81. oY RIDES AND BIN PACKING Lecture V Page 1

Lecture V
THE GREEDY APPROACH

An algorithmic approach is called “greedy” when it makesisiens for each step based on what
seems best at the current step. Moreover, once a decisicedis, it is never revoked. It may seem that
this approach is rather limited. Nevertheless, many ingsanproblems have special features that allow
correct solutions using this approach. Since we do not ek greedy decisions, such algorithms
tend to be simple and efficient.

To make this concept of “greedy decisions” concrete, suppashave some “gain” functiofi(x)
which quantifies the gain we expect with each possible dmtisi View the algorithm as making
a sequence,zo, ..., x, Of decisions, where each; € X, for some setX; of feasible choices.
Greediness amounts to choosing thes X; which maximizes the valu€'(x).

The greedy method is supposed to exemplify the idea of “Iseatch”. But closer examination of
greedy algorithms will reveal some global information lgeirsed. Such global information is usually
minimal. Typically it amounts to some global sorting stemdeéed, the preferred data structure for
delivering this global information is the priority queue.

We begin with a toy version of bin packing and simple problenwlving intervals. Next we
discuss the more realistic Huffman tree problem and mininspainning trees. An abstract setting
for the minimum spanning tree problem is basednaatroid theory and the associatethaximum
independent set problem This abstract framework captures the essence of a largs afgproblems
with greedy solutions.

81. Joy Rides and Bin Packing

We start with an example of a greedy algorithm to solve a smppbblem which we calinear bin
packing. The problem is, however, related to the major topic of biokjreg in algorithms.

1. Amusement Park Problem. Suppose we have a joy ride in an amusement park where riders
arrive in a queue. We want to assign riders into cars, wheredns are empty as they arrive and we
can only load one car at a time. Each car has a weight lichit- 0. The number of riders in a car

is immaterial, as long as their total weightdis M pounds. We may assume that no rider has weight
> M. A key constraint in this problem is that we must make a denigor rider as they arrive at the
head of the queue. This is called thieline requirement. For instance, if\/ = 400 and the weights (in
pounds) of the riders in the queue are

(30,190, 80,210, 100, 80, 50, 170), (1)
then we can put the riders into cars in the following groups:
S5 : (30,190, 80), (210, 100, 80), (50, 170).

SolutionS; uses three cars (the first car has the first 3 riders, the neksahe next 3, and the last car
has 2 riders). It is the solution given by the “greedy aldorit which fills each car with as many riders
as possible before loading the next car. Here are two othegneedy solutions:

S5 : (30, 190), (80, 210), (100, 80, 50, 170).
S5 : (30,190)(80, 210, 100), (80, 50), (170).

Chee-Keng Yap Basic Version April 7, 2011

81. oY RIDES AND BIN PACKING Lecture V Page 2

92. General Bin Packing. The joy ride problem is an instance of the following protaypn pack-
ing problem: given a collection of items, to place them into as few bins @ssible Each item is
characterized by its weight (a positive real number) andthe are identical, with a limited capacity.
More precisely, we are given a multiset set= {w1, ..., w,} of positive weights, and a bin capacity
M > 0. We want to partitionS into a minimum number of subsets such that the total weiglkegith
subset is at most/. We may assume that eaeh < M. Unlike the joy ride problem, the weights
can be reordered in any way we like. A solution to this genkialpacking problem is also called
a globally optimal solution. E.g., if S = {1,1,1,3,2,2,1,3,1} and M = 5 then one solution is
{3,2},{2,3},{1,1,1,1, 1}, illustrated in Figurel.

1 2 3 4

Figure 1: Bin packing solution.

This solution use8 bins. This is clearly a globally optimal solution since edath is filled to
capacity. Finding the globally optimal bin packing is a hprdblem: no polynomial-time algorithm is
known.

In the joy ride problem, we imposed a linear constraint ongbssible solutions, thereby turning
a hard problem into a feasible one. Let us formalize the jdg problem: given a sequenee =

(w1, ws,...,wy,) of non-negative weights, lmear solution is determined by a sequence
0=t0)<tl)<t2)<---<t(m)=n 2
of indices such that for each= 1, ..., m, the subset

Ci=A{w; +t(i—1) <j <t(i)}

has a total weight of at mosgt/. A solution @) is optimal if m is minimum over all linear solutions.
Thelinear bin packing problem is to compute an optimal linear solution for any inputFor instance,
the greedy algorithm on the input= (1,1, 1, 3,2,2,1,3,1), M = 5 leads to the solution

Think of C; as thei-th
car in the joy ride.

