triangulations can be viewed recursively. This is the key to our ability to decompose problems
based on triangulations.

¶24. Weight functions and optimum triangulations. A (triangular) weight function onn vertices
is a non-negative real functionW such thatW (i, j, k) is defined for each triangleijk of an abstractn-
gon. TheW -costof a triangulationT is the sum of the weightsW (i, j, k) of the trianglesijk belonging
to T . Theoptimal triangulation problem asks for a minimumW -cost triangulation ofP , given its
weight functionW .

¶25. Example: Suppose a carpenter has to saw a boardP that is shaped as a convexn-gon into
n− 2 triangles. He wants to minimize the amount of sawing to be done. You can interpret this to mean
minimizing the amount of sawdust produced. How should be cutup the board?

In caseP = (v1, . . . , vn) is a geometric convex polygon in the plane, a natural cost function is
W (i, j, k) is the perimeter‖vi − vj‖ + ‖vi − vk‖ + ‖vj − vk‖ of the triangle(vi, vj , vk), where
‖ · ‖ denotes the Euclidean length function. It is easy to check that T is optimal iff it minimizes the
sum

∑

(vi,vj)∈T ‖vi − vj‖ of the lengths of the chords inT . Thus, this provides the solution to our
carpenter’s the sawdust problem.

In specifyingW , we generally expected the “specification size” to beΘ(n3). However, in many
applications, the functionW is implicitly defined by fewer parameters, typicallyΘ(n) or Θ(n2). Here
are some examples.

1. Metric Sawdust Problem: this is a generalization of the “sawdust example”. Suppose each
vertexi of P is associated with a pointpi of some metric space. ThenW (i, j, k) = d(pi, pj) +
d(pj , pk) + d(pk, pi) whered(p, q) is the metric between two pointsp, q in the space.

Chee-Keng Yap Basic Version April 26, 2011

§3. POLYGON TRIANGULATION Lecture VII Page 21

2. Generalized Perimeter Problem: W is defined by a symmetric matrix(aij)ni,j=1 such that
W (i, j, k) = aij + ajk + aik. We can viewai,j as the “distance” from nodei to nodej and
W (i, j, k) is thus the perimeter of the triangleijk. This is another generalization of “metric
sawdust”. Here,W is specified byΘ(n2) parameters. More generally, we might have

W (i, j, k) = f(aij , ajk, aik)

wheref(·, ·, ·) is some function.

3. Weight functions induced by vertex weights: W is defined by a sequence(a1, . . . , an) of
objects where

W (i, j, k) = f(ai, aj , ak).

for some functionf(·, ·, ·). If ai is a number, we can viewai as the weight of theith vertex. Two
examples aref(x, y, z) = x + y + z (sum) andf(x, y, z) = xyz (product). The case of product
corresponds to the matrix chain product problem studied in§5.

4. Weight functions from differences of vertex weights:W is defined by an increasing sequence
a1 ≤ a2 ≤ · · · ≤ an andW (i, j, k) = ak − ai. Note that the indexj is not used inW (i, j, k). In
§5, we will see an example (optimum search trees) of such a weight function.

¶26. A dynamic programming solution. The cost of the optimal triangulation can be determined
using the following recursive formula: letC(i, j) be the optimal cost of triangulating the subpolygon
(i, i+ 1, . . . , j) for 1 ≤ i < j ≤ n. Then

C(i, j) =







0 if j = i+ 1,

mini<k<j{W (i, k, j) + C(i, k) + C(k, j)} else.
(30)

The desired optimal triangulation has costC(1, n). Assuming that the valueW (i, j, k) can be obtained
in constant time, and the size of the input isn, it is not hard to implement this outline to give a cubic
time algorithm. We say more about this in the next section.

EXERCISES

Exercise 3.1: Find an optimal triangulation of the abstract pentagon whose weight functionW is
parametrized by(a1, . . . , a6) = (4, 1, 3, 2, 2, 3):
(a) The weight function is given byW (i, j, k) = aiajak.
(b) The weight function is given byW (i, j, k) = |ai − aj |+ |ai − ak|+ |aj − ak|. ♦

Exercise 3.2: SupposeP is a geometric simple polygon, not necessarily convex. We now define chords
of P to comprise those segments that do not intersect the exterior of P . A triangulation is as usual
a set ofn− 3 chords. LetW be a weight function on the vertices ofP . Give an efficient method
for computing the minimum weight triangulation ofP . The goal here is to give a solution that is
O(k) wherek is the number of chords ofP . ♦

Exercise 3.3: A more profound generalization of triangulation comes fromconsidering the triangula-
tion (tetrahedralization) of convex polytope in3-dimensions. Now, the number of tetrahedra is
not unique. Give an abstract formulation of this problem. HINT: certain subsets of the vertices
are said to be “convex”. ♦

Chee-Keng Yap Basic Version April 26, 2011

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 22

Exercise 3.4: (T. Shermer) LetP be a simple (geometric) polygon (so it need not be convex). Define
the “bushiness”b(P) of P to be the minimum number of degree3 vertices in the dual graph of
a triangulation ofP . A triangulation is “thin” if it achieves b(P). Give anO(n3) algorithm for
computing a thin triangulation. ♦

Exercise 3.5: Suppose that we want tomaximize the “triangulation cost” (we should really interpret
“cost” as “reward”) for a given weight functionW (i, j, k). Does the same dynamic programming
method solve this problem? ♦

Exercise 3.6: (Multidimensional Dynamic Programming?)
(a) Give a dynamic programming algorithm to optimally partition ann-gon into a collection of
3- or 4-gons. Assume we are given a non-negative real function W (i, j, k, l), defined for all
1 ≤ i ≤ j ≤ k ≤ l ≤ n such that|{i, j, k, l}| ≥ 3. The valueW (i, j, k, l) should depend
only on the set{i, j, k, l}: if {i, j, k, l} = {i′, j′, k′, l′}, thenW (i, j, k, l) = W (i′, j′, k′, l′). For
example,W (2, 2, 4, 7) = W (2, 4, 4, 7). The weight of a partitioning is equal to the sum of the
weights over all 3- or 4-gons in the partition. Analyze the running time of your algorithm. NOTE:
this problem has a 2-dimensional structure on its subproblems, but it can be generalized to any
dimensions.
(b) Solve a variant of part (a), namely, the partition shouldexclusively be composed of 4-gons
whenn− 4 is even, and has exactly one 3-gon whenn− 4 is odd. ♦

END EXERCISES

§4. The Dynamic Programming Method

Let us note the three ingredients necessary for a successfuldynamic programming solution. We use
the triangulation problem for illustration.

• There are a small number of subproblems. We interpret “small” to mean a polynomial number.
In the weight functionW on then-gon(1, . . . , n), each contiguous subsequence

(i, i+ 1, i+ 2, . . . , j − 1, j), (1 ≤ i < j ≤ n)

induces a weight functionWi,j on the(j− i+1)-gon(i, i+1, . . . , j−1, j). This gives rise to the
subproblemPi,j of optimal triangulation of(i, i + 1, . . . , j). The original problem is justP1,n.
There areΘ(n2) subproblems. The “wrong” formulation can violate this smallness requirement
(see Exercise).

