§1. THE POTENTIAL FRAMEWORK Lecture VI Page 1

“ ...self-amortizing canals...”
— Mr. Banks inMary Poppins

Lecture VI
AMORTIZATION

Amortization is the idea of distributing cost over a periddime, as when we take out a 25-year
mortgage loahto pay for a home. This idea can be used to analyze the coshoing an algorithm.
Suppose each run of an algorithm amounts to a sequence attigmsron a data structure. For instance,
to sortn items, the well-knowrheapsort algorithm (Lect.lll,§7) is a sequence of i nsert’s into
an initially empty priority queue, followed by a sequencenadel et eM n’s from the queue until it
is empty. Thus ife; is the cost of theth operation, the algorithm’s running time Efﬁl ¢, since
there are2n priority queue operations in all. In worst case analysis,ewsure thatach operation is
efficient, say; = O(logn), leading to the conclusion that the overall algorithr®{s: log). The idea
of amortization exploits the fact that we may be able to obtain the same b@fiq ¢i = O(nlogn)
without ensuring that each; is logarithmic. We then say that tla@nortized costof each operation is
logarithmic. Thus “amortized complexity” is a kind of avgeacomplexity although it has nothing to
do with probability. Tarjan]1] gave the first systematic account of this topic.

1. Why amortize? Note that for the heapsort problem above, we could have edsach opera-
tion is logarithmic time. Nevertheless, it may be advantagao consider algorithms that only achieve
logarithmic behavior only in the amortized sense. For imstathe extra flexibility of using amortized
bounds may lead to simpler or more practical algorithms.eétdmany “amortized” data structures
are relatively easy to implement. To give a concrete exangplesider any balance binary search tree
scheme. The algorithms for such trees must perform coraitkebook-keeping to maintain its bal-
anced shape. In contrast, when we study splay trees belowyilveee an amortization scheme for
binary search trees which is considerably simpler and “Ex8ut balancing. The operative word in
amortization i$ laziness: try to defer the book-keeping work to the futurbew it might be more
convenient to do this work.

This chapter is in 3 parts: we begin by introducing gwential function framework for doing
amortization analysis. Then we introduce two data strestsplay treesandFibonacci heaps which
can be analyzed using this framework. We give a non-triyppliaation of each data structure: splay
trees are used to maintain the convex hull of a set of pointisdérplane, and Fibonacci heaps are used
to implement Prim’s algorithm for minimum spanning trees.

§1. The Potential Framework

We formulate an approach to amortized analysis using theagirof “potential functions”. Bor-
rowing a concept from Physics, we imagine data structureg@mg “potential energy” that can be

1 At the same time, our home is mortgaged or pledged as callater
2 In algorithmics, it appears that we like to turn conventloviaes (greediness, laziness, gambling with chance, ato) i
virtues.

Chee-Keng Yap Basic Version April 19, 2011

§1. THE POTENTIAL FRAMEWORK Lecture VI Page 2

released to do useful work. First, we view a data structuchd s1$ a binary search tree as a persistent
object that has a state which can be changed by operatiansi(sert, delete, etc). Treharacteristic
property of potential functions is that they are a function of tluerent state of the data structure alone,
independent of the history of how the data structure waséeriFor instance, consider a binary search
treeT} obtained by inserting the keyis 2, 3 (in some order) into an empty tree and a tigeobtained
by inserting the keys, 2, 3, 4, followed by deletion ofi. If 77 and7» have the same shape, then the
potential energy in these two trees will be the same.
Counter example to
what?

92. A“Counter Example”. LetC be a binary counter and the only operation(ois to increment its
value. Starting with a counter value @f our counteiC' goes through the following sequence of states
as we repeatedly increment it:

(0) — (01) — (010) — (011) — (0100) — (0101) — ...

Note that we use the convention of prependirigiit to the standard binary notation for an integer.

The problem we consider is to bound the cost of a sequeneénafements, starting from an initial
counter value of). In the worst case, an increment operation césflgn). Therefore a worst-case
analysis would conclude that the total costig: 1g n). We can do better by using amortized analysis.

We may assumé' is represented by a sufficiently long binary array, alternatively, a linked list
of 0 and1’s. This representation determines @ast model the cost of an increment operation is the
number of bits we need to flip. Note the the number of bits toiflithe length of the suffix of’ of
the form01*, i.e., 0 followed by zero or more occurrences of SinceC always begins with &-bit,

a suffix of the form01* always exists. This cost is at ledst Note that we may also need to prepend
a 0 when the length of the binary counter is incremented, bstdtil) cost is easily absorbed by the
cost to flip bits. For instance, if the value 6fis 27, thenC' = (011011). After incrementing, we get
C' = (011100). The cost of this increment ssinceC' has the suffiX011 before the increment.

To begin our amortized analysis, we associate With potential ® = &(C) that is equal to the
number ofl’s in its list representation. In our preceding exam@€)11011) = 4 and®(011100) = 3;
so the potential of” decreased by after this particular increment. Informally, we will “s&t ®(C')
units of work (or energy) ir'. To analyze the increment operation, we consider two cases.

e (i) Suppose the least significant bit©fis 0. Then the increment operation just changes this bit to
1. Note that the potential increases by this operation. We cachargethis operatior2 units
—one unit to do the work and one unit to pay for the increasetartial.

e (ii) Suppose an increment operation changes a stiffix - - - 11 of lengthk > 2 into 1000 - - - 00:
SN——— SN——

k k
the cost incurred ig. Notice that the potentiab decreases by — 2. This decrease “releases”
k — 2 units of work that can pay fot — 2 units of the incurred cost. Hence we only need to charge
this operatior? units to make up the difference.

Thus, in both cases (i) and (ii), we chargjenits of work for an operation, and so the total charges
overn operations is onln. We conclude that the amortized costi$l) per increment operation.

3 The linked list interpretation becomes necessary if we wamnlo other operations with multiple counters efficientlyeeS
Exercise 1.3.

Chee-Keng Yap Basic Version April 19, 2011

§1. THE POTENTIAL FRAMEWORK Lecture VI Page 3

93. Abstract Formulation. We now formulate an amortization analysis that captureg#isence of
the above Counter Example. It is assumed that we are anglifmcost of a sequence

P1,P25---3Pn

of requestson a data structur®. We view a data structur® as comprising two parts: itsontents
and itsstructure, where the structure represents some organization of therts. The (contents,
structure) pair is called thetate of the data structure. The term “request” is meant to covertijypes
of operations:updatesthat modify the contents b and queries that computes a function of the
contents. Queries do not modify the contents, and there Isgical necessity to modify the structure
either. However, as we shall see, it may be advantageousddyntloe structure anyway.

For exampleD may be a binary search tree storing a set of keys; the cordéfilsare these keys
and the structure db is the shape of binary tree itself. Inserting iidds an update request, and looking
up a key inD is a query request. In Lookups, it is clear that iheneed not change. Nevertheless, to
ensure a favorable complexity over a sequence of such omesait turns out to be a good idea to do
some rotations to bring the searched-for node nearer tatite This is called the the “move-to-front”
heuristic.

The data structur® is dynamically changing: at any moment, it is in some statd,each request
transforms the current state bf. Let D, be the state of the data structure after requgstith D, the
initial state.

Eachp; has a non-negativeost denoted ©sT(p;). This cost depends on the complexity model —
the latter is part of the problem specification. To carry auaeortization argument, we must specify
acharging schemeand apotential function. Unlike the complexity model, the charging scheme and
potential function are not part of the problem specificatibhey are artifacts of our analysis and may
require some amount of ingenuity to be formulated.

A charging schemeis just any systematic way to associate a real numbexRGE(p;) to each
operationp;. E.g., for our “Counter Example”, we defineHBRGE(p;) := 2 for eachp;. Informally,
we “levy” a charge of CHARGE(p;) on the operation. We emphasize that this levy need not have an
obvious relationship to 6sT(p;). Thecredit of this operation is defined to be the “excess charge”,

CREDIT(p;) := CHARGE(p;) — COST(p;). 1)

In view of this equation, specifying a charging scheme isvaent to specifying a credit scheme. The
credit of an operation can be a negative number (in which itéseeally a “debit”).

A potential function is a non-negative real functioh on the set of possible states bfsatisfying
®(Dy) = 0.
We call®(D;) thepotential of stateD;. Let theincrease in potential of theith step be denoted by
AD; == (D) — B(D;_1).
The amortization analysis amounts to verifying the follogvinequality at every step:
CREDIT(p;) > AD;. (2)

The key invariant of
We call () the credit-potential invariant . amortization

The idea is that credit is stored as “potential” in the datacttire? Since the potential function
and the charging scheme are defined independently of eaeh tth truth of the invariang] is not a
foregone conclusion. It must be verified for each case.

4Admittedly, we are mixing financial and physical metaphdfke credit or debit ought to be put into a “bank account” and
so® could be called the “current balance”.

Chee-Keng Yap Basic Version April 19, 2011

§1. THE POTENTIAL FRAMEWORK Lecture VI Page 4

If the credit-potential invariant is verified, we can caletbharge for an operation itanortized
cost This is justified by the following derivation:

S, CosT(p;) = > -, (CHARGE(p;) — CREDIT(p;)) (by the definition of credit)
< Yio1 CHARGE(p;) — X1, A®, (by the credit-potential invariant)
— Y7 CHARGE(p;) — (®(D,,) — ®(Dy)) (telescopy)
< >i-; CHARGE(p;) (since ®(D,,) — ®(Dy) > 0).

When invariant 2) is a strict inequality, it means that some credit is disedrend the analysis is
not tight in this case. For our “counter” example, the inaatiis tight in every case! This means that
our preceding derivation is an equality at each step urgiMéry last step (when we assudbéD,,) —
®(Dy) > 0). Thus we have the exact cost of incrementing a counter éréom is exactly equal to

n

Z ¢i =2n—®(D,,)

i=1

where®(D,,) is the number ol’s in the binary representation af E.g., for our “Counter Example”,
the cost incurred to reach the counter valtie- (011001) is exactly2(25) — 3 = 47.

The distinction between “charge” and “amortized cost” dtddoe clearly understood: the former is
a definition and the latter is an assertion. A charge can omlydtled an amortized cost if the overall
scheme satisfies the credit-potential invariant.

94. So what is Amortization? In the amortization framework, we are given a sequencerefjuests
on a data structure. We are also given a cost model (this manfeit) which tells us the true cost
¢; for theith operation. We want to upper bound the total dpst ; ¢;. In an amortization analysis,
we hope to achieve a bound that is tighter than what can behby replacing each by the worst
case cost. This requires the ability to take advantage ditttehat the cost of each type of request is
variable, but its variability can somehow be smoothenedgsharing cost across different operations.
This sharing of costs can be done is various ways. In the patémmework, we are required to invent
a charging scheme and a potential function. After verifitimgt the credit-potential invariant holds for
each operation, we may conclude that the ch&sga amortized cost.

The potential function can be generalized in several watyseed not be defined just for the data
structure, but could be defined for any suitable abstradtifea Thus, we might have one potential
function®; for the jth feature { = 1,2,...). The charge for an operation could be split up in several
ways, and applied to each of the potential functidnps

We illustrate this by giving an alternative argument for #maortized cost of incrementing binary
counters: let us set up a “charge account” at each bit pas@fahe binary counter: letl; be the
account at theth smallest position (the least significant positiont is= 0, the next most significant
position isi = 1, etc). Each unit of work changes the value of a particulaobihe counter; if theth
bit is changed, we charge the accouit Note that4, is n times. The account; is charged< n/2
times, and in general, the accou#it is charged< n /2’ times. Hence the overall charges is at most
<n(l+ % + i + --+) < 2n. Hence the amortize cost per incremergig.

Note that this charging scheme is actually simpler than tiergial method, since we charge each
operation thexact cost of the operation! We will return to these ideas in a latepter on the Union
Find data structure.

EXERCISES

Chee-Keng Yap Basic Version April 19, 2011

Get this!

§1. THE POTENTIAL FRAMEWORK Lecture VI Page 5

Exercise 1.1: Our model and analysis of counters can yield the exact casttement from any initial
counter value to any final counter value. Show that the nuroberork units to increment a
counter from68 to 125 is (exactly!)110. &

Exercise 1.2: A simple example of amortized analysis is the cost of opegadi special kind of push-
down stack. Our stacK supports the following two operationS:push(K) simply add the key
K to the top of the current stack. Bfitpop (K') will keep popping the stack as long at the current
top of stack has a key smaller th&h (the bottom of the stack is assume to have the key value
00). The cost for push operationisand the cost for popping: > 0 items ism + 1.
(a) Use our potential framework to give an amortized analfai a sequence of such push/pop
operations, starting from an initially empty stack.
(b) How tight is your analysis? E.g., can it give thect cost, as in our Counter Example?

REMARK: Such a stack is used, for instance, in implementingh@m’s algorithm for the convex
hull of a set of planar points (see Section 4 on convex hulis ¢hapter). &

Exercise 1.3: Let us generalize the example of incrementing binary casn®uppose we have a col-
lection of binary counters, all initialized th We want to perform a sequence of operations, each
of the type

inc(C), double(C), add(C,C")

whereC, C’ are names of counters. The operatiamc(C') increments the countet’ by 1;
doubl e(C) doubles the countef’; finally, add(C,C’) adds the contents af’ to C' while
simultaneously set the count€f to zero. Show that this problem has amortized constant evst p
operation.

We must define the cost model. The length of a counter is thebeuwf bits used to store its
value. The cost to double a couni@ris just1 (you only need to prepend a single bitdd.
The cost ofadd(C, C”) is the number of bits that the standard algorithm needs th &ad¢and
possibly modify) when adding’ andC’. E.g., if C = 11,1001,1101 andC’ = 110, then

C + C' = 11,1010,0011 and the cost i9. This is because the algorithm only has to look at 6
bits of C' and 3 bits ofC’. Note that the 4 high-order bits 6f are not looked at: think of them
as simply being “linked” to the output. Here is where the &dlist representation of counters is
exploited. After this operatiort, has the valué1,1010,0011 andC’ has the valué.

