Lecture VII Page 1

Lecture VI
DYNAMIC PROGRAMMING

We introduce an algorithmic paradigm calldgnamic programming. It was popularized by
Richard Bellman, circa 1954. The word “programming” herehis same term as found in “linear
programming”, and has the connotation of a systematic nafibrosolving problems. The term is even
identifiedt with the filling-in of entries in a table. The semantic shiforh this to our contemporary
understanding of the word “programming” is an indicatiortaf progress in the field of computation.

In this chapter, we introduce dynamic programming techeéqan several string problems, abstract
polygon triangulation problems, and the problem of optibiahry search trees.

91. From Google to Genomics. Dynamic programming is particularly effective for comptirig with
objects that have some underlying linear structure: stfipglygons and certain problems on trees. We
will see such examples in this chapter. Currently, therevaoemajor consumers of string algorithms:
search engines such as Google, and computational bioldbgss, Tf you ask Google to search the word
st rni gs, it will ask if you meantst ri ngs. You can be sure that a slew of string algorithms are
at work behind this innocent response. Or, when | searclC&BIrAATCC, Google asked if | meant
CCGTCC. It turns out thatCCGTCC. comis the homepage for members G&sino Chip & Gaming
Token Collectors ClubBut a biologist might submit the sequen@&TAATCC to a database engine to
find the closest match. This is because in computationalgaspa DNA sequence is just a string over
the symbolsA, C, T, G The strings in Google and genomics have different chariatitess: Google
strings are words or phrases — these are much shorter thiagssitn biology which represent DNA
or RNA sequences whose lengths go into millions. Googlagérhave medium size alphabets while
strings in genomics have small alphabet (size 4). If we waokihg at protein sequences, the alphabet
size would be0. The corresponding algorithms should try to exploit suaperties.

€2. Divide and Conquer with a twist. Dynamic programming is a form of divide-and-conquer be-
cause it is based on solving subproblems. But it has somerrdistinctive features. A simple illustra-
tion is provided by the computation of Fibonacci numbétsy) = F(n — 1) + F(n — 2). On input

n > 1, the obvious recursive algorithm calls itself twice on thgtements: — 1 andn — 2. The returned
results are added together. The running time is given byetherrencd’(n) = T'(n—1)+ T (n—2)+1.
ThusT'(n) is exponential{l11.6, AVL trees). A little reflection shows that linear tinsiffices: instead
of computingF'(n), let us define a new functiof,(n) to compute the paifF'(n), F'(n — 1)) of con-
secutive Fibonacci numbers. To comp#tgn), we only need one recursive call i (n — 1):

Fg(n):
If (n =1), Return(1,0) < Assume input is > 1
(a,b) + Fa(n —1) < Recursive call!

Return(a + b, a)

The running time recurrence now satisfies the recurr@a¢e) = T>(n — 1) + 1 = n. Here we see
the seed of the dynamic programming idea — that by keepingrargolutions to subproblems, we
can avoid what would otherwise be an exponential complexfiyponacci, as such, is not a typical
dynamic programming problem because it needs only a canstember (i.e., two) subproblems. We
next consider a more typical situation.

1 Such tables are sometimes filled out by deploying a row of muopeerators, each assigned to filling in some specific table
entries and to pass on the partially-filled table to the nexsgn.

Chee-Keng Yap Basic Version April 26, 2011

Lecture VII Page 2

€3. Joy Ride, again. Recall the joy ride or linear bin packing problem in Chapter Me input a
gueue of riders whose weights are, . . ., w,. We want to place these riders into a minimum number
of cars, where each car has a weight capacity/of Riders must be placed into cars in their queue

order. The new twist is that we allow negative weights (djeaur joy ride interpretation is stretched Ah, negative weights

by this generalization). In any case, the greedy algorith@aks down. For instance I8t = 5 and

w = (5,5,5,5,—20). The greedy solution has 4 ca®), (5), (5), (5, —20) but the optimal solution
uses only one car. But to achieve this optimal solution, westrgive up our online requirement (i.e.,
to decide on each rider without looking at what comes aftéhénqueue). In this example, the optimal
solution has to look at the entire queue before it can prgmitide on the second rider (whether this
rider should be in the first or second car). Thus, we must comterselves with designing asffline
algorithm in which each decisions can be based on the whole input.

We will now give anO(n?) solution. But first, we must generalize the problem so theteiad

of just solving the instanc®,, = (ws,...,w,), we simultaneously solve the subproblem instances
P, = (wy,...,w;) foralli = 1,...,n. Letb; be the minimum number of cars for instanee Now
the last car for instancB, has the form{(w;, . . ., w,) for somei andw; +w; 41 + - - - +w, < M. This
justifies the following formula:
= i - - << .
b, =1+ i:lr,I.l.irrlL—l{bz ij <M} (1)
J=1

Sinceby, ..., b,—1 is known, this formula shows that we can compbtein O(n) time. We may

program this solution as follows:

LINEAR BIN PACKING WITH NEGATIVE WEIGHTS!
Input: arrayw[1..n] containing weights and/
Output: arrayb|0..n] to store the values of optimal valugs

b[0] + 0.
fori=1,....n
W+ wli]

B <+ bli —1] < Biscurrent min value ob;’s
forj=i—1,...,1

W+ W + wlj]

If (W < M) then B < min {B,b[j — 1]}
bli] <1+ B

The overall complexity i§'(n) = T'(n — 1) + n = O(n?).
For instance, supposd = 5 andw = (1,5, —2,5,1) Thenb; = 1 (obviously),b; = 2, b3 = 2 and
by = 3. Let us computés using the formula):

bs < min{1l + bg, 1 + ba} = min {4,3} = 3.

This example is typical of dynamic programming: in orderdatve a problem instancg,, we solve
a polynomial number of subproblems (in this ca#g, ..., P,). In comparison, the problems with
running times that satisfy the Master recurrence only haveusmded number of subproblem instances.

94. String Notations. Let us fix some common terminology for strings. Alphabetis just a finite
setY; its elements are callelgtters (or characters or symbols). #tring (or word) is just a finite

Chee-Keng Yap Basic Version April 26, 2011

are children with

helium balloons!

§1. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 3

sequence of letters. The set of strings oXas denoted>*. Let X = xj25 - - - 2, be a string where
x; € . Thelength of X ism, denoted X |. Note that|X| should not be confused with the usual
notation|S| for the cardinality of a sef. Theempty string is denoted: and it has lengtle| = 0. The
ith letter of X is denotedX[i| = x; (¢ = 1,...,m). Concatenation of two string¥, Y is indicated by
juxtaposition,XY. Thus|XY| = | X| + |Y]|.

§1. Longest Common Subsequence

Many string problems come down to comparing two strings fonilarity. We look at one such
similarity measure. ASubsequenceZ = z1zo - -- 23 Of X = 21, ..., 2, iS @ string such that for some

1<y <ig << <m

we haveZ[¢] = X[is|forall¢ = 1,... k. Forexamplel n,| g andl og are subsequences of the string
| ong.

A common subsequencef X, Y is a stringZ = 2,25 - - - 23 that is a subsequence of bathand
Y. We call Z alongest common subsequendéits length |Z| = k is maximum among all common
subsequences df andY'. Since the longest common subsequence may not be uniqui; &tX, Y)
denote the set of longest common subsequencas &f. Also, letics(X,Y) denoté any element of
LCS(X,Y): soles(X,Y) € LCS(X,Y). Define the numerical functions(X,Y) := |les(X,Y)]
(length function) and\(X,Y") := |LS(X,Y")| (cardinality function). Note thax(X,Y") > 1 since “at
worst”, LC'S(X,Y) is the singleton comprising the empty striang

For example, if
X = longest, Y = length (2)

thenLCS(X,Y) = {1ngt}, A(X,Y) =1landL(X,Y) = 4.

Of course, the ultimate in similarity under LCS measure iewh(X,Y) = min {| X|, |Y|}. We
also mention the related concept of “substring”. A subsaqe# is asubstringof X if X = Z2'ZZ7"
for some stringsZ’, Z”. For instancepn andg are substrings df ong butl n, | g andl og are not.
Thus, substrings are subsequences but the converse magiaot h

95. Versions of LCS. There are several versions of tlemgest common subsequence (LCS) prob-
lem. Given two strings
X =xz2-2m, Y =y1y2- Yn,

the problem is to compute (respectively) one of the follayvin

e (Length version) Comput&(X,Y)
e.g.,.L(l ongest ,l ength) = 4.

e (Instance version) Computes(X,Y)
e.g.,les(l ongest | ength) =1 ngt.

e (Cardinality version) Computg(X,Y")
e.g.,A(l ongest I ength) = 1.

e (Setversion) ComputéC'S(X,Y)
e.g.,.LCS(l ongest,l ength) = {lI ngt }.

2Soles(X,Y) is not really a functional notation.

Chee-Keng Yap Basic Version April 26, 2011

§1. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 4

We will mainly focus on the first two versions. The last versgan be exponential if members of the
set LCS(X,Y) are explicitly written out; we may prefer some reasonablyliek® representation of
LCS(X,Y). We will consider representations b2.5(X,Y) below. See the Exercise for the multiset
interpretation ofLC'S(X,Y).

96. Exponential nature of A(X,Y"). A brute force solution to the cardinality version of the LCS
problem would be to list all subsequences of lengffor £ = m,m —1,m —2,...,2,1) of X, and for
each subsequence to check if it is also a subsequence dhis is an exponential algorithm sinéé
has2™ subsequences. But cafX, Y') be truly exponential? Indeed, here is an example: let

X, =01a0la0la...= (0la)", Y,, = 10a10al0a ... = (10a)". 3

Then X\ (X,,Y,) = 2n (Exercise). E.g., we have LCS(X3,Y3) =
{0a0a0a, 0aOala, 0alala, 0alala, la0ala, lalala, lalaOa, lalala}. In general A\(X,,,Y,) > 2"
since in eacly1-block of X,,, we have 2 choices for matching the correspondindplock of Y,,. This
gives u2™ distinct LCS's.

€7. Dynamic Programming Solution for LCS. The following is a crucial observation. Let us write
X'’ for the prefix of X obtained by dropping the last symbol &f. This notation assumé(| > 0 so
that| X’| = | X| — 1. Itis easy to verify the following formula foE (X, Y):

0 if mn=20
L(X,)Y)=< 14+ L(X"Y" if 2, =yn 4)
max{L(X")Y),L(X,Y")} if ©m # yn

There is a subtlety in this formula whet, = y,,. The “obvious” formula for this case is
L(X,Y)=max{l + L(X",Y"), L(X",Y), L(X,Y")}.
The right hand side is simplified to the form i) (because
LX) Y)<1+L(X'"Y"),

and also a similar inequality involving(X,Y”). Formula @) constitutes the “dynamic programming
principle” for the LCS problem — it expresses the solutionifputs of sizeN = | X| + |Y] in terms of
the solution for inputs of sizes N — 1. We will discuss the dynamic programming principleh

For any stringX and natural number > 0, let X; denote the prefix oKX of lengthi (if ¢ > | X]|,
let X; = X). The dynamic programming principle fdr(X,Y") suggests the following collection of
subproblem instances:

L(X;,Y;), (t=0,...,m;j=0,...,n).

There areD(mn) such subproblems. Note th&, is the empty string, so that

LOS(Xo.Y) = {e}, L(X0,Y;) =0, (5)

There are dynamic principles fées(X,Y) and LC'S(X,Y) that are analogous tef). Here we

3 We can interpret “reasonably explicit” to mean that we camficm membership i.C'S(X, Y) in linear time, or enumerate
the members oL C'S(X, Y') in an efficient manner. Of course, the p@alf, Y) itself is an implicit representation &fC'S(X,Y),
but it would fail our “reasonableness” test.

Chee-Keng Yap Basic Version April 26, 2011

§1. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 5

treatLCS(X,Y), leavinglcs(X,Y') as an exercise.

{e} if mn=20
LC’S(X’ Yz if 2y =yn, LX,Y)> maX{L(X’
LOS(X',Y')zm ULCS(X',Y) if 2 =yn, L(X,Y)=LX,Y)>

LOS(X.v) = § LOS(X!Y) ULOS(X, Y') it @ = yn, L(X,Y) = L(X,Y") >

) LCS(X’ Y ULCS(X,Y')ULCS(X',Y) if @m=yn, L(X,Y)=L(X,Y') =

LCS(X'Y) if zpm #yn, L(XY)>L(X,Y)
LCS(X,Y") if o #ye L(X,Y') > L(X',Y)
LOS(X,Y')ULCS(X',Y) if 2 %y, L(X,Y') = L(X',Y).

Simplification: The student should compare Equatiofisgnd €) to see the
relative simplicity of the former equation. Also the reance 6) tells us
that the flow of control in the algorithm fatC'S(X,Y") is determined by the
function L(X,Y"). In particular, we need to compufg X, Y) if we want to
computeLC'S(X,Y). In fact, equations4) and 6) share a common flow of
control, with some refinements f&aC'S(X,Y'). Our strategy is to develop an
algorithm forL(X, Y") first. Then we indicate the necessary modifications to
yield an algorithm forLC'S(X,Y). Such a modification is usually straight-
forward although we will see exceptions: see thg X,Y) in small space
solution below.

98. Matrix encoding of subsolutions. To organize the dynamic programming solution fqrX, Y),
we use anl +m) x (1 + n) matrix L[0..m, 0..n] whereL[i, j] is to store the valué&(X,,Y;). We fill
in the entries of this matrix as follows. First fill in tfigh column andith row with zeros, as noted in
(5). Now fill in successive rows, from left to right, using eqoat(4) above.

In illustration, we extentithe exampleZ) to the strings = lengthen andY = elongate:

| [eflJoln| g [a|t]| e |
ojojofo|o 0 0|0 0

I || O

e| 0

nij o x

gl o 1+

t || o

hio

e o0 u

nio v | maz(u,v)

We illustrate the formulag) in action in two entries: the entry corresponding to tierow and ‘g’
columnis filled withl 4+x wherez is the entry in the previous row and column. The entry cowasmg
to last row and last column isax(u, v) whereu andv are the two adjacent entries. [It turns out that
x =2,u = 5,v = 4.] The reader may verify that(X,Y) = 5andLCS(X,Y) = {1ngte, engte} in
this example. We leave as an exercise to program this ahgoiit your favorite language.