• An optimal solution of a problem induces optimal solutions on certain subproblems. If T
is an optimal triangulation on(a1, . . . , an), then we have noted thatT = T1 ⊎ T2 ⊎ Si where
Si ⊆ {1i, in} andT1, T2 are triangulations of subpolygons ofP . In fact, T1, T2 are optimal
solutions to subproblemsP1,i andPi,n for some1 < i < n. This property is called thedynamic
programming principle , namely, an optimal solution to a problem induces optimal solutions on
certain subproblems.

• The optimal solution of a problem is easily constructed fromthe optimal solutions of sub-
problems. If we have already found the cost of optimal triangulations for all smaller subproblems
of Pi,j then we can easily solvePi,j using equation (30).

The reader may verify that the same ingredients were presentin the LCS and edit distance problems.

Chee-Keng Yap Basic Version April 26, 2011

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 23

¶27. Mechanics of the algorithm. To organize the computation embodied in equation (30), we use
an upper triangularn× n matrixA to store the values ofC(i, j),

A[i, j] = C(i, j), (i < j)

See Figure2.

0

0

0

0

1

2

4

1 2 3 4 5

3

5

S2 S3 S4S1

C(1, 2)

C(2, 3)

C(3, 4)

C(1, 4)

Figure 2: Filling in of a upper triangular matrix

We view the algorithm as a systematic filling in of the matrixA. Note that filling in the entriesA[i, j]
can be viewed as solving a subproblem of size(j − i+ 1). We proceed inn− 1 stages, where stageSt

(t = 2, . . . , n) corresponds to solving all subproblems of sizet. There are exactlyn− t+ 1 problems
of sizet. Note that to solve a problem of sizet (t ≥ 2) we need to minimize over a set oft− 2 numbers
(see equation (30)), and this takes timeO(t). Thus staget takesO((t − 2)(n− t+ 1)) = O(n2) time.
Summed over all stages, the time isO(n3). The space requirement isΘ(n2), because of the matrixA.

The algorithm is easy to implement in any conventional programming language: it has a triply-
nested “for-loop”, with the outermost loop-counter controlling the stage number,t. The following gives
a bottom-up implementation of equation (30):

DYNAMIC PROGRAMMING FOROPTIMAL TRIANGULATION

for t← 1 to n− 1 ⊳ do problems of size2
A[t, t+ 1]← 0.

for t← 2 to n− 1 ⊳ t+ 1 is problem size
for i← 1 to n− t ⊳ computeC[i, i+ t]

A[i, i+ t]← A[i, i+ 1] +A[i+ 1, i+ t] +W (i, i+ 1, i+ t)
for k ← i+ 2 to i+ t− 1

A[i, i+ t]← min{A[i, i+ t], A[i, k] +A[k, i+ t] +W (i, k, i+ t)}

The algorithm lends itself to hand simulation, a process that the student should become familiar with.

In general, we would be filling entries of a rankk tensor (matrices are rankk = 2 tensors). It is
harder to visualize this process, but in terms a computer algorithm this presents no extra difficulty: we
would just have a(k + 1)-ply nested for-loop.

¶28. Splitters and the construction of Optimal Solutions. Suppose we want to find the actual
optimal triangulation, not just its cost. Let us call any index k that minimizes the second expression

Chee-Keng Yap Basic Version April 26, 2011

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 24

on the right-hand side of equation (30) an (i, j)-splitter . If we can keep track of all the splitters, we
can clearly construct the optimal triangulation. For this purpose, we employ an upper triangularn× n
matrix K whereK[i, j] stores an(i, j)-splitter. It is easy to see that the entryK[i, j] can be filled in
at the same time thatA[i, j] is filled in. Hence, finding optimal solutions is asymptotically the same as
finding the cost of optimal solutions.

¶29. Top-down versus bottom-up dynamic programming. The above triply nested loop algorithm
is a bottom-up design. However, it is not hard to construct a top-down design recursive algorithm:
simply implement (30) by a recursion. However, it is important to maintain the matricesA (andK if
desired) as global shared space. This technique has been called “memo-izing”. Without memo-izing, the
top-down solution can take exponential time, simply because there are exponentially many subproblems
(see next section). A simple memoization does not speed up the algorithm. But we can, by computing
bounds, avoid certain branches of the recursion. This can have potential speedup – see Exercise.

¶30. Space-Efficient Solutions. We can usually reduce the space usage by a linear factor (quadratic
to linear, cubic to quadratic, etc). For instance, in the LCSproblem, it is sufficient to keep at most
two rows (or two columns) of the matrix in memory. That is because the solution for rowi depends
only on the solutions of rows(i − 1) and rowi. Indeed, space for only one row (or column) is already
sufficient – as new entries are produced for rowi, they overwrite the corresponding entries or rowi− 1.
However, such space efficient solutions are not so easy to extend into solutions that reconstruct the
optimal solutions. For instance, how do we compute a LCS using O(n) space? To do this, we need a
kind of divide and conquer technique: which we explore in theexercises.

REMARK: The abstract triangulation problem has a “linear structure” on the subproblems. This
linear structure can sometimes be artificially imposed on a problem in order to exploit the dynamic
programming framework (see Exercise on hypercube vertex selection).

EXERCISES

Exercise 4.1: Jane Sharp noted an alternative to equation (30).
(a) Jane observed that every triangulationT must contain a triangle of the form(i, i + 1, i + 2).
Such a triangle is called an “ear”. Prove this claim of Jane. (You may also prove the stronger
claim that there are at least two ears.)
(b) Suppose we remove an ear from ann-gon. The result is an(n − 1)-gon. If we knew an
ear which appears in an optimum triangulation of ann-gon, we could recursively triangular the
smaller(n− 1)-gon. But since we do not know, we can try all possible(n− 1)-gons obtained by
removing an ear. What is wrong with this approach? (Try to write the analogue of equation (30),
and think of the 3 ingredients needed for a dynamic programming approach.) ♦

Exercise 4.2: Consider the linear bin packing problem where theith item is not a single weight, but a
pair of non-negative weights,(vi, wi). If we put theith to jth items into a bin, then we require
∑j

k=i vk and
∑j

k=i wk to be each bounded byM . Again the goal to use the minimum number of
bins. ♦

Exercise 4.3: Let (n0, n1, . . . , n5) = (2, 1, 4, 1, 2, 3). We want to multiply a sequence of matrices,
A1 × A2 × · · · × A5 whereAi is ni−1 × ni for eachi. Please fill in matrices (a) and (b) in
Figure3. Then write the optimal order of multiplyingA1, . . . , A5.

♦

Chee-Keng Yap Basic Version April 26, 2011

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 25

1

2

4

3

5

0

0

0

0

0

1 2 3 4 5

1

2

4

3

5

0

0

0

0

0

1 2 3 4 5

0

0

0

0

(b) Splitter MatrixK
(a) Optimum Cost MatrixC

Figure 3: (a)C[i, j] is optimal cost to multiplyingAi× · · · ×Aj . (b)K[i, j] indicates the optimal split,
(Ai × · · · ×AK[i,j])(AK[i,j]+1 × · · · ×Aj)

Exercise 4.4: (Google Interview Problem, Feb 2009) You are playing a game with an opponent. Both
of you are looking at a list of numbersL. The players moves alternately. To make a move, the
player must remove either the head or tail element fromL. The score of a player is the sum of all
the numbers that the player removes. Your goal is to maximizeyour score. Construct a dynamic
programming algorithm that maximizes your score against any opponent (the opponent might not
be as interested in maximizing her own score as in minimizingyours). ♦

Exercise 4.5: The following problem is motivated by computations in wavelet theory. We are given
three real non-negative coefficientsa, b, c and a real function (the “barrier”)

h(x) =

{

1 if |x| < 1
0 else.