HINT: The potential of a countef’ should take into account the numberid as well as the
bit-length of the counter.

You couldn’t do this
with arrays!

&

Exercise 1.4: In the previous counter problem, we define a cost modeattd(C, C”) that depends
only on the bit patterns i@’ andC”. In particular, the cost cidd(C, C’) andadd(C’, C) are
the same. How can you implement the addition algorithm so tti& cost model is justified?
HINT: recall that counters are linked lists, and you mustdbg your algorithm in terms of list
manipulation. &

Exercise 1.5: Generalize the previous exercise by assuming that the emum¢ed not be initially zero,
but may contain powers @f &

Exercise 1.6: Joe Smart reasons that if we can increment counters for artiaetbcost ofO(1), we
should be able to also support the operation of “decremgiaticounter”, in addition to those in
the previous exercise. This should have an amortized cd3t bf, of course.

(a) Can you please give Joe a convincing argument as to ws)keng?

Chee-Keng Yap Basic Version April 19, 2011

§2. SPLAY TREES Lecture VI Page 6

(b) Joe’s intuition about the symmetry of decrement andemant is correct if we change our
complexity model. Vindicate Joe by a showing a model whereaveincrement, decrement, add
and double irD(1) per operation. HINT: we allow our counters to store negativembers. We
also need a more general representation of counters.

(c) Inyour solution to (b), let us add another operatiortjigsf a counter value i§. What is the
amortized complexity of this operation? &

Exercise 1.7: Suppose we want to generate a lexicographic listing ot-glermutations (See Chapter
5 on generating permutations). Give an amortized analy$isoprocess. &

END EXERCISES

§2. Splay Trees

Thesplay tree data structure of Sleator and Tarjanl[] is a practical approach to implementing
all ADT operations listed irglll.2. Splay trees are just ordinary binary search treesey tire only
distinguished by the algorithms used to implement stantardry tree operations. These operations
invariably contain a splaying operation. The splaying afien, applied to an arbitrary node of the tree,
will bring this node to the root position. We emphasize tthat $hape of a splay tree is arbitrary. For
instance, it could be a tree consisting of a single path¢gffely a list), as shown in the leftmost tree in
Figurel.

Splaying may be traced to an idea called theve-to-front heuristic: suppose we want to repeat-
edly access items in a list, and the cost of accessing theiggmoportional to its distance from the
front of the list. The heuristic says that it is a good idea tivean accessed item to the front of the list.
Intuitively, this move will facilitate future accesses tig item. Of course, there is no guarantee that
we would want to access this item again in the future. But éis@e never again access this item, we
have not lost much because the cost of moving the item haadgliteeen paid for (using the appropriate
accounting method). Amortization (and probabilistic) lgges can be used to prove that this heuristic is
a good idea. See Appendix A.

The analogue of the move-to-front heuristic for maintagnbinary search trees is this: after we
access (i.el,00kUp) a key K in a treeT", we must move the node containifigto the root. What if
K is notinT? In this case, we move the successor or predecesgoiteinove to the root. Recall that
thesuccessonf K in T is the smallest key<” in T such thatX’ < K’; the predecessonf K in T is
the largest keys” in T such thatk” < K. ThusK does not have a successor (resp., predecessor) in
if K is larger (resp., smaller) than any keyiih Also, the successor and predecessor coincide #ith
iff K isinT. We characterize thgplay operation as follows:

spl ay(Key K, TreeT) — T’ 3)

re-structures the binary search tléto an equivalent binary search trééin which the keyK” at the
root of T” is either the successamr predecessor oK in T'. We are indifferent as to whethés’ is the
successor or predecessor. In particulak ifs smaller than any key ifi, then K’ is the smallest key in

T. A similar remark applies ifX is larger than any key iff". If T"is non-empty, then any kel must
have either a successor or predecessai, iand this implies that the splay operation is well-defined on
non-empty binary search trees. See Figufer examples of splaying.

If uis any node ofl’, we say spl ay(u,T)” to refer to the operatiospl ay (u.Key, T'). Before
describing the splay algorithm, we show how it will be used.

Chee-Keng Yap Basic Version April 19, 2011

§2. SPLAY TREES Lecture VI Page 7

spl ay(4) (4)

spl ayStep(4) spl ayStep(4) e

(b)

Figure 1: Splaying key 4 (with intermediate step)

95. Reduction of ADT operationsto Splaying. We now implementthe operations of the fully merge-
able dictionary ADT ¢lll.2). The implementation is quite simple: each ADT opératis reducible to
one or two splaying operations plus some e@$y) operations.

| ookUp(Key K, Tree T'): first performspl ay(K,T). Then examine the root of the resulting
tree to see if is at the rootl ookUp is a success iffs is at the root. It is important to realize
that we deliberately modify the trée by splaying it.

i nsert (Item X, Tree T'): perform the standard binary search tree insertioX ahto 7". Note

that this insertion would not be successfukifkey is already inT". In any case, we end up with

a nodeu whose key is either equal td.key (in the unsuccessful case), or equal to the successor
or predecessor ok.key. Finally, we splay this nodespl ay(u,T). See Exercise for a variant
algorithm. Of course, the splaying ofis gratuitous from the viewpoint of the insertion operation
But by now we are not surprised by it, as we know it will be esis¢for complexity analysis.

ner ge(Tree Ty, Tz) — T recall that all the keys ifiy, must be less than any key . First let
T « spl ay(+00,T1). Here+oc denotes an artificial key larger than any real ke{'in So the
root of " has no right child. We then mak the right subtree df".

del et e(Key K, Tree T'): first performspl ay (K, T). If the root of the resulting tree does not
contain K, there is nothing to delete. Otherwise, delete the root aatyenthe left and right
subtrees, as described in the previous bullet. This istiitesd in Figure2.

(%)
N A AA

Splay@-oo, T") link K"toT”

(%)
NN A

Figure 2: Steps idel et e(K,T)

Chee-Keng Yap Basic Version April 19, 2011

§2. SPLAY TREES Lecture VI Page 8

e del et eM n(Tree T'): we performl” «— spl ay(—oo, T') and return the right subtree 7.

e split(Key K,TreeT) — T': performspl ay(K,T) so that the root of" now contains the
successor or predecessorofin T'. Split off the right subtree df’, perhaps including the root of
T,into a new tred”.

It is interesting to compare the above ADT implementatioitk wur treatment of Binary Search Trees
in Chapter 3: there, we reduce all ADT operations to a singkration, rotation. In some sense, this is
still the case, except that we have hidden the rotationdénsiglobal operation called splaying.

96. Reduction to SplayStep. The operatiorspl ay (K, T") has one overriding concern: to bring the
key K (or its successor or predecessor) to the root. This is easdgmplished in two stages:

e STAGE 1: Perform the usual binary tree searchKorSay we terminate at a nodehat contains
K, in caseT contains such a node. Otherwise, debe the last node that we visit before the
binary tree search algorithm attempts to follow a null peinThis node: contains the successor
or predecessor ot in T'.

e STAGE 2: Now repeatedly call the subroutine
spl aySt ep(u)

until uw becomes the root @f. Termination is guaranteed becagsg ay St ep(u) always reduce
the depth ofu.

It remains to explain the SplayStep subroutine which isiadb a non-root:. We first present the
obvious attempt in whiclspl aySt ep(u) is simplyr ot at e(u). Call this “naive splaying”. Naive
splaying will certainly validate the correctness of all @ptay algorithms iff5. The problem is that it
defeats our amortization goal. To see this, consider tharitmneeT’, that contains the keys 2,...,n
and whose shape is just a right-path. The dasis illustrated in Figure3(a). It is easy to verify that we
can getl;, by inserting the keys in the following order:
n—1,n—2

3

2,1.

n ey 2,

3

Recall that this insertion follows the prescription§#, where the standard insertion is followed by a
splay.
spl ay(4) 9 spl ay(3)

Figure 3: Naive splaying offi;

Let us performl ookUp(n,T;,). Using our splay-based lookup algorithm, we fegtl ay (n, T},),
which produces a tree rootedsatwvith a left child7;,_,. See Figure(b). We now repeat the process
by performing lookups om — 1, n — 2, etc. After the final lookup on keg, we get a tree which is
a left-path Figure3(e). The cost for this sequence of operations is orde¥ ¢f, i = ©(n?). The
amortized cost of this sequence of operations is cléafly), contrary to our goal o® (logn).

Chee-Keng Yap Basic Version April 19, 2011

§2. SPLAY TREES Lecture VI Page 9

Let us return to the correct implementationsgfl ay St ep. We need a terminology: A grandchild
u of a nodev is called aouter left grandchild if « is the left child of the left child of. Similarly for
outer right grandchild . So anouter grandchild is either an outer left or outer right grandchild. If a
node has a grandparent and is not an outer grandchild, tieeaitiner grandchild.

spl ay St ep(Node w):
There are three cases.
Base Case. If u.parent is the root,
then we simplyr ot at e(u) (see Figur®).
Case l. Else, ifu is an outer grandchild,
perform two rotationsr ot at e(u.par ent), followed byr ot at e(u). See Figure.
Case Il. Else,u is an inner grandchild and we perform a double rotatiout (at e () twice). See Figurd.

°6 o m,

Q spI ayStep(u)
AN

Case 1

Figure 4: SplayStep at: Cases | and II.

In Figure 1, we see two applications afpl ay St ep(4). Sleator and Tarjan calls the three cases
of SplayStep the zig (base case), zig-zig (case |) and zig-@@se 1) cases. It is easy to see that the
depth ofu decreases by in a zig, and decreases Ryotherwise. Hence, if the depth afis h, the
splay operation will halt in about/2 spl aySt ep’s. Recall in§lll.6, we call the zig-zag a “double
rotation”.

We illustrate the fact thatpl ay (K, T') may return the successor or predecessoffjdte the splay
tree in Figureb. If we call spl ay (6, Tp), the result will beT; in the figure, wherei..Key = 7. But if
we callspl ay(6,T1), the result will be the tre& in the figure, where:.Key = 5. What if you call
spl ay(6,7%)?

Chee-Keng Yap Basic Version April 19, 2011

§2. SPLAY TREES Lecture VI Page 10

©, (D
e spl ay (6, 7o) e spl ay(6,7}) Q

T() Tl T2

Figure 5: Splaying may return successor or predecessor

q7. Top Down Splaying. We introduce a variation of splaying. The above splay atbors re-
quire two passes over the splay path. Suppose we wish to haree-pass algorithm, denoted
t opSpl ay(Key K, Node).

The basic idea is to avoid the 2-phase approach of (1) going dioe tree to look for<’, and then
(2) to bring the node which contains the successor or predec®f K up to the root. Instead, we
combine the 2 phases by bring each node that we wish to vitlietoootbefore we “visit” it. This is
called “top-down splaying”.

Before giving the correct solution, it is instructive taustrate some false starts. Suppose we are
looking for the keyK andu is the node at the root. tf.Key = K, we are done. If not, we must next
visit the left or right child ¢, or ug) of u. But instead of going down the tree, we simply rotageor
up to the root! For instance, if.Key > K, then we must search fdf in the subtree rooted at;, and
so we do the rotationot at e(uy,) to bringu,, to the root. So our initial idea amounts to a repeated
left- or right-rotation at the root. Unfortunately, thisrgdle approach has a pitfall. To fix this, let us Find the pitfall!
store some state information: we have 4 possible statesialgorithm. Againu will be the root node
andur,, ugr denote the left and right child ef (these children may be null).

State 0: Bothu;, andugr have not been visited.

State 1.y, but notug, has been visited. Moreover; .key < K.

State 2:ug, but notuy, has been visited. Moreoverg.key > K.

State 3: Bothu;, andug have been visited. Moreovery .key < K < ug.key.

We have a global variablgt at e that is initialized to0. Here are the possible state transitions.
From stated, we must enter either stateor state2. From stated or 2, we can either remain in the
same state or enter sta&teOnce stat8 is entered, we remain in stale Unfortunately thig opSpl ay
algorithm does not have amortized logarithmic behavioe(Eise).

Here then, is the solution: we maintain 3 splay trees;, R, corresponding to the Left-, Center-
and Right-trees. Refer to Figu6ga). Initially Left- and Right-trees are empty, and the @esitee is
the input tree. The keys ih are less than the keys ifi, which are in turn less than the keys i
Inductively, assume the kely that we are looking for is i’. There are three cases: suppass the
root.

e CASE (0): Thisis the base case. The Kéwe are looking for is equal to the keyat We attach
the left and right children of, at the rightmost tip and leftmost tip df and R, resp. We then
makeu the root of a tree with left and right childrdnandR. See Figuré(b). In caseX is equal
to the key at a child ofi, we just rotate that child before applying the precedingdfarmation.

Chee-Keng Yap Basic Version April 19, 2011

§2. SPLAY TREES Lecture VI Page 11

CASE(l)

% °
(2 O ()
R AL R

(©

Figure 6: Top Splay: Cases 0, | and Il

e CASE (I): Suppose the kex is found in the subtree rooted at an outer grandchilodf w.
By symmetry, assume that is the left child ofv, wherew is the left child ofu. In this case,
we transfer the nodes, v and the right subtrees of and v to the left-tip of R, as shown in
Figure6(c).

e CASE (Il): Suppose keyK is found in the subtree rooted at an inner grandchilcbf u. By
symmetry, assume’ is right child ofv, wherew is the left child ofu. In this case, we transfer the
nodeu and its right subtree to the left-tip @, and the node and its left-subtree to the right-tip
of L, as shown in Figuré(d).

