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“ ...self-amortizing canals... ”
– Mr. Banks inMary Poppins

Lecture VI
AMORTIZATION

Amortization is the idea of distributing cost over a period of time, as when we take out a 25-year
mortgage loan1 to pay for a home. This idea can be used to analyze the cost of running an algorithm.
Suppose each run of an algorithm amounts to a sequence of operations on a data structure. For instance,
to sortn items, the well-knownheapsort algorithm (Lect.III,¶7) is a sequence ofn insert’s into
an initially empty priority queue, followed by a sequence ofn deleteMin’s from the queue until it
is empty. Thus ifci is the cost of theith operation, the algorithm’s running time is

∑2n

i=1
ci, since

there are2n priority queue operations in all. In worst case analysis, weensure thateach operation is
efficient, sayci = O(log n), leading to the conclusion that the overall algorithm isO(n log n). The idea
of amortization exploits the fact that we may be able to obtain the same bound

∑2n

i=1
ci = O(n log n)

without ensuring that eachci is logarithmic. We then say that theamortized costof each operation is
logarithmic. Thus “amortized complexity” is a kind of average complexity although it has nothing to
do with probability. Tarjan [11] gave the first systematic account of this topic.

¶1. Why amortize? Note that for the heapsort problem above, we could have ensured each opera-
tion is logarithmic time. Nevertheless, it may be advantageous to consider algorithms that only achieve
logarithmic behavior only in the amortized sense. For instance, the extra flexibility of using amortized
bounds may lead to simpler or more practical algorithms. Indeed many “amortized” data structures
are relatively easy to implement. To give a concrete example, consider any balance binary search tree
scheme. The algorithms for such trees must perform considerable book-keeping to maintain its bal-
anced shape. In contrast, when we study splay trees below, wewill see an amortization scheme for
binary search trees which is considerably simpler and “lax”about balancing. The operative word in
amortization is2 laziness: try to defer the book-keeping work to the future, when it might be more
convenient to do this work.

This chapter is in 3 parts: we begin by introducing thepotential function framework for doing
amortization analysis. Then we introduce two data structures,splay treesandFibonacci heaps, which
can be analyzed using this framework. We give a non-trivial application of each data structure: splay
trees are used to maintain the convex hull of a set of points inthe plane, and Fibonacci heaps are used
to implement Prim’s algorithm for minimum spanning trees.

§1. The Potential Framework

We formulate an approach to amortized analysis using the concept of “potential functions”. Bor-
rowing a concept from Physics, we imagine data structures asstoring “potential energy” that can be

1 At the same time, our home is mortgaged or pledged as collateral.
2 In algorithmics, it appears that we like to turn conventional vices (greediness, laziness, gambling with chance, etc) into

virtues.
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released to do useful work. First, we view a data structure such as a binary search tree as a persistent
object that has a state which can be changed by operations (e.g., insert, delete, etc). Thecharacteristic
property of potential functions is that they are a function of thecurrent state of the data structure alone,
independent of the history of how the data structure was derived. For instance, consider a binary search
treeT1 obtained by inserting the keys1, 2, 3 (in some order) into an empty tree and a treeT2 obtained
by inserting the keys1, 2, 3, 4, followed by deletion of4. If T1 andT2 have the same shape, then the
potential energy in these two trees will be the same.

Counter example to
what?

¶2. A “Counter Example”. Let C be a binary counter and the only operation onC is to increment its
value. Starting with a counter value of0, our counterC goes through the following sequence of states
as we repeatedly increment it:

(0) → (01) → (010) → (011) → (0100) → (0101) → . . .

Note that we use the convention of prepending a0 bit to the standard binary notation for an integer.

The problem we consider is to bound the cost of a sequence ofn increments, starting from an initial
counter value of0. In the worst case, an increment operation costsΘ(lg n). Therefore a worst-case
analysis would conclude that the total cost isO(n lg n). We can do better by using amortized analysis.

We may assumeC is represented by a sufficiently long binary array, or3 alternatively, a linked list
of 0 and1’s. This representation determines ourcost model: the cost of an increment operation is the
number of bits we need to flip. Note the the number of bits to flipis the length of the suffix ofC of
the form01∗, i.e.,0 followed by zero or more occurrences of1. SinceC always begins with a0-bit,
a suffix of the form01∗ always exists. This cost is at least1. Note that we may also need to prepend
a 0 when the length of the binary counter is incremented, but this O(1) cost is easily absorbed by the
cost to flip bits. For instance, if the value ofC is 27, thenC = (011011). After incrementing, we get
C = (011100). The cost of this increment is3 sinceC has the suffix011 before the increment.

To begin our amortized analysis, we associate withC a potential Φ = Φ(C) that is equal to the
number of1’s in its list representation. In our preceding example,Φ(011011) = 4 andΦ(011100) = 3;
so the potential ofC decreased by1 after this particular increment. Informally, we will “store” Φ(C)
units of work (or energy) inC. To analyze the increment operation, we consider two cases.

• (i) Suppose the least significant bit ofC is 0. Then the increment operation just changes this bit to
1. Note that the potential increases by1 by this operation. We cancharge this operation2 units
– one unit to do the work and one unit to pay for the increase in potential.

• (ii) Suppose an increment operation changes a suffix0111 · · ·11︸ ︷︷ ︸
k

of lengthk ≥ 2 into 1000 · · ·00︸ ︷︷ ︸
k

:

the cost incurred isk. Notice that the potentialΦ decreases byk − 2. This decrease “releases”
k−2 units of work that can pay fork−2 units of the incurred cost. Hence we only need to charge
this operation2 units to make up the difference.

Thus, in both cases (i) and (ii), we charge2 units of work for an operation, and so the total charges
overn operations is only2n. We conclude that the amortized cost isO(1) per increment operation.

3 The linked list interpretation becomes necessary if we wantto do other operations with multiple counters efficiently. See
Exercise 1.3.
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¶3. Abstract Formulation. We now formulate an amortization analysis that captures theessence of
the above Counter Example. It is assumed that we are analyzing the cost of a sequence

p1, p2, . . . , pn

of requestson a data structureD. We view a data structureD as comprising two parts: itscontents
and itsstructure, where the structure represents some organization of the contents. The (contents,
structure) pair is called thestateof the data structure. The term “request” is meant to cover two types
of operations:updates that modify the contents ofD and queries that computes a function of the
contents. Queries do not modify the contents, and there is nological necessity to modify the structure
either. However, as we shall see, it may be advantageous to modify the structure anyway.

For example,D may be a binary search tree storing a set of keys; the contentsof D are these keys
and the structure ofD is the shape of binary tree itself. Inserting intoD is an update request, and looking
up a key inD is a query request. In Lookups, it is clear that theD need not change. Nevertheless, to
ensure a favorable complexity over a sequence of such operations, it turns out to be a good idea to do
some rotations to bring the searched-for node nearer to the root. This is called the the “move-to-front”
heuristic.

The data structureD is dynamically changing: at any moment, it is in some state, and each request
transforms the current state ofD. Let Di be the state of the data structure after requestpi, with D0 the
initial state.

Eachpi has a non-negativecost, denoted COST(pi). This cost depends on the complexity model –
the latter is part of the problem specification. To carry out an amortization argument, we must specify
a charging schemeand apotential function. Unlike the complexity model, the charging scheme and
potential function are not part of the problem specification. They are artifacts of our analysis and may
require some amount of ingenuity to be formulated.

A charging schemeis just any systematic way to associate a real number CHARGE(pi) to each
operationpi. E.g., for our “Counter Example”, we define CHARGE(pi) := 2 for eachpi. Informally,
we “levy” a chargeof CHARGE(pi) on the operation. We emphasize that this levy need not have any
obvious relationship to COST(pi). Thecredit of this operation is defined to be the “excess charge”,

CREDIT(pi) := CHARGE(pi)− COST(pi). (1)

In view of this equation, specifying a charging scheme is equivalent to specifying a credit scheme. The
credit of an operation can be a negative number (in which caseit is really a “debit”).

A potential function is a non-negative real functionΦ on the set of possible states ofD satisfying

Φ(D0) = 0.

We callΦ(Di) thepotential of stateDi. Let theincrease in potential of theith step be denoted by

∆Φi := Φ(Di)− Φ(Di−1).

The amortization analysis amounts to verifying the following inequality at every step:

CREDIT(pi) ≥ ∆Φi. (2)

We call (2) thecredit-potential invariant .
The key invariant of

amortization

The idea is that credit is stored as “potential” in the data structure.4 Since the potential function
and the charging scheme are defined independently of each other, the truth of the invariant (2) is not a
foregone conclusion. It must be verified for each case.

4Admittedly, we are mixing financial and physical metaphors.The credit or debit ought to be put into a “bank account” and
soΦ could be called the “current balance”.
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If the credit-potential invariant is verified, we can call the charge for an operation itsamortized
cost. This is justified by the following derivation:
∑n

i=1
COST(pi) =

∑n

i=1
(CHARGE(pi)− CREDIT(pi)) (by the definition of credit)

≤ ∑n

i=1
CHARGE(pi)−

∑n

i=1
∆Φi (by the credit-potential invariant)

=
∑n

i=1
CHARGE(pi)− (Φ(Dn)− Φ(D0)) (telescopy)

≤ ∑n

i=1
CHARGE(pi) (since Φ(Dn)− Φ(D0) ≥ 0).

When invariant (2) is a strict inequality, it means that some credit is discarded and the analysis is
not tight in this case. For our “counter” example, the invariant is tight in every case! This means that
our preceding derivation is an equality at each step until the very last step (when we assumeΦ(Dn) −
Φ(D0) ≥ 0). Thus we have the exact cost of incrementing a counter from0 to n is exactlyequal to

n∑

i=1

ci = 2n− Φ(Dn)

whereΦ(Dn) is the number of1’s in the binary representation ofn. E.g., for our “Counter Example”,
the cost incurred to reach the counter valueC = (011001) is exactly2(25)− 3 = 47.

The distinction between “charge” and “amortized cost” should be clearly understood: the former is
a definition and the latter is an assertion. A charge can only be called an amortized cost if the overall Get this!
scheme satisfies the credit-potential invariant.

¶4. So what is Amortization? In the amortization framework, we are given a sequence ofn requests
on a data structure. We are also given a cost model (this may beimplicit) which tells us the true cost
ci for the ith operation. We want to upper bound the total cost

∑n

i=1
ci. In an amortization analysis,

we hope to achieve a bound that is tighter than what can be achieved by replacing eachci by the worst
case cost. This requires the ability to take advantage of thefact that the cost of each type of request is
variable, but its variability can somehow be smoothened outby sharing cost across different operations.
This sharing of costs can be done is various ways. In the potential framework, we are required to invent
a charging scheme and a potential function. After verifyingthat the credit-potential invariant holds for
each operation, we may conclude that the chargeis an amortized cost.

The potential function can be generalized in several ways: it need not be defined just for the data
structure, but could be defined for any suitable abstract feature. Thus, we might have one potential
functionΦj for thejth feature (j = 1, 2, . . .). The charge for an operation could be split up in several
ways, and applied to each of the potential functionsΦj.

We illustrate this by giving an alternative argument for theamortized cost of incrementing binary
counters: let us set up a “charge account” at each bit position of the binary counter: letAi be the
account at theith smallest position (the least significant position isi = 0, the next most significant
position isi = 1, etc). Each unit of work changes the value of a particular bitof the counter; if theith
bit is changed, we charge the accountAi. Note thatA0 is n times. The accountA1 is charged≤ n/2
times, and in general, the accountAi is charged≤ n/2i times. Hence the overall charges is at most
≤ n(1 + 1

2
+ 1

4
+ · · · ) ≤ 2n. Hence the amortize cost per increment is≤ 2.

Note that this charging scheme is actually simpler than the potential method, since we charge each
operation theexact cost of the operation! We will return to these ideas in a laterchapter on the Union
Find data structure.

EXERCISES
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Exercise 1.1: Our model and analysis of counters can yield the exact cost toincrement from any initial
counter value to any final counter value. Show that the numberof work units to increment a
counter from68 to 125 is (exactly!)110. ♦

Exercise 1.2: A simple example of amortized analysis is the cost of operating a special kind of push-
down stack. Our stackS supports the following two operations:S.push(K) simply add the key
K to the top of the current stack. ButS.pop(K) will keep popping the stack as long at the current
top of stack has a key smaller thanK (the bottom of the stack is assume to have the key value
∞). The cost for push operation is1 and the cost for poppingm ≥ 0 items ism + 1.
(a) Use our potential framework to give an amortized analysis for a sequence of such push/pop
operations, starting from an initially empty stack.
(b) How tight is your analysis? E.g., can it give theexact cost, as in our Counter Example?

REMARK: Such a stack is used, for instance, in implementing Graham’s algorithm for the convex
hull of a set of planar points (see Section 4 on convex hull in this chapter). ♦

Exercise 1.3: Let us generalize the example of incrementing binary counters. Suppose we have a col-
lection of binary counters, all initialized to0. We want to perform a sequence of operations, each
of the type

inc(C), double(C), add(C, C′)

whereC, C′ are names of counters. The operationinc(C) increments the counterC by 1;
double(C) doubles the counterC; finally, add(C, C′) adds the contents ofC′ to C while
simultaneously set the counterC′ to zero. Show that this problem has amortized constant cost per
operation.