Define the functionf(x, i) (wherei ≥ 0 is integer) as follows:

f(x, i) =

{

h(x) if i = 0
a · f(2x− 1, i− 1) + b · f(2x, i− 1) + c · f(2x+ 1, i− 1) else.

Let f(x) = limi→∞ f(x, i). We callf(x, i) the i-th approximation tof(x). Assume that each
arithmetic operation takes unit time.
(a) What isf(0), f(1/2) andf(−1/2)?
(b) The functionf(x, i) has support contained in the open interval(−1, 1) (for fixed i).
(c) Prove thatf(x) is well-defined (possibly infinite) for allx.
(d) Determine the time to compute a single valuef(x, n) if we implement a straightforward
recursion (each call tof(y, i) is independent).
(e) We want an efficient solution for the following problem: givenn,m, we want to compute the
valuesf(i/m, n) for all

i ∈ Dm := {−m+ 1,−m+ 2, . . . ,−1, 0, 1, . . . ,m− 2,m− 1}.

Show that this can be computed inO(mn) time andO(m) space.
(f) Strengthen (e) to show we can compute a single valuef(i/m, n) in O(n) time andO(1) space.

♦

Exercise 4.6: (Recursive Dynamic Programming) The “bottom-up” solutionof the optimal triangula-
tion problem is represented by a triply-nested for-loop in the text. Now we want to consider a

Chee-Keng Yap Basic Version April 26, 2011

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 26

“top-down” solution, by using recursion. As usual, the weight W (i, j, k) is easily computed for
any1 ≤ i < j < k ≤ n.
(a) Give a naive recursive algorithm for optimal triangulation. Briefly explain how this algorithm
is exponential.
(b) Describe an efficient recursive algorithm. You will needto use some global data structure for
sharing information across subproblems.
(c) Briefly analyze the complexity of your solution.
(d) Does your algorithm ever run faster than the bottom-up implementation? Can you make it run
faster on some inputs? HINT: for subproblemP (i, j), we can try to compute upper and lower
bounds onC(i, j). Use this to “prune” the search. ♦

Exercise 4.7: Give a linear spaceO(n) solution to problem of optimal triangulation. Write the recur-
rence for the space and time complexity of your algorithm. Solve for the running time. ♦

Exercise 4.8: Consider the problem of evaluating the determinant of ann × n matrix. The obvious
co-factor expansion takesΘ(n ·n!) arithmetic operations. Gaussian elimination takesΘ(n3). But
for smalln and under certain circumstances, the co-factor method may be better. In this question,
we want you to improve the co-factor expansion method by using dynamic programming. What
is the number of arithmetic operations if you use dynamic programming? Please illustrate your
result forn = 3.

HINT: We suggest you just count the number of multiplications. Then argue separately that the
number of additions is of the same order. ♦

Exercise 4.9: Generalize the previous exercise. Let the set of real constants {ai : i = −N,−N +
1, . . . ,−1, 0, 1, . . . , N} be fixed. Suppose that

f(x, i) =

{

h(x) if i = 0
∑N

i=−N ai · f(2x− 1, i− 1) else.

Re-do parts (a)–(c) in the last exercise. ♦

Exercise 4.10: (Hypercube vertex selection) Ahypercubeor n-cube is the setHn = {0, 1}n. Each
x = (x1, . . . , xn) ∈ Hn is called a vertex of the hypercube. Letπ = (π1, . . . , πn) andρ =
(ρ1, . . . , ρn) be two positive integer vectors. Theprice andreliability of a vertexx is given by
π(x) =

∑n
i=1 xiπi andρ(x) =

∏n
i=1;xi=1 ρi. Thehypercube vertex selection problemis this:

givenπ, ρ and a positive boundB0, find x ∈ Hn which maximizesρ(x) subject toπ(x) ≤ B0.
Solve this problem in timeO(nB0) (notO(n logB0)).
HINT: View Hn = Hk ⊗ Hn−k for anyk = 1, . . . , n − 1 andy ⊗ z denotes concatenation of
vectorsy ∈ Hk, z ∈ Hn−k. Solve subproblems onHk andHn−k with varying values ofB
(B = 1, 2, . . . , B0). The choice ofk is arbitrary, but what is the best choice ofk? ♦

Exercise 4.11:Let S ⊆ R
2 be a set ofn points. Partially order the pointsp = (p.x, p.y) ∈ R

2 as
follows: p ≤ q iff p.x ≤ q.x andp.y ≤ q.y. If p 6= q andp ≤ q, we writep < q. A point p is
S-minimal if p ∈ S and there does not existq ∈ S such thatq < p. Letmin(S) denote the set of
S-minimal points.
(a) For c ∈ R, let S(c) denote the set{p ∈ S : p.x ≥ c}. E.g., let S =
{p(1, 3), q(2, 1), r(3, 4), s(4, 2)} as shown in figure4. Thenmin(S(c)) is equal to{p, q} if
c ≤ 1; {q} if 1 < c ≤ 2; {r, s} if 2 < c ≤ 3; {s} if 3 < c. Design a data structureD(S) with
two properties:

Chee-Keng Yap Basic Version April 26, 2011

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 27

1 2 3 4

1

2

3

4

p

r

q

s

Figure 4: Set of 4 points.

1. For anyc ∈ R (“the query” is specified byc), you can useD(S) to output the setmin(S(c))
in time

O(log n+ k)

wherek is the size ofmin(S(c)).

2. The data structureD(S) usesO(n) space.

(b) For anyq ∈ R
2, letS(q) denote the set{p ∈ S : p.x ≥ q.x, p.y ≥ q.y}. Design a data struc-

tureD′(S) such that for anyq ∈ R
2, you can useD′′(S) to output the setmin(S(q)) in time

O(log n+ k) wherek is the size ofmin(S(q)), andD′′(S) usesO(n2) space. ♦

Exercise 4.12: (Knapsack) In this problem, you are given2n+ 1 positive integers,

W,wi, vi(i = 1, . . . , n).

Intuitively, W is the size of your knapsack and there aren items where theith item has sizewi

and valuevi. You want to choose a subset of the items of maximum value, subject to the total size
of the selected items being at mostW . Precisely, you are to compute a subsetI ⊆ {1, . . . , n}
which maximizes the sum

∑

i∈I

vi

subject to the constraint
∑

i∈I wi ≤W .
(a) Give a dynamic programming solution that runs in timeO(nW).
(b) Improve the running time toO(n,min{W, 2n}). ♦

Exercise 4.13: (Optimal line breaking) This book (and most technical papers today) is typeset using
Donald Knuth’s computer system known as TEX. This remarkable system produces very high
quality output because of its sophisticated algorithms. One such algorithm is the way in which it
breaks a paragraph into individual lines.