The correctness of this procedure is left as an easy exercise

EXERCISES
Exercise 2.1: Comment on the following assertions:
(a) Every splay tree is a binary search tree.
(b) Every binary search tree is a splay tree. %

Exercise 2.2: Perform the following splay tree operations, starting framinitially empty tree.
insert (3,2,1;6,5,4;9,8,7),1 ookUp(3),del et e(7),i nsert (12,15,14,13),spl i t (8).

Show the splay tree after each step. &

Chee-Keng Yap Basic Version April 19, 2011

§2. SPLAY TREES Lecture VI Page 12

Exercise 2.3: Show the result ofrer ge(71,7>) whereTy, T are the splay trees shown in Figufe

O

11

IO O
e

Figure 7: Splay tree®, T,

Exercise 2.4: Consider the insertion of the following sequence of keys @ initially empty tree:
1,-1,2,-2,3,-3,...,n,—n. Let T} be the splay tree after insertikg(for k = 1, —1,2, -2,

etc).
(i) ShowT,, andT_,, forn = 1,2, 3.
(ii) State and prove a conjecture about the shapg,of &

Exercise 2.5: Consider the insertion of the following sequence of keys @ initially empty tree:
3,2,1;6,5,4;9,8,7;...;3n,3n — 1,3n — 2, where we have written the keys in groups of three
to indicate the pattern. L&t, be the splay tree after theh insertion (sdly is the empty tree).

(a) ShowTs, forn =1,2,3,4.
(b) State and prove a conjecture about the shafg, of
(a’, b’) Repeat (a) and (b), but use the following sequendamit keys

2,3,1;5,6,4;8,9,7;...;3n —1,3n,3n — 2.

Exercise 2.6: Consider the insertion of the following sequence of keys @ initially empty tree:
2,3,1;5,6,4;8,9,7;...;3n — 1,3n,3n — 2, where we have written the keys in groups of three
to indicate the pattern. Lét, be the splay tree after theh insertion (sdl is the empty tree).

(a) ShowTs, forn =1,2,3,4.
(b) State and prove a conjecture about the shafig, of &

Exercise 2.7: (Open ended) Prove that if we have any “regular” sequenaesefiions, as in the previ-
ous exercises, the result is a “regular” splay tree. Pahisfiroblem is to capture various notions
of regularity. Let us capture the previous two exercisesGlgr) = (g1(n), g2(n), ..., gx(n))
wherek is a constant ang;(n) is a integer polynomial im. E.g. G(n) = (n,—n) and
G(n) = (3n,3n — 1,3n — 2) captures the regularity of the previous two exercises. #gsu
that the sequenceés(n) andG(m) have different members for. # n. Then we want to show
that the insertion of the sequenGél); G(2); G(3); .. .; G(n) yields a splay tred’, that is “reg-
ular”, but in what sense? &

Exercise 2.8: Fix a key K and a splay tre&y. LetT;,, «— spl ay(K,T;)fori =0,1,....
(a) Under what conditions will th&;’s stabilize (become a constant)? How many splays will

Chee-Keng Yap Basic Version April 19, 2011

§2. SPLAY TREES Lecture VI Page 13

bring on the stable state?
(b) Under what conditions will th&;’s not stabilize? What is the ultimate condition? (Describe
as thoroughly as you can) How many splays will bring on thisditton? &

Exercise 2.9: Let T" be a binary search tree in which every non-leaf has one chiidsT has a linear
structure with a unique leaf.
(a) What is the effect df ook Up on the key at the leaf ¢f'?
(b) What is the minimum number dfook Up’s to makeT" balanced? &

Exercise 2.10:1n our operations on splay trees, we usually begin by perifagra splay. This was
not the case with our insertion algorithm in the text. Butsider the following variant insertion
algorithm. To insert an itenX into 7
1. Performspl ay(X.key,T) to give us an equivalent tre¥.

2. Now examine the keyx” at root of 7”: if K’ = X.key, we declare an error (recall that keys
must be distinct).

3. If K’ > X.key, we install a new root containing’, and K’ becomes the right child ok’;
the casek’ < X .key is symmetrical. In either case, the new root has key equal key. See
Figures.

(a) Prove that the amortize complexity this insertion alpon remaingO(log n).

(b) Compare the amortized complexity of this method with dhe in the text. Up to constant
factors, there is no difference, of course. But which hastiebeonstant factor? &

@@
L

Figure 8: Alternative method to insert a kéy.

Exercise 2.11:(Top Down Splaying)
(a) What is the “pitfall” mentioned for the initial implemtation of the top-down splaying algo-
rithm.
(b) Show that the amortized complexity of the second atteraphot beD(log n). To be specific,
here is the code:

Chee-Keng Yap Basic Version April 19, 2011

§3. SPLAY ANALYSIS Lecture VI Page 14

t opSpl ay (K, u)
Input: K is a key and: a node; we are looking fak™ in the subtred’, rooted atu
Output: We return “found” or “not found”. In any case, as side efféctplace ofu
will be a node containing the predecessor or successhriofthe treeT’, .
If (u.key = K) Return(“*found”).
2. case(State)
St at e=0:
If (u.key > K)
rotate(uleft);
St at e «+ 2.
else
rotate(u.right);
State «— 1.
St at e=1:
If (u.key > K)
v—uleft.right;
If (v = nil) Return(“not found”).
r ot at e?(v);
State « 3;
else
v «— u.right;
If (v = nil) Return(“not found”).
rotate(v); < RemaininSatel.
St at e=2:
< Omitted: symmetrical to State 1.
St at e=3:
If (u.key > K)
v—uleft.right
else
v—uright.left.
If (v = nil) Return(“not found”).
rot at e?(v)
< End Case Statement
3. topSplay(K,v). <« Tail recursion

=

Exercise 2.12: A splay treeis a binary search tree that arises from a sequence of splapperations,
starting from empty trees.
(a) Is every binary search tree a splay tree?
(b) LetT andT” be equivalent binary search trees (i.e., they store the setm& keys). Can we
transformT" to T” by repeated splays? &

END EXERCISES

63. Splay Analysis

Our main goal is to prove:

Chee-Keng Yap Basic Version April 19, 2011

§3. SPLAY ANALYSIS Lecture VI Page 15

THEOREM 1 (Splay Theorem).The amortized cost of each splay operation is O(logn) assuming at
most n itemsin atree.

Before proving this result, let us show that it is a “true” atimation bound. More precisely, we
show that the worst case bound is linear, is not logarithifacsee this, consider the repeated insertion
of the keysl, 2,3, ..., ninto an initially empty tree. In théth insertion, we insert key. We claim that
this results in a tred,,, that is just a linear list: in general, the rootbf, contains the key:, with left
subtreel,,_; and empty right subtree. See Figi(@) for L. If we next insert keyn + 1 into L, it
will be the right child of the root, but upon splaying, the rgwnserted keyn + 1 becomes the root.
Thus our induction is preserved. Finally, if we perform akop on keyl in this tree, we must expend
©(n) units of work.

98. Proof of Splay Theorem. To start the amortized analysis, we must devise a potentigition:
let Sze(u) denote, as usual, the number of nodes in the subtree roote®afine itspotential to be

O(u) = |lg SIZE(u)] .

Note that $ze(u) = 1iff wis aleaf. Thusb(u) = 0iff wis aleaf. IfS = {uy,us,...ux} is a set
of nodes, we may writ@(S) or ®(uy,us, ...ux) for the sumy_ o ®(u). If S'is the set of nodes in
a splay treél” or in the entire data structure thérn.S) is called the potential of (respectively)or the

entire data structure. By definition, a tree witlor 1 node has no potentiab(7") = 0.

LEMMA 2 (Key Lemma).Let ® be the potential function before we apply spl ay St ep(u), and let &’
be the potential after. The credit-potential invariant is preserved if we charge the SplayStep

3(®'(u) — ®(u)) (4)

units of work in cases | and 1. In the base case, we charge one extra unit, in addition to the charge (4).

Theoreml follows easily from the Key Lemma. To see this, suppose thlaying atu reduces to
a sequence of SplaySteps at and let®;(u) be the potential of: after theith SplayStep. The total
charges to this sequence of SplaySteps is

k
14+ 373 (u) — B,y (u)] = 1+ 3[4 (u) — Do(u)]

=1

by telescopy. Note that tha* comes from the fact that the last SplayStep may belong th#se case.
Clearly this total charge is at most- 3 Ig n. To finish off the argument, we must account for the cost of
looking upu. But it easy to see that this cost is proportionattand so it is proportional to the overall
cost of splaying. This only increases the constant factauincharging scheme. This concludes the
proof of the main goal.

99. Proof of Key Lemma. The following is a useful remark about rotations:

LEMMA 3. Let ® be the potential function before a rotation at « and @’ the potential function after.
Then theincrease in potential of the overall data structure is at most

&' (u) — ®(u).

The expression &’ (u) — ®(u) isalways non-negative.

Chee-Keng Yap Basic Version April 19, 2011

§3. SPLAY ANALYSIS Lecture VI Page 16

rot at e(u)

Figure 9: Rotation at:.

Proof. We refer to Figur®. The increase in potential is

Ad = (I)I(Ua 'U) - @(UJJ)
= P'(v) — D(u) (as®’(u) =
< @' (u) — D(u) (as®’(u) >

Itis obvious thath’ (u) > ®(u). Q.E.D.
Proof of Key Lemma. The Base Case is almost immediate from len@nthe increase in potential is

at mostd’(u) — ®(u). Thisis at mos8(®’(u) — ®(u)) sinced’(u) — ®(u) is non-negative. The charge
of 1+ 3(®'(u) — ®(u)) can therefore pay for the cost of this rotation and any irsgéa potential.

Refer to Figuret for the remaining two cases. Let the sizes of the subtieds, C, D bea, b, ¢, d,
respectively.

Consider Case |. The increase in potential is

AD = P'(u,v,w) — P(u,v,w)
= d'(v,w) — P(u,v) (as®’(u) = ¢(w))
< 2(P'(u) — P(u)) (as2®’(u) > ¢'(v,w), 2®(u) < D(u,v)).

Sinced’ (u) > ®(u), we have two possibilities: (a) #’(u) > ®(u), thenthe charge &(®’(u)—P(u))
can pay for the increased potengaid the cost of this splay step. (b) Next suppdgéu) = ®(u). By
assumption®’(u) = [1g(3 +a + b+ ¢+ d)| and®(u) = |1g(1 + a + b)] are equal. Thus+a+b >
2+c+d,andsB3+a+b+c+d>22+c+d) and

P (w)=|lg(l+c+d)] <|[lgB+a+b+c+d)] =d(u).

Also,
&' (v) < P (u) = P(u) < B(v).

Combining these two inequalities, we conclude that
P (w,v) < ®(u,v).

HenceA® = &'(w,v) — ®(u,v) < 0. Since potentials are integer-valued, this meansAtt< —1.
Thus the change in potential releases at least one unit &ftwqray for the cost of the splay step. Note
that in this case, we charge nothing si@’(u) — ®(u)) = 0. Thus the credit-potential invariant
holds.

Consider Case Il. The increase in potential is agedh= &’ (v, w) — ®(u,v). Sinced’(v) < & (v)
and®’(w) < ®'(u), we get
AP < D' (u) — D(u).

Chee-Keng Yap Basic Version April 19, 2011

§3. SPLAY ANALYSIS Lecture VI Page 17

If ®'(u) — ®(u) > 0, then our charge df(®’(u) — ®(u)) can pay for the increase in potential and the
cost of this splay step. Hence we may assume otherwise anddeb’(u) = ®(u). In this case, our
charge is3(®’(u) — ®(u)) = 0, and for the credit potential invariant to hold, it sufficesshow

AP < 0.

Itis easy to see thdi(v) = ¢, and soP(u, v) = 2t. Clearly,®’ (v, w) < 2®'(u) = 2¢. If D' (v, w) < 2t,
thenA® = &' (v, w) — ®(u,v) < 0 as desired. So it remains to show tl#éfv, w) = 2¢ is impossible.
For, if &' (v, w) = 2t then®’(v) = &' (w) = ¢ (sinced’ (v), '(w) are both no larger thar). But then

P’ (u) = |1g(SIZE' (v) + SIZE'(w) +1)] > [Ig(2" + 2" +1)| >t + 1,
a contradiction. Here, IS’ denotes the size after the splay step operation. This pthed&y Lemma.

LEMMA 4. Let T’ be a binary tree with n + 1 items, and 7" is obtained from 7" by deleting some | eaf
x. Then ®(T") — ®(T) < lgn.

Proof. Let (ug, u1,. .., u,) denote the path from the root @f to « = u,,. The potential of each
u; is |1g(n; + 1)] wheren > ng > nq > --- > n,, = 0. Furthermore,

—

o(T") — o(T) =) [lg(ni +1)] — [lg(ni)] -

i

3

Il
o

But we observe thdig(n; + 1)| — |1g(n;) | = 1iff n;+1is a power oR2. There are at mogg n values
of ¢ for which this happens. Hence
O(T") — ®(T) <lgn.

Q.E.D.

€10. Amortized Cost of Splay Implementation of ADT Operatiors. We conclude with an amor-
tized cost statement for splay trees.

THEOREM5. Sarting from an initially empty splay tree, any sequence of m requests of the types
| ookUp,i nsert nerge,del ete,del eteM n,split,

and involving a total of n items, has total time complexity of O(mlogn). Thus, the amortized cost is
log n per request.

Proof. This follows almost immediately from Theoreinsince each request can be reduced to a
constant number of splay operations p{u€l) extra work. The splay operations are chargidi n)
units, and the extra work is chargé{1) units. But there are two important detail that must not be
overlooked: sometimes, the exttd1) work increases the potential by a non-constant amount,fasd t
increase must be properly charged. This situation happemgi situations.