We must define the cost model. The length of a counter is the number of bits used to store its
value. The cost to double a counterC is just 1 (you only need to prepend a single bit toC).
The cost ofadd(C, C′) is the number of bits that the standard algorithm needs to look at (and
possibly modify) when addingC andC′. E.g., if C = 11, 1001, 1101 andC′ = 110, then
C + C′ = 11, 1010, 0011 and the cost is9. This is because the algorithm only has to look at 6
bits of C and 3 bits ofC′. Note that the 4 high-order bits ofC are not looked at: think of them
as simply being “linked” to the output. Here is where the linked list representation of counters is
exploited. After this operation,C has the value11, 1010, 0011 andC′ has the value0.

You couldn’t do this
with arrays!

HINT: The potential of a counterC should take into account the number of1’s as well as the
bit-length of the counter.

♦

Exercise 1.4: In the previous counter problem, we define a cost model foradd(C, C′) that depends
only on the bit patterns inC andC′. In particular, the cost ofadd(C, C′) andadd(C′, C) are
the same. How can you implement the addition algorithm so that the cost model is justified?
HINT: recall that counters are linked lists, and you must describe your algorithm in terms of list
manipulation. ♦

Exercise 1.5: Generalize the previous exercise by assuming that the counters need not be initially zero,
but may contain powers of2. ♦

Exercise 1.6: Joe Smart reasons that if we can increment counters for an amortized cost ofO(1), we
should be able to also support the operation of “decrementing a counter”, in addition to those in
the previous exercise. This should have an amortized cost ofO(1), of course.
(a) Can you please give Joe a convincing argument as to why he is wrong?
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(b) Joe’s intuition about the symmetry of decrement and increment is correct if we change our
complexity model. Vindicate Joe by a showing a model where wecan increment, decrement, add
and double inO(1) per operation. HINT: we allow our counters to store negativenumbers. We
also need a more general representation of counters.
(c) In your solution to (b), let us add another operation, testing if a counter value is0. What is the
amortized complexity of this operation? ♦

Exercise 1.7: Suppose we want to generate a lexicographic listing of alln-permutations (See Chapter
5 on generating permutations). Give an amortized analysis of this process. ♦

END EXERCISES

§2. Splay Trees

Thesplay tree data structureof Sleator and Tarjan [10] is a practical approach to implementing
all ADT operations listed in§III.2. Splay trees are just ordinary binary search trees – they are only
distinguished by the algorithms used to implement standardbinary tree operations. These operations
invariably contain a splaying operation. The splaying operation, applied to an arbitrary node of the tree,
will bring this node to the root position. We emphasize that the shape of a splay tree is arbitrary. For
instance, it could be a tree consisting of a single path (effectively a list), as shown in the leftmost tree in
Figure1.

Splaying may be traced to an idea called themove-to-front heuristic: suppose we want to repeat-
edly access items in a list, and the cost of accessing the itemis proportional to its distance from the
front of the list. The heuristic says that it is a good idea to move an accessed item to the front of the list.
Intuitively, this move will facilitate future accesses to this item. Of course, there is no guarantee that
we would want to access this item again in the future. But evenif we never again access this item, we
have not lost much because the cost of moving the item has already been paid for (using the appropriate
accounting method). Amortization (and probabilistic) analysis can be used to prove that this heuristic is
a good idea. See Appendix A.

The analogue of the move-to-front heuristic for maintaining binary search trees is this: after we
access (i.e.,lookUp) a keyK in a treeT , we must move the node containingK to the root. What if
K is not inT? In this case, we move the successor or predecessor ofK to move to the root. Recall that
thesuccessorof K in T is the smallest keyK ′ in T such thatK ≤ K ′; thepredecessorof K in T is
the largest keyK ′ in T such thatK ′ ≤ K. ThusK does not have a successor (resp., predecessor) inT
if K is larger (resp., smaller) than any key inT . Also, the successor and predecessor coincide withK
iff K is in T . We characterize thesplayoperation as follows:

splay(Key K, Tree T )→ T ′ (3)

re-structures the binary search treeT into an equivalent binary search treeT ′ in which the keyK ′ at the
root of T ′ is either the successoror predecessor ofK in T . We are indifferent as to whetherK ′ is the
successor or predecessor. In particular, ifK is smaller than any key inT , thenK ′ is the smallest key in
T . A similar remark applies ifK is larger than any key inT . If T is non-empty, then any keyK must
have either a successor or predecessor inT , and this implies that the splay operation is well-defined on
non-empty binary search trees. See Figure1 for examples of splaying.

If u is any node ofT , we say “splay(u, T )” to refer to the operationsplay(u.Key, T ). Before
describing the splay algorithm, we show how it will be used.
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(b)

splay(4)

(a) (c)

3

51

4

1

2

3

4

5

4
splayStep(4)splayStep(4)

5

1

3

2

2

Figure 1: Splaying key 4 (with intermediate step)

¶5. Reduction of ADT operations to Splaying. We now implement the operations of the fully merge-
able dictionary ADT (§III.2). The implementation is quite simple: each ADT operation is reducible to
one or two splaying operations plus some easyO(1) operations.

• lookUp(Key K, Tree T ): first performsplay(K, T ). Then examine the root of the resulting
tree to see ifK is at the root.lookUp is a success iffK is at the root. It is important to realize
that we deliberately modify the treeT by splaying it.

• insert(Item X, Tree T ): perform the standard binary search tree insertion ofX into T . Note
that this insertion would not be successful ifX.key is already inT . In any case, we end up with
a nodeu whose key is either equal toX.key (in the unsuccessful case), or equal to the successor
or predecessor ofX.key. Finally, we splay this node:splay(u, T ). See Exercise for a variant
algorithm. Of course, the splaying ofu is gratuitous from the viewpoint of the insertion operation.
But by now we are not surprised by it, as we know it will be essential for complexity analysis.

• merge(Tree T1, T2)→ T : recall that all the keys inT1 must be less than any key inT2. First let
T ← splay(+∞, T1). Here+∞ denotes an artificial key larger than any real key inT1. So the
root ofT has no right child. We then makeT2 the right subtree ofT .

• delete(Key K, Tree T ): first performsplay(K, T ). If the root of the resulting tree does not
containK, there is nothing to delete. Otherwise, delete the root and merge the left and right
subtrees, as described in the previous bullet. This is illustrated in Figure2.

Splay(+∞, T ′) link K ′ to T ′′

Splay(K, T ) deleteK

K ′

K

K

K ′

T ′′′ T ′′

T ′ T ′′ T ′ T ′′T

T ′′′ T ′′

Figure 2: Steps indelete(K, T )
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• deleteMin(Tree T ): we performT ′ ← splay(−∞, T ) and return the right subtree ofT ′.

• split(Key K, Tree T ) → T ′: performsplay(K, T ) so that the root ofT now contains the
successor or predecessor ofK in T . Split off the right subtree ofT , perhaps including the root of
T , into a new treeT ′.

It is interesting to compare the above ADT implementations with our treatment of Binary Search Trees
in Chapter 3: there, we reduce all ADT operations to a single operation, rotation. In some sense, this is
still the case, except that we have hidden the rotations inside a global operation called splaying.

¶6. Reduction to SplayStep. The operationsplay(K, T ) has one overriding concern: to bring the
keyK (or its successor or predecessor) to the root. This is easilyaccomplished in two stages:

• STAGE 1: Perform the usual binary tree search forK. Say we terminate at a nodeu that contains
K, in caseT contains such a node. Otherwise, letu be the last node that we visit before the
binary tree search algorithm attempts to follow a null pointer. This nodeu contains the successor
or predecessor ofK in T .

• STAGE 2: Now repeatedly call the subroutine

splayStep(u)

until u becomes the root ofT . Termination is guaranteed becausesplayStep(u) always reduce
the depth ofu.

It remains to explain the SplayStep subroutine which is applied to a non-rootu. We first present the
obvious attempt in whichsplayStep(u) is simplyrotate(u). Call this “naive splaying”. Naive
splaying will certainly validate the correctness of all oursplay algorithms in¶5. The problem is that it
defeats our amortization goal. To see this, consider the binary treeTn that contains the keys1, 2, . . . , n
and whose shape is just a right-path. The caseT5 is illustrated in Figure3(a). It is easy to verify that we
can getTn by inserting the keys in the following order:

n, n− 1, n− 2, . . . , 2, 1.

Recall that this insertion follows the prescription of¶5, where the standard insertion is followed by a
splay.

(e)
(b) (d)(c)(a)

splay(4)

5

1

3

2

splay(5)

5

4

1 splay(2)

1

2

5

splay(3)

1

3

2

4

5

4

3

2

4

3

4

3

5

2

1

Figure 3: Naive splaying onT5

Let us performlookUp(n, Tn). Using our splay-based lookup algorithm, we firstsplay(n, Tn),
which produces a tree rooted atn with a left childTn−1. See Figure3(b). We now repeat the process
by performing lookups onn − 1, n − 2, etc. After the final lookup on key2, we get a tree which is
a left-path Figure3(e). The cost for this sequence of operations is order of

∑n

i=2
i = Θ(n2). The

amortized cost of this sequence of operations is clearlyΘ(n), contrary to our goal ofΘ(logn).
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Let us return to the correct implementation ofsplayStep. We need a terminology: A grandchild
u of a nodev is called aouter left grandchild if u is the left child of the left child ofv. Similarly for
outer right grandchild . So anouter grandchild is either an outer left or outer right grandchild. If a
node has a grandparent and is not an outer grandchild, then itis a inner grandchild .

splayStep(Node u):
There are three cases.

Base Case. If u.parent is the root,
then we simplyrotate(u) (see Figure9).

Case I. Else, ifu is an outer grandchild,
perform two rotations:rotate(u.parent), followed byrotate(u). See Figure4.

Case II. Else,u is an inner grandchild and we perform a double rotation (rotate(u) twice). See Figure4.

splayStep(u)

splayStep(u)

u

v

w u

v

w

u

v

w u

v w

Case I

Case II

A B

C

D A

B

C D

A B

C

D

C A B D

Figure 4: SplayStep atu: Cases I and II.

In Figure1, we see two applications ofsplayStep(4). Sleator and Tarjan calls the three cases
of SplayStep the zig (base case), zig-zig (case I) and zig-zag (case II) cases. It is easy to see that the
depth ofu decreases by1 in a zig, and decreases by2 otherwise. Hence, if the depth ofu is h, the
splay operation will halt in abouth/2 splayStep’s. Recall in§III.6, we call the zig-zag a “double
rotation”.

We illustrate the fact thatsplay(K, T ) may return the successor or predecessor: letT0 be the splay
tree in Figure5. If we call splay(6, T0), the result will beT1 in the figure, whereu.Key = 7. But if
we callsplay(6, T1), the result will be the treeT2 in the figure, whereu.Key = 5. What if you call
splay(6, T2)?
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splay(6, T0) splay(6, T1)

T0 T1 T2

3

5

7

7

5

3

5

73

Figure 5: Splaying may return successor or predecessor

¶7. Top Down Splaying. We introduce a variation of splaying. The above splay algorithms re-
quire two passes over the splay path. Suppose we wish to have aone-pass algorithm, denoted
topSplay(Key K, Node u).

The basic idea is to avoid the 2-phase approach of (1) going down the tree to look forK, and then
(2) to bring the node which contains the successor or predecessor ofK up to the root. Instead, we
combine the 2 phases by bring each node that we wish to visit tothe rootbefore we “visit” it. This is
called “top-down splaying”.

Before giving the correct solution, it is instructive to illustrate some false starts. Suppose we are
looking for the keyK andu is the node at the root. Ifu.Key = K, we are done. If not, we must next
visit the left or right child (uL or uR) of u. But instead of going down the tree, we simply rotateuL or
uR to the root! For instance, ifu.Key > K, then we must search forK in the subtree rooted atuL, and
so we do the rotationrotate(uL) to bringuL to the root. So our initial idea amounts to a repeated
left- or right-rotation at the root. Unfortunately, this simple approach has a pitfall. To fix this, let us Find the pitfall!
store some state information: we have 4 possible states in our algorithm. Again,u will be the root node
anduL, uR denote the left and right child ofu (these children may be null).

• State 0: BothuL anduR have not been visited.

• State 1:uL, but notuR, has been visited. Moreover,uL.key < K.

• State 2:uR, but notuL, has been visited. Moreover,uR.key > K.

• State 3: BothuL anduR have been visited. Moreover,uK .key < K < uR.key.

We have a global variableState that is initialized to0. Here are the possible state transitions.
From state0, we must enter either state1 or state2. From states1 or 2, we can either remain in the
same state or enter state3. Once state3 is entered, we remain in state3. Unfortunately thistopSplay
algorithm does not have amortized logarithmic behavior (Exercise).

Here then, is the solution: we maintain 3 splay trees,L, C, R, corresponding to the Left-, Center-
and Right-trees. Refer to Figure6(a). Initially Left- and Right-trees are empty, and the Center-tree is
the input tree. The keys inL are less than the keys inC, which are in turn less than the keys inR.
Inductively, assume the keyK that we are looking for is inC. There are three cases: supposeu is the
root.

• CASE (0): This is the base case. The keyK we are looking for is equal to the key atu. We attach
the left and right children ofu at the rightmost tip and leftmost tip ofL andR, resp. We then
makeu the root of a tree with left and right childrenL andR. See Figure6(b). In caseK is equal
to the key at a child ofu, we just rotate that child before applying the preceding transformation.
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Figure 6: Top Splay: Cases 0, I and II

• CASE (I): Suppose the keyK is found in the subtree rooted at an outer grandchildw of u.
By symmetry, assume thatw is the left child ofv, wherev is the left child ofu. In this case,
we transfer the nodesu, v and the right subtrees ofu andv to the left-tip ofR, as shown in
Figure6(c).