A paragraph can be regarded as a sequence of words. Suppose there aren words, and their
lengths area1, . . . , an. The problem is to break the paragraph into lines, no line having length
more thanm. Between 2 words in a line we introduce one space; there is no spaces after the last
word in a line. If a line has lengthk, then we assess apenalty of m− k on that line. The penalty
for a particular method of breaking up a paragraph is the sum of the penalty over all lines. The
last line of a paragraph, by definition, suffers no penalty.
(a) Consider the obvious greedy method to solve this problem(basically fill in each line until the
next word will cause an overflow). Give an example to show thatthis does not always give the

Chee-Keng Yap Basic Version April 26, 2011

§5. OPTIMAL PARENTHESIZATION Lecture VII Page 28

minimum penalty solution.
(b) Give a dynamic programming solution to finding the optimal (i.e., minimal penalty) solution.
(c) Illustrate your method with Lincoln’s Gettysburg address, assuming thatm = 80. In the case
of a terminal word (which is followed by a full-stop), we consider the full stop as part of the word.
(d) Suppose we assume that there are 2 spaces separating a full-stop and the following word (if
any) in the line. Modify your solution in (a) to handle this.
(e) Now introduce optional hyphenation into the words. For simplicity, assume that every word
has zero or one potential place for hyphenation (the algorithm is told where this hyphen can be
placed). If an input word of lengthℓ can be broken into two half-words of lengthsℓ1 andℓ2,
respectively, it is assumed thatℓ1 ≥ 2 andℓ2 ≥ 1. Furthermore, we must include an extra unit
(for the placement of the hyphen character) in the length of the line that contains the first half.
Can you modify the above algorithm further? ♦

END EXERCISES

§5. Optimal Parenthesization

We can view a triangulation of an(n+1)-gon to be a “parenthesized expression” onn symbols. Let
us clarify this connection.

Let (e1, e2, . . . , en), n ≥ 1, be a sequence ofn symbols. A(fully) parenthesized expression
on (e1, . . . , en) is one whose atoms areei (for i = 1, . . . , n), eachei occurring exactly once and in
this order left-to-right, and where each matched pair of parenthesis encloses exactly two non-empty
subexpressions. E.g., there are exactly two parenthesizedexpressions on(1, 2, 3):

((12)3), (1(23)).

The reader may verify that there are 5 parenthesized expressions on(1, 2, 3, 4).

A parenthesized expression on(e1, . . . , en) corresponds bijectively to aparenthesis tree on
(e1, . . . , en). Such a tree is a full7 binary treeT on n leaves, where theith leaf in symmetric order
is associated withei. If n = 1, then the tree has only one node. Otherwise, the left and right subtrees
are (respectively) parenthesized expressions on(e1, . . . , ei) and(ei+1, . . . , en) for somei = 1, . . . , n.

e1

e2
e3

e4

e1

e3e2

e4

v0

v1

v2

v3

v4

Figure 5: The parenthesis tree and triangulation corresponding to((e1(e2e3))e4).

There is a slightly more involved bijective correspondencebetween parenthesis trees on(e1, . . . , en)
and triangulations of an abstract(n + 1)-gon. See Figure5 for an illustration. If the(n + 1)-gon is

7 A node of a binary tree isfull if it has two children. A binary tree isfull if every internal node is full.

Chee-Keng Yap Basic Version April 26, 2011

§5. OPTIMAL PARENTHESIZATION Lecture VII Page 29

(v0, v1, . . . , vn), then the edges(vi−1, vi) is mapped toei (i = 1, . . . , n) under this correspondence, but
the “distinguished edge”(v0, vn) is not mapped. We leave the details for an exercise.

If we associate a costW (i, j, k) for forming a parenthesis of the form “(E1, E2)” whereE1 (resp.,
E2) is a parenthesized expression on(ei, . . . , ej) (resp.,(ej+1, . . . , ek), then we may speak of the
costof a parenthesized expression – it is the same as the cost of the corresponding triangulation ofP .
Finding such an optimal parenthesized expression on(e1, . . . , en) is clearly equivalent to finding an
optimal triangulation ofP .

¶31. Encoding parenthesis trees as permutations.We can encode this parenthesis tree on
(e1, . . . , en) by a unique permutation

π = (π1, . . . , πn−1) (31)

of {1, 2, . . . , n− 1}. Before explaining this in full generality, consider all the 5 possible parenthesis
trees one1, e2, e3, e4:

e1(e2(e3e4)), e1((e2e3)e4), (e1e2)(e3e4), ((e1e2)e3)e4, (e1(e2e3))e4.

These are represented, respectively, by the permutations

(123), (132), (213), (321), (312).

If n = 1, the permutation is the empty sequenceπ = (), and ifn = 2, the permutation is justπ = (1).
Forn = 3, there are two permutationsπ = (12) or π = (21).

Let us now explain how the permutation (31) encodes a parenthesis tree: ifn = 1, thenπ =
() is the empty string. the first entryπ1 tells us that the last multiplication is to form the product
A1,π1

·A1+π1,n where we writeAi,j for
∏j

k=i Ak. Recursively, the nextπ1 − 1 entries inπ represents
a parenthesis tree onA1, . . . , Aπ1

, and the remainingn− π1 − 1 entries inπ represents8 a parenthesis
tree onA1+π1

, . . . , An. Thus we have demonstrated:

LEMMA 3. There exists an injection from the set of parenthesis trees on n leaves to the set of permuta-
tions onn− 1 symbols.

It is clear that the firstπ1 entries in (31) must therefore be a permutation on{1, 2, . . . , π1}. There-
fore, not all permutations on{1, . . . , n− 1} correspond to a permutation tree. Forn = 4, we see that
π = (2, 3, 1) does not represent any parenthesis tree.

¶32. Catalan numbers. It is instructive to count the numberP (n) of parenthesis trees onn ≥ 1
leaves. In the literature,P (n) is also denotedC(n − 1), in which case it is called aCatalan number.
The indexn− 1 of the Catalan numbers is the number of pairs of parenthesis needed to parenthesizen
symbols. HereC(n) = 1, 1, 2, 5 for n = 0, 1, 2, 3. Note thatC(0) = 1, not0.

From the injection of Lemma3, we conclude thatP (n) = C(n − 1) ≤ (n − 1)!. Our current goal
is to give a more precise census of parenthesis trees. In general, forn ≥ 1, the following recurrence is
evident:

C(n) =

n
∑

i=1

C(i − 1)C(n− 1− i). (32)

8 Strictly speaking, the lastn − π1 − 1 entries represent a parenthesis tree onA1+π1
, . . . , An in this sense:if we subtract

π1 from each of these entries, we would obtain (recursively) a permutation representing a permutation tree onA1, . . . , An−π1
.

Chee-Keng Yap Basic Version April 26, 2011

§5. OPTIMAL PARENTHESIZATION Lecture VII Page 30

We can interpretC(n) as the number of binary trees with exactlyn nodes (Exercise). In terms ofP (n),
we get a similar recurrence:

P (n) =

n−1
∑

i=1

P (i)P (n− 1− i) (33)

where we defineP (0) = 0. ThusP (1) = P (2) = 1, P (3) = 2.

This recurrence has an elegant solution using generating functions (see§VIII.9),

C(m) =
1

m+ 1

(

2m

m

)

.

By Stirling’s approximation,
(

2m

m

)

= Θ

(

4m√
m

)

.

SoC(m) = Θ(4mm−3/2) grows exponentially and there is no hope to find the optimal parenthesis tree
by enumerating all parenthesis trees.

¶33. Matrix Chain Product. An instance of the parenthesis problem is thematrix chain product
problem: given a sequence

A1, . . . , An

of rectangular matrices whereAi is ai−1 × ai (i = 1, . . . , n), we want to compute the chain product

A1A2 · · ·An

in the cheapest way. The sequence(a0, a1, . . . , an) of numbers is called thedimension of this chain
product expression.