(A) When inserting a new key: the key will become a leaf of ttee followed by splaying at this
leaf. While the splaying cost is accounted for, the act oating this leaf may also increase the potential
of every node along the path to the leaf. By the previous leptiigincrease is at mokggn.

(B) When merging two tre€g; , T. In this case, we first perforspl ay (+oo, T1). If u is the root
of the resulting tree, then has no right child and we simply atta@h as the right subtree af. This
“attachment” will increase the potential oty less tharl +1g(1 + |T%|/|71]) < 14 1lgn. Thus we just
have to charge this operation an extra lg n units. Note that deletion is also reduced to merging, and

Chee-Keng Yap Basic Version April 19, 2011

§3. SPLAY ANALYSIS Lecture VI Page 18

so its charge must be appropriately increased. In any chehaages remai® (lgn), as we claimed.
Q.E.D.

Note that the above argument does not immediately applyofeSpl ay: this is treated in the
Exercises. Sherkd] has generalized splaying feary search trees. In such trees, each node stores an
ordered sequence of- 1 keys and pointers to children where < ¢ < k. This is similar toB-trees.

q11. Application: Splaysort Clearly we can obtain a sorting algorithm by repeated iim@stinto a
splay tree, followed by repeated deleteMins — this is amalisgo the heapsort algorithm (Lect.fT}).
This algorithm is known asplaysort. It is not only theoretically optimal witlD (n log n) complexity,
but has been shown to be quite practi¢dl Splaysort has the ability to take advantage of “preserted
ness” in the input sequence. For instance, running splagadhe input sequencg > x5 > -+ > x,

will take only O(n) time in the worst case. One way to quantify presortednessdsunt the number
of pairwise inversions in the input sequence. E.g., if thmiiris already in sorted order, we would like
to (automatically) achieve af(n) running time. However, ift; < 25 < --- < x, IS our input, the
advantage of presortedness is lost for our version of sptay§he Exercises discuss some ways to
overcome this.

Quicksort (Lectures Il and VIII) is regarded as one of thedasssorting algorithms in practice. But
algorithms like splaysort may run faster than Quicksort‘feell presorted” inputs. Quicksort, by its
very nature, deliberately destroy any property such aopiedness in its input.

EXERCISES

Exercise 3.1: Where in the proof is the constart™actually needed in our charge 8f®’(u) — ®(u))?

¢
Exercise 3.2: Adapt the proof of the Key Lemma to justify the following vation of SplayStep:
VARSPLAY STEP(u):
(Base Caself u is a child or grandchild of the root,
then rotate once or twice atuntil it becomes the root.
(General Casea)lse rotate atu.par ent , followed by two rotations at.
¢

Exercise 3.3: Let us define the potential of nodeto be ®(u) = 1g(SizE(u)), instead of®(u) =
|lg(SiZE(u)) .
(a) How does this modification affect the validity of our Kegrhma about how to charge
spl ay St ep? In our original proof, we had 2 cases: eitld&fu) — ®(u) is 0 or positive. But
now, ®'(u) — ®(u) is always positive. Thus it appears that we have eliminatelaase in the
original proof. What is wrong with this suggestion?
(b) Consider Case | in the proof of the Key Lemma. Show thé {fz) — ®(u) < 1g(6/5) then
AD = P (w,v) — P(u,v) < —1g(6/5). HINT: the hypothesis implieg + b > 9 + 5¢ + 5d.
(c) Do the same for Case Il. &

Exercise 3.4: We continue with the development of the previous questiopairticular, we still define
®(u) to belg SIZE(u).

Chee-Keng Yap Basic Version April 19, 2011

§3. SPLAY ANALYSIS Lecture VI Page 19

() Let T be a splay tree om nodes, and lef” be the result of inserting a new key info
using the standard insertion algorithm. So, the new key aspas a leaf, in 7’. Prove that
O(T") — ®(T) = O(lgn).

(i) Prove the Key Lemma under this new definition of potentiae., it suffices to charge
3(®'(u) — ®(u)) units for Case | and Il obpl aySt ep. HINT: Although ®'(u) — ®(u) is
always positive, we need to ensure thétu) — ®(u) > « for some fixed positive constant
So you must prove that in cadeé(u) — ®(u) < «, the increase in potential\®, is actually a
negative value less thana. You may chooser = 1g(5/4).

(iii) Conclude with the alternative proof of the main thewren splay trees (Theoref). &

Exercise 3.5:
(i) Is it true that splays always decrease the height of &tiidee average height of a tree? (Define
the average height to be the average depth of the leaves.)
(i) What is the effect of splay on the last node of a binargttieat has a linear structuries., in
which every internal node has only one child? HINT: Firstsider two simple cases, where all
non-roots is a left child and where each non-root is altelgat left child and a right child. <

Exercise 3.6: Assume that node has a great-grandparent. Give a simple description of teeteff the
following sequence of three rotationsot at e(u.par ent .par ent); r ot at e(u.par ent);
rotat e(u). &

Exercise 3.7: Does our Key Lemma hold if we defire(u) = [lg SIzE(u)]? O

Exercise 3.8: For any node,
D(ur) = P(ur) = ®(u) = P(ur) + 1

whereuy,, ug are the left and right child aoi. &

Exercise 3.9: Modify our splay trees to maintain (in addition to the usualdren and parent pointers)
pointers to the successor and predecessor of each node. tBabthis can be done without
affecting the asymptotic complexity of all the operatione¢kUp, i nsert, del et e, ner ge,
split) of splay trees. &

Exercise 3.10: We consider some possible simplifications of &g ay St ep.
(A) One-rotation version: Letpl ay St ep(u) simply amount to ot at e(u).
(B) Two-rotation version:

SPLAY STEP(u):
(Base Caself u.par ent is the rooty ot at e(u).
(General Caseglse dor ot at e(u.par ent), followed byr ot at e(u).

For both (A) and (B):

(i) Indicate how the proposed SplayStep algorithm diffeosrf the original.

(i) Give a general counter example showing that this vamedloes not permit a result similar to
the Key Lemma. &

Exercise 3.11: Modify the above algorithms so that we allow the search ttedsave identical keys.
Make reasonable conventions about semantics, such astwi@ans to lookup a key. &

Chee-Keng Yap Basic Version April 19, 2011

§4. APPLICATION TO CONVEX HULLS Lecture VI Page 20

Exercise 3.12:Consider theé opSpl ay algorithm:
(i) Characterize the situations where it gives the samdtrasuhe 2-passpl ay algorithm.
(i) OPEN: Does it have amortized cost©flog n)? %

Exercise 3.13:Consider the following variant for a potential function.rfémy nodeu in a splay tree,
let ®(u) be defined to béZ,, wheren is the size of the subtree rootediatProve the analogue of
our main theorem. &

Exercise 3.14:Repeat the previous question, but defib@.) to belgn (as opposed to the normal
definition,®(u) = [lgn|). O

END EXERCISES

§4. Application to Convex Hulls

The following application is interesting because it ilhagés the idea of aimplicit binary search
tree. The usual notion of keys is inapplicable. But by using infation distributed at a nodeand its
childrenuy, andup, we are able to perform tests to simulate searching in aypsearch tree.

Given a setX of n > 1 points in the plane, itsonvex hull CH (X)) is the smallest convex subset
of the plane that contain¥. As the boundary of’ H(X) is a convex polygon, we may represent it as
a sequence

H = (v1,v2,...,0m), 1<m<n

wherev; € X and thesey,;’s appear as consecutive vertices in a clockwise travefsdieopolygon
CH(X). We assume thal is a strictly convex sequence, i.e., no 3 consecutive \&stic 1, v;, v;11
are collinear. We shall usé andC H (X) interchangeably. We want to dynamically maintairsubject
to two types of requests:

tangent (p, H) and insert(p, H)

wherep is an arbitrary point. Ifp is outsideH, t angent (p, H) will return a pair(q,r) of distinct
points onH such that the linegg andpr are both tangential té/. Call ¢ andr thetangent points of
H from p. We will specify an ordering og, r later so thay (resp.,r) is the left (resp., right) tangent
points. E.g., in Figurd0(a),t angent (p, H) returns(vs, vs).

If p is inside the current hullH has no tangent points from and we return 1” The request
i nsert (p, H) means we want to updafé to represenCH (X U {p}). Note that ifp is inside the
current hull,/ is unchanged.

€12. Reduction to Half-Hulls. We may assume that andv, (1 < ¢ < m) have (resp.) the smallest
and largest:-coordinates among the’s. For simplicity, assume that any two consecutive vestiog
andwv; 1, have distinctz-coordinates so that; andwv, are unique. Then we can break into two
convex chains,

Hy = (v1,v2,...,v0), Hr = (v1,Um,s Um—1, - - ., Vg1, Vo).

So Hy and Hj, share precisely their common endpoints. Assuming fiiatlies above the segment
vyvg, we call Hy; theupper hull and Hy, thelower hull of H. Letvs = (0, —o00) andvy = (0, +00)

Chee-Keng Yap Basic Version April 19, 2011

§4. APPLICATION TO CONVEX HULLS Lecture VI Page 21

@) (b)

Figure 10: ()H = (v1,...,v9), (b) Hy = (v1,...,v5).

be points at infinity (the South and North Poles, respectively). Indaia senseH;; is the convex hull
of X U{vs}:
CH(X U {’Us}) = (’Ul,UQ, e, Uy, ’Us).

This can be made precise by a limiting argument. Similakly, is the convex hull ofX U {vy}.
Collectively, Hy and H, are the twchalf-hulls of X. We implement nsert (p, H) by reducing it to
insertion into the upper and lower hulls:

i nsert (p, Hy);i nsert (p, Hy).

By symmetry, we may focus on upper hulls. Cleaslis inside H iff p is inside bothHy and H,.
Now suppose is not insideHy = (vy,...,v¢). Thent angent (p, Hy) returns the paifq, r) of
tangent points off;; from p wheregq lies to the left ofr. For instancet angent (p, Hy) returnsvs, vs
in Figure10. There are two special casesplis left of vy, thenq = vg; if p is right of v, thenr = vg.
The details of how to redudeangent (p, H) to half-hulls is left to an exercise.

€13. Reduction to Fully Mergeable Dictionary Operations. We are now going to store the upper
hull Hy; in a binary search tré€ using thex-coordinates of vertices as keys. Suppose the sequence of
points inHy; is (v1, . . ., ve) sorted so that

V1 <g V2 <g - <g Vg, (5)

where, in general, we write
p<aq (6)

for pointsp andq such thap.z < ¢.y. Similarly, we may writep <, ¢, p =, ¢, p <y ¢, €tc.

To facilitate the insertion of new points, we must be ablepiit and merge our binary search trees.
To see this, suppose we insert a new ppiimito H;;. Lett angent (p, Hy) = (q,r) whereg <, r; we
call ¢ theleft tangent point andr theright tangent point. Wlog, letq = v;_; andr = v;,1); note that
i < j+ 1. So we need to replace a subsequengev;1,...,v;) (1 <i < j < /) by the pointp. Of
course, ifi = j + 1, the subsequence is empty. This replacement can be doriergfficf 7" is a splay
tree that implements the operations of the fully mergealtothary ADT (95). By calling the split

5 We could definess andvy to be(r, —oc) and(r, +c0), respectively, for any, 7/ < co.

Chee-Keng Yap Basic Version April 19, 2011

§4. APPLICATION TO CONVEX HULLS Lecture VI Page 22

operation twice, we can split the upper hull into three ugpgis, 7% : (v1,...,vi—1), T2 : (vi, ..., v;)
andTs : (vj41,...,ve). Finally, we obtain the new upper hull by forming the treeteabatp with T}
andTs; as left and right subtrees.

We may assume that nodesZhhave successor and predecessor pointers. We next show how to
implement the requests
insert(p,7) and tangent (p,T)

where the binary tre@ represents an upper hull. We next give two methods for findahgent points
(g, r) from a query poinp = (p.z, p.y).

914. Method One for Tangent Point: Walking Method. The first method is more intuitive. To
implementt angent (p, T'), we have to find the left and right tangent points separaBafysymmetry,
we discuss the left tangent point. We first do a lookup on tlyeke. Suppose as a result of this lookup,
we determine the two consecutive hull vertiegsv,1 such that

Vg <g P <z Vk+1 (O < k < g) (7)

By convention, ifk = 0 thenwvy is undefined, and it = ¢ thenwv,y; is undefined. Recall that
lookup will find either the successor or predecessagr.ofin 7. From this, and using the successor and
predecessor pointers i, we can easily determine thethat satisfies®).

If & = 0, we can returri since the left-tangent is undefined in this casé: # ¢, thenp is outside
the upper hull. Otherwise, we know thak k& < ¢ and we can decide j is strictly outside the upper
hull or not — this amounts to whetheris above the lin@y, vx;1 or not. If not strictly outside, we
return]. Otherwise, we want continue to search for the left tangeirity. We know thaiy = v;, for
someiy < k. To findig, we use the predecessor pointers to “walk” along the upplgrdtarting from
v t0 vk _1, vk_2, €tc. In general, for any indexwith the property that; <, p, we can decide whether
19 = 1,19 < 1 Orig > i according to the following cases:

Vi—1 Vi+1

(i) (i) BN ()

Figure 11: LeftTangent Search fropn (i) ig = 4, (ii) i¢ < 4, (iii) i¢ > i.

CASE (i) v;—1 and v, lie below7;p.
Theniy = ¢. Here, ifi = 1 theny is the south pole (which lies below any line).

CASE (ii) v;+1, but not v;_1, lies beloww;p.
Thenig < 1.

CASE (jii) v;—1, but not v;11, lies belowv;p.
Thenig > 1.

These three cases are illustrated in FigliteOf course, in our “walk” fromuy, to v, _1, vk _o, €tc,
we will never encounter case (iii). We have ignored degesiesan these three cases. This will be
treated in the Exercises.