01:{17171}5 02:{372}7 03:{271}7 042{331}

Since this solution uses more thabins, it is suboptimal for the general bin packing problenavét-
theless, this solution is optimal for linear bin packing.

13. Greedy Algorithm. Let us code up the Greedy Algorithm for the linear bin packimgblem
(a.k.a. joy ride problem). Let» = (wy,ws,...,w,) be the input sequence of weights. &tdenote
a container (or car) that is being filled with elementsugfand W be the sum of the weights i@".
Initially, W « 0 andC « 0.

Chee-Keng Yap Basic Version April 7, 2011

81. oY RIDES AND BIN PACKING Lecture V Page 3

GREEDY ALGORITHM FORLINEAR BIN PACKING:
Input: w = (w1, ...,w,)andM > 0.
Output: A sequence of containe€s;, Cs, . .., C,, representing an optimal linear solution.
> Initialization
C+— 0, W « 0.
> Loop
fori=1ton+1
if (il=n+1orW +w; > M)
W «0,C <, OutputC.
else

This the greedy algorithm is also known as tinst fit algorithm .

74. Optimality of Greedy Algorithm. It may not be obvious why the greedy algorithm produces an
optimal linear solution. In any case, it is instructive toye that this is so. We use natural induction.
Suppose the greedy algorithm outpkitsars with the weights

(W1, ey Why)y (Wiy 1y ey Whg)y e v vy (Wi 15+ + s Why,)
wheren; = n. This defines a sequence of indices,
1<n;<ne < - <ngp=n.
Consider any optimal solution withcars with the weights

(W1y e s Wiy)y Wiy 15 v s Wing)y v ooy (Winy 1y -+, Winy)

where
1<mi<mg < - <mg=n.

(Every solution to linear bin packing has this structurenc8 this is optimal, we have
L <k.
We claim thatfori = 1,...,7,

Itis easy to see that this is true foe= 1. Fori > 1, assumen,;_; < n;_; by induction hypothesis. By
way of contradiction, suppose that; > n;. Then

mi—1 <nj_1 <n;—1+1<n; <n; +1<m;. 4)

Thei-th car in the optimal solution has weight equald@, , +1+- - - +wy,,, but this weight (according
to (4)) is at least
wni71~‘r1 + -+ wni + wnﬁ»l- (5)

But by definition of the greedy algorithm, the sum &) (hust exceed/ (otherwise the greedy algorithm
would have added,,, + to theith car). This contradiction concludes our proof 8f.(

From 3), we havemn, < ny. Sincem; = n, we conclude that, = n. Sincen;, = n, this can only
mean? = k. Thus the greedy method is optimal.

Chee-Keng Yap Basic Version April 7, 2011

81. oY RIDES AND BIN PACKING Lecture V Page 4

15. How good is linear bin packing? Given a sequence = (w1, ..., w,) of positive weights, we
want to compare its optimal solutions when viewed as a lib@apacking instance, and when viewed
as a general bin packing instance2()y

CLAIM: The optimal linear bin packing solution uses less than twheesoptimal number of bins in
the general bin packing solution

To prove this, suppose the greedy method ukebins, and the weights of these bins are
Wi, Wa, ..., Wy. The following inequality holds:

W, + Wi+l > M. (6)

To see this, note that the first weighthat is put into the + 1st bin by the greedy algorithm must
satisfyW; + v > M. This implies 6) sinceW,;; > v. Our claim is now easy to see: we have
Zle W; > |k/2] M; hence the optimal general solution has at ldast |k/2| bins. Our claim is
proved since: < 2(1 + |k/2]).

The factor of2 in this claim is the best possible. For amyconsider the following sequence i
inputs:
112131 4i-11 n-2 1 n-11
2'2'3'3' 4’4 i n—1'n—-1" n 'n
The greedy solution usesbins, and this is clearly also the globally optimal soluti@ut let us slightly
modified this input sequence, by moving the first weight 4f to the end of the sequence:

| Do
| =
| o

12131 i-11 =n-2 1 n-111
2'3'3°4°4 0 7T i1 n—1" a2

Now the greedy solution will place each of the fi2st— 2 inputs into its own bin, but the last two inputs
fitinto one bin. Thus a total dfn — 1 bins will be used.