99. Complexity Analysis. Each entry is filled in constant time. Thus the overall timenptexity is
©(mn). The space is als®(mn).

4 No pun in-tended.

Chee-Keng Yap Basic Version April 26, 2011

)

§1. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 6

€10. Optimal Instance or Set Computation. We said that it should be relatively easy to modify the
code for computind.(X,Y") to compute eithetes(X,Y") or some representation a8fC'S(X,Y). We
use this observation: each enttyi, j] derives its values from one of the valuedlifi — 1, j], L[¢, j —
1], L[i — 1,7 — 1]. We us modifyL into a digraph which represent& C'S(X,Y): the nodes of7 are
(i,7) € {0,1,...,m} x {0,1,...,n}. Foreachs, j), we have an edge 16 — 1, j) (resp.,(i,j — 1)) if
L[i,j] = L[i — 1, j] (resp.,L[i, j] = L[i, j — 1]). We also have an edge frofirj) to (i — 1, — 1) iff
x; = y;. Next, we can pruné& so that only vertices and edges that lie in a path f(emn) to (0, 0) are
kept. Now, given anyZ, we can check iZ € LCS(X,Y) in O(m + n) time in the obvious manner.

911. Small Space Solution. The above algorithm us&3(mn) space. For Google applications, this
may be acceptable; in computational genomics, this is netni¥e that to fill in any row, we just need
the values from two rows. In fact the space for one row is alt the need: as new entries are filled in, it
can overwrite the corresponding entry of the previous rancé&a row has entries, we just nee@(n)
space. As rows and columns are interchangeable, we can atkonith columns, sa@ (min {m,n})
space suffices.

912. Backwards Equation. We exploit another symmetry in strings. We had been devetppur
equations using prefixes 6f andY. We could have equally worked with suffixes. Xf# denote the
suffix of X obtained by omitting the first letter, then the analoguelfy;

0 if mn=20
L(X,Y)=<{ 1+ L(X# Y¥#) if 21 =11 (7)
max{L(X#Y),L(X,Y#)} if 1 #wy

Let X denote the suffix of(lengthi, so|X?| = i. If we use the same matrik as before, we now Neat! X; X" = X
need to fill in the entries in reverse order as follows:

Let L]i, j] denoteL(X™~% Y"=7). Thus, we could fill in the last row and last column wills
immediately. If we work in row order, we can next fill in raiw- 1 using (7), assuming row is already
filled in. The final entry to be filled inf.[0, 0], contains our answet(X,Y).

€13. Recovery of Optimal Instance in Small Space. Now we address the possibility of computing
les(X,Y) in small space. Note that the small space solution/foK, Y") does not easily extend to
recovery of an optimal instandes(X,Y"). We now describe a solution from Hirshberg (1973) Bee
[2] for recent work on space efficient dynamic programming eisply for geometric problems.

The solution uses an interesting divide-and-conquer igolen For simplicity, assume thatis a
power of two. Observe that

L(X,Y) = L(X=, Y o) + L(X™ 77, Y2 ®)
for somei* =0, ..., m. Indeed,
L(X,Y) = max {L(Xi, Y, 2) + L(X™, Yn/z)} . 9)

How can we compute th& such that §) holds? We use the usual (forward) recurrence to compute
{L(Xi,yn/Q) 1= 0, “e 7m}.
We use the backward recurren@g{o compute

{L(Xm*i,yn/“‘) i=0,... ,m}.

Chee-Keng Yap Basic Version April 26, 2011

§1. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 7

This takeg)(m) space and(mn) time. Then usingq), we can determingas the value that maximizes
the functionZ(X;, Y, /o) + L(X™~¢, Y™/?2).

Knowing thei in (8), we could divide ouics problem recursively into two subproblems. The key
observation is thaig) can be extended into an equation for the optimal instance:

€ if L(X,Y)=0,
les(X,Y) =« Y1) if n=1and L(X,Y) =1,
les(Xi, Yo 2);les(X™=0,Y™2) if n>2and L(X,Y) = L(X;,Y,,/2) + L(X™1, Y"/?).

(10)
where “” denotes concatenation of strings.

The space complexity of this solution is easily shown téXje:). What about the time complexity?
We have
T(m,n)=T(i,n/2)+ T(m —i,n/2) + mn.

Itis easy to verify by induction tha (m, n) < 2mn: if n = 1, this is true. Otherwise,
T(m,n) = T(@,n/2)+T(m—1i,n/2)+ mn
n n
< j— —)= =)
< 2(22)+2((m 1)2)+mn 2mn

q14. Other Improvements. We can exploit knowledge about the alphabet. For instanatrson
and Masek gave an algorithm with(mn/ log(min(m,n))) time when the alphabet of the strings is
bounded.

Our algorithm fills in the entries of the matrik in a bottom-up fashion. We can also fill them in
a top-down fashion. Namely, we begin by trying to fill the gnfifm, n|. There are 2 possibilities: (i)
If 2, = yn, we must recursively fill inL.[m — 1,n — 1] and then use this value to fill ifi[m, n]. (ii)
Otherwise, we must recursively fill ih[m — 1,n] andL[m,n — 1] first. In general, while trying to fill
in L[z, j] we must first check if the entry is already filled in (why?). & sve can return the value at
once. Clearly, this approach may lead to much fewer thanentries being looked at. We leave the
details to an exercise.

q15. Applications. Computational problems on strings has been studied sirecestty days of com-
puter science. One motivation is their application in teit@s. For instance, the problem of finding
a pattern in a larger string is a basic task in text editorsotAer interesting application is in computer
virus detection. The growth of the world wide web has beemaxganied by the proliferation of com-
puter viruses. It turns out that a virus trying to infect a uiter will send messages which are similar

to a stringY” peculiar to that virus. By computing(.X, Y'), we can measure how likely is the messages
X coming from aY'-virus. See Exercise below.

The advent of computational genomics in the 1990’s has Wrongw attention to problems on
strings. The fundamental unit of study here is the DNA, whef@NA can be regarded as a string
over an alphabet of four letter#\, C, G, T These correspond to the four bases: adenine, cytosine,
guanine and thymine. DNA's can be used to identify speciegaisas individuals. More generally, the
variations across species can be used as a basis for megth@iingenetic similarity. The LCS problem
is one of many that have been formulated to measure sinyil&# will see another formulation in the
next section.

EXERCISES

Chee-Keng Yap Basic Version April 26, 2011

§1. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 8

Exercise 1.1: Find the setLC'S(X,Y’) where
X =00110011, Y =10100101.

Show your working (the matrix) and justify your method of extting the longest common sub-

sequences. &
Exercise 1.2: ComputeL (X,Y) whereX = lengtheningandY = elongation. O
Exercise 1.3: Compute lcs(X,Y) for X = AATTCCCCGACTGCAATTCACGCACC and YV =

GGCTTTTATTCTCCCTGTAAGT. These are parts of DNA sequences from a modern human and a

Neanderthal, respectively. &
Exercise 1.4:

(a) Give a direct recursive algorithm for computiigX,Y') based on equationt) and show
that it takes exponential time. (In other words, equatiynafone does not ensure efficiency of
solution.)
(b) Letlcs(X,Y) denote any member diC'S(X,Y). Give the analogue of] for lcs(X,Y).

o

Exercise 1.5: (V.Sharma and Yap) Consider the exampledh (
(a) Computel (X5, Y2) by filling in the the usual matrix. Moreover, determife”'S(X3, Y2)|
by counting the number of maximum paths in the matrix.
(b) Prove thatl(X,,,Y;,) = 2n. HINT: use induction om.
(c) We indicated thatL.C'S(X,,, Y,,)| > 2". But prove thatLC'S(X,,, Y,,)| > V6 (assumer is
even). HINT:|LCS(X2,Ys)| = 6.
(d) Generalize the idea of (c) to prove larger lower bounds@ns(X,,, Y,,)|. &

Exercise 1.6: LetS = {X1,..., X\ } be asetof strings. A string such that eacX; is a subsequence
of Z is called asuperstring of S. We can consider the corresponding “shortest superstring
problem” for any giverS. In some sense, this is the dual of the LCS problem. Is theymardic
programming solution for the shortest superstring proBlem &

Exercise 1.7: Joe Quick observed that the recurrenéefor computingZ (X, Y") would work just as
well if we look at suffixes ofX, Y (i.e., by omitting prefixes). On further reflection, Joe concluded
that we could double the speed of our algorithm if we work fileoth endsof our strings! That
is, for0 < i < j, let X; ; denote the substring;z;1 ---xj—12;. Similarly for Y, , where
0 < k < ¢. Derive an equation corresponding &) énd describe the corresponding algorithm.
Perform an analysis of your new algorithm, to confirm and @atehe Quick Hypothesis. <

Exercise 1.8: Suppose we have a parallel computer with unlimited numbpratessors.
(a) How many parallel steps would you need to solveib&, Y') problem using our recurrence
4)?
(b) Give a solution to Joe Quick’s idea (previous exercisd)aving an algorithm that runs twice
as fast on our parallel computer. Hint: work the last two spiaiof each input string, Y in one

step. &

Chee-Keng Yap Basic Version April 26, 2011

§1. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 9

Exercise 1.9: What are the forbidden configurations in the matti%? For instance, we have the fol-
lowing constraints < MT[i,j] — M[i — 1,7] < 1and0 < M[i,j] — M[i,j — 1] < 1. Also,
Mli,jl= M[i—1,j] = M[i,j— 1] = M[i — 1, j — 1] is impossible. Note that these constraints
are based only on adjacency matrix entries. Is it possiblexsxtly characterize the set of all
allowable configurations af/ based on such adjacency constraints? &

Exercise 1.10:
(a) Write the code in your favorite programming languageltdhe above table fol (X, Y).
(b) Modify the code so that the program retrieves some mewibe€'S(X,Y).
(c) Modify (b) so that the program also reports whethef'S(X,Y)| > 1. Remember that we
do not count duplicates ihC'S(X,Y). &

Exercise 1.11:Let X, Y be strings.
(@) Provethal.(X X,Y) < 2L(X,Y).
(b) Show that for every, there areX, Y with L(X,Y") = n and inequality in (b) is an equality.
(c) Prove thal.(X X, YY) < 3L(X,Y).
(d) Similar to part (b) but for the inequality of (c). &

Exercise 1.12:Let A\(X,Y") denote size of the sekC'S(X,Y) and A\(m,n) be the maximum of
AMX,Y) when|X| = m,|Y| = n. Finally letA(n) = A(n, n).
(a) Compute\(n) forn = 1,2, 3, 4.
(b) Give upper and lower bounds fa(n). &

Exercise 1.13:Let LC'S'(X,Y) be themultisetof all the longest common subsequencesoindY .
That is, for each longest common subsequefice LCS(X,Y), we sayZ has multiplicity k¢
whereZ occursk (resp.,t) times as a subsequenceXf(resp.,Y). Let \'(n,m) and)\ (n) be
defined as in the previous exercise. Re-do the previousisrdor \' (n). &

Exercise 1.14:Modify the algorithm forL (X, Y") to compute the following functions:
(N (X,Y)
(b) A(X,Y) &

Exercise 1.15:Instead of the bottom-up filling of tables, let us do a reaugr$bp-down approach. That
is, we begin by trying to fill in the entrf.[m,n]. If z,, = y., we recursively try to fill in the
entries forL[m — 1,n — 1]; otherwise, recursively solve fdt[m — 1,n] and L[m,n — 1]. Can
you quantify the improvements in this approach? &

Exercise 1.16: (a) Solve the problem of computing the lendthX, Y, Z) of the longest common sub-
sequence of three string§ Y, 7.
(b) What can you say about the complexity of the further galimation to computing
L(Xy,...,X,) (form > 3). &

Exercise 1.17: A common subsequence d&f, Y is said to bemaximal if it is not the proper subse-
guence of another common subsequenc& gf". For examplelet is a maximal subsequence of
longest andlength. Let LC'S*(X,Y) denotes the set of maximal common subsequencés of
andY". Design an algorithm to compufe”'S*(X,Y). &

Chee-Keng Yap Basic Version April 26, 2011

§2. LONGESTCOMMON SUBSEQUENCE Lecture VII Page 10

Exercise 1.18:Researchers are using LCS computation to fight computesestuA virus that is at-
tacking a machine has a predictable pattern of messagesds $e the machine. We view the
concatenation of all these messages that a potential @nossas a single string. Call the first
1000 bytes than from any source (i.e., potential virus) slgmature of that source. LeX be the
signature of an unknown source arids the signature of a known virus. To test the source is the
Y -virus, we computd.(X,Y). Empirically, suppose it is shown thatiif X, Y") > 500, then that
our source is likely to bé& -virus.

(a) Design a practical and efficient algorithm for the degigdbroblemZ(X, Y, k) which outputs
“PROBABLY VIRUS” if L(X,Y) > k and “PROBABLY NOT VIRUS” otherwise. Give the
pseudo-code for an efficient practical algorithm. NOTE: ©beious algorithm is to use the stan-
dard algorithm to comput& (X, Y) and then compare to k. But we want you to do better than
this. HINT: There are two ideas we want you to exploit — mostisnts only think of one idea.

(b) Quantify the complexity of your algorithm, and compaeperformance to the obvious al-
gorithm (which first compute& (X, Y)). First do your analysis using the general complexity
parameters ofn = | X|,n = |Y| andk, and als& = L(X,Y"). Also discuss this for the special
case ofm = n = 1000 andk = 500. &

Exercise 1.19: A Davenport-Schinzel sequence on symbols(or, n-sequencefor short) is a string
X =uxz1,...,70 € {a1,...,a,}" suchthate; # x; ;. Theorder of X is the smallest integer
such that there does not exist a subsequence of léngth of the form

a;a;a;a; -+ - a;a;a; Or a;a;a;a; - a;ja;a;

wherea; anda; alternate and; # a;. Define;(n) to be the maximum length of:asequence
of order at most.
(@) Show that\; (n) = n andXz2(n) = 2n — 1. NOTE: for an orde® string, a symbol may:

times.
(b) SupposeX is ann-sequence of orde} in which a,, appears at mosts(n)/n times. After
erasing all occurrences of,, we may have to erase occurrenagé = 1,...,n — 1) in case two

copies ofa; becomes adjacent. We erase as few of thg'seas necessary so that the resyiltis
a(n — 1)-sequence. Show thaX | — | X'| < A3(n)/n + 2.