• CASE (II): Suppose keyK is found in the subtree rooted at an inner grandchildw′ of u. By
symmetry, assumew′ is right child ofv, wherev is the left child ofu. In this case, we transfer the
nodeu and its right subtree to the left-tip ofR, and the nodev and its left-subtree to the right-tip
of L, as shown in Figure6(d).

The correctness of this procedure is left as an easy exercise.

EXERCISES

Exercise 2.1: Comment on the following assertions:
(a) Every splay tree is a binary search tree.
(b) Every binary search tree is a splay tree. ♦

Exercise 2.2: Perform the following splay tree operations, starting froman initially empty tree.

insert(3, 2, 1; 6, 5, 4; 9, 8, 7),lookUp(3),delete(7),insert(12, 15, 14, 13),split(8).

Show the splay tree after each step. ♦
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Exercise 2.3: Show the result ofmerge(T1, T2) whereT1, T2 are the splay trees shown in Figure7.
♦

3

2

1

4

7

5 9

6 8

11

10 12

T2T1

Figure 7: Splay treesT1, T2

Exercise 2.4: Consider the insertion of the following sequence of keys into an initially empty tree:
1,−1, 2,−2, 3,−3, . . . , n,−n. Let Tk be the splay tree after insertingk (for k = 1,−1, 2,−2,
etc).
(i) ShowTn andT−n for n = 1, 2, 3.
(ii) State and prove a conjecture about the shape ofTn. ♦

Exercise 2.5: Consider the insertion of the following sequence of keys into an initially empty tree:
3, 2, 1; 6, 5, 4; 9, 8, 7; . . . ; 3n, 3n− 1, 3n− 2, where we have written the keys in groups of three
to indicate the pattern. LetTn be the splay tree after thenth insertion (soT0 is the empty tree).
(a) ShowT3n for n = 1, 2, 3, 4.
(b) State and prove a conjecture about the shape ofTn.
(a’, b’) Repeat (a) and (b), but use the following sequence ofinput keys

2, 3, 1; 5, 6, 4; 8, 9, 7; . . . ; 3n− 1, 3n, 3n− 2.

♦

Exercise 2.6: Consider the insertion of the following sequence of keys into an initially empty tree:
2, 3, 1; 5, 6, 4; 8, 9, 7; . . . ; 3n− 1, 3n, 3n− 2, where we have written the keys in groups of three
to indicate the pattern. LetTn be the splay tree after thenth insertion (soT0 is the empty tree).
(a) ShowT3n for n = 1, 2, 3, 4.
(b) State and prove a conjecture about the shape ofTn. ♦

Exercise 2.7: (Open ended) Prove that if we have any “regular” sequence of insertions, as in the previ-
ous exercises, the result is a “regular” splay tree. Part of this problem is to capture various notions
of regularity. Let us capture the previous two exercises: let G(n) = (g1(n), g2(n), . . . , gk(n))
wherek is a constant andgi(n) is a integer polynomial inn. E.g. G(n) = (n,−n) and
G(n) = (3n, 3n − 1, 3n − 2) captures the regularity of the previous two exercises. Assume
that the sequencesG(n) andG(m) have different members form 6= n. Then we want to show
that the insertion of the sequenceG(1); G(2); G(3); . . . ; G(n) yields a splay treeTn that is “reg-
ular”, but in what sense? ♦

Exercise 2.8: Fix a keyK and a splay treeT0. Let Ti+1 ← splay(K, Ti) for i = 0, 1, . . ..
(a) Under what conditions will theTi’s stabilize (become a constant)? How many splays will

Chee-Keng Yap Basic Version April 19, 2011



§2. SPLAY TREES Lecture VI Page 13

bring on the stable state?
(b) Under what conditions will theTi’s not stabilize? What is the ultimate condition? (Describe
as thoroughly as you can) How many splays will bring on this condition? ♦

Exercise 2.9: Let T be a binary search tree in which every non-leaf has one child.ThusT has a linear
structure with a unique leaf.
(a) What is the effect oflookUp on the key at the leaf ofT?
(b) What is the minimum number oflookUp’s to makeT balanced? ♦

Exercise 2.10: In our operations on splay trees, we usually begin by performing a splay. This was
not the case with our insertion algorithm in the text. But consider the following variant insertion
algorithm. To insert an itemX into T :
1. Performsplay(X.key, T ) to give us an equivalent treeT ′.
2. Now examine the keyK ′ at root ofT ′: if K ′ = X.key, we declare an error (recall that keys
must be distinct).
3. If K ′ > X.key, we install a new root containingX , andK ′ becomes the right child ofX ;
the caseK ′ < X.key is symmetrical. In either case, the new root has key equal toX.key. See
Figure8.
(a) Prove that the amortize complexity this insertion algorithm remainsO(log n).
(b) Compare the amortized complexity of this method with theone in the text. Up to constant
factors, there is no difference, of course. But which has a better constant factor? ♦

K ′

K

K ′

K

K ′

splay(K, T )

K ′ < K

K < K ′

Figure 8: Alternative method to insert a keyK.

Exercise 2.11: (Top Down Splaying)
(a) What is the “pitfall” mentioned for the initial implementation of the top-down splaying algo-
rithm.
(b) Show that the amortized complexity of the second attemptcannot beO(log n). To be specific,
here is the code:
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topSplay(K, u)

Input: K is a key andu a node; we are looking forK in the subtreeTu rooted atu
Output: We return “found” or “not found”. In any case, as side effect, in place ofu

will be a node containing the predecessor or successor ofK in the treeTu.
1. If (u.key = K) Return(“found”).
2. case(State)

State=0:
If (u.key > K)

rotate(u.left);
State← 2.

else
rotate(u.right);
State← 1.

State=1:
If (u.key > K)

v ← u.left.right;
If (v = nil) Return(“not found”).
rotate2(v);
State← 3;

else
v ← u.right;
If (v = nil) Return(“not found”).
rotate(v); ⊳ Remain in State 1.

State=2:
· · · ⊳ Omitted: symmetrical to State 1.

State=3:
If (u.key > K)

v ← u.left.right
else

v ← u.right.left.
If (v = nil) Return(“not found”).
rotate2(v)

⊳ End Case Statement
3. topSplay(K, v). ⊳ Tail recursion

♦

Exercise 2.12:A splay treeis a binary search tree that arises from a sequence of splay tree operations,
starting from empty trees.
(a) Is every binary search tree a splay tree?
(b) LetT andT ′ be equivalent binary search trees (i.e., they store the sameset of keys). Can we
transformT to T ′ by repeated splays? ♦

END EXERCISES

§3. Splay Analysis

Our main goal is to prove:
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THEOREM 1 (Splay Theorem).The amortized cost of each splay operation is O(log n) assuming at
most n items in a tree.

Before proving this result, let us show that it is a “true” amortization bound. More precisely, we
show that the worst case bound is linear, is not logarithmic.To see this, consider the repeated insertion
of the keys1, 2, 3, . . . , n into an initially empty tree. In theith insertion, we insert keyi. We claim that
this results in a treeLn that is just a linear list: in general, the root ofLn contains the keyn, with left
subtreeLn−1 and empty right subtree. See Figure3(e) for L5. If we next insert keyn + 1 into Ln, it
will be the right child of the root, but upon splaying, the newly inserted keyn + 1 becomes the root.
Thus our induction is preserved. Finally, if we perform a lookup on key1 in this tree, we must expend
Θ(n) units of work.

¶8. Proof of Splay Theorem. To start the amortized analysis, we must devise a potential function:
let SIZE(u) denote, as usual, the number of nodes in the subtree rooted atu. Define itspotential to be

Φ(u) = ⌊lg SIZE(u)⌋ .

Note that SIZE(u) = 1 iff u is a leaf. ThusΦ(u) = 0 iff u is a leaf. IfS = {u1, u2, . . . uk} is a set
of nodes, we may writeΦ(S) or Φ(u1, u2, . . . uk) for the sum

∑
u∈S Φ(u). If S is the set of nodes in

a splay treeT or in the entire data structure thenΦ(S) is called the potential of (respectively)T or the
entire data structure. By definition, a tree with0 or 1 node has no potential,Φ(T ) = 0.

LEMMA 2 (Key Lemma).Let Φ be the potential function before we apply splayStep(u), and let Φ′

be the potential after. The credit-potential invariant is preserved if we charge the SplayStep

3(Φ′(u)− Φ(u)) (4)

units of work in cases I and II. In the base case, we charge one extra unit, in addition to the charge (4).

Theorem1 follows easily from the Key Lemma. To see this, suppose that splaying atu reduces to
a sequence ofk SplaySteps atu and letΦi(u) be the potential ofu after theith SplayStep. The total
charges to this sequence of SplaySteps is

1 +
k∑

i=1

3[Φi(u)− Φi−1(u)] = 1 + 3[Φk(u)− Φ0(u)]

by telescopy. Note that the “1” comes from the fact that the last SplayStep may belong to thebase case.
Clearly this total charge is at most1+3 lgn. To finish off the argument, we must account for the cost of
looking upu. But it easy to see that this cost is proportional tok and so it is proportional to the overall
cost of splaying. This only increases the constant factor inour charging scheme. This concludes the
proof of the main goal.

¶9. Proof of Key Lemma. The following is a useful remark about rotations:

LEMMA 3. Let Φ be the potential function before a rotation at u and Φ′ the potential function after.
Then the increase in potential of the overall data structure is at most

Φ′(u)− Φ(u).

The expression Φ′(u)− Φ(u) is always non-negative.
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rotate(u)

Figure 9: Rotation atu.

Proof. We refer to Figure9. The increase in potential is

∆Φ = Φ′(u, v)− Φ(u, v)
= Φ′(v)− Φ(u) (asΦ′(u) = Φ(v))
≤ Φ′(u)− Φ(u) (asΦ′(u) ≥ Φ′(v)).

It is obvious thatΦ′(u) ≥ Φ(u). Q.E.D.

Proof of Key Lemma. The Base Case is almost immediate from lemma3: the increase in potential is
at mostΦ′(u)−Φ(u). This is at most3(Φ′(u)−Φ(u)) sinceΦ′(u)−Φ(u) is non-negative. The charge
of 1 + 3(Φ′(u)− Φ(u)) can therefore pay for the cost of this rotation and any increase in potential.

Refer to Figure4 for the remaining two cases. Let the sizes of the subtreesA, B, C, D bea, b, c, d,
respectively.

Consider Case I. The increase in potential is

∆Φ = Φ′(u, v, w)− Φ(u, v, w)
= Φ′(v, w) − Φ(u, v) (asΦ′(u) = Φ(w))
≤ 2(Φ′(u)− Φ(u)) (as2Φ′(u) ≥ Φ′(v, w), 2Φ(u) ≤ Φ(u, v)).

SinceΦ′(u) ≥ Φ(u), we have two possibilities: (a) IfΦ′(u) > Φ(u), then the charge of3(Φ′(u)−Φ(u))
can pay for the increased potentialand the cost of this splay step. (b) Next supposeΦ′(u) = Φ(u). By
assumption,Φ′(u) = ⌊lg(3 + a + b + c + d)⌋ andΦ(u) = ⌊lg(1 + a + b)⌋ are equal. Thus1+a+b >
2 + c + d, and so3 + a + b + c + d > 2(2 + c + d) and

Φ′(w) = ⌊lg(1 + c + d)⌋ < ⌊lg(3 + a + b + c + d)⌋ = Φ(u).

Also,
Φ′(v) ≤ Φ′(u) = Φ(u) ≤ Φ(v).

Combining these two inequalities, we conclude that

Φ′(w, v) < Φ(u, v).

Hence∆Φ = Φ′(w, v) − Φ(u, v) < 0. Since potentials are integer-valued, this means that∆Φ ≤ −1.
Thus the change in potential releases at least one unit of work to pay for the cost of the splay step. Note
that in this case, we charge nothing since3(Φ′(u) − Φ(u)) = 0. Thus the credit-potential invariant
holds.

Consider Case II. The increase in potential is again∆Φ = Φ′(v, w)−Φ(u, v). SinceΦ′(v) ≤ Φ(v)
andΦ′(w) ≤ Φ′(u), we get

∆Φ ≤ Φ′(u)− Φ(u).
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If Φ′(u)− Φ(u) > 0, then our charge of3(Φ′(u)− Φ(u)) can pay for the increase in potential and the
cost of this splay step. Hence we may assume otherwise and lett = Φ′(u) = Φ(u). In this case, our
charge is3(Φ′(u)− Φ(u)) = 0, and for the credit potential invariant to hold, it suffices to show

∆Φ < 0.

It is easy to see thatΦ(v) = t, and soΦ(u, v) = 2t. Clearly,Φ′(v, w) ≤ 2Φ′(u) = 2t. If Φ′(v, w) < 2t,
then∆Φ = Φ′(v, w)−Φ(u, v) < 0 as desired. So it remains to show thatΦ′(v, w) = 2t is impossible.
For, if Φ′(v, w) = 2t thenΦ′(v) = Φ′(w) = t (sinceΦ′(v), Φ′(w) are both no larger thant). But then

Φ′(u) =
⌊
lg(SIZE′(v) + SIZE′(w) + 1)

⌋
≥

⌊
lg(2t + 2t + 1)

⌋
≥ t + 1,

a contradiction. Here, SIZE′ denotes the size after the splay step operation. This provesthe Key Lemma.

LEMMA 4. Let T ′ be a binary tree with n + 1 items, and T is obtained from T ′ by deleting some leaf
x. Then Φ(T ′)− Φ(T ) ≤ lg n.

Proof. Let (u0, u1, . . . , um) denote the path from the root ofT ′ to x = um. The potential of each
ui is ⌊lg(ni + 1)⌋ wheren > n0 > n1 > · · · > nm = 0. Furthermore,

Φ(T ′)− Φ(T ) =
m−1∑

i=0

⌊lg(ni + 1)⌋ − ⌊lg(ni)⌋ .