16. Application to General Bin Packing. Thus linear bin packing can be optimally solved(in)

time. If the weights are arbitrary real numbers, ig:) bound is based on the real RAM computational

model of Chapter 1. The solution to linear bin packing can $eduas a subroutine in solving the

original bin packing problem: we just cycle through eachhafit! permutations ofv = (wq, ..., wy),

and for each compute the greedy solutior(ifv.) time. The optimal solution is among them. This

yields an©(n - n!) = O((n/e)"*+(/2)) time algorithm. Here, we assume that we can generate all jusisStirling’s approxime
n-permutations irO(n!) time. This is a nontrivial assumption, but in §7, we will shbaw to do this. tion forn!

We can improve the preceding algorithm by a factomofsince without loss of generality, we
may restrict to permutations that begins with an arbitragry(why?). Since there aréx — 1)! such
permutations, we obtain:

LEMMA 1. The bin packing problem can be solvedin!) = O((n/e)"*(1/2)) time in the real RAM
model.

We can further improve this complexity by another factongExercise). Observe that by imposing
restrictions on the space of possible solutions, we havetua difficult problem like general bin pack-
ing into a feasible one like linear bin packing. The latteslgem may be interesting on its own merit,
but we see that it can also be used as a subroutine for solhéngriginal problem.

7. Two-Car Loading. Consider an extension of linear bin packing where we simelbasly load
two cars. Call these two cars tfrent andrear cars. This is a realistic scenario for joy rides in a Ferris

Chee-Keng Yap Basic Version April 7, 2011

81. oY RIDES AND BIN PACKING Lecture V Page 5

wheel. This allows us to mildly violate the first-come firstrge policy: a rider may be assigned to the
rear car, while the next rider in the queue may be assigneddetéront car. But this is the worst that
can happen (people coming behind in the queue can never bd alienore than one car). If neither
car can accommodate the new rider, we mdispatch the front car, so that the rear car comes to the
front position and a new car empty becomes the rear car. Winc@to have the “online restriction”,
i.e., we must make the decision for each rider in the queusowttknowledge of who comes afterward.
Moreover, decisions are irrevocable (note that in two-ocading, being able to move a rider from one
car to another can be advantageous).

We want to design a new poli@ys for 2-car loading. The goal, as usual, is to minimize the nemb
of cars used for any given input sequence_et G; be the car loading policy represented by the original
greedy algorithm (§). We want to make sure thét, is never worse tha@';. More precisely, &7 (w)
andGs(w) denote the number of cars used by the respective policiesymputw = (ws, ..., w,).

We want to ensure that for all,
Ga(w) < Gy (w).)

There is a trivial way to desigt¥s to satisfy {7): just imitateG,. But this means?) is actually an
equality for allw. This is of no interest whatsoever. What we want is a paligywhere, in addition to
(7), there are many inputs whereG, (w) < G2(w), and hopefully(G2 has other provable advantages
as well.

Here is our proposed 2-car loading poli¢y; : load each rider into the front car if possible, but
otherwise load into the rear car. If the latter is also not pitde, dispatch the front car.

For instance, ifv = (30, 190, 80, 210, 90, 80, 50, 170) and M = 400 is our original example in1(,
then our new policy is an improvemertty (w) = 2 < 3 = Gy (w).

To prove that {), we generalize it to a stronger statement about “subsegs&nNormally,w’ is
called a subsequence of = (ws,...,w,) if w’ can be obtained fromw by dropping zero or more
entries fromw. E.g.,w’ = (2,3,1) is a subsequence of = (2,2,1,3,1). But instead of dropping
an entry, we can imagine replacing it By thusw’ = (2,3,1) can be regarded 8¢, 0,0, 3,1) or
(0,2,0,3,1). For our proof, we define subsequencef w = (wy,...,w,) to be any sequenaee’ =
(wf,...,w,)whered < w); < w;, for eachi.

LEMMA 2. If v’ is a subsequence ofia,

Ga(w') < Gy (w). (8)

Proof. We use induction on the numbéf; (w). Letw = (wy,...,w,) andw’ = (wi,...,w)).