(c) Show that\s(n) = O(nlogn) by solving a recurrence foxs (n) implied by (b).

(d) Give an algorithm to determine the order ofraisequence. Bound the complexityn, k) of
your algorithm wherer is the length input sequence ahd n the number of symbols. &

Exercise 1.20: (Hirshberg and Larmore, 1987.) A concept of “Set LCS” quitdidct from our defini-
tion goes as follows. We want to compute the “LCS"Xf= x1,..., 2z, andY = y1,...,y,
wherez; € 3 (for some alphabet as before) buy; € 2*. We viewY” as a set of strings ovér,
Y = {7, - -7y, } where eacly, is a permutation of the sgt C ¥. An element, ---7,, € Y is
called aflattening of Y. A SLCSof X andY is defined to be a common &f and any flattening
of Y of maximum length. Give a®(mN) algorithm for SLCS whereV = 3%, |y;|. N.B.
The motivation comes from computer-driven music where dyjploonic score” Is defined to be
a sequence of sets of notes (representeti pyEachy; C ¥ may be viewed as a chord is a
solo score that is to be played to accompany the polyphopiesc &

Exercise 1.21: Consider the generalization of LCS in which we want to coreplné LCS for any input
set of strings.
(a) If the input set have bounded size, give a polynomial Swiation.
(b) (Maier, 1978) If the input set is unbounded, show thatgtablem isN P-complete. %

END EXERCISES

Chee-Keng Yap Basic Version April 26, 2011

§2. EDIT DISTANCE Lecture VII Page 11

§2. Edit Distance

We consider another problem on strings calledetii distance problem The terminology comes
from the general area of text editing in modern computingplme could also give this a computational
biology interpretation. Intuitively, the edit distané¥ X, Y') betweenX andY” is the minimum cost to
edit X so that it turns intd”. To edit a string, we need a set of editing operations: a &pepertoire
would include at least the deletion and insertion of a simfjiaracter into a string. We also need to
associate a positive cost with each operation. The ultinmat@milarity betweenX andY is then
captured by the relatio®(X,Y) = 0. Thus, to find & in a database of strings that is the closest to
X, we want to findY” to minimizeD(X,Y).

It is interesting to comparé(X,Y") in the LCS problem with the edit distande(X,Y"): In the
LCS problem,X andY are more similar for larger values éf X, Y"). But in edit distanceX andY
are more similar for smaller values &f(X,Y"). We explore some connection betweR(X,Y) and
L(X,Y) below.

As usual, we fix the alphabét. For any index > 1 and lettera € X, we define the following
editing operations
Ins(iya), Del(i), Rep(i,a).

These operations, when applied to a striXigwill insert the lettera so that it is now in position,
deletetheith letter, andeplacetheith letter bya (respectively). Let

Ins(i,a,X), Del(i,X), Rep(i,a,X) (12)

denote the respective results.

For example, suppos€ = AATCGA ThenIns(3,G, X) = AAGTCGA Del(5, X) = AATCAand
Rep(5,T, X) = AATCTA In general, ifY” = Ins(i, A, X), then|Y| = 1 + | X| and

X[j] it j=1,...i—1
Y[iil=X a if j=1
X[j—1 if j=i+1,...,|X]

The other operations can be similarly characterized.

Example:D(TAG, CAT) < 2 since
TAG = Rep(3,G, Rep(1, T, CAT).

Moreover,D(TAG, CAT) > 2 since a single edit operation cannot make the two stringalequ

Itis clear that
0 < D(X,Y) <max{|X]|,|Y]|}.

For example, the maximum value is attained with

D(googl e,search) =6.

The notations in {1) are unambiguous only whenis in the “proper range”. For insertion, this
meansl < i < |X|+ 1, but for deletion and replacement, this means : < |X|. But wheni is not
in the proper range, we may introduce conventions for imégimpg (L1). However, for our purposes,
we declare such operations to be undefined. In the followirgwill implicitly assume that is in the
proper range whenever we apply these operations.

Chee-Keng Yap Basic Version April 26, 2011

§2. EDIT DISTANCE Lecture VII Page 12

The operation®el(:) andIns(i, a) are inverses of each other in the following sense:
Del(i, Ins(i,a, X)) = X, Ins(i,b, Del(i, X)), (12)

for someb.

Let D(X,Y) be the minimum number of editing operations that will tramsf X to Y. Clearly, Definition of D(X,Y)
(1X| - [Y])] < D(X,Y) < max{|X], [Y}. (13)
Thetriangular inequality holds: for any strings(, Y, Z, it is clear that
D(X,Z) < D(X,Y)+ D(Y, Z). (14)

In fact, D(X,Y) is a metric since it satisfies the usual axioms for a metric:

() D(X,Y) > 0 with equality iff X =Y.
(i) D(X,Y) = D(Y, X).
(i) D(X,Y) satisfies the triangular inequality4).

€16. An Infinite Edit Distance Graph. It is interesting to view the set* of all strings over a fixed
alphabet: as vertices of an infinite bigrapf(X) in which X, Y € ¥* are connected by an edge iff
there exists an operation of the forfilf that transformsX to Y. Paths inG(X) are callededit paths.
ThusD(X,Y) is the length of the shortest (link-distance) path frdnto Y in G(X).

In analogy to ¢), we have the

max{| X|,|Y} if mn=20
D(X,Y)=1¢ D(X"Y') if 2y = yn (15)
1+ min{D(X",Y),D(X,Y’"),D(X", Y} if 2pm # yn

It is a simple exercise to prove the correctness of this féamit follows thatD(X,Y") can also be
computed inD(mn) time by the technique d§8, by filling in entries in an x n matrix M.

Suppose, we want to actually compute the sequende(af, V') edit operations that convel to
Y. Again, we expect to annotate the mathik with some additional information to help us do this. For
this purpose, let us decode equati@g)(a little. There are four cases:
(a) In caser,,, = vy, the edit operation is a no-op.
(b) If D(X,Y) =1+ D(X',Y), the edit operation i®el(m, X).
(©)f D(X,Y) =1+ D(X,Y"), the edit operation ins(m + 1, y,, X).
(d)If D(X,Y) =1+ D(X',Y’), the edit operation iRep(m, y,, X).
Hence it is enough to store two additional bits per matrixyetd reconstrucbnepossible sequence of
D(X,Y) edit operation.

917. Whatis the relation betweel(X,Y) andD(X,Y)? Here are some inequalities:
LEMMA 1. Let X andY have lengthsn andn. Then
D(X,)Y)<m+n—-2L(X,Y).

and
D(X,Y) > max{m,n} — L(X,Y).

Chee-Keng Yap Basic Version April 26, 2011

§2. EDIT DISTANCE Lecture VII Page 13

Proof.Upper bound: ifZ € LCS(X,Y) thenwe haveD(X,Z) < m — L(X,Y)andD(Z,Y) <
n— L(X,Y),HenceD(X,Y) < D(X,Z)+ D(Z,Y) < m+n—2L(X,Y).

Lower bound: assumen > n, so it suffices to showL(X,Y) > m — D(X,Y). Suppose we
transformX to Y in a sequence aD(X,Y") edit steps. ClearlyD(X,Y) < m. Butin D(X,Y) steps,
there is a subsequengeof X of lengthm — D(X,Y') thatis unaffected. Hencé s also a subsequence
of V,ie.,L(X,Y) > |Z| =m — D(X,Y). Q.E.D.

These bounds are essentially the best possible: assutne:. Then for eactn/2 < ¢ < n, there
are stringsX, Y such thatD(X,Y) = m +n — 2¢ whereL(X,Y) = £. E.g., X = a™ ‘"’ andY =
b*c"~*. For the lower bound, for eadh< ¢ < m, there are stringX’, Y such thatD(X,Y) = m — £.
E.g.,X =a™ %" andY = b’.

€18. The Generalized Editing Problem. Let us generalize the editing distance problem. Suppose
X, Y are two strings. You are allowed to insert, delete and replast as before. What is new is the
cost function. Thalignment cost functionis given by

A:(SU{x})* =R

wherex is a symbol not in the alphab®t The interpretation is thak(x, y) is the cost to replace by
y. If = %, it means inserting and ify = x it means deleting.. The only requirement placed axis
symmetry:

This requirement simplifies our discussions below and igna&in our applications. It is also natural to
impose
A(x, %) = 0. (17)

Thealignment distancebetween string, Y under this cost function is denotelh (X, Y'), or simply
A(X,Y), if A'is understood.

A further simplification is to postulate a numbgrsuch that
A(x,x) = Az, %) = 04 (18)

forall z € . The value),. is called thegap penalty. Indeed, in our examples, we like to postulate two
other constants_ andd.. so that these 3 constants completely determine our costidunc

o— Ifx =y,
Alz,y) =q 02 Wz #y (19)
0, Ifax=xory=x

How can we computel (X, Y") under any cost function? The method is reminiscent of the LCS
problem. Suppos& = 1 ...x, = X'z, andY = y1 ...y, = Y'y,. Then we have the recursive
rule:

A(XY):{2(m—|—n) if mn=20
’ min {AX",Y") 4+ 6(xm, yn), A(X",Y) + 0(x, 2), A(X,Y') + 6(yn)} else

(20)
To systematically carry out the computation, we set ypat 1) x (n + 1) matrix M. The first row
and first column corresponds the the base case, and can defifiest using the base case @0)j. The
remaining entries of\/ is filled in a row by row fashion, using the general caseZd))(The desired
valueA(X,Y) is found in the(m + 1,n + 1)-entry of M.

Chee-Keng Yap Basic Version April 26, 2011

§2. EDIT DISTANCE Lecture VII Page 14

Example. Assume thak in (19) is given by
o—=-1, 6x=1, 0,=2. (21)

Let X = GCAT andY = AATTC. Then

e AATTZC

el0 2 4 6 8 10
G|l2 1 3 5 7 9
M= Cl4 3 2 4 6 6
A6 3 2 3 5 7
T|8 5 4 1 2 4

This proves thatl(X,Y) = 4.

919. Alignment Problem. It may not be obvious why we call the string editing cdist (X, Y") the
“alignmentdistance”. Intuitively, the alignment distanzan be modeled as the least cost path ffoto

Y using appropriate costs for edges of the infinite gré@fRl) used in edit distance. There is, however,
a problem in the presence of negative costs. For instanceshai see that a natural assumption is
A(a,a) < 0foranya € ¥. ThenA(abb,acc) = —oo since we can indefinitely replaeeby itself.
This is becasu&(X) has a negative cycle. One way to get around this is that to otergn edit
sequence fronX to Y, we begin by “marking” each letter iX. As we apply the edit operations to
transformX to Y, we can only replace a marked version of a ledétéry its unmarked version, with cost
A(a,a). But we next give a more natural interpretation of alignnthstance.

The original alignment problem came fréi8. Needleman and C. Wunsch (1970), in the first appli-
cation of dynamic programming to computational biologyeTost functiomA is called the similarity
matrix. For DNA sequences, a possible similar matrix is

AlA G C

T
Al—3 2 3 1

Gl2 -3 2 1 (22)
cl3 2 -3 1

T|1 1 1 -3

with the gap penalty. separately given. Note the negative scores along the de#gdhe idea is that
X, Y are two somewhat similar DNA sequences, and we want to “dligm” so as to minimize the
number of mismatches. Mismatches can be fixed by deletiogsitions or replacements, at a positive
cost. Matches have a negative cost if the diagonal of theagiityimatrix is negative (as in our example).
To compute the alignment distance f6rY", we first inserting zero or moees into X andY” so that the
resulting stringsX*, Y* have the same length. We call the pai*, Y*) analignment of X, Y. Now,
theith characteX *[:] in X* is aligned with the'th charactel*[i] in Y*. The cost of this alignment is
the sum of the cost of replacing tld character inX* by theith character iy *:

4
AR (X, Y7) = AX[i], Y¥[i]).

i=1

We then define thalignment costfor X, Y to be the minimum ofA*(X*,Y*) over all alignments
(X*,Y*). We call (X*,Y*) anoptimal alignment if A*(X* Y*) achieves this minimum. Under

5“A general method applicable to the search for similaritiethe amino acid sequence of two proteins”, J.Moleculaidgjy,
48(3):443-53,

6 In other formulations of this problem, we want meaximizethe amount of alignment. Basically, this means we have to
negate each entry of the similarity matrix. Now, the gap figreand off-diagonal entries are negative, and the diagentiles are
positive.

Chee-Keng Yap Basic Version April 26, 2011

§2. EDIT DISTANCE Lecture VII Page 15

assumption17), we may assume that*[i| # * or Y*[i] # * for all i. Thus, we must haveX*| =
Y| < | X[+ Y.

E.g., LetX = AATTCandY = GCAT, as in a previous example. ¥* = AATTCandY™* =
GCAT*, thend*(X*,Y*) =1+ 141 -1+ 2 = 4. Ifthe alignment cost oK, Y is equal toA(X,Y)
as we have been trying to suggest, then this particular rakgn (X *, Y*) must be optimal. That is
because we have previously computgd{, V) = 4. This is the result to be shown next.

We prove that our new alignment formulation agrees with thgiral edit distance formulation:

LEMMA 2. AA(X,Y) is equal to the minimum a&&* (X *, Y*), over all alignment§ X *, Y*) of X, Y.

Proof. Assume that we have a sequemcef edit operations that transforms (a marked version of)
X toY, as discussed above. Each operation ia an edit operation of the type

Del(i, X), Ins(i+1,y;,X) Rep(i,y;, X).