But we observe that⌊lg(ni + 1)⌋−⌊lg(ni)⌋ = 1 iff ni +1 is a power of2. There are at mostlg n values
of i for which this happens. Hence

Φ(T ′)− Φ(T ) ≤ lg n.

Q.E.D.

¶10. Amortized Cost of Splay Implementation of ADT Operations. We conclude with an amor-
tized cost statement for splay trees.

THEOREM 5. Starting from an initially empty splay tree, any sequence of m requests of the types

lookUp,insert,merge,delete,deleteMin,split,

and involving a total of n items, has total time complexity of O(m log n). Thus, the amortized cost is
log n per request.

Proof. This follows almost immediately from Theorem1 since each request can be reduced to a
constant number of splay operations plusO(1) extra work. The splay operations are chargedO(lg n)
units, and the extra work is chargedO(1) units. But there are two important detail that must not be
overlooked: sometimes, the extraO(1) work increases the potential by a non-constant amount, and this
increase must be properly charged. This situation happens in two situations.

(A) When inserting a new key: the key will become a leaf of the tree, followed by splaying at this
leaf. While the splaying cost is accounted for, the act of creating this leaf may also increase the potential
of every node along the path to the leaf. By the previous lemma, this increase is at mostlg n.

(B) When merging two treesT1, T2. In this case, we first performsplay(+∞, T1). If u is the root
of the resulting tree, thenu has no right child and we simply attachT2 as the right subtree ofu. This
“attachment” will increase the potential ofu by less than1+ lg(1+ |T2|/|T1|) < 1+ lgn. Thus we just
have to charge this operation an extra1 + lg n units. Note that deletion is also reduced to merging, and
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so its charge must be appropriately increased. In any case, all charges remainO(lg n), as we claimed.
Q.E.D.

Note that the above argument does not immediately apply totopSplay: this is treated in the
Exercises. Sherk [9] has generalized splaying tok-ary search trees. In such trees, each node stores an
ordered sequence oft− 1 keys andt pointers to children where2 ≤ t ≤ k. This is similar toB-trees.

¶11. Application: Splaysort Clearly we can obtain a sorting algorithm by repeated insertions into a
splay tree, followed by repeated deleteMins — this is analogous to the heapsort algorithm (Lect.III,¶7).
This algorithm is known assplaysort. It is not only theoretically optimal withO(n log n) complexity,
but has been shown to be quite practical [6]. Splaysort has the ability to take advantage of “presorted-
ness” in the input sequence. For instance, running splaysort on the input sequencex1 > x2 > · · · > xn

will take only O(n) time in the worst case. One way to quantify presortedness is to count the number
of pairwise inversions in the input sequence. E.g., if the input is already in sorted order, we would like
to (automatically) achieve anO(n) running time. However, ifx1 < x2 < · · · < xn is our input, the
advantage of presortedness is lost for our version of splaysort. The Exercises discuss some ways to
overcome this.

Quicksort (Lectures II and VIII) is regarded as one of the fastest sorting algorithms in practice. But
algorithms like splaysort may run faster than Quicksort for“well presorted” inputs. Quicksort, by its
very nature, deliberately destroy any property such as presortedness in its input.

EXERCISES

Exercise 3.1: Where in the proof is the constant “3” actually needed in our charge of3(Φ′(u)−Φ(u))?
♦

Exercise 3.2: Adapt the proof of the Key Lemma to justify the following variation of SplayStep:

VARSPLAYSTEP(u):
(Base Case)If u is a child or grandchild of the root,

then rotate once or twice atu until it becomes the root.
(General Case)else rotate atu.parent, followed by two rotations atu.

♦

Exercise 3.3: Let us define the potential of nodeu to beΦ(u) = lg(SIZE(u)), instead ofΦ(u) =
⌊lg(SIZE(u))⌋.
(a) How does this modification affect the validity of our Key Lemma about how to charge
splayStep? In our original proof, we had 2 cases: eitherΦ′(u) − Φ(u) is 0 or positive. But
now,Φ′(u) − Φ(u) is always positive. Thus it appears that we have eliminated one case in the
original proof. What is wrong with this suggestion?
(b) Consider Case I in the proof of the Key Lemma. Show that ifΦ′(u) − Φ(u) ≤ lg(6/5) then
∆Φ = Φ′(w, v)− Φ(u, v) ≤ − lg(6/5). HINT: the hypothesis impliesa + b ≥ 9 + 5c + 5d.
(c) Do the same for Case II. ♦

Exercise 3.4: We continue with the development of the previous question; in particular, we still define
Φ(u) to belg SIZE(u).

Chee-Keng Yap Basic Version April 19, 2011



§3. SPLAY ANALYSIS Lecture VI Page 19

(i) Let T be a splay tree onn nodes, and letT ′ be the result of inserting a new key intoT
using the standard insertion algorithm. So, the new key appears as a leafu in T ′. Prove that
Φ(T ′)− Φ(T ) = O(lg n).
(ii) Prove the Key Lemma under this new definition of potential: i.e., it suffices to charge
3(Φ′(u) − Φ(u)) units for Case I and II ofsplayStep. HINT: Although Φ′(u) − Φ(u) is
always positive, we need to ensure thatΦ′(u) − Φ(u) ≥ α for some fixed positive constantα.
So you must prove that in caseΦ′(u) − Φ(u) < α, the increase in potential,∆Φ, is actually a
negative value less than−α. You may chooseα = lg(5/4).
(iii) Conclude with the alternative proof of the main theorem on splay trees (Theorem1). ♦

Exercise 3.5:
(i) Is it true that splays always decrease the height of a tree? The average height of a tree? (Define
the average height to be the average depth of the leaves.)
(ii) What is the effect of splay on the last node of a binary tree that has a linear structure,i.e., in
which every internal node has only one child? HINT: First consider two simple cases, where all
non-roots is a left child and where each non-root is alternately a left child and a right child. ♦

Exercise 3.6: Assume that nodeu has a great-grandparent. Give a simple description of the effect of the
following sequence of three rotations:rotate(u.parent.parent); rotate(u.parent);
rotate(u). ♦

Exercise 3.7: Does our Key Lemma hold if we defineΦ(u) = ⌈lg SIZE(u)⌉? ♦

Exercise 3.8: For any nodeu,

Φ(uL) = Φ(uR)⇒ Φ(u) = Φ(uL) + 1

whereuL, uR are the left and right child ofu. ♦

Exercise 3.9: Modify our splay trees to maintain (in addition to the usual children and parent pointers)
pointers to the successor and predecessor of each node. Showthat this can be done without
affecting the asymptotic complexity of all the operations (lookUp, insert, delete, merge,
split) of splay trees. ♦

Exercise 3.10:We consider some possible simplifications of thesplayStep.
(A) One-rotation version: LetsplayStep(u) simply amount torotate(u).
(B) Two-rotation version:

SPLAYSTEP(u):
(Base Case)If u.parent is the root,rotate(u).
(General Case)else do rotate(u.parent), followed byrotate(u).

For both (A) and (B):
(i) Indicate how the proposed SplayStep algorithm differs from the original.
(ii) Give a general counter example showing that this variation does not permit a result similar to
the Key Lemma. ♦

Exercise 3.11:Modify the above algorithms so that we allow the search treesto have identical keys.
Make reasonable conventions about semantics, such as what it means to lookup a key. ♦
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Exercise 3.12:Consider thetopSplay algorithm:
(i) Characterize the situations where it gives the same result as the 2-passsplay algorithm.
(ii) OPEN: Does it have amortized cost ofO(log n)? ♦

Exercise 3.13:Consider the following variant for a potential function. For any nodeu in a splay tree,
let Φ(u) be defined to beHn wheren is the size of the subtree rooted atu. Prove the analogue of
our main theorem. ♦

Exercise 3.14:Repeat the previous question, but defineΦ(u) to be lg n (as opposed to the normal
definition,Φ(u) = ⌊lg n⌋). ♦

END EXERCISES

§4. Application to Convex Hulls

The following application is interesting because it illustrates the idea of animplicit binary search
tree. The usual notion of keys is inapplicable. But by using information distributed at a nodeu and its
childrenuL anduR, we are able to perform tests to simulate searching in a binary search tree.

Given a setX of n ≥ 1 points in the plane, itsconvex hull CH(X) is the smallest convex subset
of the plane that containsX . As the boundary ofCH(X) is a convex polygon, we may represent it as
a sequence

H = (v1, v2, . . . , vm), 1 ≤ m ≤ n

wherevi ∈ X and thesevi’s appear as consecutive vertices in a clockwise traversal of the polygon
CH(X). We assume thatH is a strictly convex sequence, i.e., no 3 consecutive verticesvi−1, vi, vi+1

are collinear. We shall useH andCH(X) interchangeably. We want to dynamically maintainH subject
to two types of requests:

tangent(p, H) and insert(p, H)

wherep is an arbitrary point. Ifp is outsideH , tangent(p, H) will return a pair(q, r) of distinct
points onH such that the linespq andpr are both tangential toH . Call q andr the tangent pointsof
H from p. We will specify an ordering onq, r later so thatq (resp.,r) is the left (resp., right) tangent
points. E.g., in Figure10(a),tangent(p, H) returns(v3, v5).

If p is inside the current hull,H has no tangent points fromp, and we return “↑” The request
insert(p, H) means we want to updateH to representCH(X ∪ {p}). Note that ifp is inside the
current hull,H is unchanged.

¶12. Reduction to Half-Hulls. We may assume thatv1 andvℓ (1 ≤ ℓ ≤ m) have (resp.) the smallest
and largestx-coordinates among thevi’s. For simplicity, assume that any two consecutive vertices,vi

andvi+1, have distinctx-coordinates so thatv1 andvℓ are unique. Then we can breakH into two
convex chains,

HU = (v1, v2, . . . , vℓ), HL = (v1, vm, vm−1, . . . , vℓ+1, vℓ).

So HU andHL share precisely their common endpoints. Assuming thatHU lies above the segment
v1vℓ, we callHU theupper hull andHL the lower hull of H . Let vS = (0,−∞) andvN = (0, +∞)
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Figure 10: (a)H = (v1, . . . , v9), (b) HU = (v1, . . . , v6).

be points5 at infinity (the South and North Poles, respectively). In a certain sense,HU is the convex hull
of X ∪ {vS}:

CH(X ∪ {vS}) = (v1, v2, . . . , vℓ, vS).

This can be made precise by a limiting argument. Similarly,HL is the convex hull ofX ∪ {vN}.
Collectively,HU andHL are the twohalf-hulls of X . We implementinsert(p, H) by reducing it to
insertion into the upper and lower hulls:

insert(p, HU );insert(p, HL).

By symmetry, we may focus on upper hulls. Clearlyp is insideH iff p is inside bothHU andHL.
Now supposep is not insideHU = (v1, . . . , vℓ). Thentangent(p, HU ) returns the pair(q, r) of
tangent points ofHU from p whereq lies to the left ofr. For instance,tangent(p, HU ) returnsv3, v5

in Figure10. There are two special cases. Ifp is left of v1, thenq = vS ; if p is right ofvℓ thenr = vS .
The details of how to reducetangent(p, H) to half-hulls is left to an exercise.

¶13. Reduction to Fully Mergeable Dictionary Operations. We are now going to store the upper
hull HU in a binary search treeT using thex-coordinates of vertices as keys. Suppose the sequence of
points inHU is (v1, . . . , vℓ) sorted so that

v1 <x v2 <x · · · <x vℓ, (5)

where, in general, we write
p <x q (6)

for pointsp andq such thatp.x < q.y. Similarly, we may writep ≤x q, p =x q, p <y q, etc.

To facilitate the insertion of new points, we must be able to split and merge our binary search trees.
To see this, suppose we insert a new pointp into HU . Lettangent(p, HU ) = (q, r) whereq <x r; we
call q theleft tangent point andr theright tangent point . Wlog, letq = vi−1 andr = vj+1); note that
i ≤ j + 1. So we need to replace a subsequence(vi, vi+1, . . . , vj) (1 ≤ i ≤ j ≤ ℓ) by the pointp. Of
course, ifi = j + 1, the subsequence is empty. This replacement can be done efficiently if T is a splay
tree that implements the operations of the fully mergeable dictionary ADT (¶5). By calling the split

5 We could definevS andvN to be(r,−∞) and(r′, +∞), respectively, for anyr, r′ < ∞.
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operation twice, we can split the upper hull into three upperhulls,T1 : (v1, . . . , vi−1), T2 : (vi, . . . , vj)
andT3 : (vj+1, . . . , vℓ). Finally, we obtain the new upper hull by forming the tree rooted atp with T1

andT3 as left and right subtrees.

We may assume that nodes inT have successor and predecessor pointers. We next show how to
implement the requests

insert(p, T ) and tangent(p, T )

where the binary treeT represents an upper hull. We next give two methods for find thetangent points
(q, r) from a query pointp = (p.x, p.y).

¶14. Method One for Tangent Point: Walking Method. The first method is more intuitive. To
implementtangent(p, T ), we have to find the left and right tangent points separately.By symmetry,
we discuss the left tangent point. We first do a lookup on the key p.x. Suppose as a result of this lookup,
we determine the two consecutive hull verticesvk, vk+1 such that

vk <x p ≤x vk+1 (0 ≤ k ≤ ℓ). (7)

By convention, ifk = 0 then vk is undefined, and ifk = ℓ then vk+1 is undefined. Recall that
lookup will find either the successor or predecessor ofp.x in T . From this, and using the successor and
predecessor pointers inT , we can easily determine thek that satisfies (7).