To be clear about what we mean by “cheapest way”, we must clarify the cost model. Using associa-
tivity of matrix products, each method of computing this product corresponds to a distinct parenthesis
tree on(A1, . . . , An). For instance,

((A1A2)A3), (A1(A2A3)) (34)

are the two ways of multiplying 3 matrices. LetT (p, q, r) be the cost to to multiply ap × q matrix
by a q × r matrix. For simplicity, assume the straightforward algorithm for matrix multiplication, so
T (p, q, r) = pqr. Then, if the dimension of the chain productA1A2A3 is (a0, a1, a2, a3), the first
method in (34) to multiply these three matrices costs

a0a1a2 + a0a2a3 = a0a2(a1 + a3)

while the second method in (34) costs

a0a1a3 + a1a2a3 = a1a3(a0 + a2).

Letting (a0, . . . , a3) = (1, d, 1, d), these two methods cost2d and2d2, respectively. Hence the second
method may be arbitrarily more expensive than the first.

Hence the key problem is this: given the dimension(a0, . . . , an) of a chain product instance, de-
termine the optimal costTopt(a0, . . . , an) to compute such a product. We can solve this problem by
reducing it to to the optimal parenthesis tree problem: define an triangular weight functionW (i, j, k)
for 0 ≤ i < j < k ≤ n to reflect our complexity model:

W (i, j, k) := aiajak.

Chee-Keng Yap Basic Version April 26, 2011

§5. OPTIMAL PARENTHESIZATION Lecture VII Page 31

This is what we called the “product weight function” in§2.

CLAIM: Topt(a0, . . . , an) is the minimumW -cost triangulation of the abstract(n+ 1)-gon on the
vertex set{0, 1, . . . , n}.

We have seen anO(n3) dynamic programming solution to compute this minimumW -cost trian-
gulation (or equivalently, the corresponding parenthesistree). The original problem of matrix chain
product can be solved in two stages: first find the optimal parenthesis tree, based on just the dimension
of the chain. Then use the parenthesis tree to order the actual matrix multiplications. The only creative
part of this solution is the determination of the optimal parenthesization.

Remark: 1. Chandra9 has shown a simple method of multiplying matrices that is within a factor of
2 from Topt. Consider the permutationπ = (1, 2, . . . , n − 1): according to encoding scheme of (31),
this corresponds to the following parenthesis tree onA1, . . . , An:

(· · · ((A1A2)A3) · · ·)An. (35)

This is essentially the left-to-right multiplication of the sequence of matrices. It can be shown that the
cost of this method of multiplication isO(T 2

opt), and this is tight (Exercise). But suppose we choosei0
such thatai0 = min {a0, a1, . . . , an}. Now consider the parenthesis tree represented by the permutation

π = (i0 − 1, i0 − 2, . . . , 1, i0 + 1, i0 + 2, . . . , n− 1, i0)

where the lasti0 is omitted ifi0 = 0 or i0 = n. This corresponds to the parenthesis structure

(A1 · · · (Ai0−2(Ai0−1Ai0)) · · ·)(· · · (Ai0+1Ai0+2) · · ·An). (36)

Then the cost of this computation is at most2Topt(a0, . . . , an).
2. For the product weight function,W (ai, aj , ak) = aiajak, the optimal triangulation problem can be
solved inO(n log n) time, using a sophisticated algorithm due to Hu and Shing [6]. Ramanan [9] gave
an exposition of this algorithm, and presented anΩ(n logn) lower bound in an algebraic decision tree.

EXERCISES

Exercise 5.1: Show thatC(n) is the number of binary trees onn nodes. HINT: Use the recurrence (32)
and structural induction on the definition of a binary tree. ♦

Exercise 5.2: Work out the bijective correspondence between triangulations and parenthesis trees
stated above. ♦

Exercise 5.3: Verify by induction thatC(m) has the claimed solution. ♦

Exercise 5.4: Solve the recurrence (32) for C(n) by using the following observation: consider gener-
ating function

G(x) =

∞
∑

i=0

C(i)xi = 1 + x+ 2x2 + 5x3 + · · · .

HINT: What can you say about the coefficient ofxn in the squared generating functionG(x)2?
Write this down as a recurrence equation involvingG(x) Solve this quadratic equation.

♦
9 “Computing Matrix Chain Products in Near-Optimal Time”, Ashok K. Chandra, IBM Research Report RC 5625 (#24393),

10/6/75.

Chee-Keng Yap Basic Version April 26, 2011

§6. OPTIMAL BINARY TREES Lecture VII Page 32

Exercise 5.5: (Chandra)
(i) Show that the method (35) for multiplying the matrix chainA1, . . . , An isO(T 2

opt) whereTopt

is the optimal cost of multiplying the chain.
(ii) Show that the boundO(T 2

opt) is asymptotically tight.
(iii) Show that the method (36) has cost at most2Topt. ♦

Exercise 5.6: (i) Consider an abstractn-gon whose weight function is a product function,W (i, j, k) =
wiwjwk for some sequencew1, . . . , wn of non-negative numbers. Callwi the “weight” of vertex
i. Let (π1, π2, . . . , πn) be a permutation of{1, . . . , n} such that

wπ1
≤ wπ2

≤ · · · ≤ wπn
.

Show that there exists an optimal triangulationT of P such that vertexπ1 of least weight is
connected toπ2 and also toπ3 in T . [We say vertexi is connected toj in T if either ij or ji is
in T or is an edge of then-gon.]
HINT: Use induction onn. Call a vertexi isolated if it is not connected to another vertex by a
chord inT . Consider two cases, depending on whetherπ1 is isolated inT or not.

(ii) (Open) Can you exploit this result to obtain ao(n3) algorithm for the matrix chain product
problem? ♦

END EXERCISES

§6. Optimal Binary Trees

Suppose we storen keys
K1 < K2 < · · · < Kn

in a binary search tree. The probability that a keyK to be searched is equalKi is pi ≥ 0, and the
probability thatK falls betweenKj andKj+1 is qj ≥ 0. Naturally,

n
∑

i=1

pi +

n
∑

j=0

qj = 1.

In our formulation, we do not restrict the sum of thep’s andq’s to be1, since we can simply interpret
these numbers to be “relative weights”. But we do require theqj , pi’s to be non-negative.

We want to construct an full10 binary search treeT whose nodes are labeled by

q0, p1, q1, p2, . . . , qn−1, pn, qn (37)

in symmetric order. Note that thepi’s label the internal nodes andqj ’s label the leaves.

[FIGURE]

In a natural way,T corresponds to a binary search tree in which the internal nodes are labeled by
K1, . . . ,Kn. But for our purposes, the actual keysKi are irrelevant: only the probabilitiespi, qj are

10 This amounts to an extended binary search tree, as describedin Lecture 3.

Chee-Keng Yap Basic Version April 26, 2011

§6. OPTIMAL BINARY TREES Lecture VII Page 33

of interest. Each subtreeTi,j (1 ≤ i ≤ j ≤ n) of T corresponds to a binary search tree on the keys
Ki, . . . ,Kj. We define the followingweight function:

W (i− 1, j) := qi−1 + pi + qi + · · · pj + qj

= qi−1 +

j
∑

k=i

(qk + pk)

for all 0 ≤ i ≤ j ≤ n. ThusW (i, i) = qi. Thecostof T is given by

C(T) = W (0, n) + C(TL) + C(TR)

whereTL andTR are the left and right subtrees ofT . If T has only one node, thenC(T) = 0,
corresponding to the case where the node is labeled by someqj . We sayT is optimal if its cost is
minimum. So the problem ofoptimal search treesis that of computing an optimalT , given the data
in (37). Why is this definition of “cost” reasonable? Let us charge aunit cost to each node we visit
when we lookup a keyK. If K has the frequency distribution given by the probabilitiespi, qj , then the
expected charge to the root ofT is preciselyW (i− 1, j) if the leaves ofT areKi, . . . ,Kj . SoC(T) is
the expected cost of looking upK in the search treeT .