SinceX is understood, we may simply writ®el(i), Ins(i + 1,y;) or Rep(i,y;). Itis convenient to
also letd< (i, j) be the Kronecker Delta function whede (i, j) = 1 iff i« < j andd<(i,j) = 0 other
wise. We sayr is normalized if all the insertions comes before the replacements andidets and all
the deletions comes after replacements and insertionsaweanvert any sequengénto a normalized
sequence by repeatedly application of the following tramsgtions:

Del(i), Ins(j,b) — Ins(j+ 0<(i,5),b), Del(i + 6> (i,7)) (23)
Del (i), Rep(4,b) — Rep(j + 0<(4,7),b), Del(i — 6=(i,7)) (24)
Rep(i,a), Ins(j,b) — Ins(j,b), Rep(i + 0 (i, 7), a). (25)

Using (23), if a deletion is followed by an insertion in, we can replace these two operations by an
insertion followed by a deletion. Similarly for the otherawransformation rule. When no more trans-
formations are possible,is normalized. The justification 02@)-(25) is an Exercise. We can also verify
that the cost of each pair of operations (as giver\fy, y)) is unchanged after our transformation.

Supposer is a normalized sequence of operations. We can sgiitto o;; og; op correspond to
the insertions, followed by replacements, followed by tlefes. Suppose; transformsX to Xy, and
or transformsX; to Xp. Clearly,op transformsXy to Y. We now define an alignme(X *, Y*) of
X, Y as follows: We apply the insertions ef to transformX into X* as follows: instead of inserting
a character, we simply insert We apply the deletions a@fp, to transformX to Y* as follows: instead
of deleting a character, we simply replace it with Now it is clear that the cost of the operatians
is equal toA*(X*,Y™). Conversely, given any alignmeX*, Y*), we can construct a normalized
sequence of editing operations of the fosm o; op to transformX to Y with cost A*(X* V™).

Q.E.D.

920. Example. Let us give a non-biological example, motivated by stringtieg. Let X =

{a,b,c ,..., ,X,V, z} be the letters of the English alphabet. Define
0, if x=x% or y=x,
A) = o— if z =y, (26)
(,y) = 01 if x,y are both consonants or both vowels,
0o else

This cost function generalizes the editing distance costhith we take into account the nature of
letters that cause mismatch. For instance, with the choice

5, =3, 0_=0, 01=1, 6,=2, 27)

Chee-Keng Yap Basic Version April 26, 2011

§2. EDIT DISTANCE Lecture VII Page 16

thenA(t her e, t hei r) = 4 since we can replace the last two letters in the first word bir torre-
sponding letter in the second word. This has ebsince usingA(r, i) = A(e,r) = 2. There is no
cheaper way to effect this transformation.

The introduction ofA is a significant generalization of the edit distance probletwo ways: first,
the cost of each operation depends on the particular letirgy operated upon. Second, we allow
negative costs. Here are some reasons why such genemlzatake sense:

1. In genomics, one might have a reason to think that the ceplant of certain symbols by others
are more likely and hence have a lower cost. Generally,idakebr insertions are costly.

2. In string editing over the alphabéa,b,c,...,x,y,z, we may think ofA(v,b) to be less than
A(a,b) because in many keyboard layouts, it is easy confuse thefeews andb, but less
likely to confusea andb.

3. Inthe standard text-editing view, it is natural to defig:, «) = 0 for a € 3. But negative costs
for A(a, a) allows us to associate value to positive matches, as opposédence of mismatches.
But imagine that the FBI has a DNA bank containing the DNA szmes collected at all crime
scenes. To correlate these crimes, the FBI wants to compptEs of DNA'S in the bank whose
alignment costs are minimum. We would like to ensure, fotainse, that

A(cg,cgg) > A(cgat aa,cggat aa), (28)
A(cg,cc) > A(cgat aa,ccat aa). (29)

In (28), the pair(cg, cgg) and the paifcgat aa,cggat aa) each requires only one deletion
to achieve optimal alignment. But the second pair has manse mmatches, and we would
like this to yield a lower alignment cost. Similarly, i), the pair(cg,cc) and the pair
(cgat aa, ccat aa) each requires only a single letter replacement to achietimapalignment.
Again, the second pair has many more matches. We can acheeireegualitiesZ8) if we define
negative costsy(z,z) < 0forall z € X.

€21. Generalizations. There are many possible generalizations of the above giriglems.

e We can introduce costs associated to each type of editincatipes. The implicit cost model
above is the unit cost for every operation.

e The fundamental primitive in these problems is the comparéf two letters: is letteX [¢] equal
to letterY[j] (a “match”) or not (a “non-match”)? We can generalize thisaigwing “approxi-
mate” matching (allowing some amount of non-match) or alj@meralized “patterns” (e.g., wild
card letters or regular expressions).

e We can also generalize the notion of strings. Thus “multatisional strings” is just an arrays of
letters, where the array has some fixed dimension. Thusgstare just 1-dimensional arrays. It
is natural to view 2-dimensional arrays as raster images.

e Another generalization of strings is based on treesstrig tree is a rooted tred” in which
each node is labeled with a lettei(v) (from some fixed alphabet). The tree may be ordered or
unordered. In a natural way, represents a collection (order or unordered) of strings.A.and
T be two string trees. We say tha&tis a(string) subtree of T if there is 1-1 magp: from the
nodes ofP to the nodes of” such that

— v is label-preservings € P andu(v) € T has the same label.

Chee-Keng Yap Basic Version April 26, 2011

§2. EDIT DISTANCE Lecture VII Page 17

— pis “parent preserving”: ifu is the parent ob in P thenp(u) is the parent ofu(v) in T
For ordered trees, we further insist thabe order preserving.

In particular, ifvg is the root of P thenp(P) is a subtree (in the usual sense of rooted trees) of
T rooted au(vg). We say there is a “match” ai(vy). Hence a basic problem is, givéhandT’,
find a match ofP in T, if any. Consider the edit distance problem for string tréése following
edit operations may be considered: (1) Relabeling a nodéng2rting a new child to a nodeu,
and making some subset of the childrenudd be children of. In the case of ordered trees, this
subset must form a consecutive subsequence of the ordatédenlof «. (3) Deleting a childy

of a nodeu. This is the inverse of the insertion operation. We nextggssbome cosy to each of
these operations, and define the edit distaR¢&, 7") between two string treeE and7” to be
the minimum cost of a sequence of operations that transf@ras?”. A natural requirement is
hatD(T,T") is a metric: soD(T,T") > 0 with equality iff T = 7', D(T,T7') = D(T',T) and
the triangular inequality be satisfied.

e Let D = {Y¥7,...,Y,} be a fixed set of strings, called the dictionary. DefiheX, D) =
min{A(X,Y;):i=1,...,n}. We would like to preproces® so that for any giverX, we can
quickly compute the set of words in the dictionary that isselst toX according to the alignment
distance.

Remarks: Levenshtein (1966) introduce the editing metric for stsingthe context of binary codes.
Needleman and Wunsch (1970), “A general method applicalitestsearch for similarities in the amino
acid sequence of two proteins” (J.Mol.Biol., 48(3)443-58)considered to be the first application of
dynamic programming to biological sequence comparisonmsithSand Waterman (1981) proposed
a variation of the Needleman-Wunsch algorithm to findi@tlal alignments between two sequences.
In contrast, the Needleman-Wunsch algorithm addresseglobal alignment problem. Sankoff and
Kruskal (1983) considered the LCS problem in computatidmallogy applications. Applications of
string tree matching problems arise in term-rewriting ey, logic programming and evolutionary bi-
ology. The volume by Apostolico and Galil][contains a state-of-the-art overview for pattern matghin
algorithms, circa 1997.

EXERCISES
Exercise 2.1: Compute the edit distancé¥(X,Y) whereX,Y are given:
(8) X = 00110011 andY = 10100101.
(b) X = AGACGTTCGTTAGCA andY = CGACTGCTGTATGGA. &

Exercise 2.2: Compute the alignment distance betwe€n= googl e andY = yahoo using the
alignment costZ6) and Q7). For this purpose, assurges a consonant. Also, expreAg X, Y)
as a direct alignment cost.

&

Exercise 2.3: Suppose we compute optimal alignmet¢X,Y") by filling a matrix M[0..m,0..n]
where|X| = m,|Y] = n. Let M[i, j] be the optimal cost to aligiX; with Y; whereX; is
the prefix ofX of lengthi and similarly forY;. Assume the alignment cost function of the previ-
ous google-yahoo question. Suppd$é, j] = k. What are the possible values fof[i — 1, j —1]
as a function of? What abouf\/[i — 1, j + 1] as a function of? Justify your answer. &

Exercise 2.4: ComputeA(X,Y) whereX,Y are the string®ATTCCCGA andGCATATT. AssumeA
has gap penalty, A(x,2) = —2 andA(xz,y) = 1if = # y. You must organize this computation
systematically as in the LCS problem. &

Chee-Keng Yap Basic Version April 26, 2011

§2. EDIT DISTANCE Lecture VII Page 18

Exercise 2.5: Prove (L5). This is an instructive exercise. &

Exercise 2.6: Let z, y, z be distinct letters, and < m < n.
(@) Prove thaD(X,Y) = m +n — 20 wherem > £ > m/2, X = 2™ “2¢ andY = 2y,
(b) LetX = 2™ 2 andY = y" ‘2 (0 < ¢ < n) Prove thatD(X,Y) = n — . O

Exercise 2.7: Let X, Y be strings. ClearlyL(X X,YY) > 2L(X,Y).
(a) Give an example where the inequality is strict.
(b) Prove thatl(X X,Y) < 2L(X,Y) and this is the best possible.
(c) Prove thalL,(X X, YY) < 3L(X,Y).
(d) We know from (a) and (c) that(X X,YY) = ¢L(X,Y) where2 < ¢ < 3. Give sharper
bounds forc. &

Exercise 2.8: You work for Typing-R-Us, a company that produces smart woracessing editors.
When the user mistypes a word, you want to lookup the dictiofaa the set of closest matching
words.

(a) Design an alignment cost functidnwhich takes into account the keyboard layout. Assuming
the QWERTY layout, you would like to definf(x, y) to be small when, y are close to each
other in this layout. Also, row distance is much smaller tikatumn distance. Assumg =
{a,b,c ,..., X,y,z}

(b) Using yourA function, computed(gqwer ty, qui et)andA(qwerty, quickly). <

Exercise 2.9: Recall the transformation28)-(25) used to normalize a sequence of edit operations. (i)
Verify that these transformations are valid.
(i) Verify that the costs are preserved by the transforovei &

Exercise 2.10:Let D = {Y7,...,Y,} be a fixed set of strings, called the dictionary. EtX, D) =

min {A(X,Y;) : i =1,...,n} be the minimum alignment distance between a stithgnd any
stringY in D. How can you preproced3 so thatA(X, D) can be computed in faster than the
obvious method? &

Exercise 2.11:Let X** denote strings of strings. A natural language text can baghbof as an
element ofS**. If v,w € ¥, let A(v,w) = % For X,Y € ¥**, let A(X,Y) be the
alignment distance using the aba¥dunction. Also, the gap penalty, is some arbitrary positive
value. &

Exercise 2.12: Suppose we allow the operationtofinspose ...ab... — ... ba.... LetT(X,Y) be
the minimum number of operations to convértto Y, where the operations are the usual string
edit operations plus transpose.

(i) ComputeT'(X,Y) for the following inputs:(X,Y) = (ab,¢), (X,Y) = (abe,¢), (X,Y) =
(ab,ca) and(X,Y") = (abc, ca).

(i) Show thatT'(X,Y) > 1 + min{T(X",Y),T(X,Y"), T(X',Y")}.

(iii) In what sense can you say th@(X,Y") cannot be reduced to some simple function of
T(X'Y), T(X,Y')andT (X', Y")?

(iv) Derive a recursive formula faf (X, Y'). &

Exercise 2.13:1n computational biology applications, there is interasamother kind of edit operation:
namely, you are allowed to reverse a substringX jfY, Z are strings, then we can transform the

Chee-Keng Yap Basic Version April 26, 2011

§3. POLYGON TRIANGULATION Lecture VII Page 19

XY Z to XYRZ in one step wher& 7 is the reverse of2. Assume that substring reversal is
added to our insert, delete and replace operations. Givéfieieet solution to this version of the
edit distance problem. &

END EXERCISES

§3. Polygon Triangulation

We now address a different family of problems amenable tath@amic programming approach.
These problems have an abstract structure that is bestigaglasing the notion of convex polygons.

The standard notion of a polygah is a geometric one, and may be represented by a sequence
(v1,...,v,) of verticeswherev; € R? is a point in the Euclidean plane. We sRyis convexif no v;
in contained in the interior of the triangl&(v;, vx, v¢) formed by any other triple of points. Figuie
shows a convex polygon with = 7 vertices. Anedgeof P is a line segmenlv;, v;;1] between two
consecutive vertices (the subscript arithmetic+“1”, is modulon). Thus[vy, v,] is also an edge. A
chord is an line segmerju;, v;] that is not an edge.

Figure 1: A triangulated 7-gon

€22. Abstract Polygons. We now give an abstract, purely combinatorial version o$¢hierms. Let
P = (vi,...,v,),n > 1, be asequence afdistinct symbols, called @mbinatorial convex polygon

or an(abstract) n-gonfor short. We call each; avertex of P. Since the vertices are merely symbols
(only the underlying linear ordering matters), it is oftemgenient to identify; with the integer. In
this case, we callvy,...,v,) = (1,...,n) the standard n-gon. Henceforth, we assume > 3 to
avoid trivial considerations.