If k = 0, we can return↑ since the left-tangent is undefined in this case. Ifk = ℓ, thenp is outside
the upper hull. Otherwise, we know that0 < k < ℓ and we can decide ifp is strictly outside the upper
hull or not — this amounts to whetherp is above the linevk, vk+1 or not. If not strictly outside, we
return↑. Otherwise, we want continue to search for the left tangent point q. We know thatq = vi0 for
somei0 ≤ k. To find i0, we use the predecessor pointers to “walk” along the upper hull, starting from
vk to vk−1, vk−2, etc. In general, for any indexi with the property thatvi <x p, we can decide whether
i0 = i, i0 < i or i0 > i according to the following cases:

p

vi

vi−1

vi+1

(i)

p

(ii)

vi+1

vi−1
vi

p

vi

(iii)

vi+1

vi−1

Figure 11: LeftTangent Search fromp: (i) i0 = i, (ii) i0 < i, (iii) i0 > i.

CASE (i) vi−1 and vi+1 lie belowvip.
Theni0 = i. Here, ifi = 1 thenv0 is the south pole (which lies below any line).

CASE (ii) vi+1, but not vi−1, lies belowvip.
Theni0 < i.

CASE (iii) vi−1, but not vi+1, lies belowvip.
Theni0 > i.

These three cases are illustrated in Figure11. Of course, in our “walk” fromvk to vk−1, vk−2, etc,
we will never encounter case (iii). We have ignored degeneracies in these three cases. This will be
treated in the Exercises.
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¶15. Method Two: Implicit Binary Search. The previous method for finding tangent points(q, r)
takes linear time in the worst case. But if we were inserting the pointp, the elements lying strictly
betweenq andr would immediately be deleted. It is then easy to see that, in an amortized sense, the
cost of this linear search isO(1). But if we imagine the convex hull as a generic structure thatsupports
arbitrary tangent queries, then this linear time cost cannot be amortized. Therefore we will now give
another method that ensures that finding tangent points hasO(lg n) amortized complexity.

Say we want to find the left-tangentq (if it exists) of a query pointp. We use two binary searches:
one is “explicit” and other “implicit”. The new method begins, as before, with a binary search to
determine thek satisfying (7). This is an explicit binary search because we are comparingp.x to the
keyu.x stored explicitly in each nodeu. With the information (7), we can decide ifp is inside or outside
the convex hull (by checking whetherp is above or below the linevk, vk+1). If inside, thenq does not
exist. Otherwise, we now perform a second binary search. This search begins at the root of the splay
tree that stores the upper hull, and uses the 3-way decision (Cases (i)-(iii) above) to search for the left
tangent pointq = vi0 . This is an “implicit” binary search because the 3-way decisions are not based
on any explicitly stored keys. Indeed, the decisions dependnot just on the stored datavi−1, vi, vi+1 but
also the query pointp. We are searching for the indexi0, but we use the datavi−1, vi, vi+1, p to decide
if i = i0, or i < i0 or i > i0.

FINDLEFTTANGENTPOINT(p, T ):
⊲ Explicit Binary Search
1. Perform an explicit binary search using the keyp.x.

This locates thek such that (7) holds.
We can then determine ifp lies inside the upper hull.
If so, Return(↑)

⊲ Implicit Binary Search
Initialize u to the root ofT ; let vi be the vertex atu.

2. Repeat:
If vi ≥x p, setu← u.leftChild.
Else, we have three possibilities given in¶14:

If CASE (i) holds,Return(vi). ⊳ Left tangent found: i0 = i
If CASE (ii) holds, setu← u.rightChild. ⊳ Go right: i > i0
If CASE (iii) holds, setu← u.leftChild. ⊳ Go left: i < i0

Updatei to the index of the vertex inu.

¶16. Geometric Primitives. In the above subroutines, we used “geometric primitives” such as check-
ing whether a point is above or below a line. Such primitives must ultimately be reduced to numerical
computation and comparisons. In fact, all the geometric primitives can essentially be reduced to a single
primitive, the6 LeftTurn Predicate . Given any three pointsp, q, r, define

LeftTurn(p, q, r) =






0 if the pointsp, q, r lies on a line
+1 if the path(p, q, r) make a left turn atq
−1 if the path(p, q, r) make a right turn atq

(8)

In an Exercise below, you will see how this is easily implemented as the sign of a certain3× 3 determi-
nant. We should observe a peculiarity: we call this a “predicate” even though this is a 3-valued function.
In logic, predicates are usually 2-valued (i.e., true or false). This is a general phenomenon in geometry,
and we might call such 3-valued predicates ageometric predicateas opposed to the standardlogical
predicate.

6 Also known as orientation predicate.
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Let us say that the input setX of points isdegenerateif there exists three distinct pointsp, q, r ∈ X
such thatLeftTurn(p, q, r) = 0; otherwise,X is nondegenerate. We will assumeX is nondegen-
erate in the following. The main reason for this is pedagogical: the non-degenerate cases are easier
to understand. We also note that there are general techniques in computational geometry for handling
degeneracies, but it is beyond our scope.

We now make the inner loop of the implicit search in the FINDLEFTTANGENT algorithm explicit:

2. Repeat:
2.1 Letu0 = u.pred andu1 = u.succ. ⊳ These may be NULL .
2.2 If (p <x u)

If (u0 = NULL), Return(vS). ⊳ South Pole
else u← u.leftChild

2.3 elif ((u0 6= NULL) andLeftTurn(u0, u, p) = 1))
u← u.leftChild

2.4 elif ((u1 6= NULL) andLeftTurn(u, u1, p) = −1))
u← u.rightChild

2.5 else Return(u). ⊳ This is correct, even if u0 or u1 are NULL.

To see why the return statement in line 2.5 is correct, first assumeu0 andu1 are non-null. Then line
2.2 has ensured thatp <x u, line 2.3 has verified that(u0, u, p) is a right-turn and line 2.4 has verified
(u, u1, p) is a left-turn. These verifications depends on non-degeneracy assumptions. The reader should
next verify correctness in caseu0 or u1 are null.

Next consider the implementation ofinsert(p, T ). We first performtangent(p, T ) and assume
the non-trivial case where a pair(q, r) of tangent points are returned. Then we need to delete fromT
those verticesvi that lies strictly betweenq andr, and replace them by the pointp. This is accomplished
using the operations ofsplit andmerge on splay trees as described earlier.

We conclude with the following. LetD be our data structure for the convex hullH . SoD is a pair
of splay trees representing the upper and lower hulls ofH .

THEOREM 6.
(i) Using the data structure D to represent the convex hull H of a set of points, we can support
insert(p, D) and tangent(p, D) requests with an amortized cost of O(log |H |) time per request.
(ii) From D, we can produce the cyclic order of points in H in time O(|H |). In particular, this gives an
O(n log n) algorithm for computing the convex hull of a set of n points.

This theorem gave us anO(n log n) algorithm for computing the convex of a planar point set.
Under reasonable models of computation, it can be shown thatO(n log n) is optimal. There are over a
dozen known algorithms for convex hulls in the literature (see Exercise for some). The complexity is
usually expressed as a function ofn, the number of input points. But an interesting concept of “output
sensitivity” is to measure the complexity in terms ofn andh, whereh is the size of the final convex
hull. Noteh is a measure of the output size, satisfying1 ≤ h ≤ n. For instance, there is a gift-wrap
algorithm for convex hull that takes timeO(hn). So gift-wrap is faster thanO(n log n) algorithm when
h = o(log n). But Kirkpatrick and Seidel [4] gave an output-sensitive algorithm whose complexity is
O(n log h).

Our data structureD for representing convex hulls is only semi-dynamic becausewe do not support
the deletion of points. If we want to allow deletion of points, then points that are inside the current
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convex hull must be represented in the data structure. Overmars and van Leeuwen [7] designed a data
structure for a fully dynamic convex hull that usesO(log2 n) time for insertion and deletion.

There are many applications and generalizations of the convex hull problem. An obvious extension
is to ask for the convex hull of a set of points inR

d (d ≥ 3). Or we can replace “points” by balls or
other geometric objects inRd. We encourage the student to explore further.

EXERCISES

Exercise 4.1: What is “convex hull” in1-dimension? ♦

Exercise 4.2: Let a, b, c ∈ R
2.

(i) Show that if

M =




ax ay 1
bx by 1
cx cy 1





thendetM is twice the signed area of the triangle∆(a, b, c). Thus,a, b, c are collinear or coin-
cident iff detM = 0. Also, show thatdetM > 0 iff a, b, c list the vertices counter-clockwise
about the triangle.
(ii) What is the relation betweensign(detM)) andLeftTurn(a, b, c)?
(iii) Let R be the smallest axes-parallel triangle that contains∆(a, b, c). Then at least one of the
vertices of∆(a, b, c) must be at a corner ofR. Without loss of generality, leta be the south-west
corner ofR, b touches the right vertical edge ofR andc touches the top horizontal edge ofR. Let
r be the rectangle with one corner ata and whose opposite corner is(cx, by). Show by a direct
geometric argument that the area of∆(a, b, c) is equal to(|R|− |r|)/2 where|R|, |r| are the areas
of the rectanglesR, r (respectively). Hence|R| − |r| is the area of the “L” shapeR \ r.
(iv) Verify that the result of (iii) also follows from (i).
(vi) The determinant ofM is equal to the determinant of a related2× 2 matrix. ♦

Exercise 4.3: Prove the correctness of the FINDLEFTTANGENT(p, T ) algorithm. ♦

Exercise 4.4: Consider an array-based approach to upper hulls. An upper hull U = (v0, . . . , vk) with
k+1 vertices is represented by an arrayU [0..k], whereU [i] = vi. We will build U incrementally
using METHOD ONE in the text. Assume the set of input points isnon-degenerate (no 3 points
are collinear).
(a) Describe in detail how to carry out the operation of finding LeftTangent of a given pointp in
U .
(b) Describe how to implement the insertion of a new pointp.
(c) Carry out a complexity analysis of your algorithm.
(d) Show how to modify your algorithms if the input can be degenerate. You must discuss how
to implement the changes using the LeftTurn(p,q,r) predicate. NOTE: What is the correct output
for U in the degenerate case? For this problem, ASSUME that an input pointp is in U if it does
NOT lie in the interior of the convex hull. ♦

Exercise 4.5: Treatment of Degeneracy. Recall our definition of degeneracy in the previous question.
(i) First define carefully what we mean by the convex hull (andupper hull) ofX in case of degen-
eracies. You have two choices for this. Also define what we mean by “left-tangent” ofp in casep
lies on a line through two consecutive vertices of the convexhull.
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(ii) Modify the FINDLEFTTANGENT(p, T ) algorithm so that it works correctly for all inputs,
degenerate or not. Actually, you need to describe two versions, depending on which way a de-
generate convex hull is defined, etc. ♦

Exercise 4.6: Let us attend to several details in the convex hull algorithm.
(i) Show how to the non-degeneracy assumptions in the text: recall that we assume consecutive
vertices on the convex hull have distinctx-coordinates, and input setX is nondegenerate.
(ii) Implement the operationtangent(p, H) in terms of tangent(p, HU ) and
tangent(p, HL).
(iii) Implement the operationinsert(p, HU ).
(iv) When we inserted a new pointp, we split the original tree intoT1, T2, T3 and then form a
new splay tree rooted atp with left and right subtreesT1, T3. The cost of forming the new tree is
O(1). What is the amortized cost of this operation? ♦

Exercise 4.7: One of the simplest algorithms for convex hull is the so-called Gift-Wrapping algorithm.
Start withv1 the leftmost point of the convex hull. Now try to findv2, v3, etc in this order. Show
that you can find the next point inO(n) time. Analyze the complexity of this algorithm as a
function ofn andh, where1 ≤ h ≤ n is the number of vertices on the convex hull. How does
this algorithm compare toO(n log n) algorithm? ♦

Exercise 4.8: Modified Graham’s algorithm for upper hulls. LetSn = (v1, . . . , vn) be an input se-
quence of points in the plane. Assume that the points are sorted byx-coordinates and satisfy
v1 <x v2 <x · · · <x vn. (Recall “a <x b” means thata.x < b.x.) Our goal is to compute the
upper hull ofSn. In stagei (i = 1, . . . , n), we have processed the sequenceSi comprising the
first i points inSn. Let Hi be the upper hull ofSi. The vertices ofHi are stored in a push-down
stack data structure,D. Initially, D contain just the pointv1.
(a) Describe a subroutineUpdate(vi+1) which modifiesD so that it next represents the upper
hull Hi+1 upon the addition of the new pointvi+1. HINT: AssumeD contains the sequence of
points(u1, . . . , uh) whereh ≥ 1 andu1 is at the top of stack, withu1 >x u2 >x · · · >x uh. For
any pointp, let LT (p) denote the predicateLeftTurn(p, u1, u2). If h = 1, LT (p) is defined
to betrue. ImplementUpdate(vi+1) using the predicateLT (p) and the (ordinary) operations of
push and pop ofD.
(b) Using part (a), describe an algorithm for computing the convex hull of a set ofn points.
Analyze the complexity of your algorithm.

REMARK: The amortized analysis ofS.Update(p) was essentially described in an Exercise (Sec-
tion 1, this Chapter). Graham’s original idea is to sort the vertices by their angular angle about
some pointp0 in the interior of the convex hull. We must implement this with care, so as to
avoid the actual computation of angles (such computation would be inexact and have robustness
problems). ♦

Exercise 4.9: The divide-and-conquer for convex hull is from Shamos: divide the set into two sets
XL, XR, each of size aboutn/2 and the two sets are separated by some vertical lineL. Recur-
sively compute their convex hullsHL, HR. What kind of operation(s) will allow you to compute
CH(X) from HL andHR? Show that these operations can be implemented inO(n) time. ♦

END EXERCISES

§5. Fibonacci Heaps
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TheFibonacci heap data structureinvented by Fredman and Tarjan (1987) gives an efficient im-
plementation of the mergeable queues abstract data type (ADT), which we now explain.