¶34. Application. In constructing compilers for programming languages, we need a search structure
for looking up if a given identifierK is a key word. SupposeK1, . . . ,Kn are the key words of our
programming language and we have statistics telling us thatan identifierK in a typical program is
equal toKi with probabilitypi and lies betweenKj andKj+1 with probabilityqj . One solution to this
compiler problem is to construct an optimal search tree for the key words with these probabilities.

¶35. Example. Assume that(p1, p2, p3) = (6, 1, 3) and theqi’s are zero. There are 5 possible search
trees here (see figure6). The optimal search tree has root labeledp1, giving a cost of6+ 2(3)+ 3(1) =
15. Note that the structurally “balanced tree” withp2 at the root has a bigger cost of19. Intuitively, we
understand why it is better to havep1 at the root – it has a much larger frequency than the other nodes.

p1

p2

p3

Cost = 5 Cost = 9

p1

p2 p3

6

3

1

1

6 3

Figure 6: The 5 possible binary search trees on(p1, p2, p3).

Let us observe that thedynamic programming principle holds,i.e., every subtree ofTi,j (1 ≤ i ≤
n) is optimal for its associated relative weights

qi−1, pi, qi, . . . , qj−1, pj, qj .

Hence an obvious dynamic programming algorithm can be devised to find optimal search trees inO(n3)
time. Exploiting additional properties of the cost function, Knuth shows this can be done inO(n2) time.
The key to the improvement is due to a general inequality satisfied by the cost function, first clarified
by F. Yao, which we treat next.

EXERCISES

Chee-Keng Yap Basic Version April 26, 2011

§7. OPTIMAL BINARY TREES Lecture VII Page 34

Exercise 6.1: Describe the precise connection between the optimal searchtree problem and the optimal
triangularization problem. ♦

Exercise 6.2: Suppose the input frequencies are(p1, . . . , pn) (the qi’s are all zero). If thepi’s are
distinct, Joe Quick has a suggestion: why not choose the largestpi to be the root? Is this true for
n = 3? Find the smallestn for which this is false, and provide a counter example for thisn.

♦

Exercise 6.3: (Project) Collect several programs in your programming language X.
(a) Make a sorted list of all the key words in language X. If there aren key words, construct a
count of the number of occurrences of these key words in your set of programs. Letp1, p2, . . . , pn
be these frequencies.
(b) Construct an optimum search tree for these key words (assumingqi’s are0) these key words
(assumingqi’s are0).
(c) Construct from your programs the frequencies that a non-key word falls between the keywords,
and thereby obtainq0, q1, . . . , qn. Construct an optimum search tree for thesep’s andq’s. ♦

Exercise 6.4: The following class of recurrences was investigated by Fredman [3]:

M(n) = g(n) + min
0≤k≤n−1

{αM(k) + βM(n− k − 1)}

whereα, β > 0 andg(n) are given. This is clearly related to optimal search trees. We focus on
g(n) = n.
(a) Supposemin{α, β} < 1. Show thatM(n) ∼ n

1−min{α,β} .

(b) Supposemin{α, β} > 1, logα/ log β is rational andα−1 + β−1 = 1. ThenM(n) = Θ(n2).
♦

Exercise 6.5: If the pi’s are all zero in the Optimal Search Tree problem, then the optimization cri-
teria amounts to minimizing the external path length. Recall that the external path length of a
tree whose leaves are weighted is equal to

∑

u d(u)w(u) whereu ranges over the leaves, with
w(u), d(u) denoting the weight and depth ofu. Suppose we consider amodified path length
of a leafu to bew(u)

∑d(u)
i=0 2−i (instead ofd(u)w(u)). Solve the Optimal Search Tree under

this criteria. REMARK: This problem is motivated by the processing of cartographic maps of the
counties in a state. We want to form a hierarchical level-of-detail map of the state by merging the
counties. After the merge of a pair of maps, we always simplify the result by discarding some
details. If the weight of a map is the number of edges or vertices in its representation, then after
a simplification step, we are left with half as many edges. ♦

Exercise 6.6: Consider the following generalization of Optimal Binary Trees. We are given a subdivi-
sion of the plane into simply connected regions. Each regionhas a positive weight. We want to
construct a binary treeT with these regions as leaves subject to one condition: each internal node
u of T determines a subregionRu of the plane, obtained as the union of all the regions belowu.
We requireRu to be simply-connected. The cost ofT is as usual the external path length (i.e.,
sum of the weights of each leaf multiplied by its depth).
(a) Show that this problem isNP -complete.
(b) Give provably good heuristics for this problem. ♦

END EXERCISES

Chee-Keng Yap Basic Version April 26, 2011

§7. WEIGHT MATRICES Lecture VII Page 35

§7. Weight Matrices

We reformulate the optimal search tree problem in an abstract framework.

DEFINITION 1. Letn ≥ 2 be an integer. Atriangular function W (of ordern) is any partial function
with domain[0..n] × [0..n] suchW (i, j) is defined iffi ≤ j. We callW a weight matrix if it is a
triangular function whose range is the set of non-negative real numbers. A quadruple(i, i′, j, j′) is
admissibleif

0 ≤ i ≤ i′ ≤ j ≤ j′ ≤ n.

We sayW is monotoneif
W (i′, j) ≤W (i, j′)

for all admissible(i, i′, j, j′). Thequadrangle inequality for W for (i, i′, j, j′) is

W (i, j) +W (i′, j′) ≤W (i, j′) +W (i′, j).

We sayW is quadrangular if it satisfies the quadrangular inequality for all admissible (i, i′, j, j′).

i

i′

i′′

j j′ j′′

+
quadrangular:

monotone:

+ ≤

≤

Figure 7: Monotone and quadrangular weight matrix.

It is sometimes convenient to writeWij or Wi,j instead ofW (i, j). If we viewWij as the(i, j)-th
entry of ann-square matrixW , thenW is upper triangular matrix. Note that(i, i′, j, j′) is admissible
iff the four points(i, j), (i′, j), (i, j′), (i′, j′) are all on or above the main diagonal ofW (see Figure7).
Monotonicity and quadrangularity is also best seen visually (cf. Figure7):

• Monotonic means that along any north-eastern path in the upper triangular matrix, the matrix
values are non-decreasing.

• Quadrangularity means that for any 4 corner entries of a rectangle lying on or above the main
diagonal, the south-west plus the north-east entries are not less than the sum of the other two.

¶36. Example: In the optimal search tree problem, the weight functionW is implicitly specified by
O(n) parameters,viz., q0, p1, q1, . . . , pn, qn, with

W (i, j) =

j
∑

k=i−1

qk +

j
∑

k=i

pk.