AssumeP is a standardi-gon. By asegmentof P we mean an ordered pair of vertices, j)
wherel < ¢ < j < n. This is sometimes written;J”. We classify a segmerniyj as anedgeof P if
j =i+ 1(modn); otherwise the segment is callectlaord. Thus,1n is an edge. Ifix > 3, there are
exactlyn edges anc@";l) = (n—1)(n—2)/2chords (why?). We say two segmefiteandk/ intersect
if

i<k<j<t or kE<i<tl<y;
otherwise they ardisjoint. Note that an edge is disjoint from any other segmerf of

€23. Triangulations. It is not hard to show by induction thatraaximalsetT' of pairwise disjoint
chords ofP has size exactly — 3. If n > 3, a setl” with exactlyn — 3 pairwise disjoint chords is called
atriangulation of P. In the following, it is convenient to consider the degeterase of 2-gon; the
empty set is, by definition, the unique triangulation @gon. E.g., figurel shows a triangulation

T = {14, 24, 47,57}

Chee-Keng Yap Basic Version April 26, 2011

§3. POLYGON TRIANGULATION Lecture VII Page 20

of the standard-gon. Atriangle of P is a triple (i, j, k) (or simply,ijk) wherel <i < j < k <mn;
its three edges arg, jk andik. E.g., the set of all triangles of the standardon are

123,124, 125,134, 135, 145, 234, 235, 245, 345.

We sayijk belongs toa triangulatioril” if each edge of the triangle is either a chord/iror an edge of
P. Thus the triangles of thé& in figure 1 are

{124,234, 147,457, 567}.

Every triangulatiori” has exactlyn — 2 triangles belonging to it, and each edgelfofppears as the
edge of exactly one triangle and each chor@’iappears as the edge of exactly two triangles [Check:
n — 2 triangles has a combined total ®fn — 3) + n edges.] In particular, there is a unique triangle
belonging tol" which contains the edge:. This triangle is(1,i,n) for somei = 2,...,n — 1. Then

the setl’ can be partitioned into three disjoint subsets

T:TiL'UTi/L‘HSi

where S; = T n {(1,9),(i,n)}, and T;, T} are (respectively) triangulations of thegon P, =
(1,2,...,i) and the(n — i + 1)-gon P} = (4,7 + 1,...,n). E.g., the triangulatiol” in figure 1
has the partition

T=T44 Ti WSy

whereSy = {14,47}, Ty = {24} andT; = {57}. Note thatS; = {(1,7), (i,n)} iff 2 <i <mn —1,
Sy = {(2,n)} andS,—1 = {(1,n—1)}. Also, our convention about the triangulation®fons is
assumed wheh=2o0ri=n — 1.

Thus triangulations can be viewed recursively. This is et our ability to decompose problems
based on triangulations.

924. Weight functions and optimum triangulations. A (triangular) weight function onn vertices
is a non-negative real functidi” such that¥ (i, j, k) is defined for each trianglgk of an abstract-
gon. ThelW-costof a triangulatiorl” is the sum of the weightd’ (i, j, k) of the triangles jk belonging
to T. Theoptimal triangulation problem asks for a minimuni?’-cost triangulation ofP, given its
weight functioniv.

925. Example: Suppose a carpenter has to saw a baarhat is shaped as a convexgon into
n — 2 triangles. He wants to minimize the amount of sawing to beeddu can interpret this to mean
minimizing the amount of sawdust produced. How should beipuhe board?

In caseP = (v1,...,v,) iS @ geometric convex polygon in the plane, a natural costtfon is
W (i,j, k) is the perimetet|v; — v;|| + ||vi — vk|| + ||v; — vg|| of the triangle(v;, v;, vx), where
| - || denotes the Euclidean length function. It is easy to cheakZhis optimal iff it minimizes the
SUM>_ ., et llvi — v;| of the lengths of the chords ifi. Thus, this provides the solution to our
carpenter’s the sawdust problem.

In specifyingl¥, we generally expected the “specification size” tod@?>). However, in many
applications, the functiof¥ is implicitly defined by fewer parameters, typicaty(n) or ©(n?). Here
are some examples.

1. Metric Sawdust Problem: this is a generalization of the “sawdust example”. Supp@sd e
vertexi of P is associated with a poipf of some metric space. Thé# (i, j, k) = d(p;,p;) +
d(pj, px) + d(pk, pi) whered(p, q) is the metric between two points¢ in the space.

Chee-Keng Yap Basic Version April 26, 2011

§3. POLYGON TRIANGULATION Lecture VII Page 21

2. Generalized Perimeter Problem: W is defined by a symmetric matrita;;);',_; such that
W (i, j, k) = aij + ajx + a;. We can viewa; ; as the “distance” from nodéto node;j and
W (i, j, k) is thus the perimeter of the trianglgk. This is another generalization of “metric
sawdust”. HerelV is specified byd (n?) parameters. More generally, we might have

Wi, j, k) = f(aij, ajk, air)
wheref(-, -, -) is some function.

3. Weight functions induced by vertex weights: W is defined by a sequendes, ..., a,) of
objects where

W(ia.jv k) = f(aiaajaak)'

for some functiory (-, -, -). If a; is a number, we can view; as the weight of théth vertex. Two
examples arg (z,y, z) = x + y + z (sum) andf (z,y, z) = xyz (product). The case of product
corresponds to the matrix chain product problem studiggin

4. Weight functions from differences of vertex weights:WW is defined by an increasing sequence
ar <as <--- < a,andW(i,j, k) = ar, — a;. Note that the index is not used iV (4, j, k). In
§5, we will see an example (optimum search trees) of such ahwiigction.

€26. A dynamic programming solution. The cost of the optimal triangulation can be determined
using the following recursive formula: I€t(i, j) be the optimal cost of triangulating the subpolygon
(i,i+1,...,5)for1 <i< j<mn.Then

0 it j=i+1,
C(i,j) = (30)
min;<,p<; {W (i, k,j) + C(i, k) + C(k,j)} else

The desired optimal triangulation has c64tl, n). Assuming that the valu#/ (i, j, k) can be obtained
in constant time, and the size of the inputisit is not hard to implement this outline to give a cubic
time algorithm. We say more about this in the next section.

EXERCISES

Exercise 3.1: Find an optimal triangulation of the abstract pentagon whegight functionV is
parametrized byas, ..., as) = (4,1,3,2,2,3):
(a) The weight function is given by (i, j, k) = a;ajak.
(b) The weight function is given bW (i, j, k) = |a; — a;| + |a; — ax| + |a; — a|. &

Exercise 3.2: SupposeP is a geometric simple polygon, not necessarily convex. Wedefine chords
of P to comprise those segments that do not intersect the extérid. A triangulation is as usual
a set ofn — 3 chords. Leti?’ be a weight function on the vertices Bf Give an efficient method
for computing the minimum weight triangulation &% The goal here is to give a solution that is
O(k) wherek is the number of chords d?. &

Exercise 3.3: A more profound generalization of triangulation comes froonsidering the triangula-
tion (tetrahedralization) of convex polytope 3adimensions. Now, the number of tetrahedra is
not unique. Give an abstract formulation of this problemNMl certain subsets of the vertices
are said to be “convex”. &

Chee-Keng Yap Basic Version April 26, 2011

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 22

Exercise 3.4: (T. Shermer) LetP be a simple (geometric) polygon (so it need not be convexjinBe
the “bushinessb(P) of P to be the minimum number of degr8evertices in the dual graph of
a triangulation ofP. A triangulation is “thin” if it achieves b(P). Give af(n?) algorithm for
computing a thin triangulation. &

Exercise 3.5: Suppose that we want tmaximize the “triangulation cost” (we should really interpret
“cost” as “reward”) for a given weight functioi (4, j, k). Does the same dynamic programming
method solve this problem?

Exercise 3.6: (Multidimensional Dynamic Programming?)

(a) Give a dynamic programming algorithm to optimally pi#oti ann-gon into a collection of
3- or 4-gons. Assume we are given a non-negative real fumétid:, j, k,), defined for all

1 <i<j<k<Il<mnsuchthat{i,j,k,I} > 3. The valueW(i,j, k,1) should depend
only on the sefi, j, k, 1} if {i, 5,k 1} ={d, 5 k', '}, thenW (i, 4, k, 1) = W (¢, 5/, k', I"). For
exampleW(2,2,4,7) = W(2,4,4,7). The weight of a partitioning is equal to the sum of the
weights over all 3- or 4-gons in the partition. Analyze theming time of your algorithm. NOTE:
this problem has a 2-dimensional structure on its subpnodldut it can be generalized to any

dimensions.
(b) Solve a variant of part (a), namely, the partition shaeMdlusively be composed of 4-gons
whenn — 4 is even, and has exactly one 3-gon when 4 is odd. &

END EXERCISES

84. The Dynamic Programming Method

Let us note the three ingredients necessary for a succelysfaimic programming solution. We use
the triangulation problem for illustration.

e There are a small number of subproblems We interpret “small” to mean a polynomial number.
In the weight functioriV on then-gon(1,...,n), each contiguous subsequence

(i+10+2,...,5-1,7), (I<i<j<n)

induces a weight functioi’; ; onthe(j —i+1)-gon(i,i+1,...,7—1,7). This gives rise to the
subproblem P; ; of optimal triangulation ofi,7 + 1, ..., j). The original problem is jusP; ,,.
There ared(n?) subproblems. The “wrong” formulation can violate this sime$s requirement
(see Exercise).

e An optimal solution of a problem induces optimal solutions @ certain subproblems. If T
is an optimal triangulation o, . .., a,), then we have noted thdt = 71 W T, W S; where
S; C {1i,in} and Ty, Ts are triangulations of subpolygons &% In fact, 71, T, are optimal
solutions to subproblem, ; andP; ,, for somel < i < n. This property is called thdynamic
programming principle , namely, an optimal solution to a problem induces optimhltsns on
certain subproblems.

e The optimal solution of a problem is easily constructed fromthe optimal solutions of sub-
problems. If we have already found the cost of optimal triangulaticorsall smaller subproblems
of P; ; then we can easily solvB; ; using equation30).

The reader may verify that the same ingredients were praséme LCS and edit distance problems.

Chee-Keng Yap Basic Version April 26, 2011

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 23

€27. Mechanics of the algorithm. To organize the computation embodied in equati@g®),(we use
an upper triangulat x n matrix A to store the values af'(z, j),

Ali,j]=C(,j), (<))
See Figure.

S S S5 S

NN\

1 0 |ca,2) C(1,4)
2 0 [C(2,3)

3 0 |C(3,4)
4 0

)

1 2 3 4 5

Figure 2: Filling in of a upper triangular matrix

We view the algorithm as a systematic filling in of the matixNote that filling in the entried |, j]
can be viewed as solving a subproblem of gize- i + 1). We proceed im — 1 stages, where stagg
(t = 2,...,n) corresponds to solving all subproblems of siz&here are exactly — ¢ + 1 problems
of sizet. Note that to solve a problem of siz¢t > 2) we need to minimize over a setof 2 numbers
(see equation30)), and this takes timé@(t). Thus stage takesO((t — 2)(n —t + 1)) = O(n?) time.
Summed over all stages, the timedén?). The space requirement@(n?), because of the matrix.

The algorithm is easy to implement in any conventional paogning language: it has a triply-
nested “for-loop”, with the outermost loop-counter coliing the stage numbet, The following gives
a bottom-up implementation of equatic30j:

DYNAMIC PROGRAMMING FOROPTIMAL TRIANGULATION
fort <+ 1ton—1 < do problems of siz2
Aft,t+1] < 0.
fort<—2ton—1 <« t+ 1isproblem size
fori« 1ton—t < computeC|:,i + t]
Aliyi+t)+ Aliyi+ 0+ Ali+ 1, i+t + Wi+ 1,0+ t)
fork«i+2toi+t—1
Aliyi+t] < min{A[i,i +t], Afi, k] + A[k, i +t] + W (i, k,i +1)}

The algorithm lends itself to hand simulation, a processtti@student should become familiar with.

In general, we would be filling entries of a rakktensor (matrices are rarlkk = 2 tensors). It is
harder to visualize this process, but in terms a computerigfgn this presents no extra difficulty: we
would just have &k + 1)-ply nested for-loop.

€28. Splitters and the construction of Optimal Solutions. Suppose we want to find the actual
optimal triangulation, not just its cost. Let us call anyeémd: that minimizes the second expression

Chee-Keng Yap Basic Version April 26, 2011

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 24

on the right-hand side of equatiofi() an (i, 7)-splitter. If we can keep track of all the splitters, we
can clearly construct the optimal triangulation. For thisgmse, we employ an upper triangutax n
matrix K where K[i, j] stores ar(, j)-splitter. It is easy to see that the enf&fi, j] can be filled in
at the same time that[i, j] is filled in. Hence, finding optimal solutions is asymptoligthe same as
finding the cost of optimal solutions.

€29. Top-down versus bottom-up dynamic programming. The above triply nested loop algorithm
is a bottom-up design. However, it is not hard to construcidown design recursive algorithm:
simply implement 80) by a recursion. However, it is important to maintain the meas A (and K if
desired) as global shared space. This technique has béath‘taémo-izing”. Without memo-izing, the
top-down solution can take exponential time, simply beedhsre are exponentially many subproblems
(see next section). A simple memoization does not speedaiglgforithm. But we can, by computing
bounds, avoid certain branches of the recursion. This cea phatential speedup — see Exercise.

€30. Space-Efficient Solutions. We can usually reduce the space usage by a linear factorr@icad
to linear, cubic to quadratic, etc). For instance, in the L&blem, it is sufficient to keep at most
two rows (or two columns) of the matrix in memory. That is besmthe solution for row depends
only on the solutions of rowg — 1) and rowi. Indeed, space for only one row (or column) is already
sufficient — as new entries are produced for iothey overwrite the corresponding entries or riow1.
However, such space efficient solutions are not so easy smédhto solutions that reconstruct the
optimal solutions. For instance, how do we compute a LCSguSifr) space? To do this, we need a
kind of divide and conquer technique: which we explore ingkercises.

REMARK: The abstract triangulation problem has a “lineausture” on the subproblems. This
linear structure can sometimes be artificially imposed omablem in order to exploit the dynamic
programming framework (see Exercise on hypercube vertegtsen).