¶17. The mergeable queues ADT. The mergeable queues ADT involves domains of three types:
Key, Item and(mergeable) Queue. As usual, each item stores a key and each queue stores a collection
of items. The ADT represents a collection of queues, supporting these operations:

makeQueue()→ Q returns an empty queueQ
insert(Item x, Queue Q)
union(QueueQ1, Q2)
deleteMin(QueueQ)→ Item x x is minimum item inQ, which is now deleted
decreaseKey(Item x, Key k, Queue Q).

Mergeable queues are clearly extensions of priority queues(§III.2). The above operations are almost
self-explanatory. In the union ofQ1, Q2, the items inQ2 are first moved into queueQ1, then queueQ2

is destroyed. Thus, the number of queues can increase or decrease over the lifetime of the data structure.
The operationdeleteMin(Q) returns a minimum item inQ, and this item is deleted fromQ. This
operation is unspecified in caseQ is empty. IndecreaseKey(x, k, Q), we makek the new key ofx
in Q. But this operation assumesk is smaller than the current key ofx – otherwise, we may define it to
be either an error or a null-operation (we will leave this decision unspecified).

Union is sometimes known as themeld operation. There may be useful operations that should be
provided in practice but omitted above for the sake of economy: deleting an item, making a singleton
queue, getting the minimum item without deleting it. These can be defined as follows:

delete(Item x, QueueQ) ≡ decreaseKey(x,−∞,Q);deleteMin(Q).
makeQueue(Item x)→ Q ≡ makeQueue()→ Q ; insert(x,Q).
min(Queue Q)→ x ≡ deleteMin(Q)→ x; insert(x,Q).

¶18. The Fibonacci heap data structure. Each mergeable queue is implemented by a Fibonacci
heap. A Fibonacci heapH is a collection of treesT1, . . . , Tm with these properties:

• Each treeTi satisfies the min-heap property. In particular, the root ofTi has the minimum item in
Ti.

• The roots of these trees are kept in a doubly-linked list, called theroot-list of H .

• There are two fieldsH.min, H.n associated withH . The fieldH.min points to the node with a
minimum key, andH.n is the number of items inH .

• For each nodex in a treeTi, we have four pointers that point to (i) the parent ofx, (ii) one of
its children, and (iii) two of its siblings. The sibling pointers are arranged so that all the children
of x appears in a circular doubly-linked list called thechild-list of x. If y is a child ofx, the
sibling-list of y is the child-list ofx. Also, we keep track ofx.degree (the number of children
of x) andx.mark (a Boolean value to be explained).

This is illustrated in Figure12. One of the treesT0 is shown in detail: the roota of T0 has 3 children
b, c andd and they each point toa; on the other hand,a points only tob. There are two non-trivial
sibling lists:(b, c, d) and(f, g).
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Figure 12: A Fibonacci heapH = (T0, . . . , T3): T0 in detail

¶19. Linking, cutting and marking. We describe some elementary operations used in maintaining
Fibonacci heaps.

(a) If x, y are two roots such that the item inx is not less than the item iny then we canlink x
and y; this simply makesy the parent ofx. The appropriate fields and structures are then updated:x
is deleted from the root-list, and then inserted into the child-list of y, the degree ofy incremented, etc.
This operation costsO(1).

(b) The converse to linking iscutting. If x is a non-root in a Fibonacci heapH then we can perform
Cut(x,H): this basically removesx from the child-list of its parent and insertsx into the root-list ofH .
The appropriate data variables are updated. E.g., the degree of the parent ofx is decremented. Again,
this operation costsO(1).

(c) We sayx is marked if x.mark = true, andunmarked otherwise. Initially,x is unmarked. Our
rules will ensure that a root is always unmarked. We markx if x is not a root andx loses a child (i.e., a
child of x is cut); we unmarkx whenx itself is cut (and put in the root-list). Moreover, we ensurethat
a markedx does not lose another child beforex itself is cut (thereby reverting to unmarked status).

To do amortized analysis, we define a potential function. Thepotential of a Fibonacci heapH is
defined as

Φ(H) := t(H) + 2 ·m(H)

wheret(H) is the number of trees inH andm(H) is the number marked items inH . The potential of
a collection of Fibonacci heaps is just the sum of the potentials of the individual heaps.

One more definition: letD(n) denote the maximum degree of a node in a Fibonacci heap withn
items. We will show later thatD(n) ≤ 2 lg n.

Remark: The reader may observe how “low-tech” this data structure appears – along with the
humble array structure, linked-lists is among the simplestdata structures. Yet we intend to achieve the
best known overall performance for mergeable queues with Fibonacci heaps. This should be viewed as
a testimony to the power of amortization.

§6. Fibonacci Heap Algorithms

We now implement the mergeable queue operations. Our goal isto achieve an amortized cost of

Chee-Keng Yap Basic Version April 19, 2011



§6. FIBONACCI HEAP ALGORITHMS Lecture VI Page 29

O(1) for each operation except fordeleteMin, which will have logarithmic amortized cost.

Recall that for each operationp, we have acost COST(p) which will be mostly self-evident in
the following description. We must define acharge CHARGE(p). Thecredit is thereby determined:
CREDIT(p) = CHARGE(p) − COST(p). This charging scheme will achieve the stated goal in the
previous paragraph:Θ(1) charges for all the non-deletion operations, andΘ(log n) for the two deletion
operations. Finally, we verify the credit-potential invariant equation (2) for each operation.

makeQueue(): we create an empty root-list. The cost is1, the charge is1, so credit is0, and finally
∆Φ = 0. The credit-potential invariant holds trivially.

The cost and∆Φ is automatic at this point (our earlier decisions have de-
termined this). Although we said that the “charge” is part ofour creative
design, at this point, we really have little choice if we wishto satisfy the
credit-potential invariant. We might as well define charge to be (at least) the
cost plus∆Φ.

insert(H, x): we create a new treeT containing onlyx and insertT into the root-list ofH .
UpdateH.min, etc. Let us check the credit-potential invariant:

COST≤ 1, CHARGE = 2, CREDIT ≥ 1, ∆Φ = 1.

union(H1, H2): concatenate the two root-lists and call itH1. Updatemin[H1], etc. Checking the
credit-potential invariant:

COST≤ 1, CHARGE = 1, CREDIT ≥ 0, ∆Φ = 0.

deleteMin(H): we removeH.min from the root-list, and the child-list ofH.min can now be
regarded as the root-list of another Fibonacci heap. These two circular lists can be concatenated in
constant time into a new root-list forH . If t0 is the old value oft(H), the new value oft(H) is at most
t0 + D(n). Next we need to find the new value ofH.min. Unfortunately, we do not know the new
minimum item ofH . There is no choice but to scan the new root-list ofH . While scanning, we might
as well7 spend some extra effort to save future work. This is a processcalledconsolidationwhich is
explained next.

¶20. Consolidation. In this process, we are given a root-list of lengthL (L ≤ t0 + D(n) above). We
must visit every member in the root-list, and at the same timedo repeated linkingsuntil there is at most
one root of each degree. We want to do this inO(L) time. By assumption, each root has degree at most
D(n).

The basic method is that, for each rootx, we try to find another rooty of the same degree and link
the two. So we create a ‘new’ root of degreek + 1 from two roots of degreek. If we detect another root
of degreek + 1, we link these two to create another ‘new’ root of degreek + 2, and so on. The way
that we detect the presence of another root of the same degreeis by indexing into an arrayA[1..D(n)]
of pointers. Initialize all entries of the array tonil. Then we scan each itemx in the root-list. If
k = x.degree then we try to “insert”x into A[k]. This means makingA[k] point tox. But we only do
this if A[x.degree] = nil; in caseA[x.degree] 6= nil, then it points to somey. In this case, linkx to

7 OK, we may be lazy but not stupid.
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y or vice-versa. Ifx is linked toy, the latter now has degreek +1 and we try to “insert”y into A[k +1],
and so on. So each failed insertion leads to a linking, and there are at mostL linking operations. Since
each linking removes one root, there are at mostL linkings in all. (This may not be obvious if we see
this the wrong way!) Thus the total cost of consolidation isO(L).

Returning todeleteMin, let us check its credit-potential invariant.

COST≤ 1 + t0 + D(n), CHARGE = 2 + 2D(n),

CREDIT ≥ 1 + D(n)− t0,

∆Φ ≤ 1 + D(n)− t0.

We need to explain our bound for∆Φ. Let t0, m0 refer to the values oft(H) andm(H) before this
deleteMin operation. IfΦ0, Φ1 are (respectively) the potentials before and after this operation, then
Φ0 = t0 +2m0 andΦ1 ≤ 1+D(n)+2m0. To see this bound onΦ1, note that no node can have degree
more thanD(n) (by definition ofD(n)) and hence there are at most1 + D(n) trees after consolidation.
Moreover, there are at mostm0 marked after consolidation. Then∆Φ = Φ1−Φ0 ≤ 1 + D(n)− t0, as
desired.

decreaseKey(x, k, H): this is the remaining operation and we will exploit the marking of items
in a crucial way. First, we decrease the key ofx to k (first checking thatk ≤ x.key). If x is a root, we
are done. Otherwise, lety be the parent ofx. If k ≤ y.key, we are done. Otherwise, we cutx. Sincex
is now in the root list, we need to updateH.min, etc. Ifx was marked, it is now unmarked. It remains
to treaty: If y is a root, we are done. Otherwise, ify was unmarked, we marky and we are done. Ify
was marked (i.e., has previously lost a child), then we now “recursively cut”y, using the following code
fragment:

RECURSIVECUT(y, H):
If (y.mark = false andy 6= root) then y.mark := true;
If y 6= root then

Cut(y, H);
RecursiveCut(y.parent, H).

Note that ifc ≥ 1 is the number of cuts, thent(H) is increased byc, butm(H) is decreased byc− 1 or
c (the latter iffx was marked). This implies∆Φ ≤ c− 2(c− 1) = 2− c. If

COST≤ c, CHARGE = 2, CREDIT ≥ 2− c,

then the credit-potential invariant is verified.

SUMMARY: we have achieved our goal of chargingO(1) units to every operation except for
deleteMin which is chargedO(1) + D(n). We next turn to boundingD(n). We remark on an
unusual feature in our marking scheme: in general, each nodey can suffer the loss of at most one child
beforey itself is made a root. But ify is already a root, we allow it to lose an unlimited number of
children.

§7. Degree Bound

Our goal is to show thatD(n) = O(log n).
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Recall theith Fibonacci numberi = 0, 1, 2, . . . is defined byFi = i if i = 0, 1 andFi = Fi−1+Fi−2

for i ≥ 2. Thus the sequence of Fibonacci numbers starts out as

0, 1, 1, 2, 3, 5, 8, . . . .

We will use two simple facts:

(a) Fi = 1 +
∑i−2

j=1
Fj for i ≥ 2.

(b) Fj+2 ≥ φj for j ≥ 0, whereφ = (1 +
√

5)/2 > 1.618.

Fact (a) follows easily by induction, or better still, by “unrolling” the recurrence forFi. For fact (b), we
observe thatφ is a solution to the equationx2 − x − 1 = 0 soφ2 = 1 + φ. ClearlyF2 = 1 ≥ φ0 and
F3 = 2 ≥ φ1. Inductively,

Fj+2 = Fj+1 + Fj ≥ φj−1 + φj−2 = φj−2(φ + 1) = φj .

Let x be a node in a Fibonacci heap withn items, and let

y1, y2, . . . , yd (9)

be the children ofx, given in the order in which they are linked tox. Sox.degree = d andy1 is the
earliest child (amongy1, . . . , yd) to be linked tox.

LEMMA 7.

yi.degree ≥






0 if i = 1

i− 2 if i ≥ 2

Proof. This is clearly true fori = 1. Fori ≥ 2, note that whenyi was linked tox, the degree ofx is
at leasti− 1 (since at leasty1, . . . , yi−1 are children ofx at the moment of linking). Hence, the degree
of yi at that moment is at leasti− 1. This is because we only do linking during consolidation, and we
link two roots only when they have the same degree. But we allow yi to lose at most one child before
cuttingyi. Sinceyi is not (yet) cut fromx, the degree ofyi is at leasti− 2. Q.E.D.

LEMMA 8. Let SIZE(x) denote the number of nodes in the subtree rooted at x and d the degree of x.
Then

SIZE(x) ≥ F2+d, d ≥ 0.

Proof. This is seen by induction on SIZE(x). The result is true when SIZE(x) = 1, 2 since in these
casesd = 0, 1, respectively. If SIZE(x) ≥ 3, let y1, . . . , yd be the children ofx as in (9). Then

SIZE(x) = 1 +

d∑

i=1

SIZE(yi)

≥ 1 +

d∑

i=1

Fyi.degree+2 (by induction)

≥ 2 +
d∑

i=2

Fi (by last lemma)

= 1 +
d∑

i=1

Fi = Fd+2.
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Q.E.D.

It follows that if x has degreed, then

n ≥ SIZE(x) ≥ Fd+2 ≥ φd.

Taking logarithms, we immediately obtain:

LEMMA 9.
D(n) ≤ logφ(n).

This completes our analysis of Fibonacci heaps. It is now clear why the name “Fibonacci” arises.