In this case,W (i, j) can be computed in linear time from theqk ’s andpk ’s. The point is that, depending
on the representation,W (i, j) may not be available in constant time. The following is left as an exercise:

LEMMA 4. The weight matrix for the optimal search tree problem is bothmonotone and quadrangular.
In fact, the quadrangular inequality is an equality.

Chee-Keng Yap Basic Version April 26, 2011

§8. QUADRANGULAR INEQUALITY Lecture VII Page 36

DEFINITION 2. Given a weight matrixW , its derived weight matrix is the triangular function

W ∗ : [0..n]2 → R≥0

is defined as follows:
W ∗(i, i) := W (i, i).

Assuming thatW ∗(i, j) has been defined for allj − i < ℓ, define

W ∗(i, i+ ℓ) := W (i, i+ ℓ) + min
i<k≤i+ℓ

{W ∗(i, k − 1) +W ∗(k, i+ ℓ)}.

Defining
W ∗(i, j; k) := W (i, j) +W ∗(i, k − 1) +W ∗(k, j), (38)

we callk an (i, j)-splitter if W ∗(i, j) = W ∗(i, j; k).

Note: the literature (especially in operations research) describes the Monge property of matrices.
This turns out to be the quadrangle inequality restricted toadmissible quadruples(i, i′, j, j′) where
i′ = i+ 1 andj′ = j + 1.

EXERCISES

Exercise 7.1: (a) Computer the derived matrix of the following weight matrices:

W1 =

1 1 1 1
2 2 2

3 3
4

, W2 =

1 2 1 2 1
2 0 3 2

1 0 1
4 2

2

.

(b) SupposeW (i, j) = ai for i = j andW (i, j) = 0 for i 6= j. Theai’s are arbitrary constants.
Succinctly describe the matrixW ∗. ♦

Exercise 7.2: (Lemma4) Verify that the weight matrix for the optimal search tree problem is indeed
monotone and satisfies the quadrangularequality. ♦

Exercise 7.3: Write a program to compute the derivative of a matrix. It should run inO(n3) time on
ann-square matrix. ♦

Exercise 7.4:
(a) Interpret the derived matrix for the optimal search treeproblem.
(b) Does the derived matrix of a derived matrix have a realistic interpretation? ♦

Exercise 7.5: Generalize the concept of a triangular functionW so that its domain is[0..n]k for any
integerk ≥ 2, andW (i1, . . . , ik) is defined iffi1 ≤ i2 ≤ · · · ≤ ik. ThenW is aweight function
(of order n anddimensionk) if it is triangular and has range over the non-negative realnumbers.
Formulate the “optimalk-gonalization” problem for an abstractn-gon. (This seeks to partition
ann-gon intoℓ-gons where3 ≤ ℓ ≤ k. Give a dynamic programming solution. ♦

Chee-Keng Yap Basic Version April 26, 2011

§8. QUADRANGULAR INEQUALITY Lecture VII Page 37

END EXERCISES

§8. Quadrangular Inequality

The quadrangular inequality is central in theO(n2) solution of the optimal search tree problem. We
will show two key lemmas.

LEMMA 5. If W is monotone and quadrangular, then the derived weight matrix W ∗ is also quadran-
gular.

Proof. We must show the quadrangular inequality

W ∗(i, j) +W ∗(i′, j′) ≤W ∗(i, j′) +W ∗(i′, j), (0 ≤ i ≤ i′ ≤ j ≤ j′ ≤ n). (39)

First, we make the simple observation wheni = i′ or j = j′, the inequality in equation (39) holds
trivially.

The proof is by induction onℓ = j′ − i. The basis, whenℓ = 1, is immediate from the previous
observation, since we havei = i′ or j = j′ in this case.

¶37. Casei < i′ = j < j′: So we want to prove thatW ∗(i, j) +W ∗(j, j′) ≤W ∗(i, j′) +W ∗(j, j).
LetW ∗(i, j′) = W (i, j′; k) and initially assumei < k ≤ j. Then

W ∗
i,j +W ∗

j,j′ ≤ [Wi,j +W ∗
i,k−1 +W ∗

k,j] +W ∗
j,j′ (expandingW ∗

i,j)

≤ Wi,j′ +W ∗
i,k−1 + [W ∗

k,j +W ∗
j,j′] (by monotonicity)

≤ [Wi,j′ +W ∗
i,k−1 +W ∗

k,j′] +W ∗
j,j (by induction)

= W ∗
i,j′ +W ∗

j,j (by choice ofk).

In casej < k ≤ j′, we would initially expandW ∗
j,j′ above.

¶38. Casei < i′ < j < j′: Let W ∗(i, j′) = W (i, j′; k) andW ∗(i′, j) = W (i′, j; ℓ) and initially
assumek ≤ ℓ. Then

W ∗
i,j +W ∗

i′,j′ ≤ [Wi,j +W ∗
i,k−1 +W ∗

k,j] + [Wi′,j′ +W ∗
i′,ℓ−1 +W ∗

ℓ,j′] (sincei < k ≤ j, i′ < ℓ ≤ j′)

≤ [Wi,j′ +Wi′,j] +W ∗
i,k−1 +W ∗

i′,ℓ−1 + [W ∗
k,j +W ∗

ℓ,j′] (W is quadrangular)
≤ [Wi,j′ +Wi′,j] +W ∗

i,k−1 +W ∗
i′,ℓ−1 + [W ∗

k,j′ +W ∗
ℓ,j] (induction on(k, ℓ, j, j′))

≤ [Wi,j′ +W ∗
i,k−1 +W ∗

k,j′] + [Wi′,j +W ∗
i′,ℓ−1 +W ∗

ℓ,j]

= W ∗
i,j′ +W ∗

i′,j (by choice ofk, ℓ).

In caseℓ < k, we can begin as above with the initial inequalityW ∗(i, j) +W ∗(i′, j′) ≤W ∗(i, j; ℓ) +
W ∗(i′, j′; k). Q.E.D.

¶39. Splitting function KW . The (i, j)-splitter k is not unique but we make it unique in the next
definition by choosing the largest suchk.

DEFINITION 3. Let W be an weight matrix. Define thesplitting function KW to be a triangular
function

KW : [0..n]2 → [0..n]

defined as follows:KW (i, i) = i and for0 ≤ i < j ≤ n,

KW (i, j) := max{k : W ∗(i, j) = W (i, j; k)}.

Chee-Keng Yap Basic Version April 26, 2011

§8. QUADRANGULAR INEQUALITY Lecture VII Page 38

We simply writeK(i, j) for KW (i, j) whenW is understood. Once the functionKW is determined,
it is a straightforward matter to compute the derived matrixof W The following is the key to a faster
algorithm.

LEMMA 6. If the derived weight matrix ofW is quadrangular, then for all0 ≤ i ≤ j < j,

KW (i, j) ≤ KW (i, j + 1) ≤ KW (i + 1, j + 1).

Proof. By symmetry, it suffices to prove that

K(i, j) ≤ K(i, j + 1). (40)

This is implied by the following claim: ifi < k ≤ k′ ≤ j then

W ∗(i, j; k′) ≤W ∗(i, j; k) implies W ∗(i, j + 1; k′) ≤W ∗(i, j + 1; k). (41)

To see the implication, suppose equation (40) fails, sayK(i, j) = k′ > k = K(i, j + 1). Then the
claim impliesK(i, j + 1) ≥ k′, contradiction.