If G1(w) = 1, then clearly 8) holds (it actually holds with equality unless has only0 weights).

Suppose~; (w) > 2, and let the first car load in th@, solution be the multisef' = {w, wa, ..., w;}
for somei > 1. So

Gi(w) =1+ Gr(wiy1, Wit2,...,Wy).)

The first car load”” in the Gy (w’) solution clearly contains the multisét, . .., w}}. But C’ might

also contain additional elements from the sequantceTo account for these elements, et be the
weight sequence that is obtained fréat , ,, w; ,, ..., w;,) by setting ta) any weightw’; thatis inC".
Thus, we have

G2 (U)/) =14+ G2 (’LU”). (10)

Clearly,w" is a subsequence i;_ |, ..., w;,), and hencev” is a subsequence Ob; 1, ..., wy). By
induction hypothesis, we conclude that

GQ('LU”) S Gl(wi+1, e ,wn). (11)

Chee-Keng Yap Basic Version April 7, 2011

81. oY RIDES AND BIN PACKING Lecture V Page 6

Thus inequality §) now follows from @), (10), and (L1). Q.E.D.

We can further generalize the framework: suppose the twairigecars are in parallel tracks (left or
right tracks). Can we do even better th@g? That means we can dispatch either car first. Note that this
is extension permits loading policies which are arbityawihfair in the sense that a rider may be put into
a car that is arbitrarily ahead of someone who arrived eanithe queue. So we might want to restrict
the admissible loading policies.

EXERCISES

Exercise 1.1: Suppose you are a cashier at a checkout and has to give cleanggtdmers. You want
to give out the minimum number of notes and coins.
(a) What is the greedy algorithm for this?
(b) Assuming a US cashier giving change less thaf0. You have bills in denominations
$50, $20, $10, $5, $1 and common coins 25¢, 10¢, 5¢, 1¢. Is your greedy algorithtimap
here?
(c) Give a scenario in which your greedy algorithm is noniopt. &

Exercise 1.2: The following problem arises in “compressing databases’® aké given a sequence
w = (wy,...,w,) of numbers and some > 0. We say a sequence = (z1,...,x,,) iS an
e-approximation of w of order m if if there is a sequence of indices

0=Fk0) <k(l)<k(2)<---<k(m)=n

such that for each original numbe, if k(j — 1) < i < k(j) thenz; is approximately equal to
w; in the sense that

|wi — ,le S €.
Intuitively, this says that we can approximate the sequenbg a histogram withm steps. Let
Min(w, €) denote the minimum order of arapproximation ofw. Give anO(n) algorithm to
compute thé\lin(w, ¢). O

Exercise 1.3: Give a counter example to the greedy algorithm in casedtfecan be negative. <

Exercise 1.4: Suppose the weight;’s can be negative. How bad can the greedy solution be, as a
function of the optimal number of bins? &

Exercise 1.5: There are two places where our optimality proof for the gyesldorithm breaks down
when there are negative weights. What are they? &

Exercise 1.6: Consider the following “generalized greedy algorithm” @sew;’s can be negative. A
solution to linear bin packing be characterized by the seqgeef indices) = ng < n; < ng <
-+ < ng = n where theth car holds the weights

[wni—l 415 Wn;42y -+, wnT]

Here is a greedy way to define these indicesnleto be the largest index such th ;?;1 w; <

M. Fori > 1, definen; to be the largest index such the’* ., w; < M. Either prove that
this solution is optimal, or give a counter example. &

Chee-Keng Yap Basic Version April 7, 2011

81. oY RIDES AND BIN PACKING Lecture V Page 7

Exercise 1.7: Give anO(n?) algorithm for linear bin packing when there are negativeghes. HINT:
Assume that when you solve the problem {df, w), you also solve it for eachM, w’) where
w’ is a suffix ofw. This is really the idea of dynamic programming (Chapter 7). &

Exercise 1.8: Improve the bin packing upper bound in Lemrh&o O((n/e)”~(1/2)). HINT: Repeat
the trick which saved us a factor afin the first place. Fix two weights,w>. We need to
consider two cases: either , wy belong to the same bin or they do not. &