Background: Prior to Fibonacci heaps, the binomial heaps from Vuillemin (1978) were considered
the best data structure for the mergeable queue ADT. The exercises below explores some basic properties
of binomial heaps. There is some interest to improve the amortized complexity of Fibonacci heaps to
worst case complexity bounds. This was finally achieved by Brodal in 2005.

EXERCISES

Exercise 7.1: Suppose that instead of cutting a node just as it is about to lose a second child, we cut a
node just as it is about to lose a third child. Carry out the analysis as before. Discuss the pros and
cons of this variant Fibonacci heap. ♦

Exercise 7.2:
(a) Determinêφ, the other root of the equationx2 − x − 1 = 0. Numerically computêφ to 3
decimal places.

(b) DetermineFi exactly in terms ofφ andφ̂ HINT: Fi = Aφi + Bp̂hi
i

for constantsA, B.
(b) What is the influence of thêφ-term on the relative magnitude ofFi? ♦

Exercise 7.3: A binomial tree is a tree whose shape is taken from{B0, B1, B2, . . .} of trees, inductively
defined as follows: the singleton node is a binomial tree denotedB0. If x, y are roots of two
binomialBi are

... ♦

END EXERCISES

§8. Pointer Model of Computation

There is an esthetically displeasing feature in our consolidation algorithm, namely, its use of array
indexing does not seem to conform to the style used in the other operations. Intuitively the reason is
that, unlike the other operations, indexing does not fit within the “pointer model” of computation. In
this section, we will give the pointer-based solution to consolidation. We will also look at an elegant
formalization of the pointer model. This model can be used for a formal theory of computability and
complexity. It has many advantages over the standard Turingmachines model.
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¶21. Pointer based consolidation. We outline a purely pointer-based method for consolidation. We
rely on the reader’s understanding of pointers as found in conventional programming languages such as
C orC++.

Assume that ifk ≤ D(n) is the maximum degree of any node (past or present) in the Fibonacci
heap, we have a doubly-linked list of nodes

(R0, R1, . . . , Rk).

We call this the “degree register” because every node in the heap of degreei will have a pointer toRi.
Herek is the largest degree of a node that has been seen so far. Note that when we linkx to y then the
degree ofy increments by one and when we cutx, then the parent ofx decrements by one, and these
are the only possibilities. If itemx has its degree changed fromi to i ± 1 then we can re-registerx
by pointing it toRi±1 in constant time. Occasionally, we have to extend the lengthof the register by
appending a new nodeRk+1 to the doubly-linked list (when some node attains a degreek + 1 that is
larger than any seen so far). It is thus easy to maintain this degree register.

Now suppose we must consolidate a root listJ . By going through the items inJ , we can create
(with the help of the degree register) a list of lists

(L0, L1, . . . , Lk)

where listLi comprises the roots of degreei in J . This takesO(D(n) + t) operations ifJ hast
elements. It is now easy to consolidate the listsL0, . . . , Lk into one list in which no two trees have the
same degree, usingO(t) time. The cost of this procedure isO(D(n) + t), as in the solution that uses
array indexing.

But we can take this idea further: we can reinterpret the circular listH as a degree register. Whenever
we register a root of degreek, we check if there is already another such root. If so, we simply link them
together and recursively register the new root of degreek + 1. The worst case cost of registration in
Θ(lg n), but the amortized cost is onlyO(1) using the Counter Example analysis.

We get several benefits in this approach: (i) The space for theregisterH is D(n) = O(log n). (ii)
The operationdeleteMin(H) amounts to a simple search through this register; hence its worst case
time is no longerO(n) butO(log n). (iii) We have eliminated the explicit consolidation process.

¶22. The Pointer Computational Model. We now give a formal model of the pointer model. A
pointer program Π consists of a finite sequence of instructions that operate onan implicit potentially
infinite digraphG. All program variables inΠ are of typePOINTER, but we also manipulate integer val-
ues via these pointers. Each pointer points to some node inG. Each nodeN in G has four components:

(integer-value, 0-pointer, 1-pointer, 2-pointer).

These are accessed asP.Val, P.0, P.1 andP.2 whereP is any pointer variable that points toN . There
is a special nodeN0 ∈ G and this is pointed to by thenil pointer. By definition.nil.Val = 0 and
nil.i = nil for i = 0, 1, 2. Note that with 3 pointers, it is easy to model binary trees.

¶23. Pointer Expressions. In general, we can specify a node by apointer expression,
〈pointer-expr〉, which is either the constantnil, the NEW() operator, or has the formP.w where
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P is a pointer variable andw ∈ {0, 1, 2}∗. The stringw is also called apath. Examples of pointer
expressions:

nil, NEW(), P, P.0, Q.1, P.2, Q.1202, P.2120120

whereP, Q are pointer variables. The NEW() operator (with no arguments) returns a returns a pointer
to a “spanking new node”N whereN.0 = N.1 = N.2 = nil andN.Val = 1. The only way to access
a node or its components is via such pointer expressions.

The integer values stored in nodes are unbounded and one can perform the four arithmetic opera-
tions; compare two integers; and assign to an integer variable from any integer expression (see below).

We can compare two pointers for equality or inequality, and can assign to a pointer variable from
another pointer variable or the constantnil or the function NEW(). Assignment to anil pointer has no
effect. Note that we are not allowed to do pointer arithmeticor to compare them for the “less than”
relation.

The assignment of pointers can be explained with an example:

P.0121← Q.20002

If N is the node referenced byP.012 andN ′ is the node referenced byQ.20002, then we are setting
N.1 to point toN ′. If N is thenil node, then this assignment has no effect.

Naturally, we use the result of a comparison to decide whether or not to branch to a labeled instruc-
tion. Assume some convention for input and output. For instance, we may have two special pointers
Pin andPout that point (respectively) to the input and output of the program.

To summarize: a pointer program is a sequence of instructions (with an optional label) of the fol-
lowing types.

• Value Assignment:〈pointer-expr.V al〉 ← 〈integer-expr〉;

• Pointer Assignment:〈path-expr〉 ← 〈pointer-expr〉;

• Pointer Comparison:If 〈pointer-expr〉 = 〈pointer-expr〉 then goto 〈label〉;

• Value Comparison:If 〈integer-expr〉 ≥ 0 then goto 〈label〉;

• Halt

Integer expressions denote integer values. For instance

(74 ∗ P.000)− (Q.21 + P )

whereP, Q are pointer variables. Here,P.000, Q.21, P denotes the values stored at the corresponding
nodes. Thus, an integer expression〈integer-expr〉 is either

• Base Case: any literal integer constant (e.g.,0, 1, 74,−199), a 〈pointer-expr〉 (e.g.,
P.012, Q, nil); or

• Recursively:
(〈integer-expr〉〈op〉〈integer-expr〉)
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where〈op〉 is one of the four arithmetic operations. Recall thatnil.Val = 0. Some details about the
semantics of the model may be left unspecified for now. For instance, if we divide by0, the program
may be assumed to halt instantly.

For a simple complexity model, we may assume each of the aboveoperations take unit time regard-
less of the pointers or the size of the integers involved. Likewise, the space usage can be simplified to
just counting the number of nodes used.

One could embellish it with higher level constructs such aswhile-loops. Or, we could impoverish it
by restricting the integer values to Boolean values (to obtain a better accounting of the bit-complexity
of such programs). In general, we could have pointer models in which the value of a nodeP.Val comes
from any domain. For instance, to model computation over a ringR, we letP.Val be an element ofR.
We might wish to have an inverse to NEW(), to delete a node.

¶24. List reversal example. Consider a pointer program to reverse a singly-linked list of numbers
(we only use0-pointer of each node to point to the next node). Our program uses the pointer variables
P, Q, R and we writeP ← Q← R to mean the sequential assignments “P ← Q; Q← R;”.

REVERSEL IST:
Input: Pin, pointer to a linked list.
Output: Pout, pointer to the reversal ofPin.

P ← nil; Q← Pin;
If Q = nil then goto E;

R← Q.0← P ;
L: If R = nil then goto E;
T: P ← Q← R← Q.0← P ;

goto L;
E: Pout ← Q.

This program is easy to grasp once the invariant preceding Line T is understood (see Figure13and
Exercise).

P Q R P R S

Figure 13: List Reversal Algorithm: the transformation at Line T.

Remark: This model may be more convenient than Turing machines to useas a common basis for
discussing complexity theory issues. The main reservationcomes from our unit cost for unbounded
integers operations. In that case we can either require thatall integers be bounded, or else charge a
suitable costM(n) for multiplying n-bit integers, etc, reflecting the Turing machine cost. Of course,
the use of pointers is still non-elementary from the viewpoint of Turing machines, but this is precisely
the convenience we gain.

EXERCISES
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Exercise 8.1: State the invariant before line T in the pointer reversal program; then proving the program
correct. ♦

Exercise 8.2: Write the pointer program for the consolidation. ♦

Exercise 8.3: Implement in detail all the Fibonacci heap algorithms usingour pointer model, ♦

Exercise 8.4: Write a sorting program and a matrix multiplication programin this model. What is the
time complexity of your algorithms? ♦

END EXERCISES

§9. Application to Minimum Spanning Tree

The original application of Fibonacci heaps is in computingminimum spanning trees (MST). In
Lecture IV §4, we considered Prim’s algorithm for MST. The input for MST is a connected bigraph
G = (V, E; C) with cost functionC : E → R.

Although our goal is to compute a minimum spanning tree, let us simplify our task by computing
only thecost of a minimum spanning tree. This is consistent with a generalpoint of pedagogy: for
many computational problems that seek to compute a data structureD = D∗ which minimizes an
associated cost functionf(D), it is easier to develop the algorithmic ideas for computingf(D∗) than
for computingD∗. Invariably, we could easily transform the algorithm for the minimum valuef(D∗)
into an algorithm that produces the optimal structureD∗.

¶25. Prim-safe sets. It is easy to see that ifU is a singleton thenU is Prim-safe. SupposeU is
Prim-safe and we ask howU might be extended to a larger Prim-safe set. Let us maintain the following
information aboutU :
i) mst[U ], denoting the cost of the minimum spanning tree ofG|U .
ii) For eachv ∈ V − U , the least costlcU [v] of an edge connectingv to U :

lcU [v] := min{C(v, u) : (v, u) ∈ E, u ∈ U}.

We usually omit the subscriptU and just write “lc[v]” without confusion.

In order to find a nodeu∗ ∈ V − U with the minimumlc-value, we will maintainV − U as a
single8 mergeable queueQ in which the least costlc[u] serves as the key of the nodeu ∈ V − U .
Hence extending the Prim-safe setU by a nodeu∗ amounts to adeleteMin from the mergeable
queue. After the deletion, we must update the informationmst[U ] andlc[v] for eachv ∈ V − U . But
we do not really need to consider everyv ∈ V − U : we only need to updatelc[v] for thosev that are
adjacent tou∗. The following code fragment captures our intent.

8 So we are not using the full power of the mergeable queue ADT which can maintain several mergeable queues. In particular,
we never perform the union operation in this application.
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UPDATE(u∗, U ):
1. U ← U ∪ {u∗}. {This step need not be performed}
2. mst[U ]← mst[U ] + lc[u∗].
3. for v adjacent tou∗ andv 6∈ U, do

If lc[v] > C[v, u∗] then
lc[v]← C[v, u∗]}.
DecreaseKey(v,lc[v], Q).

We need not explicitly carry out step 1 becauseU is implicitly maintained as the complement of the
items inQ. We now present the MST Cost version of Prim’s algorithm.

MST COST ALGORITHM:
Input: G = (V, E; C), a connected costed bigraph.
Output: the cost of an MST ofG.
INITIALIZE :
1. U ← {v0}; mst[U ]← 0;
2. for v ∈ V − U, do lc[v]← C(v, v0);
3. Set upV − U as a single mergeable queueQ:

Q←MakeQueue();
Insert each element ofV − U into Q.

LOOP:
4. while Q 6= ∅, do

u∗ ← deleteMin(Q);
UPDATE(u∗, U ).

5. Return(mst[U ]).

We do not need to maintainU explicitly, although it seems clearer to put this into our pseudo-code
above. In practice, the updating ofU can be replaced by a step to add edges to the current MST.

¶26. Analysis. The correctness of this algorithm is immediate from the preceding discussion. To
bound its complexity, letn := |V | andm := |E|. Assume that the mergeable queue is implemented
by a Fibonacci heap. In the UPDATE subroutine, updating the value oflc[v] becomes a DecreaseKey
operation. Each operation in UPDATE can be charged to an edge or a vertex. As each edge or vertex is
charged at most once, and since the amortized cost of each operation isO(1), the cost of all the updates
is O(m + n). The initialization takesO(n) time. In the main procedure, we maken− 1 passes through
thewhileloop. So we performn− 1 deleteMin operations, and as the amortized cost isO(log n) per
operation, this has total costO(n log n). We have proven:

THEOREM 10. The cost of a minimum spanning tree of a graph (V, E; C) can be found in
O(|V | log |V |+ |E|) operations.

¶27. Final Remarks. The amortization idea is closely related to two other topics. One is “self-
organizing data structures”. Originally, this kind of analysis is undertaken by assuming the input has
certain probability distribution. McCabe (1965) is the first to discuss the idea of move-to-front rule. See
“An account of self-organizing systems”, W.J. Hendricks,SIAM J.Comp., 5:4(1976); also “Heuristics
that dynamically organizes data structures”, James R. Bitner, SIAM J.Comp., 8:1(1979)82-100. But
starting from the work of Sleator and Tarjan, the competitive analysis approach has become dominant.
Albers and Westbrook gives a survey in [2]. Indeed, competitive analysis is the connection to the other
major topic, “online algorithms”. Albers gives a survey [1].
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EXERCISES

Students should be able to demonstrate understanding of Prim’s algorithm by
doing hand simulations. The first exercise illustrates a simple tabular form for
hand simulation.