Chee-Keng Yap Basic Version April 19, 2011

§4. APPLICATION TO CONVEX HULLS Lecture VI Page 23

915. Method Two: Implicit Binary Search. The previous method for finding tangent poifgsr)
takes linear time in the worst case. But if we were insertimg pointp, the elements lying strictly
betweeny andr would immediately be deleted. It is then easy to see thatniaraortized sense, the
cost of this linear search 3(1). But if we imagine the convex hull as a generic structure s@ports
arbitrary tangent queries, then this linear time cost cabecamortized. Therefore we will now give
another method that ensures that finding tangent point©figs:) amortized complexity.

Say we want to find the left-tangeq((if it exists) of a query poinp. We use two binary searches:
one is “explicit” and other “implicit”. The new method beginas before, with a binary search to
determine thé: satisfying {¢). This is an explicit binary search because we are comparingo the
keyu.x stored explicitly in each node With the information (), we can decide ip is inside or outside
the convex hull (by checking whethgiis above or below the lingg; 7 7). If inside, theng does not
exist. Otherwise, we now perform a second binary searchs 3édrch begins at the root of the splay
tree that stores the upper hull, and uses the 3-way deci€iaset (i)-(iii) above) to search for the left
tangent poiny = v;,. This is an “implicit” binary search because the 3-way dedis are not based
on any explicitly stored keys. Indeed, the decisions depengust on the stored datg_1, v;, v;11 but
also the query poinp. We are searching for the indéx but we use the datg_1, v;, v;11, p to decide
if i =g, 0ri <igori>ig.

FINDLEFTTANGENTPOINT(p, T'):
> Explicit Binary Search
1. Perform an explicit binary search using the key.
This locates thé such that) holds.
We can then determinejiflies inside the upper hull.
If so, Return(T)
> Implicit Binary Search
Initialize u to the root ofT’; let v; be the vertex at.
2. Repeat:
If v; >, p, setu «— u.l eft Chil d.
Else, we have three possibilities giverfjh4:
If CASE (i) holds,Return(v;). < Left tangent found: ig = ¢
If CASE (i) holds, setu «+— w.ri ght Chil d. < Goright: i > ig
If CASE (iii) holds, setu «+— u.l eft Chil d. < Goleft: i < i
Update: to the index of the vertex in.

916. Geometric Primitives. In the above subroutines, we used “geometric primitiveshsas check-
ing whether a point is above or below a line. Such primitivestultimately be reduced to numerical
computation and comparisons. In fact, all the geometrinjpiies can essentially be reduced to a single
primitive, thé LeftTurn Predicate . Given any three points, ¢, , define

0 if the pointsp, ¢, r lies on a line
Left Turn(p,q,r) =< +1 ifthe path(p, q,r) make a left turn ag (8)
—1 if the path(p, ¢, 7) make a right turn ag

In an Exercise below, you will see how this is easily impletedras the sign of a certainx 3 determi-
nant. We should observe a peculiarity: we call this a “pratditeven though this is a 3-valued function.
In logic, predicates are usually 2-valued (i.e., true csdal This is a general phenomenon in geometry,
and we might call such 3-valued predicategemmetric predicateas opposed to the standdogjical
predicate.

6 Also known as orientation predicate.

Chee-Keng Yap Basic Version April 19, 2011

§4. APPLICATION TO CONVEX HULLS Lecture VI Page 24

Let us say that the input sét of points isdegeneratef there exists three distinct pointsq, r € X
such that_ef t Tur n(p, ¢,) = 0; otherwise X is nondegenerate We will assumeX is nondegen-
erate in the following. The main reason for this is pedagalgithe non-degenerate cases are easier
to understand. We also note that there are general techmigquemputational geometry for handling
degeneracies, but it is beyond our scope.

We now make the inner loop of the implicit search in theL EFTTANGENT algorithm explicit:

2. Repeat:
2.1 Letup = u.pred andu; = u.succ. < Thesemay be NULL .
2.2 If (p <q uw)

If (up = NULL), Return(vs). < South Pole
elseu —uleftChild
2.3 elif ((uo # NULL) andLef t Tur n(ug, u,p) = 1))
uw—uleftChild
24 elif ((u; # NULL) andLef t Tur n(u,uy,p) = —1))
u <+ u.ri ghtChild
2.5 else Return(u). < Thisiscorrect, even if ug or u; are NULL.

To see why the return statement in line 2.5 is correct, fistia®u, andu; are non-null. Then line
2.2 has ensured that<, u, line 2.3 has verified thdtu, u, p) is a right-turn and line 2.4 has verified
(u,u1,p) is aleft-turn. These verifications depends on non-degegeassumptions. The reader should
next verify correctness in casg or u; are null.

Next consider the implementationiofser t (p,T'). We first perfornt angent (p, T') and assume
the non-trivial case where a pdif,) of tangent points are returned. Then we need to delete ffom
those vertices; that lies strictly betweegandr, and replace them by the poimt This is accomplished
using the operations &fpl i t andner ge on splay trees as described earlier.

We conclude with the following. LeD be our data structure for the convex hill So D is a pair
of splay trees representing the upper and lower hull of

THEOREMG.

(i) Using the data structure D to represent the convex hull H of a set of points, we can support
i nsert (p, D) andt angent (p, D) requests with an amortized cost of O(log |H|) time per request.
(i) From D, we can produce the cyclic order of pointsin H intime O(|H|). In particular, this gives an
O(nlogn) algorithmfor computing the convex hull of a set of n points.

This theorem gave us afi(nlogn) algorithm for computing the convex of a planar point set.
Under reasonable models of computation, it can be showrCtfratog n) is optimal. There are over a
dozen known algorithms for convex hulls in the literaturee(&xercise for some). The complexity is
usually expressed as a functiomafthe number of input points. But an interesting concept aftpoit
sensitivity” is to measure the complexity in termsrofind i, whereh is the size of the final convex
hull. Noteh is a measure of the output size, satisfyingc h < n. For instance, there is a gift-wrap
algorithm for convex hull that takes tim@(hn). So gift-wrap is faster tha@(n log n) algorithm when
h = o(logn). But Kirkpatrick and Seidel4] gave an output-sensitive algorithm whose complexity is
O(nlogh).

Our data structur® for representing convex hulls is only semi-dynamic becaweselo not support
the deletion of points. If we want to allow deletion of pointisen points that are inside the current

Chee-Keng Yap Basic Version April 19, 2011

§4. APPLICATION TO CONVEX HULLS Lecture VI Page 25

convex hull must be represented in the data structure. Carsrand van Leeuwen designed a data
structure for a fully dynamic convex hull that us@glog? n) time for insertion and deletion.

There are many applications and generalizations of thescomull problem. An obvious extension
is to ask for the convex hull of a set of pointsitf (d > 3). Or we can replace “points” by balls or
other geometric objects iR?. We encourage the student to explore further.

EXERCISES

Exercise 4.1: What is “convex hull” in1-dimension? &

Exercise 4.2: Leta, b, c € R2.
(i) Show that if

ay ay 1
M= b, b, 1
ey ¢y 1

thendet M is twice the signed area of the triangl&a, b, ¢). Thus,a, b, ¢ are collinear or coin-
cident iff det M = 0. Also, show thatet M > 0 iff a,b, c list the vertices counter-clockwise
about the triangle.

(i) What is the relation betweesiign(det M)) andLef t Tur n(a, b, ¢)?

(ii) Let R be the smallest axes-parallel triangle that cont&(s, b, ¢). Then at least one of the
vertices ofA(a, b, ¢) must be at a corner @t. Without loss of generality, let be the south-west
corner of R, b touches the right vertical edge &ifandc touches the top horizontal edge®f Let

r be the rectangle with one corner@and whose opposite corner(is,, b,). Show by a direct
geometric argument that the areafa, b, ¢) is equal to(| R| — |r|) /2 where| R], || are the areas
of the rectangle®, r (respectively). HenceR| — |r| is the area of the “L” shap®& \ r.

(iv) Verify that the result of (iii) also follows from (i).

(vi) The determinant of\/ is equal to the determinant of a relatzd 2 matrix. &
Exercise 4.3: Prove the correctness of theN® LEFTTANGENT(p, T') algorithm. &
Exercise 4.4: Consider an array-based approach to upper hulls. An upplet/hg: (v, . .., v;) with

k+ 1 vertices is represented by an arfaf..k], whereU[i] = v;. We will build U incrementally
using METHOD ONE in the text. Assume the set of input pointsaa-degenerate (no 3 points
are collinear).

(a) Describe in detail how to carry out the operation of figdireftTangent of a given pointin

U.

(b) Describe how to implement the insertion of a new ppint

(c) Carry out a complexity analysis of your algorithm.

(d) Show how to modify your algorithms if the input can be degiate. You must discuss how
to implement the changes using the LeftTurn(p,q,r) pradiddOTE: What is the correct output
for U in the degenerate case? For this problem, ASSUME that an pgant p is in U if it does
NOT lie in the interior of the convex hull. O

Exercise 4.5: Treatment of Degeneracy. Recall our definition of degendrathe previous question.
(i) First define carefully what we mean by the convex hull (apger hull) ofX in case of degen-
eracies. You have two choices for this. Also define what wembgd'left-tangent” ofp in casep
lies on a line through two consecutive vertices of the corudk

Chee-Keng Yap Basic Version April 19, 2011

§5. FIBONACCI HEAPS Lecture VI Page 26

(i) Modify the FINDLEFTTANGENT(p, T) algorithm so that it works correctly for all inputs,
degenerate or not. Actually, you need to describe two vessidepending on which way a de-
generate convex hull is defined, etc. &

Exercise 4.6: Let us attend to several details in the convex hull algorithm
(i) Show how to the non-degeneracy assumptions in the texallrthat we assume consecutive
vertices on the convex hull have distinetoordinates, and input sét is nondegenerate.
(i) Implement the operationt angent (p, H) in terms of tangent (p, Hy) and
tangent (p, Hy).
(iii) Implement the operationnser t (p, Hy).
(iv) When we inserted a new poipt we split the original tree intd?, Ty, 75 and then form a
new splay tree rooted atwith left and right subtree®, 7T5. The cost of forming the new tree is
O(1). What is the amortized cost of this operation? &

Exercise 4.7: One of the simplest algorithms for convex hull is the soerhlBift-Wrapping algorithm.
Start withv; the leftmost point of the convex hull. Now try to find, v3, etc in this order. Show
that you can find the next point i@(n) time. Analyze the complexity of this algorithm as a
function ofn andh, wherel < h < n is the number of vertices on the convex hull. How does
this algorithm compare t®(n log n) algorithm? &

Exercise 4.8: Modified Graham'’s algorithm for upper hulls. L&}, = (v1,...,v,) be an input se-
guence of points in the plane. Assume that the points areddny z-coordinates and satisfy
v <g V2 <y -+ <z vUn. (Recall ‘a <, b” means that.x < b.z.) Our goal is to compute the
upper hull ofS,,. In stagei (: = 1,...,n), we have processed the sequefgceomprising the
firsti points inS,,. Let H; be the upper hull of;. The vertices off; are stored in a push-down
stack data structurd). Initially, D contain just the poing; .

(a) Describe a subroutinépdate(v;11) which modifiesD so that it next represents the upper
hull H;; upon the addition of the new point, ;. HINT: AssumeD contains the sequence of
points(uy, ..., un) whereh > 1 andu; is at the top of stack, with; >, us >, -+ >, uy. For
any pointp, let LT (p) denote the predicateef t Tur n(p, u1,us2). If h = 1, LT (p) is defined
to betrue. ImplementU pdate(v;41) using the predicatéT (p) and the (ordinary) operations of
push and pop obD.

(b) Using part (a), describe an algorithm for computing tbevex hull of a set of:» points.
Analyze the complexity of your algorithm.

REMARK: The amortized analysis 6f Update(p) was essentially described in an Exercise (Sec-
tion 1, this Chapter). Graham'’s original idea is to sort teetices by their angular angle about
some pointp, in the interior of the convex hull. We must implement thistwiare, so as to
avoid the actual computation of angles (such computatiamavioe inexact and have robustness
problems). &

Exercise 4.9: The divide-and-conquer for convex hull is from Shamos: dhkvihe set into two sets
X1, Xg, each of size about/2 and the two sets are separated by some verticalllinRecur-
sively compute their convex hulld,, Hg. What kind of operation(s) will allow you to compute
CH(X)from H;, andHr? Show that these operations can be implementé(ir) time.

END EXERCISES

65. Fibonacci Heaps

Chee-Keng Yap Basic Version April 19, 2011

§5. FIBONACCI HEAPS Lecture VI Page 27

The Fibonacci heap data structureinvented by Fredman and Tarjan (1987) gives an efficient im-
plementation of the mergeable queues abstract data typ€)(Aihich we now explain.

917. The mergeable queues ADT. The mergeable queues ADT involves domains of three types:
Key, Item and(mergeable) Queue. As usual, each item stores a key and each queue stores eticolle
of items. The ADT represents a collection of queues, supmptihese operations:

makeQueue()— @ returns an empty queug

i nsert (Itemzx, Queue Q)

uni on(Queue Q1,Q2)

del et eM n(Queue Q)— Itemzx 2 IS minimum item inQ@, which is now deleted
decr easeKey(ltemzx, Key k, Queue Q).

Mergeable queues are clearly extensions of priority quéiiB2). The above operations are almost
self-explanatory. In the union @p+, 2, the items inQ, are first moved into queug,, then queué),

is destroyed. Thus, the number of queues can increase @adeoover the lifetime of the data structure.
The operatiordel et eM n(Q) returns a minimum item id), and this item is deleted fro®. This
operation is unspecified in cageis empty. Indecr easeKey(z, k, @), we makek the new key ofr

in Q. But this operation assuméss smaller than the current key of- otherwise, we may define it to
be either an error or a null-operation (we will leave thisidien unspecified).