Exercise 1.9: We have the 2-car loading problem, but now imagine the 2 cargeralong two inde-
pendent tracks, say the left track and right track. Eithecoald be sent off before the other. We
still make decision for each rider in an online manner, butitiu decisionz; now comes from
the set{ L, R, L™, R™}. The choicer; = L or x; = R means we load thah rider into the left
or right car (resp.), but; = L+ means that we send off the left car, and putithie rider into a
new car in its place. Similarly far;, = R™. Consider the following heuristic: let, > 0 and
C1 > 0 be the “residual capacities” of the two open cars. Try topuinto the car with the
smaller residual capacity. i; is larger than botld’y andC',, we send off the car with the smaller
residual capacity (and put; into its replacement car). Prove or disprove that this agyatwill
never use more cars than the greedy algorithm in the prepimidem. &

Exercise 1.10: Suppose we first sort the input weights, so that we have ws > --- > w,,. Consider
the following algorithm: fori = 1 to n, try to packw; into one of the current bins. If this is not
possible, put it into a new bin.

(a) Prove that this algorithm uses at most times the optimal number of bins.
(b) Give examples showing that this factorlo$ is the best possible. &

Exercise 1.11:Weights with structure: suppose that the input weights &fesdformw; ; = w;+v; and
(u1,...,un)and(vy,...,v,) are two given sequences. gchasmn numbers. Moreover, each
group must have the form(i, ', j, 7') comprising alkwy, » such that < £ < i’ andj < ¢ < j'.
Call this a “rectangular group”. We want the sum of the wesghteach group to be at mo3f,
the bin capacity. Give a greedy algorithm to form the smaipessible number of rectangular
groups. Prove its correctness. &

Exercise 1.12: Two Dimensional Bin Packing: suppose the bins are unit ssgjand the weights are
boxes of dimensions; x y; (i = 1,...,n). Assume) < x; < 1 and0 < y; < 1. We write
w; = (x;,y;) inthis case. Give a heuristic for greedy bin packing, whepeds; must be assigned
to the bin without knowing the later boxes (j > 7). Moreover, once we place;, we are not
allowed to rearrange it's placementif cannot be placed, we must close the current bin and get
a new bin forw;. NOTE: this is a difficult problem. &

Exercise 1.13: A vertex coverfor a bigraphG = (V, E) is a subseC' C V such that for each edge
e € F, at least one of its two vertices is containeddin A minimum vertex cover is one of
minimum size. Here is a greedy algorithm to finds a vertex coue

1. Initialize C to the empty set.

2. Choose from the graph a vertexvith the largest out-degre
Add vertexo to the setC, and remove vertex and
all edges that are incident on it from the graph.

3. Repeat step 2 until the edge set is empty.

4. The final setC is a vertex cover of the original graph.

o

Chee-Keng Yap Basic Version April 7, 2011

§2. INTERVAL PROBLEMS Lecture V Page 8

(a) Show a graply, for which this greedy algorithm fails to give a minimum vexcover. HINT:
An example with 7 vertices exists.

(b) Letx = (x1,...,2,) where each; is associated with vertexe V' = {1,...,n}. Consider
the following set of inequalities:

* For each € V, introduce the inequality
0<z; <1.
» Foreach edgé, j) € E, introduce the inequality
r; +x; > 1

If a=(a1,...,a,) € R" satisfies these inequalities, we cala feasible solution If eacha; is
either0 or 1, we calla a0 — 1 feasible solution. Show a bijective correspondence betweeset
of vertex covers and the set 0f- 1 feasible solutions. 1€ is a vertex cover, lea“ denote the
correspondin® — 1 feasible solution.

(c) Supposex* = (x7,...,2) € R™ is a feasible solution that minimizes the functiffx) =

’rn

r1 + 29 + -+ + 10, i.€., fOr all feasiblex,

f(x*) < f(x).

Call x* anoptimum vector. Note thatx* is not necessarily & — 1 vector. Construct a graph
G = (V, E) wherex* is not a0 — 1 feasible solution. HINT: you do not need many vertices
(n < 4 suffices).

(d) Given an optimum vectat*, define setC’ C V as follows:i € C'iff z; > 0.5. Show that”

iS a vertex cover.