Exercise 9.1: Hand simulate Prim’s algorithm on the following graph (Figure14) beginning withv1:

v1 v2

v5

v8 v9 v10 v11 v12

v6 v7

v3 v4

8

82

3 9

6217

3

7

1
9

4
1 3 2

2

105

3 6 2 9

2

Figure 14: Graph of a House

It amounts to filling in the following table, row by row. We have filled in the first two rows
already.
i v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 mst[U ] New Edge
1 2 3 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2 (v1, v2)
2 * ” ” 8 ” ” ” ” ” ” ” 4 (v1, v4)

Note that the minimum cost in each row is underscored, indicating the item to be removed from
the priority queue. ♦

Exercise 9.2: Let Gn be the graph with vertices{1, 2, . . . , n} and for1 ≤ i < j ≤ n, we have an edge
(i, j) iff i dividesj. For instance,(1, j) is an edge for all1 < j ≤ n. Thecostof the edge(i, j)
is j − i.
(a) Hand simulate (as in the previous exercise) Prim’s algorithm onG10. Show the final MST and
its cost.

2 3 4 5 6 7 8 9 101

6

8

6

4 4

5

2

3

Figure 15:G10: edges from node 1 are omitted for clarity.

(b) What can you say about the MST ofGn? Is it unique? What is the asymptotic cost of the
MST? ♦

Exercise 9.3: Modify the above algorithm to compute a minimum spanning tree. ♦
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Exercise 9.4: Modify the above algorithm to compute a minimum spanning forest in case the input
graph is not connected. ♦

Exercise 9.5: Let G = (V, E; µ) be an edge-costed bigraph andS ⊆ E, U ⊆ V . Let V (S) = {v ∈
V : ∃u, (u, v) ∈ S} denote thevertices of S, andG|U := (U, E′; µ) whereE′ = E ∩

(
U

2

)
denote

the restriction of G to U . We defineS to beprim-safe if S is an MST ofG|V (S) andS can
be extended into an MST ofG. We defineU to beprim-safe if U is singleton or there exists a
prim-safe setS of edges such thatU = V (S). Show or give a counter-example:
(a)S is a tree ofG|V (S) and can be extended into an MST ofG impliesS is prim safe.
(b) U is prim-safe implies every MST ofG|U is prim-safe. ♦

END EXERCISES
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§A. APPENDIX: List Update Problem

The splay tree idea originates in the “move-to-front rule” heuristic for followinglist update prob-
lem: let L be a doubly-linked list ofitemswhere each item has a unique key. For simplicity, we usually
write L as a sequence of keys. This list supports theaccess request. Each access requestr is specified
by a key (also denotedr), and we satisfy this request by returning a pointer to the item inL with key
r. (We assume such an item always exist.) We are interested in aspecial class of algorithms: such an
algorithmα, on an inputL andr, searches sequentially inL for the keyr by starting at the head of the
list. Upon finding the item with keyr, α is allowed to move the item to some position nearer the head
of the list (the relative ordering of the other items is unchanged). Here are three alternative rules which
specify the new position of an updated item:

• (R0) The lazy rule never modifies the listL.

• (R1) Themove-to-front rule always make updated item the new head of the listL.

• (R2) Thetranspose rulejust moves the updated item one position closer to the head ofthe list.

Let αi denote the list update algorithm based on RuleRi (i = 0, 1, 2). For instance,α1 is the “move-
to-front algorithm”. For any algorithmα, let COSTα(r, L) denote the cost of an update requestr on
a list L usingα. For i = 0, 1, 2, we writeCOSTi(r, L) instead ofCOSTαi

(r, L). We may define
COSTi(r, L) to be1 + j wherej is the position of the accessed item inL. If α is an update algorithm,
thenα(L, r) denotes the updated list upon applyingα to L, r. We extend this notation to a sequence
U = 〈r1, r2, . . . , rn〉 of requests, by defining

α(L, U) := α(α(L, 〈r1, . . . , rn−1〉), rn).

Similarly,COSTα(L, U) or COSTi(L, U) denotes the sum of the individual update costs.

¶28. Example: Let L = 〈a, b, c, d, e〉 be a list andc an update request. Thenα0(L, c) = L,
α1(L, c) = 〈c, a, b, d, e〉 andα2(L, c) = 〈a, c, b, d, e〉. Also COSTi(L, c) = 4 for all i = 0, 1, 2.

¶29. Probabilistic Model. We analyze the cost of a sequence of updates under the lazy rule and the
move-to-front rule. We first analyze a probabilistic model where the probability of updating a keyki is
pi, for i = 1, . . . , m. The lazy rule is easy to analyze: if the list isL = 〈k1, . . . , km〉 then the expected
cost of a single access request is

C(p1, . . . , pm) =

m∑

i=1

i · pi.

It is easy to see that this cost is minimized if the listL is rearranged so thatp1 ≥ p2 ≥ · · · ≥ pm; let C∗

denote this minimized value ofC(p1, . . . , pm).

What about the move-to-front rule? Letp(i, j) be the probability thatki is in front of kj in list L.
This is the probability that, if we look at the last time an update involvedki or kj , the operation involves
ki. Clearly

p(i, j) =
pi

pi + pj

.

The expected cost to updateki is

1 +

m∑

j=1,j 6=i

p(j, i).
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The expected cost of an arbitrary update is

Ĉ :=

m∑

i=1

pi



1 +

m∑

j=1,j 6=i

p(i, j)





= 1 +

m∑

i=1

m∑

j 6=i

pi · p(i, j)

= 1 + 2
∑

1≤j<i≤m

pipj

pi + pj

= 1 + 2

m∑

i=1

pi

i−1∑

j=1

·p(j, i)

≤ 1 + 2

m∑

i=1

pi · (i− 1)

= 2C∗ − 1.

This proves
Ĉ < 2C∗. (10)

¶30. Amortization Model. Let us now consider the amortized cost of a fixed sequence of updates

U = (r1, r2, . . . , rn) (11)

on an initial listL0 with m items. Clearly the worst case cost per update isO(m). So, updates over the
sequenceU costsO(mn). This worst case bound cannot be improved if we use the lazy rule. The best
case for the lazy rule isO(1) per update, orO(n) overall.

What about the move-to-front rule? In analogy to equation (10), we show that it is never incur more
than twice the cost of any update algorithm. In particular, it is never more than twice cost of an optimal
offline update algorithmα∗. Note thatα∗, being offline, can determine the best position to move each
element after it has been accessedbased on the entire sequence U in (11). If the cost ofα∗ is denoted
COST∗, we prove

COST1(L, U) ≤ 2 · COST∗(L, U). (12)

We introduce the following potential function on lists. A pair (k, k′) of keys is aninversion in a pair
(L, L′) of lists if k occurs beforek′ in L butk occurs afterk′ in L′. We will compare the listL produced
by our move-to-front algorithm to the listL∗ obtained from the optimal algorithm: thepotential Φ(L)
of L is defined to be the number of inversions in(L, L∗). For instance,Φ(L) = 5 in Figure16 as
there is one inversion involvinga, two inversions involvingb (not counting that witha), two inversions
involving c (not counting those witha or b) and0 inversion involvingd (not counting those witha, b, c).

Consider thejth request(j = 1, . . . , n). Let Lj (resp. L∗
j ) be the list produced by the move-to-

front (resp. optimal) algorithm after thejth request. WriteΦj for Φ(Lj). Let cj andc∗j denote the cost
of serving thejth request under two algorithms (respectively). Letxj be the item accessed in thejth
request andkj is the number of items that are in front ofxj in both listsLj andL∗

j . Let ℓj be the number
of items that are in front ofxj in Lj but behindxj in L∗

j . Hence

cj = kj + ℓj + 1, c∗j ≥ kj + 1.

CLAIM: The number of inversions destroyed is ℓj and the number of inversions created is at most kj .
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L

(ii)

(i)

Φ(L) = 1 + 2 + 2 + 0 = 5

Φ(L′) = 2 + 0 + 2 + 0 = 4
L′

(iii)

L∗

a

e cb d

d cbea

edcb

a

Figure 16: How potential changes under update:L′ = α1(L, b)

In illustration, consider the listL′ in Figure16(iii), produced by the move-to-front algorithm after
accessingb in L. Thus

xj = b, kj = 1, ℓj = 2, cj = 4, c∗j = 2.

Note thatℓj counts the elementsd ande. They represent the inversions{b, e} and{b, d} in L. Both
inversion weredestroyed when b moved to the front inL′. Likewise, kj counts the elementa; it
represents the new inversion{a, b} that wascreatedin L′ whenb moved to the front. Next, the optimal
algorithmα∗ is allowed to updateL′ by movingb closer to the front of its list. Each element thatb moves
past when updatingL′ will reduce the number of created inversions by the move-to-front algorithm. It
should now be clear that the above CLAIM is true.

It follows
Φj − Φj−1 ≤ kj − ℓj .

Combining these two remarks,

cj + Φj − Φj−1 ≤ 2kj + 1

≤ 2c∗j − 1.

Summing up over allj = 1, . . . , n, we obtain

COST1(L0, U) =




n∑

j=1

cj



 + Φn − Φ0

≤
n∑

j=1

(2c∗j − 1), (sinceΦn ≥ 0, Φ0 = 0)

= 2COST∗(L0, U)− n.

¶31. Competitive Algorithms. Let β(k) be a function ofk. We say an algorithmα is β(k)-
competitive if there is some constanta, for all input listsL of lengthk and for all sequencesU of
requests

COSTα(L, U) ≤ β(k) · COST∗(L, U).

HereCOST∗ is the cost incurred by the optimal offline algorithm.
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We have just shown that the Move-to-Front algorithm is2-competitive. This idea of competitive-
ness from Sleator and Tarjan is an extremely powerful one as it opens up the possibility of measuring
the performance of online algorithms (such as the move-to-front algorithm) without any probabilistic
assumption on the input requests.

¶32. Remark. An application of the list update problem is data-compression (Exercise). Chung,
Hajela and Seymour [3] determine that cost of the move-to-front rule over the costof an optimal static
ordering of the list (relative to some probability of accessing each item) isπ/2. See also Lewis and
Denenberg [5] and Purdom and Brown [8].

EXERCISES

Exercise A.1: We extend the list update problem above in several ways:
(a) One way is to allow other kinds of requests. Suppose we allow insertions and deletions of
items. Assume the following algorithm for insertion: we putthe new item at the end of the list
and perform an access to it. Here is the deletion algorithm: we access the item and then delete it.
Show that the above analyses extend to a sequence of access, insert and delete requests.
(b) Extend the list update analysis to the case where the requested keyk may not appear in the
list.
(c) A different kind of extension is to increase the class of algorithms we analyze: after accessing
an item, we allow the algorithm to to transpose any number of pairs of adjacent items, where each
transposition has unit cost. Again, extend our analyses above. ♦

Exercise A.2: The above update rulesRi (i = 0, 1, 2) are memoryless. The following two rules require
memory.

• (R3) Thefrequency rule maintains the list so that the more frequently accessed items occur
before the less frequently accessed items. This algorithm,of course, requires that we keep a
counter with each item.

• (R4) Thetimestamp rule (Albers, 1995) says that we move the requested itemx in front of
the first itemy in the list that precedesx and that has been requested at most once since the
last request tox. If there is no suchy or if x has not been requested so far, do not movex.

(a) Show thatR3 is notc-competitive for any constantc.
(b) Show thatR4 is 2-competitive. ♦

Exercise A.3: (Bentley, Sleator, Tarjan, Wei) Consider the following data compression scheme based
on any list updating algorithm. We encode an input sequenceS of symbols by each symbol’s
position in a listL. The trick is thatL is dynamic: we updateL by accessing each of the symbols
to be encoded. We now have a string of integers. To finally obtain a binary string as our output,
we encode this string of integers by using a prefix code for each integer. In the following, assume
that we use the move-to-front rule for list update. Furthermore, we use the prefix code of Elias in
Exercise IV.1.1.6 that requires only

f(n) = 1 + ⌊lg n⌋+ 2 ⌊lg(1 + lg n)⌋

bits to encode an integern.
(a) Assume the symbols area, b, c, d, e and the initial list isL = (a, b, c, d, e). Give the integer
sequence corresponding to the stringS = abaabcdabaabecbaadae. Also give the final binary
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string corresponding to this integer sequence.
(b) Show that if symbolxi occursmi ≥ 0 times inS then thesemi occurrences can be encoded
using a total of

mif(m/mi)

bits where|S| = m. HINT: If the positions ofxi in S are1 ≤ p1 < p1 < · · · < pmi
≤ m

then thejth occurrence ofxi needs at mostf(pj − pj−1). Then use Jensen’s inequality for the
concave functionf(n).
(c) If there aren distinct symbolsx1, . . . , xn in S, define

A(S) :=

n∑

i=1

mi

m
f

(
m

mi

)
.

ThusA(S) bounds the average number of bits per symbol used by our compression scheme.
Show that

A(S) ≤ 1 + H(S) + 2 lg(1 + H(S))

where

H(S) :=

n∑

i=1

mi

m
lg

(
m

mi

)
.

NOTE: H(S) is the “empirical entropy” ofS. It corresponds to the average number of bits per
symbol achieved by the Huffman code forS. In other words, this online compression scheme
achieves close to the compression of the offline Huffman coding algorithm. ♦

END EXERCISES
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