It remains to show the claim. Consider the quadrangular inequality for the admissible quadruple
(k, k′, j, j + 1),

W ∗(k, j) +W ∗(k′, j + 1) ≤W ∗(k, j + 1) +W ∗(k′, j).

AddingW (i, j) +W (i, j + 1) +W ∗(i, k − 1) +W ∗(i, k′ − 1) to both sides, we obtain

W ∗(i, j; k) +W ∗(i, j + 1; k′) ≤W ∗(i, j + 1; k) +W ∗(i, j; k′).

This implies equation (41). Q.E.D.

¶40. Main result. The previous lemma gives rise to a faster dynamic programming solution for
monotone quadrangular weight functions.

THEOREM 7. Let W be weight matrix such thatW (i, j) can be computed in constant time for all
1 ≤ i ≤ j ≤ n, and its derived matrixW ∗ is quadrangular. Then its derived matrixW ∗ and the
splitting functionKW can be computed inO(n2) time and space.

Proof. We proceed in stages. In stageℓ = 1, . . . , n−1, we will computeK(i, i+ℓ) andW ∗(i, i+ℓ)
(for all i = 0, . . . , n − ℓ). It suffices to show that each stage takes takesO(n) time. We compute
W ∗(i, i+ ℓ) using the minimization

W ∗(i, i+ ℓ) = min{W (i, i+ ℓ; k) : K(i, i+ ℓ− 1) ≤ k ≤ K(i+ 1, i+ ℓ)}.

This equation is justified by the previous lemma, and it takestimeO(K(i+1, i+ℓ)−K(i, i+ℓ−1)+1).
Summing over alli = 1, . . . , n− ℓ, we get the telescoping sum

n−ℓ
∑

i=1

[K(i+ 1, i+ ℓ)−K(i, i+ ℓ− 1) + 1] = n− ℓ+K(n− ℓ+ 1, n)−K(1, ℓ) = O(n).

Hence stageℓ takesO(n) time. Q.E.D.

Chee-Keng Yap Basic Version April 26, 2011

§8. QUADRANGULAR INEQUALITY Lecture VII Page 39

¶41. Remarks. We refer to [7] for a history of this problem and related work. The originalformula-
tion of the optimal search tree problem assumespi’s are zero. For this case, T.C. Hu has an non-obvious
algorithm that Hu and Tucker were able to show runs correctlyin O(n log n) time. Mehlhorn [8] con-
siders “approximate” optimal trees and show that these can be constructed inO(n log n) time. He
describes a solution to the “approximate search tree” problem in which we dynamically change the
frequencies; see “Dynamic binary search”, (SIAM J.Comp.,8:2(1979)175–198). M. R. Garey gives an
efficient algorithm when we want the optimal tree subject to adepth bound; see “Optimal Binary Search
Trees with Restricted Maximum Depth, (SIAM J.Comp.,3:2(1974)101-110).

EXERCISES

Exercise 8.1: (a) Compute the optimal binary tree for the following sequence:

(q0, p1, q1, . . . , p10, q10) = (1, 2, 0, 1, 1, 3, 2, 0, 1, 2, 4, 1, 3, 3, 2, 1, 2, 5, 1, 0, 2).

(b) Compute the optimal binary tree for the case where theq’s are the same as in (a), namely,

(q0, q1, . . . , q10) = (1, 0, 1, 2, 1, 4, 3, 2, 2, 1, 2)

and thep’s are0. ♦

Exercise 8.2: It is actually easy to give a “graphical” proof of lemma6. In the figure8, this amounts to
showing that ifA+ a ≥ B + b thenA′ + a′ ≥ B′ + b′.

A B C

A′ B′
C ′

a a′

b b′

Figure 8: Derived weight matrix.

♦

Exercise 8.3: If W is monotone and quadrangular, isW ∗ monotone? ♦

Chee-Keng Yap Basic Version April 26, 2011

§9. CONCLUSION Lecture VII Page 40

pn

pn−1

p1

q1q0

qn−1

qn

Figure 9: Linear list search tree.

Exercise 8.4: Consider a binary search tree that has this shape (essentially a linear list):

Show that the following set of inequalities is necessary andsufficient for the above search tree to
be optimal:

p2 + q2 ≥ p1 + q0 (E2)
p3 + q3 ≥ p2 + q1 + p1 + q0 (E3)
. . .
pn + qn ≥ pn−1 + qn−2 + pn−2 + · · ·+ p1 + q0 (En)

HINT: use induction to prove sufficiency.
Remark: So search trees with such shapes can be verified to be optimal in linear time. In general,
can an search tree be verified to be optimal ino(n2) time? ♦

Exercise 8.5: (a) Generalize the above result so that all the internal nodes to the left of the root are left-
child of its parent, and all the internal nodes to the right ofthe root are right-child of its parent.
(b) Can you generalized this to the case where all the internal nodes lie on one path (ignoring
directions along the tree edges – the path first traverses up the tree to the root and then down the
tree again). ♦

Exercise 8.6: Given a sequencea1, . . . , an of real numbers. LetAij =
∑j

k=i ak, Bij = min{Akj :
k = i, . . . , j} andBj = B1j . Compute the valuesB1, . . . , Bn in O(n) time. ♦

END EXERCISES

§9. Conclusion

This chapter shows the versatility of the on dynamic programming approach to a variety of problems.
A serious drawback of dynamic programming is its high polynomial cost:O(nk) for k ≥ 2, in both
time and space may not be practical in some applications. Hence there is interest in exploiting “sparsity
conditions” when they occur. Sometimes, the implicit matrix to be searched has special properties
(Monge conditions). See the survey of Giancarlo [4] for such examples.

References

[1] A. Apostolico and Z. Galil, editors.Pattern Matching Algorithms. Oxford University Press, 1997.

Chee-Keng Yap Basic Version April 26, 2011

§9. CONCLUSION Lecture VII Page 41

[2] D. Z. Chen, O. Daescu, X. Hu, and J. Xu. Finding an optimal path without growing the tree.J.
Algorithms, 49(1):13–41, 2003.

[3] M. L. Fredman.Growth Properties of a class of recursively defined functions. PhD thesis, Stanford
University, 1972. Technical Report No. STAN-CS-72-296. PhD Thesis.

[4] R. Giancarlo. Dynamic programming: Special cases. In A.Apostolico and Z. Galil, editors,Pattern
Matching Algorithms, pages 201–232. Oxford University Press, 1997.

[5] D. S. Hirschberg. A linear space algorithm for computingmaximal common subsequences.Comm.
of the ACM, 18(6):341–343, 1975.

[6] T. C. Hu and M.-T. Shing. AnO(n) algorithm to find a near-optimum partition of a convex polygon.
J. Algorithms, 2:122–138, 1981.

[7] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-
Wesley, Boston, 1972.

[8] K. Mehlhorn. Datastructures and Algorithms 1: Sorting and Sorting. Springer-Verlag, Berlin,
1984.

[9] P. Ramanan. A new lower bound technique and its application: Tight lower bound for a polygon
triangulation problem.SIAM J. Computing, 23:834–851, 1994.

Chee-Keng Yap Basic Version April 26, 2011

	 DYNAMIC PROGRAMMING
	 Longest Common Subsequence
	 Edit Distance
	 Polygon Triangulation
	 The Dynamic Programming Method
	 Optimal Parenthesization
	 Optimal Binary Trees
	 Weight Matrices
	 Quadrangular Inequality
	 Conclusion