(e) Suppos&'* is a minimum vertex cover. Show tha®| < 2|C*|. HINT: what is the relation
betweenC| and f (x*)? Betweenf(x*) and|C*|? REMARKS: using Linear Programming, we
can find a optimum vectat* quite efficiently. The technique of converting an optimunctee
into an integer vector is a powerful approximation techeiqu &

END EXERCISES

§82. Interval Problems

An important class of greedy algorithms involves intervaigically, we think of an interval C R
as a time interval, representing some activity. For insgtatice half-open interval = [s, f) where
s < f might represent an activity that starts at timand finishes before tim¢. Here,[s, f) is the
set{t € R: s <t < f}. Two activitiesconflict if their time intervals are not disjoint. We use half-
open intervals instead of closed intervals so that the fitimsé of an activity can coincide with the start
time of another activity without causing a conflict. A set= {I1,...,I,} of intervals is said to be
compatibleif the intervals inS are pairwise disjoint (i.e., the activities Fare mutually conflict-free).

We begin with theactivities selection problem originally studied by Gavril. Imagine you have the
choice to do any number of the following fun activities in afeernoon:

beach 12: 00 — 4 : 00,
swimming 1:15—2:45,
tennis 1:30—3: 20,
movie 3:00—14:30,
movie 4:30—6:00.

Chee-Keng Yap Basic Version April 7, 2011

§2. INTERVAL PROBLEMS Lecture V Page 9

12: 00 1:00 2:00 3:00 4:00 5:00 6:00
— ® ® —®— ® ® o—
i Beach i i

~— Tennis———

~—Movie I—
'—Movie 2

Figure 2: Set of activities

The corresponding half-open time intervals are visualfyresented in Figur@. You are not al-
lowed to do two activities simultaneously. Assuming thatirygoal is to maximize your number of fun
activities, which activities should you choose? Formahyg activities selection problem is thigiven
a set

A={I,L,....1,}

of intervals, to compute a compatible subsefdhat is optimal Here optimality means “of maximum
cardinality”. E.g., in the above fun activities exampleapotimal solution would be to swim and to see
two movies. It would be suboptimal to go to the beach. Whatldrawgreedy algorithm for this problem
look like? Here is a generic version:

GENERIC GREEDY ACTIVITIES SELECTION:
Input: a setA of intervals
Output: S C A, a set of compatible intervals
> Initialization

Sort A according to some numerical criterign.

Let(I4,...,1I,) be the sorted sequence.
LetS = 0.
> Main Loop
Fori=1ton
If SU{I;} is compatible, add;, to S
Return(sS)

Thus,S is a partial solution that we are building up. At stagae consider4;, to eitheracceptor
reject it. Accepting means to make it part of current soluti®nNotice the difference and similarities
between this greedy solution and the one for joy rides.

But what greedy criteria should we use for sorting? Here angessuggestions:

e Sort/;’s in order of non-decreasing finish times. E.g., swim, tenbéach, movie 1, movie 2.
e Sort/;’s in order of non-decreasing start times. E.g., beach, st@mis, movie 1, movie 2.
e Sort/;’s in order of non-decreasing siZe — s;. E.g., movie 1, movie 2, swim, beach, tennis.

e Sort[;’s in order of non-decreasing conflict degree. The confligirde ofI; is the number of
1;'s which conflict with/;. E.g., movie 2, movie 1 or swim, beach or tennis.

Chee-Keng Yap Basic Version April 7, 2011

§2. INTERVAL PROBLEMS Lecture V Page 10

We now show that the first criterion (sorting by non-decnegdinish times) leads to an optimal
solution. In the Exercises, you will see that the other tlorteria do not guarantee optimality.

We use an inductive proof, reminiscent of the joy ride praet.S = (I3, I, . .., I}) be the solution
given by our greedy algorithm. I, = [s;, f;), we may assume

fi<fo<--<fi

Supposes’ = (I1,15,...,1)) is an optimal solution wherg = [s/, f/) and againf] < f5 < --- < f;.
By optimality of S’, we havek < ¢. CLAIM: We have the inequality; < f/forall: =1,...,k. We
leave this proof as an exercise.

Let us now derive a contradiction if the greedy solution is etimal: assumé < ¢ so thatl;

is defined. Then
k < f; (by CLAIM)

/ H ! ! H
< s, (sincely, I, have no conflict

and sol;, , is compatible with{1;, ..., I;}. This is a contradiction since the greedy algorithm halts
after choosing;, because there are no other compatible intervals.