Union is sometimes known as theeld operation. There may be useful operations that should be
provided in practice but omitted above for the sake of econageleting an item, making a singleton
gueue, getting the minimum item without deleting it. Thear be defined as follows:

del et e(Itemz, Queue Q)
makeQueue(ltemx)— Q
m n(Queue Q)— x

decr easeKey(z,—00,Q);del et eM n(Q).
makeQueue()— @ ;insert (z,Q).
del et eM n(Q)— z;i nsert (z,Q).

€18. The Fibonacci heap data structure. Each mergeable queue is implemented by a Fibonacci
heap. A Fibonacci heafi is a collection of treeg?, . .., T, with these properties:

e Each tredl; satisfies the min-heap property. In particular, the rodt;dfas the minimum item in
T;.

e The roots of these trees are kept in a doubly-linked listedaheroot-list of H.

e There are two field$/.m n, H.n associated witti/. The field H.imi n points to the node with a
minimum key, andH .n is the number of items iiif .

e For each node: in a treeT;, we have four pointers that point to (i) the parentof(ii) one of
its children, and (iii) two of its siblings. The sibling pders are arranged so that all the children
of = appears in a circular doubly-linked list called tbleild-list of «. If y is a child ofz, the
sibling-list of y is the child-list ofx. Also, we keep track of.degr ee (the number of children
of) andz.mar k (a Boolean value to be explained).

This is illustrated in Figuré2. One of the tree%j, is shown in detail: the roat of Ty has 3 children
b,c andd and they each point te; on the other hand; points only tob. There are two non-trivial
sibling lists: (b, ¢, d) and(f, g).

Chee-Keng Yap Basic Version April 19, 2011

§6. FIBONACCI HEAP ALGORITHMS Lecture VI Page 28

Ty 7 T

Ty
H

Figure 12: A Fibonacci heafl = (T, ..., T3): Ty in detail

€19. Linking, cutting and marking. We describe some elementary operations used in maintaining
Fibonacci heaps.

(a) If z,y are two roots such that the item inis not less than the item in then we carink =
and y; this simply makes the parent ofc. The appropriate fields and structures are then updated:
is deleted from the root-list, and then inserted into thédelist of ¢, the degree off incremented, etc.
This operation cost®(1).

(b) The converse to linking isutting. If « is a non-root in a Fibonacci hedpthen we can perform
Cut(x,H): this basically removes from the child-list of its parent and insettsnto the root-list ofH.
The appropriate data variables are updated. E.g., the@efithe parent of: is decremented. Again,
this operation cost®(1).

(c) We sayx is marked if z.mar k = true, andunmarked otherwise. Initially,z is unmarked. Our
rules will ensure that a root is always unmarked. We maifkz is not a root and: loses a childite., a
child of = is cut); we unmark: whenz itself is cut (and put in the root-list). Moreover, we enstirat
a markedr does not lose another child befardtself is cut (thereby reverting to unmarked status).

To do amortized analysis, we define a potential function. gétential of a Fibonacci heapf is
defined as
OH):=t(H)+2-m(H)

wheret(H) is the number of trees il andm (H) is the number marked items iff. The potential of
a collection of Fibonacci heaps is just the sum of the paaésaf the individual heaps.

One more definition: leD(n) denote the maximum degree of a node in a Fibonacci heaprwith
items. We will show later thab(n) < 21gn.

Remark: The reader may observe how “low-tech” this data structuggeaps — along with the
humble array structure, linked-lists is among the simpiles structures. Yet we intend to achieve the
best known overall performance for mergeable queues withrizcci heaps. This should be viewed as
a testimony to the power of amortization.

§6. Fibonacci Heap Algorithms

We now implement the mergeable queue operations. Our gtéaldashieve an amortized cost of

Chee-Keng Yap Basic Version April 19, 2011

§6. FIBONACCI HEAP ALGORITHMS Lecture VI Page 29

O(1) for each operation except fdel et eM n, which will have logarithmic amortized cost.

Recall that for each operatign we have acost CosT(p) which will be mostly self-evident in
the following description. We must definecharge CHARGE(p). Thecredit is thereby determined:
CREDIT(p) = CHARGE(p) — CosT(p). This charging scheme will achieve the stated goal in the
previous paragrapl®(1) charges for all the non-deletion operations, &ritbg n) for the two deletion
operations. Finally, we verify the credit-potential inigant equationZ) for each operation.

makeQueue(): we create an empty root-list. The cost jghe charge i, so credit i9, and finally
Ad = 0. The credit-potential invariant holds trivially.

The cost andA® is automatic at this point (our earlier decisions have|de-
termined this). Although we said that the “charge” is partoaf creative
design, at this point, we really have little choice if we wighsatisfy the
credit-potential invariant. We might as well define chagée¢ (at least) th
cost plusA®.

D

i nsert (H,z): we create a new tre€ containing onlyz and insertl” into the root-list of H.
UpdateH.mi n, etc. Let us check the credit-potential invariant:

Cost<1, CHARGE=2, CREDIT>1, A®=1.

uni on(Hy, Hy): concatenate the two root-lists and calHt. Updatemin[H,], etc. Checking the
credit-potential invariant:

CosT<1, CHARGE=1, CREDIT>0, Ad=0.

del et eM n(H): we removeH.m n from the root-list, and the child-list off.m n can now be
regarded as the root-list of another Fibonacci heap. Thesecircular lists can be concatenated in
constant time into a new root-list fdf. If ¢, is the old value of(H), the new value of(H) is at most
to + D(n). Next we need to find the new value &f.m n. Unfortunately, we do not know the new
minimum item of H. There is no choice but to scan the new root-listhf While scanning, we might
as well spend some extra effort to save future work. This is a procasdconsolidationwhich is
explained next.

920. Consolidation. In this process, we are given a root-list of lendgtiiL. < t, + D(n) above). We
must visit every member in the root-list, and at the same timeepeated linkingsntil there is at most
oneroot of each degree. We want to do this irO(L) time. By assumption, each root has degree at most
D(n).

The basic method is that, for each ragtwe try to find another roqj of the same degree and link
the two. So we create a ‘new’ root of degree 1 from two roots of degreg. If we detect another root
of degreek + 1, we link these two to create another ‘new’ root of degkee 2, and so on. The way
that we detect the presence of another root of the same disgogendexing into an arrayl[1..D(n)]
of pointers. Initialize all entries of the array tol. Then we scan each itemin the root-list. If
k = x.degr ee then we try to “insert’ into A[k]. This means makingl[k] point toz. But we only do
this if A[z.degr ee] = nil; in caseA[x.degr ee] # nil, then it points to somg. In this case, link: to

7 OK, we may be lazy but not stupid.

Chee-Keng Yap Basic Version April 19, 2011

§7. DEGREEBOUND Lecture VI Page 30

y or vice-versa. Ifc is linked toy, the latter now has degréet 1 and we try to “insert’y into A[k + 1],
and so on. So each failed insertion leads to a linking, anethee at mosL linking operations. Since
each linking removes one root, there are at nfofibkings in all. (This may not be obvious if we see
this the wrong way!) Thus the total cost of consolidatiowid.).

Returning todel et eM n, let us check its credit-potential invariant.

CosT< 1+ty+ D(n), CHARGE = 2 + 2D(n),
CREDIT > 1+ D(n) — to,

We need to explain our bound fdx®. Let ¢y, m refer to the values of(H) andm(H) before this
del et eM n operation. If®,, ®; are (respectively) the potentials before and after thisata, then
Dy = to+2mp and®, < 1+ D(n)+ 2my. To see this bound of,, note that no node can have degree
more thanD(n) (by definition of D(n)) and hence there are at mast D(n) trees after consolidation.
Moreover, there are at most, marked after consolidation. Thex® = &; — &, < 1+ D(n) — to, as
desired.

decr easeKey(z, k, H): this is the remaining operation and we will exploit the magkof items
in a crucial way. First, we decrease the keyedb & (first checking thak < x.key). If z is a root, we
are done. Otherwise, lgtbe the parent of. If k& < y.key, we are done. Otherwise, we cutSincer
is now in the root list, we need to updatem n, etc. If z was marked, it is now unmarked. It remains
to treaty: If y is a root, we are done. Otherwiseyifvas unmarked, we markand we are done. If
was markedi(e., has previously lost a child), then we now “recursively cyttising the following code
fragment:

RECURSIVECUT(y, H):
If (y.mar k = false andy # root) then y.mar k := true;
If y # root then
Cut(y, H);
RecursiveCut(y.parent , H).

Note that ifc > 1 is the number of cuts, theriH7) is increased by, butm(H) is decreased by— 1 or
¢ (the latter iffz was marked). This implieA® <c¢—2(c—1)=2—c. If

Cost<e¢, CHARGE=2, CREDIT>2-—¢,

then the credit-potential invariant is verified.

SUMMARY: we have achieved our goal of chargiig(1) units to every operation except for
del et eM n which is charged)(1) + D(n). We next turn to boundind@(n). We remark on an
unusual feature in our marking scheme: in general, each moda suffer the loss of at most one child
beforey itself is made a root. But if; is already a root, we allow it to lose an unlimited number of
children.

§7. Degree Bound

Our goal is to show thab(n) = O(log n).

Chee-Keng Yap Basic Version April 19, 2011

§7. DEGREEBOUND Lecture VI Page 31

Recall theith Fibonaccinumber= 0,1, 2, ...isdefined byF; = iif i = 0,1andF; = F;_1+F;_»
for ¢ > 2. Thus the sequence of Fibonacci numbers starts out as

0,1,1,2,3,5,8,

We will use two simple facts:

@ F =1+ "1 Ffori>2.

(b) Fji2 > ¢’ forj >0, wherep = (1 +/5)/2 > 1.618.

Fact (a) follows easily by induction, or better still, by ‘nafling” the recurrence fof;. For fact (b), we
observe thap is a solution to the equatior? — 2z — 1 = 0s0¢? = 1 + ¢. ClearlyF, = 1 > ¢" and
F3 =2 > ¢'. Inductively,

Fjpo=Fj+F; > ¢+ ¢ 2 =¢2(¢p+1) = ¢

Letz be a node in a Fibonacci heap witlitems, and let

Y1,Y25---5Yd (9)

be the children of, given in the order in which they are linked to Sox.degr ee = d andy; is the
earliest child (amongy, . . ., y4) to be linked taz.

LEMMA 7.
0 if i=1
y;.degree >
1—2 if 1>2

Proof. This is clearly true foi = 1. Fori > 2, note that wheny; was linked taz, the degree of: is
at least — 1 (since at leasyy, . . ., y;—1 are children of: at the moment of linking). Hence, the degree
of y; at that moment is at least- 1. This is because we only do linking during consolidatiord are
link two roots only when they have the same degree. But wavajlato lose at most one child before
cuttingy;. Sincey; is not (yet) cut frome, the degree of; is at least — 2. Q.E.D.

LEMMA 8. Let Size(x) denote the number of nodes in the subtree rooted at 2 and d the degree of z.
Then
SIizE(x) > Forgq, d>0.

Proof. This is seen by induction oni&=(z). The result is true wheni8e(z) = 1,2 since in these
cases! = 0, 1, respectively. If &E(x) > 3, letys, ..., yq be the children o as in ©). Then

d

Size(z) = 1+ZSIZE(yi)
i=1
d

z 1+ Z F,. degr ee2 (by induction)
1=1
d
> 2+ Y F (bylastlemma)

=2
d

= 1+ZF1' = Fyi2.
=1

Chee-Keng Yap Basic Version April 19, 2011

§8. POINTER MODEL Lecture VI Page 32

Q.E.D.

It follows that if z has degred, then
n > SIZE(x) > Fyyo > ¢%
Taking logarithms, we immediately obtain:

LEMMA 9.
D(n) < log,(n).

This completes our analysis of Fibonacci heaps. It is noarckdy the name “Fibonacci” arises.

Background: Prior to Fibonacci heaps, the binomial heags fvuillemin (1978) were considered
the best data structure for the mergeable queue ADT. Theisgsibelow explores some basic properties
of binomial heaps. There is some interest to improve the ipeor complexity of Fibonacci heaps to
worst case complexity bounds. This was finally achieved mdBlin 2005.

EXERCISES

Exercise 7.1: Suppose that instead of cutting a node just as it is aboustwdcsecond child, we cut a
node just as it is about to lose a third child. Carry out thdymimas before. Discuss the pros and
cons of this variant Fibonacci heap. &

Exercise 7.2: R R
(a) Determinep, the other root of the equatiorf — z — 1 = 0. Numerically compute) to 3
decimal places. _
(b) Determinel; exactly in terms ofp andngS HINT: F; = A¢' + Bp/f;iZ for constantsA, B.
(b) What is the influence of thg-term on the relative magnitude &f? &

Exercise 7.3: Abinomialtree is a tree whose shape is taken f{dBp, B1, Bo, . . .} of trees, inductively
defined as follows: the singleton node is a binomial tree tehB,. If 2,y are roots of two
binomial B; are

O

END EXERCISES

68. Pointer Model of Computation

There is an esthetically displeasing feature in our codatithn algorithm, namely, its use of array
indexing does not seem to conform to the style used in ther afperations. Intuitively the reason is
that, unlike the other operations, indexing does not fit inithe “pointer model” of computation. In
this section, we will give the pointer-based solution to saidation. We will also look at an elegant
formalization of the pointer model. This model can be usedaféormal theory of computability and
complexity. It has many advantages over the standard Tunachines model.

Chee-Keng Yap Basic Version April 19, 2011

§8. POINTER MODEL Lecture VI Page 33

€21. Pointer based consolidation. We outline a purely pointer-based method for consolidative
rely on the reader’s understanding of pointers as foundiiwveotional programming languages such as
Cor C++.