EXERCISES

Exercise 4.1: Jane Sharp noted an alternative to equatsi. (
(a) Jane observed that every triangulatiomust contain a triangle of the forfa, i + 1,7 + 2).
Such a triangle is called an “ear”. Prove this claim of Janau(may also prove the stronger
claim that there are at least two ears.)
(b) Suppose we remove an ear fromsagon. The result is aiin — 1)-gon. If we knew an
ear which appears in an optimum triangulation ofragon, we could recursively triangular the
smaller(n — 1)-gon. But since we do not know, we can try all possiple- 1)-gons obtained by
removing an ear. What is wrong with this approach? (Try tdentie analogue of equatio&dQ),
and think of the 3 ingredients needed for a dynamic progrargrapproach.) &

Exercise 4.2: Consider the linear bin packing problem where iteitem is not a single weight, but a
pair of non-negative weights$y;, w;). If we put theith to jth items into a bin, then we require
7_; v andd_7 _. wy, to be each bounded byf. Again the goal to use the minimum number of
bins. &

Exercise 4.3: Let (ng,n1,...,n5) = (2,1,4,1,2,3). We want to multiply a sequence of matrices,
Ap x Ay x --- x A5 where A; is n;_1 x n; for eachi. Please fill in matrices (a) and (b) in
Figure3. Then write the optimal order of multiplyingdi, ..., As.

&

Chee-Keng Yap Basic Version April 26, 2011

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 25

0| 0 0] N_] 0
1 0 1 0

2 0 2 0
3 0 3 0
4 0 4 0
5 5

0 1 2 3 4 5 0 1 2 3 4 5

(a) Optimum Cost Matrix((b) Splitter Matrix

Figure 3: (a)C[¢, 5] is optimal cost to multiplyingd; x - - - x A;. (b) K[i, j] indicates the optimal split,
(Ai X oo X Agpi) (Ak il X - X Aj)

Exercise 4.4: (Google Interview Problem, Feb 2009) You are playing a garitle an opponent. Both
of you are looking at a list of numbers The players moves alternately. To make a move, the
player must remove either the head or tail element flarithe score of a player is the sum of all
the numbers that the player removes. Your goal is to maxiyoze score. Construct a dynamic
programming algorithm that maximizes your score againgogponent (the opponent might not
be as interested in maximizing her own score as in minimigog's). &

Exercise 4.5: The following problem is motivated by computations in wategheory. We are given
three real non-negative coefficientd, c and a real function (the “barrier”)

1 i |z <1
h(z) = { 0 else

Define the functiory (z,) (wherei > 0 is integer) as follows:

~ | h(x) if i=0
f(:C,Z)—{ a-fRx—1,i—1)+b- fRx,i—1)+c-f(Rx+1,i—1) else

Let f(z) = lim; oo f(2,7). We call f(z,4) thei-th approximation tof (x). Assume that each
arithmetic operation takes unit time.

(a) Whatisf(0), f(1/2) andf(—1/2)?

(b) The functionf(z, ¢) has support contained in the open interfval, 1) (for fixed).

(c) Prove thatf(x) is well-defined (possibly infinite) for alt.

(d) Determine the time to compute a single valtier, n) if we implement a straightforward
recursion (each call t¢(y, ¢) is independent).

(e) We want an efficient solution for the following problenivenn, m, we want to compute the
valuesf(i/m,n) for all

1€Dy, ={-m+1,-m+2,...,-1,0,1,...,m—2,m— 1}.

Show that this can be computed@{mn) time andO(m) space.
(f) Strengthen (e) to show we can compute a single valagm, n) in O(n) time andO(1) space.

&

Exercise 4.6: (Recursive Dynamic Programming) The “bottom-up” solutafrthe optimal triangula-
tion problem is represented by a triply-nested for-loophie text. Now we want to consider a

Chee-Keng Yap Basic Version April 26, 2011

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 26

“top-down” solution, by using recursion. As usual, the Wit/ (, j, k) is easily computed for
anyl <i<j<k<n.

(a) Give a naive recursive algorithm for optimal triangidat Briefly explain how this algorithm
is exponential.

(b) Describe an efficient recursive algorithm. You will négedise some global data structure for
sharing information across subproblems.

(c) Briefly analyze the complexity of your solution.

(d) Does your algorithm ever run faster than the bottom-ygémentation? Can you make it run
faster on some inputs? HINT: for subprobldn(i, j), we can try to compute upper and lower
bounds orC(i, j). Use this to “prune” the search. &

Exercise 4.7: Give a linear spac®(n) solution to problem of optimal triangulation. Write the vec
rence for the space and time complexity of your algorithmv&éor the running time. &

Exercise 4.8: Consider the problem of evaluating the determinant ofiati n matrix. The obvious
co-factor expansion také¥(n - n!) arithmetic operations. Gaussian elimination taRésa®). But
for smalln and under certain circumstances, the co-factor method magtber. In this question,
we want you to improve the co-factor expansion method bygudimamic programming. What
is the number of arithmetic operations if you use dynamigpamming? Please illustrate your
result forn = 3.

HINT: We suggest you just count the number of multiplicaioifhen argue separately that the

number of additions is of the same order. &
Exercise 4.9: Generalize the previous exercise. Let the set of real cotssfa; : « = —N,—N +
1,...,-1,0,1,..., N} be fixed. Suppose that
. h(zx) if i=0
f(x’l)_{ ZfV:_Nai-f(zx—l,i—l) else

Re-do parts (a)—(c) in the last exercise. &

Exercise 4.10: (Hypercube vertex selection) Bypercube or n-cubeis the setd,, = {0,1}". Each
z = (z1,...,2,) € H, is called a vertex of the hypercube. Let= (m1,...,7,) andp =
(p1,--.,pn) be two positive integer vectors. Tipeice andreliability of a vertexx is given by
m(xz) =Y i, aym andp(z) = H?:l;zi:l pi- Thehypercube vertex selection problemis this:
givenm, p and a positive bound,, find x € H,, which maximizes(z) subject tor(z) < By.
Solve this problem in timé&(nBy) (notO(nlog By)).

HINT: View H,, = H; ® H,_; foranyk = 1,...,n — 1 andy ® z denotes concatenation of
vectorsy € Hy, z € H,_j. Solve subproblems of/;, and H,,_; with varying values ofB
(B=1,2,...,Bg). The choice of is arbitrary, but what is the best choicek# O

Exercise 4.11:Let S C R? be a set of: points. Partially order the points = (p.z,p.y) € R? as

follows: p < ¢ iff p.x < gz andp.y < q.y. If p # ¢ andp < ¢, we writep < ¢. A pointp is
S-minimal if p € S and there does not exigte S such thay < p. Letmin(S) denote the set of
S-minimal points.
(@ For ¢ € R, let S(¢) denote the set{pec S:p.ax>c}. Eg., let S =
{p(1,3),q(2,1),7(3,4),s(4,2)} as shown in figurel. Thenmin(S(c)) is equal to{p, ¢} if
c<ILi{q}ifl <ec<2{rs}if2<c<3; {s}if 3 <c Designa data structud(S) with
two properties:

Chee-Keng Yap Basic Version April 26, 2011

§4. THE DYNAMIC PROGRAMMING METHOD Lecture VII Page 27

=3

o3

Figure 4: Set of 4 points.

1. Foranye € R (“the query” is specified by), you can usé(S) to output the setin(S(c))
in time
O(logn + k)
wherek is the size oinin(S(c)).
2. The data structur®(S) usesO(n) space.

(b) For anyg € R?, let S(q) denote the sefp € S : p.x > q.x, p.y > q.y}. Design a data struc-
ture D'(S) such that for any; € R?, you can useD”(S) to output the setin(S(g)) in time
O(logn + k) wherek is the size ofnin(S(q)), andD”(S) usesO(n?) space. O

Exercise 4.12: (Knapsack) In this problem, you are given + 1 positive integers,
W, wi,vi(z’ = 1, ces ,n).

Intuitively, W is the size of your knapsack and there areéems where théth item has sizev;
and valuey;. You want to choose a subset of the items of maximum valugesuto the total size
of the selected items being at mdst. Precisely, you are to compute a subset {1,...,n}
which maximizes the sum Z

(3

i€l
subject to the constraidt, ., w; < W.

(a) Give a dynamic programming solution that runs in tithg V).
(b) Improve the running time t®(n, min{W, 2"}). &

Exercise 4.13: (Optimal line breaking) This book (and most technical pageday) is typeset using
Donald Knuth’s computer system known gsXT This remarkable system produces very high
quality output because of its sophisticated algorithmse €uch algorithm is the way in which it
breaks a paragraph into individual lines.

A paragraph can be regarded as a sequence of words. Suppose thenevargls, and their
lengths areuq, ..., a,. The problem is to break the paragraph into lines, no linerftalength
more thann. Between 2 words in a line we introduce one space; there ipaces after the last
word in a line. If a line has length, then we assesspenalty of m — & on that line. The penalty
for a particular method of breaking up a paragraph is the suthneopenalty over all lines. The
last line of a paragraph, by definition, suffers no penalty.

(a) Consider the obvious greedy method to solve this proffbasically fill in each line until the
next word will cause an overflow). Give an example to show thistdoes not always give the

Chee-Keng Yap Basic Version April 26, 2011

§5. OPTIMAL PARENTHESIZATION Lecture VII Page 28

minimum penalty solution.

(b) Give a dynamic programming solution to finding the oplfitha., minimal penalty) solution.
(c) lllustrate your method with Lincoln’s Gettysburg adsseassuming that = 80. In the case
of a terminal word (which is followed by a full-stop), we caaer the full stop as part of the word.
(d) Suppose we assume that there are 2 spaces separatihgtagudnd the following word (if
any) in the line. Modify your solution in (a) to handle this.

(e) Now introduce optional hyphenation into the words. Rompdicity, assume that every word
has zero or one potential place for hyphenation (the algoris told where this hyphen can be
placed). If an input word of length can be broken into two half-words of lengths and /s,
respectively, it is assumed that > 2 and/, > 1. Furthermore, we must include an extra unit
(for the placement of the hyphen character) in the lengtthefline that contains the first half.
Can you modify the above algorithm further? &

END EXERCISES

§5. Optimal Parenthesization

We can view a triangulation of &m + 1)-gon to be a “parenthesized expression’osymbols. Let
us clarify this connection.

Let (e1,e9,...,¢e,), n > 1, be a sequence of symbols. A(fully) parenthesized expression
on (ey,...,e,) is one whose atoms aeg (for i = 1,...,n), eache; occurring exactly once and in
this order left-to-right, and where each matched pair ofptresis encloses exactly two non-empty
subexpressions. E.g., there are exactly two parenthesigedssions ofll, 2, 3):

((12)3), (1(23)).

The reader may verify that there are 5 parenthesized expnsssn(1, 2, 3,4).

A parenthesized expression dny,...,e,) corresponds bijectively to @arenthesis treeon
(e1,...,e,). Such atree is a fullbinary treeT onn leaves, where théh leaf in symmetric order
is associated witl;. If n = 1, then the tree has only one node. Otherwise, the left and sightrees
are (respectively) parenthesized expression&on .., e;) and(e;y1,...,e,) forsomei =1,...,n.

/Q/%O |
@) > “ o
" db

Figure 5: The parenthesis tree and triangulation corredipgrio ((e; (ezes3))eq).

Vo

€4

There is a slightly more involved bijective correspondemetsveen parenthesis trees(en, . . . , e;,)
and triangulations of an abstra@t + 1)-gon. See Figuré for an illustration. If the(n + 1)-gon is

7 A node of a binary tree iull if it has two children. A binary tree ifull if every internal node is full.

Chee-Keng Yap Basic Version April 26, 2011

§5. OPTIMAL PARENTHESIZATION Lecture VII Page 29

(vo,v1,...,vy,), then the edge@®;_1,v;) is mapped te; (i = 1, ...,n) under this correspondence, but
the “distinguished edgevg, v,,) is not mapped. We leave the details for an exercise.

If we associate a cod¥ (i, j, k) for forming a parenthesis of the forniF1, F»)” where E; (resp.,
E,) is a parenthesized expression @5, . ..,e;) (resp.,(e;+1,...,ex), then we may speak of the
costof a parenthesized expression — it is the same as the cost abthesponding triangulation &f.
Finding such an optimal parenthesized expressiofiegn . ., e,,) is clearly equivalent to finding an
optimal triangulation ofP.

931. Encoding parenthesis trees as permutations.We can encode this parenthesis tree on
(e1,...,e,) by aunigue permutation

7= (71, ,Tn-1) (31)

of {1,2,...,n — 1}. Before explaining this in full generality, consider alkth possible parenthesis
trees orey, eo, e3, e4:

ei(ea(eses)), ei((ezes)es), (erez)(eses), ((erez)es)es, (ex(ezes))es.
These are represented, respectively, by the permutations
(123), (132), (213), (321), (312).

If n =1, the permutation is the empty sequence: (), and ifn = 2, the permutation is just = (1).
Forn = 3, there are two permutations= (12) or = = (21).

Let us now explain how the permutatioB1lj encodes a parenthesis tree:nif= 1, thenw =
() is the empty string. the first entry; tells us that the last multiplication is to form the product
Atz - Ai4x, n Where we writed; ; for []7_, Ax. Recursively, the next; — 1 entries in represents
a parenthesis tree ofly, . . ., A,,, and the remaining — m; — 1 entries inr representsa parenthesis
tree on4i4r,, ..., An. Thus we have demonstrated:

LEMMA 3. There exists an injection from the set of parenthesis treesleaves to the set of permuta-
tions onn — 1 symbols.

It is clear that the firstr; entries in 81) must therefore be a permutation oh 2, ..., 7 }. There-
fore, not all permutations ofil, ..., n — 1} correspond to a permutation tree. Foe 4, we see that
m = (2, 3,1) does not represent any parenthesis tree.

932. Catalan numbers. It is instructive to count the numbé?(n) of parenthesis trees an > 1
leaves. In the literature?(n) is also denoted’(n — 1), in which case it is called €atalan number.
The indexn — 1 of the Catalan numbers is the number of pairs of parenthesided to parenthesize
symbols. Here&'(n) = 1,1,2,5forn = 0, 1, 2, 3. Note thatC'(0) = 1, not0.