Assume that ift < D(n) is the maximum degree of any node (past or present) in thenkitm
heap, we have a doubly-linked list of nodes

(RO,Rl, 7Rk)

We call this the “degree register” because every node in ¢ap lof degree will have a pointer toR;.
Herek is the largest degree of a node that has been seen so far.Hdoteten we link: to y then the
degree ofy increments by one and when we aytthen the parent of decrements by one, and these
are the only possibilities. If item has its degree changed franto ¢+ = 1 then we can re-register
by pointing it to R;+; in constant time. Occasionally, we have to extend the lenfthe register by
appending a new nodBy, to the doubly-linked list (when some node attains a degreel that is
larger than any seen so far). It is thus easy to maintain tasesk register.

Now suppose we must consolidate a root listBy going through the items i, we can create
(with the help of the degree register) a list of lists

(Lo, L1, ..., L)

where listL; comprises the roots of degréen J. This takesO(D(n) + t) operations ifJ hast
elements. It is now easy to consolidate the lis¢s. . ., Ly, into one list in which no two trees have the
same degree, usin@(t) time. The cost of this procedure(D(n) + ¢), as in the solution that uses
array indexing.

But we can take this idea further: we can reinterpret theitardist as a degree register. Whenever
we register a root of degrde we check if there is already another such root. If so, we kirik them
together and recursively register the new root of degrgel. The worst case cost of registration in
O(lgn), but the amortized cost is on{y(1) using the Counter Example analysis.

We get several benefits in this approach: (i) The space foretisterd is D(n) = O(logn). (i)
The operatiordel et eM n(H) amounts to a simple search through this register; henceoitstwase
time is no longeO(n) butO(logn). (iii) We have eliminated the explicit consolidation prese

€22. The Pointer Computational Model. We now give a formal model of the pointer model. A
pointer program 11 consists of a finite sequence of instructions that operatnamplicit potentially
infinite digraphG. All program variables iAl are of typePOINTER, but we also manipulate integer val-
ues via these pointers. Each pointer points to some no@e ifach nodeV in G has four components:

(integer-value, 0-pointer, 1-pointer, 2-pointer).

These are accessed@¥al , P.0, P.1 andP.2 whereP is any pointer variable that points 16. There
is a special nodéVy € G and this is pointed to by theil pointer. By definition.nil.vVal = 0 and
nil.z = nil for 7 = 0, 1, 2. Note that with 3 pointers, it is easy to model binary trees.

923. Pointer Expressions. In general, we can specify a node by pointer expression
(poi nt er - expr), which is either the constanil, the New() operator, or has the forr?.«w where

Chee-Keng Yap Basic Version April 19, 2011

§8. POINTER MODEL Lecture VI Page 34

P is a pointer variable and> € {0, 1,2}*. The stringw is also called gath. Examples of pointer
expressions:
nil, New(), P, PO, Q.1, P2, .1202, P.2120120

whereP, () are pointer variables. Thef\v() operator (with no arguments) returns a returns a pointer
to a “spanking new nodelV whereN.0 = N.1 = N.2 = nilandN.Val = 1. The only way to access
a node or its components is via such pointer expressions.

The integer values stored in nodes are unbounded and onesdannp the four arithmetic opera-
tions; compare two integers; and assign to an integer Varfedom any integer expression (see below).

We can compare two pointers for equality or inequality, aad assign to a pointer variable from
another pointer variable or the constaiitor the function New(). Assignment to anil pointer has no
effect. Note that we are not allowed to do pointer arithmetito compare them for the “less than”
relation.

The assignment of pointers can be explained with an example:
P.0121 « Q.20002

If N is the node referenced by.012 and N’ is the node referenced ky.20002, then we are setting
N.1to pointtoN’. If N is thenil node, then this assignment has no effect.

Naturally, we use the result of a comparison to decide whetheot to branch to a labeled instruc-
tion. Assume some convention for input and output. For mstawe may have two special pointers
P, andP,,; that point (respectively) to the input and output of the paog.

To summarize: a pointer program is a sequence of instrig{i@ith an optional label) of the fol-
lowing types.

Value Assignment{poi nt er - expr .Val) < (i nt eger - expr);

e Pointer Assignment{pat h- expr) < (poi nt er - expr);

Pointer Comparisorif (poi nt er - expr) = (poi nt er - expr) then goto (I abel);

Value Comparisontf (i nt eger - expr) > 0 then goto (I abel);

e Halt

Integer expressions denote integer values. For instance
(74 % P.000) — (Q.21 + P)

whereP, () are pointer variables. Her#,000, .21, P denotes the values stored at the corresponding
nodes. Thus, an integer expressiont eger - expr) is either

e Base Case: any literal integer constant (e@.l,74,—199), a (poi nter-expr) (e.g.,
P.012,Q,nil); or

e Recursively:
({i nt eger - expr){op)(i nt eger - expr))

Chee-Keng Yap Basic Version April 19, 2011

§8. POINTER MODEL Lecture VI Page 35

where(op) is one of the four arithmetic operations. Recall thitval = 0. Some details about the
semantics of the model may be left unspecified for now. Fdams, if we divide by, the program
may be assumed to halt instantly.

For a simple complexity model, we may assume each of the aljpemtions take unit time regard-
less of the pointers or the size of the integers involvedewilse, the space usage can be simplified to
just counting the number of nodes used.

One could embellish it with higher level constructs suclvhge-loops. Or, we could impoverish it
by restricting the integer values to Boolean values (toiatdebetter accounting of the bit-complexity
of such programs). In general, we could have pointer modeidich the value of a node.Val comes
from any domain. For instance, to model computation oven@gH, we letP.Val be an element of.
We might wish to have an inverse tceM/(), to delete a node.

924. List reversal example. Consider a pointer program to reverse a singly-linked listumbers
(we only use)-pointer of each node to point to the next node). Our prograes the pointer variables
P, Q, R and we writeP «— @ «+— R to mean the sequential assignments<- Q; @ «— R;".

REVERSHELIST:
Input: P;,, pointer to a linked list.
Output: P,,;, pointer to the reversal a?;,,.
P —nil; Q <« Pjy;
If @ = nil then goto E;

R+~ Q.0+« P;
L: If R = nil then goto E;
T: P—Q R+ Q.0 P,
goto L;
E: Pout — Q

This program is easy to grasp once the invariant preceding Tiis understood (see Figut8 and
Exercise).

DR

P Q R P R S

Figure 13: List Reversal Algorithm: the transformation @ie.T.

Remark: This model may be more convenient than Turing machines t@asisecommon basis for
discussing complexity theory issues. The main reservatmnes from our unit cost for unbounded
integers operations. In that case we can either requireathattegers be bounded, or else charge a
suitable costV/ (n) for multiplying n-bit integers, etc, reflecting the Turing machine cost. Qfrse,
the use of pointers is still non-elementary from the viewpoi Turing machines, but this is precisely
the convenience we gain.

EXERCISES

Chee-Keng Yap Basic Version April 19, 2011

§9. MINIMUM SPANNING TREE Lecture VI Page 36

Exercise 8.1: State the invariant before line T in the pointer reversagypam; then proving the program

correct. &
Exercise 8.2: Write the pointer program for the consolidation. &
Exercise 8.3: Implement in detail all the Fibonacci heap algorithms ugsingpointer model, &

Exercise 8.4: Write a sorting program and a matrix multiplication programthis model. What is the
time complexity of your algorithms? &

END EXERCISES

§9. Application to Minimum Spanning Tree

The original application of Fibonacci heaps is in computingimum spanning trees (MST). In
Lecture 1V §4, we considered Prim’s algorithm for MST. The input for MSTa connected bigraph
G = (V, E; C) with cost functionC' : E — R.

Although our goal is to compute a minimum spanning tree, $esimplify our task by computing
only the cost of a minimum spanning tree. This is consistent with a gengoait of pedagogy: for
many computational problems that seek to compute a datetsteuD = D* which minimizes an
associated cost functiof{ D), it is easier to develop the algorithmic ideas for computfii@®*) than
for computingD*. Invariably, we could easily transform the algorithm foe tminimum valuef (D*)
into an algorithm that produces the optimal structire

925. Prim-safe sets. It is easy to see that i/ is a singleton theri/ is Prim-safe. Suppos¥ is
Prim-safe and we ask hol# might be extended to a larger Prim-safe set. Let us mairftaifollowing
information about:

i) mst [U], denoting the cost of the minimum spanning tre&f .

i) For eachv € V — U, the least codtc/[v] of an edge connectingto U

| cy[v] ;= min{C(v,u) : (v,u) € E,u € U}.

We usually omit the subscripf and just write t c[v]” without confusion.

In order to find a node* € V — U with the minimuml c-value, we will maintaint’ — U as a
singlé® mergeable queu@ in which the least codtc[u] serves as the key of the nodec V — U.
Hence extending the Prim-safe détby a nodeu* amounts to alel et eM n from the mergeable
queue. After the deletion, we must update the informatiet|[U] andl c[v] for eachv € V' — U. But
we do not really need to consider everye V' — U: we only need to updatec [v] for thosev that are
adjacent ta.*. The following code fragment captures our intent.

8 So we are not using the full power of the mergeable queue ADi€wdan maintain several mergeable queues. In particular,
we never perform the union operation in this application.

Chee-Keng Yap Basic Version April 19, 2011

§9. MINIMUM SPANNING TREE Lecture VI Page 37

UPDATE(u*, U):
1. U«—UU{u*}. {This step need not be performe
2. mst [U] — st [U] + | clu*].
3. forwv adjacentta.* andv ¢ U, do
Ifl c[v] > Clv,u*] then
I c[v] « Clv,u*]}.
DecreaseKey(| c[v], Q).

o

We need not explicitly carry out step 1 becaudsés implicitly maintained as the complement of the
items in@. We now present the MST Cost version of Prim’s algorithm.

MST COSTALGORITHM:
Input: G = (V, E; C), a connected costed bigraph.
Output: the cost of an MST of-.

INITIALIZE :

1. U« {vo}; mst [U] < 0;

2. forveV —U,dolclv] — C(v,vp);

3. SetupV — U as a single mergeable que@je
Q — MakeQueue();
Insert each element 6f — U into Q.

LooFr

4. while Q # 0,do
u* «— del et eM n(Q);
UPDATE(u*, U).

5. Return(mst [U]).

We do not need to maintaiti explicitly, although it seems clearer to put this into ouepdo-code
above. In practice, the updating @fcan be replaced by a step to add edges to the current MST.

€26. Analysis. The correctness of this algorithm is immediate from the @déwny discussion. To
bound its complexity, let := |V| andm := |E|. Assume that the mergeable queue is implemented
by a Fibonacci heap. In theRDATE subroutine, updating the value b€[v] becomes a DecreaseKey
operation. Each operation inADATE can be charged to an edge or a vertex. As each edge or vertex is
charged at most once, and since the amortized cost of eachtiopasO(1), the cost of all the updates

is O(m + n). The initialization take®)(n) time. In the main procedure, we make- 1 passes through
thewhileloop. So we performe — 1 del et eM n operations, and as the amortized cos?$og n) per
operation, this has total coskn log n). We have proven:

THEOREM 10. The cost of a minimum spanning tree of a graph (V, E;C) can be found in
O(|V|log|V| + |E|) operations.

€27. Final Remarks. The amortization idea is closely related to two other topi@ne is “self-
organizing data structures”. Originally, this kind of ay&$ is undertaken by assuming the input has
certain probability distribution. McCabe (1965) is thetfisdiscuss the idea of move-to-frontrule. See
“An account of self-organizing systems”, W.J. Hendric&AM J.Comp., 5:4(1976); also “Heuristics
that dynamically organizes data structures”, James ReBiiAM J.Comp., 8:1(1979)82-100. But
starting from the work of Sleator and Tarjan, the competitnalysis approach has become dominant.
Albers and Westbrook gives a survey ij.[Indeed, competitive analysis is the connection to theoth
major topic, “online algorithms”. Albers gives a survey.[

Chee-Keng Yap Basic Version April 19, 2011

§9. MINIMUM SPANNING TREE Lecture VI Page 38

EXERCISES

Students should be able to demonstrate understandingroBRrigorithm by

doing hand simulations. The first exercise illustrates gkirtabular form fo
hand simulation.

Exercise 9.1: Hand simulate Prim’s algorithm on the following graph (Figi4) beginning withv; :

Figure 14: Graph of a House

It amounts to filling in the following table, row by row. We hafilled in the first two rows
already.

7 Vo | V3 | Vg | Vs | Vg | V7 | V] | Vg | Vig | V11 | V12 mst[U] New Edge
112 |3 |2 || |ow|oo|ow|[oo |0 |00 |2 (v1,v2)

2 * ” ” 8 ” ” ” ” 4 (vl , ,04)

Note that the minimum cost in each row is underscored, ititigdhe item to be removed from
the priority queue. &

Exercise 9.2: Let GG,, be the graph with verticefl, 2, ...,n} and forl <i < j < n, we have an edge
(i,7) iff i dividesj. For instance(l, j) is an edge for all < j < n. Thecostof the edg€i, j)
isj — 1.

(a) Hand simulate (as in the previous exercise) Prim’s &lgoronG,y. Show the final MST and
its cost.

9&@@9@

8

Figure 15:G4,: edges from node 1 are omitted for clarity.

(b) What can you say about the MST @f,? Is it unique? What is the asymptotic cost of the
MST? O

Exercise 9.3: Modify the above algorithm to compute a minimum spanning.tre

&

Chee-Keng Yap Basic Version April 19, 2011

§9. MINIMUM SPANNING TREE Lecture VI Page 39

Exercise 9.4: Modify the above algorithm to compute a minimum spanning$biin case the input
graph is not connected. &

Exercise 9.5: Let G = (V, E; i) be an edge-costed bigraph afidC E,U C V. LetV(S) = {v €
Vi Ju, (u,v) € S} denote theverticesof S, andG|U := (U, E'; i) whereE’ = En () denote
therestriction of G to U. We defineS to beprim-safe if S is an MST of G|V (S) and .S can
be extended into an MST a¥. We defineU to beprim-safe if U is singleton or there exists a
prim-safe sel5 of edges such thdf = V(S). Show or give a counter-example:

(a) S is atree ofG|V(S) and can be extended into an MST®&fimplies S is prim safe.
(b) U is prim-safe implies every MST a|U is prim-safe. O

END EXERCISES

Chee-Keng Yap Basic Version April 19, 2011

§A. APPENDIX: LIST UPDATE PROBLEM Lecture VI Page 40

§A. APPENDIX: List Update Problem

The splay tree idea originates in the “move-to-front ruletifistic for followinglist update prob-
lem: let L be a doubly-linked list otemswhere each item has a unique key. For simplicity, we usually
write L as a sequence of keys. This list supportsabeess requestEach access requesis specified
by a key (also denoted), and we satisfy this request by returning a pointer to taeniin L with key
r. (We assume such an item always exist.) We are interestedpeaal class of algorithms: such an
algorithme, on an input., andr, searches sequentially infor the keyr by starting at the head of the
list. Upon finding the item with key, « is allowed to move the item to some position nearer the head
of the list (the relative ordering of the other items is unudped). Here are three alternative rules which
specify the new position of an updated item:

e (Ro) Thelazy rule never modifies the list.
e (R,) Themove-to-front rule always make updated item the new head of thd list

e (R>) Thetranspose rulejust moves the updated item one position closer to the hetbdist.

Let «; denote the list update algorithm based on RRJgi = 0, 1,2). For instancegq; is the “move-
to-front algorithm”. For any algorithm, let COST, (r, L) denote the cost of an update requesin
alist L usinga. Fori = 0,1,2, we write COST;(r, L) instead ofCOST,,(r, L). We may define
COST;(r, L) to bel + j wherej is the position of the accessed item/inlf « is an update algorithm,
thena(L, r) denotes the updated list upon applyindo L, r. We extend this notation to a sequence
U= (ri,re,...,m) Of requests, by defining

a(L,U) = a(a(L,{(r1,...,"n-1)),Tn)-
Similarly, COST,(L,U) or COST;(L,U) denotes the sum of the individual update costs.

928. Example: Let L = {(a,b,c,d,e) be a list andc an update request. Them(L,c) = L,
a1(L,¢) = {c,a,b,d,e) andas (L, c) = {a,c,b,d, e). Also COST;(L,c) =4 foralli =0,1,2.

929. Probabilistic Model. We analyze the cost of a sequence of updates under the lazgndlthe
move-to-front rule. We first analyze a probabilistic modélere the probability of updating a key is
pi, fori =1,...,m. The lazy rule is easy to analyze: if the listlis= (k1, ..., k) then the expected
cost of a single access request is

C(p1y.- sPm) = Zzpl
i=1

Itis easy to see that this cost is minimized if the liss rearranged so that > ps > --- > p,,,; letC*
denote this minimized value @ (p1, ..., pm).

What about the move-to-front rule? Lgeti, j) be the probability thak; is in front of k; in list L.
This is the probability that, if we look at the last time an af@linvolvedk; or k;, the operation involves
k;. Clearly
_ D

pi+p;

p(i,)
The expected cost to upddigis
L+ Y p).

J=1,j#1

Chee-Keng Yap Basic Version April 19, 2011

§A. APPENDIX: LIST UPDATE PROBLEM Lecture VI Page 41

The expected cost of an arbitrary update is

C = sz 1+ Z

Jj=1,j#i

= 1+22pi-p(z 7)

i=1 j#i

= 142 Yy PP

1<j<i<m Pi+Pj

= 1—|—2sz2 Jy 1)

=1] 1
< 1+2Zpi'(i—1)
= 20" —1.

This proves ~
C <20 (10)

€30. Amortization Model. Let us now consider the amortized cost of a fixed sequencedztap
U= (r1,r2,...,"n) (11)

on an initial listZy with m items. Clearly the worst case cost per updat@(is:). So, updates over the
sequencé’ costsO(mn). This worst case bound cannot be improved if we use the Idey Tine best
case for the lazy rule i©(1) per update, 0©(n) overall.

What about the move-to-front rule? In analogy to equatidi), we show that it is never incur more
than twice the cost of any update algorithm. In particutés hever more than twice cost of an optimal
offline update algorithnav,.. Note thato,, being offline, can determine the best position to move each
element after it has been accesbaded on the entire sequence U in (11). If the cost ofa, is denoted
COST,, we prove

COSTy(L,U) <2-COST.(L,U). (12)

We introduce the following potential function on lists. Aipék, k') of keys is arninversion in a pair
(L, L) of lists if k occurs beforé’ in L butk occurs aftek’ in L’. We will compare the lisL produced
by our move-to-front algorithm to the ligt* obtained from the optimal algorithm: tipetential ®(L)
of L is defined to be the number of inversions(ib, L*). For instance®(L) = 5 in Figure 16 as
there is one inversion involving, two inversions involving (not counting that withz), two inversions
involving ¢ (not counting those with or b) and0 inversion involvingd (not counting those with, b, c).

Consider thejth request(j = 1,...,n). Let L; (resp. L}) be the list produced by the move-to-
front (resp. optimal) algorithm afterth;eh request Writeb ; for<I>(j). Letc; andc; denote the cost
of serving thejth request under two algorithms (respect|vely) Iz:etbe the item accessed in thth
request and; is the number of items that are in frontof in both listsZ; and}. Let¢; be the number
of items that are in front af; in L; but behindz; in L. Hence

Cj:kj—f—éj-i-l, C;ij'i‘l

CLAIM: The number of inversions destroyed is ¢; and the number of inversions created is at most ;.

Chee-Keng Yap Basic Version April 19, 2011

§A. APPENDIX: LIST UPDATE PROBLEM Lecture VI Page 42

(i)

a
L*/Quuu

T B(L)=1+42+2+40=5

- \/
Ve N
@ O—O—E—E0—0
Ll

Figure 16: How potential changes under upddte= «; (L, b)

O(L)=2+0+2+0=14

In illustration, consider the list’ in Figure 1&(iii), produced by the move-to-front algorithm after
accessing in L. Thus

Note that¢; counts the elemenisande. They represent the inversiotis, e} and{b, d} in L. Both
inversion weredestroyedwhenb moved to the front inL’. Likewise, k; counts the element; it
represents the new inversién, b} that wascreatedin L’ whenb moved to the front. Next, the optimal
algorithma* is allowed to updaté’ by movingb closer to the front of its list. Each element thahoves
past when updating’ will reduce the number of created inversions by the mové&dat algorithm. It
should now be clear that the above CLAIM is true.

It follows
(I)j — q)j—l S kj —fj.

Combining these two remarks,

¢+ P, — ;4 2k; +1

20; —1.

IAIA

Summing up over alf = 1,...,n, we obtain

COSTy (Lo, U) D e | 4@ — P

1

n

J
> (2¢;—1), (since®, >0,P, = 0)
j=1

2COST, (Lo, U) — n.

IN

931. Competitive Algorithms. Let 5(k) be a function ofk. We say an algorithm is 5(k)-
competitive if there is some constart, for all input lists L of length k£ and for all sequences of
requests

COST,(L,U) < (k) - COST.(L,U).

HereCOST, is the cost incurred by the optimal offline algorithm.

Chee-Keng Yap Basic Version April 19, 2011

§A. APPENDIX: LIST UPDATE PROBLEM Lecture VI Page 43

We have just shown that the Move-to-Front algorithn2{isompetitive. This idea of competitive-
ness from Sleator and Tarjan is an extremely powerful oné@seins up the possibility of measuring
the performance of online algorithms (such as the moveenotfalgorithm) without any probabilistic
assumption on the input requests.

932. Remark. An application of the list update problem is data-compi@asgExercise). Chung,
Hajela and Seymouf] determine that cost of the move-to-front rule over the adstn optimal static
ordering of the list (relative to some probability of acdrgseach item) isr/2. See also Lewis and
Denenbergf] and Purdom and Browrd].

EXERCISES

Exercise A.1: We extend the list update problem above in several ways:
(a) One way is to allow other kinds of requests. Suppose vesvahlisertions and deletions of
items. Assume the following algorithm for insertion: we plie new item at the end of the list
and perform an access to it. Here is the deletion algorithenagcess the item and then delete it.
Show that the above analyses extend to a sequence of acsessand delete requests.
(b) Extend the list update analysis to the case where theested keyk may not appear in the
list.
(c) A different kind of extension is to increase the classlgbathms we analyze: after accessing
an item, we allow the algorithm to to transpose any numbeaoff adjacent items, where each
transposition has unit cost. Again, extend our analysegeabo &

Exercise A.2: The above update rulg®; (i = 0, 1, 2) are memoryless. The following two rules require
memory.

e (R3) Thefrequency rule maintains the list so that the more frequently accessedsiterour
before the less frequently accessed items. This algorificgurse, requires that we keep a
counter with each item.

e (R4) Thetimestamp rule (Albers, 1995) says that we move the requested itemfront of
the first itemy in the list that precedesand that has been requested at most once since the
last request ta. If there is no sucly or if x has not been requested so far, do not mave

(a) Show thatR; is notc-competitive for any constamt
(b) Show thatR, is 2-competitive. &

Exercise A.3: (Bentley, Sleator, Tarjan, Wei) Consider the followingalabmpression scheme based
on any list updating algorithm. We encode an input sequeéhoé symbols by each symbol’s
position in a listL. The trick is thatl is dynamic: we updaté by accessing each of the symbols
to be encoded. We now have a string of integers. To finallyinladinary string as our output,
we encode this string of integers by using a prefix code foh @&eger. In the following, assume
that we use the move-to-front rule for list update. Furthenenwe use the prefix code of Elias in
Exercise 1V.1.1.6 that requires only

f(n) =1+ [lgn] +2|[lg(1+1gn))
bits to encode an integer.

(a) Assume the symbols atgb, ¢, d, e and the initial list isL = (a, b, ¢, d, e). Give the integer
sequence corresponding to the strisig= abaabcdabaabecbaadae. Also give the final binary

Chee-Keng Yap Basic Version April 19, 2011

§A. APPENDIX: LIST UPDATE PROBLEM Lecture VI Page 44

string corresponding to this integer sequence.
(b) Show that if symbok; occursm,; > 0 times inS then thesen; occurrences can be encoded
using a total of

mi f(m/m;)

bits where|.S| = m. HINT: If the positions ofz; in Sarel < p; < p1 < -+ < pm, <M
then thejth occurrence of; needs at mosf(p; — p;—1). Then use Jensen’s inequality for the
concave functiorf (n).

(c) If there aren distinct symbolsy, . . ., z, in S, define
- my m
A(S) == ; —f <H) .

Thus A(S) bounds the average number of bits per symbol used by our @ssipn scheme.
Show that
A(S) <1+ H(S)+2lg(l+ H(S))
where .
m; m
NOTE: H(S) is the “empirical entropy” ofS. It corresponds to the average number of bits per

symbol achieved by the Huffman code f6r In other words, this online compression scheme
achieves close to the compression of the offline Huffmanrapéelgorithm. &

END EXERCISES

References

[1] S. Albers. Competitive online algorithms. BRICS Le@8eries LS-96-2, BRICS, Department of
Computer Science, University of Aarhus, September 1996.

[2] S. Albers and J. Westbrook. A survey of self-organizirdedstructures. Research Report MPI-
[-96-1-026, Max-Planck-Institut fur Informatik, Im Staeald, D-66123 Saarbriicken, Germany,
October 1996.

[3] F. R. K. Chung, D. J. Hajela, and P. D. Seymour. Self-orgiag sequential search and hilbert’s
inequalities. ACM Symp. Theory of Comput., 7, 1985. Providence, Rhode Island.

[4] D. G. Kirkpatrick and R. Seidel. The ultimate planar cernull algorithm? SAM J. Comput.,
15:287-299, 1986.

[5] H. R. Lewis and L. Denenberddata Structures and their Algorithms. Harper Collins Publishers,
New York, 1991.

[6] A. Moffat, G. Eddy, and O. Petersson. Splaysort: Fastsatle, practical.Software - Practice
and Experience, 126(7):781-797,1996.

[7] M. H. Overmars and J. van Leeuwen. Dynamic multi-dimenai data structures based on quad-
andk-d trees.Acta Inform., 17:267-285, 1982.

[8] J. Paul Walton Purdom and C. A. Browihe Analysisof Algorithms. Holt, Rinehart and Winston,
New York, 1985.

Chee-Keng Yap Basic Version April 19, 2011

§A. APPENDIX: LIST UPDATE PROBLEM Lecture VI Page 45

[9] M. Sherk. Self-adjusting-ary search trees. lbecture Notes in Computer Science, volume 382,
pages 373-380, 1989. Praorkshop on Algorithms and Data Structures, Aug. 17-19, 1989,
Carleton University, Ottawa, Canada.

[10] D. D. Sleator and R. E. Tarjan. Self-adjusting binargrsé treesJ. ACM, 32:652—-686, 1985.

[11] R. E. Tarjan. Amortized computational complexi§AM J. on Algebraic and Discrete Methods,
6:306-318, 1985.

Chee-Keng Yap Basic Version April 19, 2011

	 AMORTIZATION
	 The Potential Framework
	 Splay Trees
	 Splay Analysis
	 Application to Convex Hulls
	 Fibonacci Heaps
	 Fibonacci Heap Algorithms
	 Degree Bound
	 Pointer Model of Computation
	 Application to Minimum Spanning Tree
	 APPENDIX: List Update Problem