From the injection of Lemma, we conclude thaP(n) = C'(n — 1) < (n — 1)!. Our current goal
is to give a more precise census of parenthesis trees. Inajefogn > 1, the following recurrence is
evident:

n

C(n) =) C@i—1)C(n—1-1). (32)
i=1
8 Strictly speaking, the last — w1 — 1 entries represent a parenthesis treedan ., , ..., Ay in this senseif we subtract
w1 from each of these entries, we would obtain (recursivelygranuitation representing a permutation tree dn, ..., A, .

Chee-Keng Yap Basic Version April 26, 2011

§5. OPTIMAL PARENTHESIZATION Lecture VII Page 30

We can interpre€(n) as the number of binary trees with exactlyodes (Exercise). In terms &f(n),
we get a similar recurrence:

n—1
P(n) = P@i)P(n—1—1) (33)
i=1
where we defing’(0) = 0. ThusP(1) = P(2) =1, P(3) = 2.

This recurrence has an elegant solution using generatirgifuns (segVI11.9),

Clm) = mLH <27Z‘>

()=o)

SoC(m) = ©(4™m~3/?) grows exponentially and there is no hope to find the optimedmthesis tree
by enumerating all parenthesis trees.

By Stirling’s approximation,

€33. Matrix Chain Product. An instance of the parenthesis problem is thatrix chain product
problem: given a sequence
Ap,.. . Ay

of rectangular matrices wherg isa;—1 x a; (i = 1,...,n), we want to compute the chain product
A1As - A,
in the cheapest way. The sequefiag, a1, .. ., a,,) of numbers is called thdimension of this chain

product expression.

To be clear about what we mean by “cheapest way”, we musfycthe cost model. Using associa-
tivity of matrix products, each method of computing this giwot corresponds to a distinct parenthesis
tree on(4,, ..., 4,). For instance,

((A142)A3), (A1(A243)) (34)

are the two ways of multiplying 3 matrices. L&{(p, ¢,r) be the cost to to multiply @ x ¢ matrix
by ag x r matrix. For simplicity, assume the straightforward altfum for matrix multiplication, so
T(p,q,7) = pgr. Then, if the dimension of the chain produét As As is (ao, a1, az, as), the first
method in 84) to multiply these three matrices costs

apaiaz + apazas = apaz(a + az)
while the second method i34) costs
apaias + ajaoa3 = alag(ao —|— (IQ).

Letting (ao, . . .,a3) = (1,d, 1,d), these two methods coat and2d?, respectively. Hence the second
method may be arbitrarily more expensive than the first.

Hence the key problem is this: given the dimensjas, . .., a,) of a chain product instance, de-
termine the optimal cosi,,:(ao, - - ., a,) to compute such a product. We can solve this problem by
reducing it to to the optimal parenthesis tree problem: @edim triangular weight functio’ (i, j, k)
for0 <i < j < k < ntoreflect our complexity model:

W (i, j, k) == a;ajag.

Chee-Keng Yap Basic Version April 26, 2011

§5. OPTIMAL PARENTHESIZATION Lecture VII Page 31

This is what we called the “product weight function”§a.

CLAIM: T,,:(ao,- - . ,a,) is the minimumi¥’-cost triangulation of the abstra@t + 1)-gon on the
vertex se{0,1,...,n}.

We have seen a@(n?®) dynamic programming solution to compute this minimiifrcost trian-
gulation (or equivalently, the corresponding parenthérsis). The original problem of matrix chain
product can be solved in two stages: first find the optimalmthesis tree, based on just the dimension
of the chain. Then use the parenthesis tree to order thel actuigx multiplications. The only creative
part of this solution is the determination of the optimalgahesization.

Remark: 1. Chandrdhas shown a simple method of multiplying matrices that iinit factor of
2 from T,,¢. Consider the permutation = (1,2,...,n — 1): according to encoding scheme 6&flJ,
this corresponds to the following parenthesis treeden. . ., A,,:

(- ((A1A2)A3) -) Ap. (35)

This is essentially the left-to-right multiplication of@glsequence of matrices. It can be shown that the
cost of this method of multiplication @(Tfpt), and this is tight (Exercise). But suppose we chagse
such thaty;, = min {ag, a1,...,a,}. Now consider the parenthesis tree represented by the pegioru

™ = (io—1,i0—2,...,1,i0+1,i0+2,...,n—1,i0)
where the last, is omitted ifioc = 0 oriy = n. This corresponds to the parenthesis structure
(A1 (Aig—2(Aig—144)))+ (Aig+1Aig42) -+ An). (36)

Then the cost of this computation is at mo%t,,: (ao, - . . , an).

2. For the product weight functioml’ (a;, a;, ar) = a;a;ay, the optimal triangulation problem can be
solved inO(n log n) time, using a sophisticated algorithm due to Hu and ShihgRamanan{] gave
an exposition of this algorithm, and presented¥n log) lower bound in an algebraic decision tree.

EXERCISES

Exercise 5.1: Show that”(n) is the number of binary trees ennodes. HINT: Use the recurrenc@?}
and structural induction on the definition of a binary tree. &

Exercise 5.2: Work out the bijective correspondence between trianguiatiand parenthesis trees
stated above. &

Exercise 5.3: Verify by induction that”(m) has the claimed solution. &

Exercise 5.4: Solve the recurrenc&®) for C(n) by using the following observation: consider gener-
ating function

G(x) :ZC(i)xi =14+ax+222 +52°+---.
1=0
HINT: What can you say about the coefficient:df in the squared generating functiot{z)??
Write this down as a recurrence equation involvirg:) Solve this quadratic equation.

&

9 “Computing Matrix Chain Products in Near-Optimal Time”, ik K. Chandra, IBM Research Report RC 5625 (#24393),
10/6/75.

Chee-Keng Yap Basic Version April 26, 2011

§6. OPTIMAL BINARY TREES Lecture VII Page 32

Exercise 5.5: (Chandra)
(i) Show that the methodg) for multiplying the matrix chaimd,, ..., A, is O(Tfpt) whereTy,,;
is the optimal cost of multiplying the chain.
(ii) Show that the bound)(Tfpt) is asymptotically tight.
(iii) Show that the method3g) has cost at moXT ;. &

Exercise 5.6: (i) Consider an abstraet-gon whose weight function is a product functid¥i, j, k) =
w;wjwy, for some sequenaey, . . ., w, of non-negative numbers. Call; the “weight” of vertex
i. Let(my,ma,...,m,) be a permutation of1, ..., n} such that

wﬂ'] Swﬂ'z S '.'Swﬂ'n'

Show that there exists an optimal triangulatibrmof P such that vertexr; of least weight is
connected tors and also tars in T'. [We say vertex is connected toj in T if eitherij or ji is

in T or is an edge of tha-gon.]

HINT: Use induction om. Call a vertex: isolatedif it is not connected to another vertex by a
chord inT'. Consider two cases, depending on whetheis isolated inl" or not.

(ii) (Open) Can you exploit this result to obtairén?) algorithm for the matrix chain product
problem? O

END EXERCISES

66. Optimal Binary Trees

Suppose we store keys
Ki<Ky<- <K,

in a binary search tree. The probability that a K€yto be searched is equél; is p; > 0, and the
probability thatK falls betweeni(; and K1 is ¢; > 0. Naturally,

n n
Zpi + qu' =1
=1 j=0

In our formulation, we do not restrict the sum of this andg's to be1l, since we can simply interpret
these numbers to be “relative weights”. But we do requirethe;’s to be non-negative.

We want to construct an fufl binary search tre& whose nodes are labeled by

qo,P1,491,P25---54n—1,Pn;4n (37)

in symmetric order. Note that the’s label the internal nodes ang's label the leaves.
[FIGURE]

In a natural way,I" corresponds to a binary search tree in which the interna¢sade labeled by
Ki,...,K,. Butfor our purposes, the actual kexs are irrelevant: only the probabilitigs, ¢; are

10 This amounts to an extended binary search tree, as desanihedture 3.

Chee-Keng Yap Basic Version April 26, 2011

§6. OPTIMAL BINARY TREES Lecture VII Page 33

of interest. Each subtreg ; (1 < ¢ < j < n) of T' corresponds to a binary search tree on the keys
K;, ..., K;. We define the followingveight function:

W(i—1,7) == q-1+pita+ - pjt+q

J
= Q-1+ Z(Qk + pr)
k=i

forall0 <i < j <n.ThusW(i,i) = q;. Thecostof T is given by
C(T)=W(0,n)+C(T) + C(Tr)

whereT;, andTr are the left and right subtrees @f. If T' has only one node, the@(T) = 0,
corresponding to the case where the node is labeled by gpm#/e sayT is optimal if its cost is
minimum. So the problem adptimal search treesis that of computing an optimdl, given the data
in (37). Why is this definition of “cost” reasonable? Let us chargené cost to each node we visit
when we lookup a keys. If K has the frequency distribution given by the probabilifigs;;, then the
expected charge to the rootBfis preciselyiV (i — 1, j) if the leaves of" are K, . .., K;. SoC(T) is
the expected cost of looking Ug in the search tre@'.

€34. Application. In constructing compilers for programming languages, wedreesearch structure
for looking up if a given identifiet is a key word. Suppos&, ..., K, are the key words of our
programming language and we have statistics telling usahatentifier X' in a typical program is
equal tok; with probabilityp; and lies betweerk’; and K, with probabilityg;. One solution to this
compiler problem is to construct an optimal search treelferkey words with these probabilities.

935. Example. Assume thatpi, p2, ps) = (6, 1,3) and they,’s are zero. There are 5 possible search
trees here (see figuf®. The optimal search tree has root labebgdgiving a cost o6 + 2(3) + 3(1) =
15. Note that the structurally “balanced tree” with at the root has a bigger cost t. Intuitively, we
understand why it is better to hape at the root — it has a much larger frequency than the othersaode

) m Ppl
p& ® \@
P2 P3
@ b2
Cost =5 Cost =9

Figure 6: The 5 possible binary search treeg@nps, p3).

Let us observe that theynamic programming principle holds,i.e., every subtree df; ; (1 < i <
n) is optimal for its associated relative weights

qi—1,Piy4qiy---5495—-1,P5,95-

Hence an obvious dynamic programming algorithm can be dévsfind optimal search trees@n(n?)
time. Exploiting additional properties of the cost funetjé&Knuth shows this can be doned@{n?) time.
The key to the improvement is due to a general inequalitgfadi by the cost function, first clarified
by F. Yao, which we treat next.

EXERCISES

Chee-Keng Yap Basic Version April 26, 2011

§7. OPTIMAL BINARY TREES Lecture VII Page 34

Exercise 6.1: Describe the precise connection between the optimal se@eproblem and the optimal
triangularization problem. &

Exercise 6.2: Suppose the input frequencies dgg, ..., p,) (the ¢;’s are all zero). If thep;’s are
distinct, Joe Quick has a suggestion: why not choose thedargto be the root? Is this true for
n = 3? Find the smallest for which this is false, and provide a counter example fog thi

%

Exercise 6.3: (Project) Collect several programs in your programminglsage X.
(a) Make a sorted list of all the key words in language X. Ifréharen key words, construct a
count of the number of occurrences of these key words in yetwofgprograms. Lepy, po, ..., pn
be these frequencies.
(b) Construct an optimum search tree for these key wordsifaisg ¢;'s are0) these key words
(assumingy;’s are0).
(c) Construct from your programs the frequencies that akeynword falls between the keywords,
and thereby obtain, q1, . . ., g,. Construct an optimum search tree for thg'seandq’s. O

Exercise 6.4: The following class of recurrences was investigated by i [3]:

M(n)=g(n)+ Ogingig_l{aM(k) +B8M(n—Fk—1)}

wherea, 8 > 0 andg(n) are given. This is clearly related to optimal search trees.faus on

g(n) =n.

(a) Supposenin{«, 8} < 1. Show thatM (n) ~ e AT

(b) Supposenin{a, 8} > 1,loga/ log B is rational andv—t + =1 = 1. ThenM (n) = ©(n?).
¢

Exercise 6.5: If the p;’s are all zero in the Optimal Search Tree problem, then thamigation cri-
teria amounts to minimizing the external path length. Retalt the external path length of a
tree whose leaves are weighted is equa} ig d(u)w(u) whereu ranges over the leaves, with
w(u),d(u) denoting the weight and depth aof Suppose we considerraodified path length
of a leafu to bew(u) Zfi%) 2% (instead ofd(u)w(u)). Solve the Optimal Search Tree under
this criteria. REMARK: This problem is motivated by the pessing of cartographic maps of the
counties in a state. We want to form a hierarchical levetietail map of the state by merging the
counties. After the merge of a pair of maps, we always simphie result by discarding some
details. If the weight of a map is the number of edges or vestin its representation, then after
a simplification step, we are left with half as many edges. &

Exercise 6.6: Consider the following generalization of Optimal Binarye®s. We are given a subdivi-
sion of the plane into simply connected regions. Each regama positive weight. We want to
construct a binary tre€ with these regions as leaves subject to one condition: edeimial node
u of T determines a subregid®,, of the plane, obtained as the union of all the regions below
We requireR,, to be simply-connected. The costBfis as usual the external path length (i.e.,
sum of the weights of each leaf multiplied by its depth).

(a) Show that this problem i P-complete.
(b) Give provably good heuristics for this problem. &

END EXERCISES

Chee-Keng Yap Basic Version April 26, 2011

§7. WEIGHT MATRICES Lecture VII Page 35

§7. Weight Matrices

We reformulate the optimal search tree problem in an akst@nework.

DEFINITION 1. Letn > 2 be an integer. Ariangular function W (of ordern) is any partial function
with domain|[0..n] x [0..n] suchW (i, 5) is defined iffi < j. We calliW a weight matrix if it is a
triangular function whose range is the set of non-negatae numbers. A quadruplg, ', j, ;') is
admissibleif

0<i<i <j<j <n

We saylv is monotoneif
Wi, j) < W(i,j")

for all admissible(i, ', 4, j'). Thequadrangle inequality for W for (i,#', j,j') is
W (i, j) + Wi, j") <W(i,j") + W(, j).

We sayiV is quadrangular if it satisfies the quadrangular inequality for all admisi&ilgi, i’, j, j').

T E N --®

. |

/Ll— ————————— - -

N N monotone:
g e <o

guadrangular:
EiE < et@

Figure 7: Monotone and quadrangular weight matrix.

It is sometimes convenient to writ&;; or W; ; instead ofi¥ (3, j). If we view IW;; as the(z, j)-th
entry of ann-square matriXV’, thenW is upper triangular matrix. Note thét, ', j, ;') is admissible
iff the four points(z,), (¢, 5), (i, 5'), (', j/) are all on or above the main diagonall®f (see Figure).
Monotonicity and quadrangularity is also best seen viguafl. Figure?):

e Monotonic means that along any north-eastern path in themp@ngular matrix, the matrix
values are non-decreasing.

e Quadrangularity means that for any 4 corner entries of angte lying on or above the main
diagonal, the south-west plus the north-east entries ardesmthan the sum of the other two.

936. Example: In the optimal search tree problem, the weight funcfiris implicitly specified by
O(n) parametersyiz., qo, p1,q1, - - - s Pns gn, With

J

J
W(i,j) = Z Qk+2pk-
k=i

k=i—1

In this caseJV (i, j) can be computed in linear time from thgs andp;’s. The pointis that, depending
on the representatiofi/ (i, 7) may not be available in constanttime. The following is lsfaa exercise:

LEMMA 4. The weight matrix for the optimal search tree problem is bntimotone and quadrangular.
In fact, the quadrangular inequality is an equality.

Chee-Keng Yap Basic Version April 26, 2011

§8. QUADRANGULAR INEQUALITY Lecture VII Page 36

DEFINITION 2. Given a weight matridV/, its derived weight matrix is the triangular function
W . [0n]2 — Rzo

is defined as follows:
W*(i,i) := W(i,5).

Assuming thatV* (i, j) has been defined for ajl— i < ¢, define

W*(i,i+) :=W(i,i+¢) + i<rg1§1£1+é{W (i, k= 1)+ W*(k,i+£)}.

Defining
W2 (i, js k) == W(i, j) + W*(i, k — 1) + W*(k, j), (38)

we callk an (4, j)-splitter if W* (i, j) = W*(i, j; k).

Note: the literature (especially in operations resear@scdbes the Monge property of matrices.
This turns out to be the quadrangle inequality restricteddmissible quadrupleg, ', j, ;') where
i’ =i+1landj =j+ 1.

EXERCISES

Exercise 7.1: (a) Computer the derived matrix of the following weight nizgs:

T T[2]1]2]1
CARAS) 2 312

W, = A W= 1[0]1
- il2

2

(b) SupposéV (i, j) = a; fori = jandW (i, 7) = 0 for i # j. Thea,’s are arbitrary constants.
Succinctly describe the matriy ™. &

Exercise 7.2: (Lemmad4) Verify that the weight matrix for the optimal search treelpem is indeed
monotone and satisfies the quadrangatgrality. &

Exercise 7.3: Write a program to compute the derivative of a matrix. It ddaun in O(n?) time on

ann-square matrix. &
Exercise 7.4:

(a) Interpret the derived matrix for the optimal search pesblem.

(b) Does the derived matrix of a derived matrix have a raalisterpretation? &

Exercise 7.5: Generalize the concept of a triangular functiéhso that its domain i§0..n]* for any
integerk > 2, andW (iy, ..., i) is defined iffi; <iy <--- <4 ThenW is aweight function
(of order n anddimensionk) if it is triangular and has range over the non-negativemaaibers.
Formulate the “optimak-gonalization” problem for an abstractgon. (This seeks to partition
ann-gon into/-gons whered < ¢ < k. Give a dynamic programming solution. &

Chee-Keng Yap Basic Version April 26, 2011

§8. QUADRANGULAR INEQUALITY Lecture VII Page 37

END EXERCISES

§8. Quadrangular Inequality

The quadrangular inequality is central in #én?) solution of the optimal search tree problem. We
will show two key lemmas.

LEmMA 5. If W is monotone and quadrangular, then the derived weight matit is also quadran-
gular.

Proof. We must show the quadrangular inequality
W= (i, 4) + W@, 3") < W@, 5) + W@, j5), (0<i<i'<j<j <n) (39)

First, we make the simple observation whes= ' or j = j’, the inequality in equation3@) holds
trivially.

The proof is by induction ot = ;' — i. The basis, wheii = 1, is immediate from the previous
observation, since we have= ¢/ or j = ;' in this case.

937. Casei < i’ =j < j': Sowe wantto prove thaV/* (i, j) + W*(4,5') < W*(i,5) + W*(4, 7).
LetW*(i,j') = W (i,7'; k) and initially assume < k < j. Then

Wi +Wr Wi+ Wi+ Wi+ Wi, (expandingV;;)
Wi i + W*,C 1+ [VV,C it W* /] (by monotonicity)
Wi + Wiy + Wi ol + W’j (by induction)
Wi, + Wi, (by choice ofk).

A IAIA

In casej < k < j’, we would initially expandV;, above.

938. Casei < i/ < j < j': LetW*(i,5') = W(i,j'; k) andW*(i', j) = W(, 4;¢) and initially
assumek < /. Then

Wi+ Wi Wi+ Wi + W,”] Wi jr + Wi+ Wi] (sin;ez’ <k<ji<t<yj)
(Wi + Wl, AW+ Wi+ [W,C ;+ Wi (Wis quadrangular)

(Wijr + Wi gl + Wy + Wiy + [W,” +W;;] (induction on(k, ¢, j, j'))
[Wz,J+Wk1+WkJ] [W +sz1+sz]

Wiy + Wi, (by choice ofk;, ¢).

I IAIAIA A

In casel < k, we can begin as above with the initial inequali¥y* (i, j) + W*(i’, j') < W*(i, J; £) +
W (i, j': k). Q.E.D.

939. Splitting function K. The (i, j)-splitter & is not unique but we make it unique in the next
definition by choosing the largest sukh

DEFINITION 3. Let W be an weight matrix. Define theplitting function Ky, to be a triangular
function
Ky : [0.n]* — [0..n]

defined as followsKyy (i,7) = iand for0 < i < j <n,
Kw(i,j) = max{k : W*(i, j) = W(i, j: k)}.

Chee-Keng Yap Basic Version April 26, 2011

§8. QUADRANGULAR INEQUALITY Lecture VII Page 38

We simply writeK (i, 7) for Kw (4, j) whenW is understood. Once the functidfyy is determined,
it is a straightforward matter to compute the derived matfix}” The following is the key to a faster
algorithm.

LEMMA 6. If the derived weight matrix dfi is quadrangular, then forald <i < j < j,

Kw(i,j) < Kw(i,j+1) < Kw(i+1,7+1).

Proof. By symmetry, it suffices to prove that
K(i,j) < K(i,j +1). (40)
This is implied by the following claim: if < & < k&’ < j then
W*(i,5; k") < W*(i,5;k) implies W*(i,j+ 1;k") < W*(i,5 + 1; k). (41)

To see the implication, suppose equatidf)(fails, sayK (i,j) = ¥’ > k = K(i,j + 1). Then the
claim impliesK (i, j + 1) > k’, contradiction.

It remains to show the claim. Consider the quadrangularuakity for the admissible quadruple
(k? kl?j?j + 1)1
W*(k,j) + W (K, j+1) < W (k,j +1) + W (K, j).

AddingW (i, 5) + W(i,j+ 1) + W*(i,k — 1) + W*(i, k¥’ — 1) to both sides, we obtain
W*(i,js k) + W7 (i, j + LK) S W™ (0,5 + 1 k) + W7 (i, j; k).

This implies equation4l). Q.E.D.

€40. Main result. The previous lemma gives rise to a faster dynamic programrsaiution for
monotone quadrangular weight functions.

THEOREM 7. Let W be weight matrix such thdf/ (¢, j) can be computed in constant time for all
1 <i < j < n,and its derived matri¥y* is quadrangular. Then its derived matri¥* and the
splitting functionKy can be computed i®(n?) time and space.

Proof. We proceed in stages. Instage- 1,...,n—1, we will computeK (i, i+ ¢) andW* (i, i+ ¢)
(foralli = 0,...,n — {). It suffices to show that each stage takes takés) time. We compute
W*(i,4 + ¢) using the minimization

W*(iyi+0) = min{W(i,i+ k) : K(i,i+0—1)<k<K(@+1,i+0)}

This equation is justified by the previous lemma, and it takes O (K (i+1,i+£¢)— K (¢,i+¢—1)+1).

Summing over alt = 1,...,n — ¢, we get the telescoping sum
n—~¢
Z[K(i—i—1,i—|—€)—K(i,i+€—1)—|—1] =n—L+Kn—-0+1,n)—K(1,£) =O(n).
1=1
Hence stagé takesO(n) time. Q.E.D.

Chee-Keng Yap Basic Version April 26, 2011

§8. QUADRANGULAR INEQUALITY Lecture VII Page 39

941. Remarks. We refer to [/] for a history of this problem and related work. The origif@mula-

tion of the optimal search tree problem assumésare zero. For this case, T.C. Hu has an non-obvious
algorithm that Hu and Tucker were able to show runs correéaty(n log n) time. Mehlhorn B] con-
siders “approximate” optimal trees and show that these @andnstructed irO(nlogn) time. He
describes a solution to the “approximate search tree” pratih which we dynamically change the
frequencies; see “Dynamic binary searct8IAM J.Comp.,8:2(1979)175-198). M. R. Garey gives an
efficient algorithm when we want the optimal tree subjectdepth bound; see “Optimal Binary Search
Trees with Restricted Maximum DepttgIAM J.Comp.,3:2(1974)101-110).

EXERCISES

Exercise 8.1: (a) Compute the optimal binary tree for the following seqreen
(g0,P1,41,---,P10,910) = (1,2,0,1,1,3,2,0,1,2,4,1,3,3,2,1,2,5,1,0,2).
(b) Compute the optimal binary tree for the case whergythare the same as in (a), namely,
(go,q1,---,q10) = (1,0,1,2,1,4,3,2,2,1,2)

and thep's are. &

Exercise 8.2: It is actually easy to give a “graphical” proof of lemrfialn the figures, this amounts to
showing thatifA + a« > B+bthenA’ +a > B’ + V.

A B C
)]
C/
A | B
a a
b v

Figure 8: Derived weight matrix.

Exercise 8.3: If W is monotone and quadrangular}is* monotone? &

Chee-Keng Yap Basic Version April 26, 2011

§9. CONCLUSION Lecture VII Page 40

q0 q

Figure 9: Linear list search tree.

Exercise 8.4: Consider a binary search tree that has this shape (esseati@ear list):
Show that the following set of inequalities is necessaryaifticient for the above search tree to
be optimal:
D2+ q2
p3+ a3

> p1tqo (E2)
> peta+pr+q (E3)
pn+Qn 2 Pn—1 +Qn—2 +pn—2++pl+q0 (En)
HINT: use induction to prove sufficiency.
Remark: So search trees with such shapes can be verified to be optitiredar time. In general,
can an search tree be verified to be optimal(in®) time? &

Exercise 8.5: (a) Generalize the above result so that all the internal siauithe left of the root are left-
child of its parent, and all the internal nodes to the righthaf root are right-child of its parent.
(b) Can you generalized this to the case where all the intexodes lie on one path (ignoring
directions along the tree edges — the path first traverseseaupde to the root and then down the

tree again). &
Exercise 8.6: Given a sequence,, . . ., a,, of real numbers. Lefl;; = Zi:i ag, Bij = min{Ay; :
k=1,...,7} andB; = B;;. Compute the valueBy, ..., B, in O(n) time. O

END EXERCISES

§9. Conclusion

This chapter shows the versatility of the on dynamic progrmamg approach to a variety of problems.
A serious drawback of dynamic programming is its high potyiad cost: O(n*) for k > 2, in both
time and space may not be practical in some applicationscéirere is interest in exploiting “sparsity
conditions” when they occur. Sometimes, the implicit mato be searched has special properties
(Monge conditions). See the survey of Giancailpfpr such examples.

References

[1] A. Apostolico and Z. Galil, editorsPattern Matching AlgorithmsOxford University Press, 1997.

Chee-Keng Yap Basic Version April 26, 2011

§9. CONCLUSION Lecture VII Page 41

[2] D. Z. Chen, O. Daescu, X. Hu, and J. Xu. Finding an optimethpwvithout growing the treed.
Algorithms 49(1):13-41, 2003.

[3] M. L. Fredman.Growth Properties of a class of recursively defined funcidthD thesis, Stanford
University, 1972. Technical Report No. STAN-CS-72-296DPrhesis.

[4] R. Giancarlo. Dynamic programming: Special cases. IApostolico and Z. Galil, editor®attern
Matching Algorithmspages 201-232. Oxford University Press, 1997.

[5] D. S. Hirschberg. A linear space algorithm for computingximal common subsequenc&€mm.
of the ACM 18(6):341-343, 1975.

[6] T.C.Huand M.-T. Shing. AD(n) algorithm to find a near-optimum partition of a convex polggo
J. Algorithms 2:122-138, 1981.

[7]1 D. E. Knuth. The Art of Computer Programming: Sorting and Searchimgume 3. Addison-
Wesley, Boston, 1972.

[8] K. Mehlhorn. Datastructures and Algorithms 1: Sorting and Sortin§pringer-Verlag, Berlin,
1984.

[9] P. Ramanan. A new lower bound technique and its apptinatfight lower bound for a polygon
triangulation problemSIAM J. Computing23:834—851, 1994.

Chee-Keng Yap Basic Version April 26, 2011

	 DYNAMIC PROGRAMMING
	 Longest Common Subsequence
	 Edit Distance
	 Polygon Triangulation
	 The Dynamic Programming Method
	 Optimal Parenthesization
	 Optimal Binary Trees
	 Weight Matrices
	 Quadrangular Inequality
	 Conclusion