What is the running time of this algorithm? In deciding ifental ; is compatible with the current
set S, it is enough to only look at the finish timg of the last accepted interval. This can be done in
O(1) time since this comparison takég1) andf can be maintained i®(1) time. Hence the algorithm
takes linear time after the initial sorting.

8. Extensions, variations. There are many possible variations and generalizationtseoéctivities
selection problem. Some of these problems are exploreciEtercises.

e Suppose your objective is not to maximize the number of/diets, but to maximize the total
amount of time spent in doing activities. In that case, farfon afternoon example, you should
go to the beach and see the second movie.

» Suppose we generalize the objective function by addingight€‘pleasure index”) to each ac-
tivity. Your goal now is to maximize the total weight of thetaiies in the compatible set.

< We can think of the activities to be selected as a uni-pmrescheduling problem. (You happen
to be the processor.) We can ask: what if you want to procesgmag activities as possible using
two processors? Does our original greedy approach extethe iobvious way? (Find the greedy
solution for processor 1, then find greedy solution for pssoe 2).

* Alternatively, suppose we ask: what is the minimum numlgrocessors that suffices to do all
the activities in the input set?

» Suppose that, in addition to the sébf activities, we have a sét of classrooms. We are given a
bipartite graph with verticed U C and edges i€ C A x C. Intuitively, (I, ¢) € E means that
activity I can be held in classroom We want to know whether there is an assignmend — C'
such that (L)f(I) = cimplies(I,c) € E and (2)f~!(c) is compatible. REMARK: scheduling
of classrooms in a school is more complicated in many moresw@ye additional twist is to do
weekly scheduling, not daily scheduling.

EXERCISES

Chee-Keng Yap Basic Version April 7, 2011

§3. HUFFMAN CODE Lecture V Page 11

Exercise 2.1: We gave four different greedy criteria for the activitieteséion problem.
(a) Show that the other three criteria are suboptimal.
(b) Actually, each of the four criteria has an inverted vemsin which we sort in non-increasing
order. Show that each of these inverted criteria are alsogtirbal. O

Exercise 2.2: Suppose the inpt = (14, ..., I,,) for the activities selection problem is already sorted,
by non-decreasing order of their start times, ig.,< sy < --- < s,. Give an algorithm to
compute a optimal solution i®(n) time. Show that your algorithm is correct. &

Exercise 2.3: Consider the activities selection problem with the follogzbptimality criterion: to max-
imize the lengthA| of a setA C S of activities. Define théength | A| of a compatible sef to be
the length of all the activities i¥, where the length of an activity = [s, f) is just|I| = f — s.
In caseS is not compatible, its length i&. Write L(S) for the maximum length of anyl C S.
LetAm» = {Ii, Ii+1, Ceey Ij} fori < j andLm = L(ALJ)
(a) Show by a counter-example that the following “dynamicgyamming principle” fails:

Li,j = Imax {Li,k + Lk-ﬁ-l,j) S k S] - 1} (12)

Would assuming that is sorted by its start or finish times help?

(b) Give anO(nlogn) algorithm for computingl; ,,. HINT: order the activities in the set
according to their finish times, say,

il < fa

Fori =1,...,n, let L; be the maximum length of a subset{df, ..., I;}. Use an incremental
algorithm to computd.,, Lo, ..., L,, in this order.

O

Exercise 2.4: Give a divide-and-conquer algorithm for the problem in jpweg exercise, to find the
maximum length feasible solution for a sgtof activities. (This approach is harder and less
efficient!) &

Exercise 2.5: Interval problems often arises from scheduling.
(a) There is & player game that lasts8 minutes. In this game, any number of players can be
swapped at any time. Suppose there are 8 friends what waplsytohis game. Give a schedule
for swapping players so that each of thiriends has the same amount of play time.
(b) Suppose there isaplayer game that lastsminutes. Again, any number of players can be
swapped at any time. There arefriends who wants to play this game. Prove that there is adway
a schedule to let each friend have the same amount of playtime
(c) Design an algorithm for (b) to schedule the swaps so thartyeone has the same amount of
play time.

O

END EXERCISES

83. Huffman Code

We begin with an informally stated problem:

Chee-Keng Yap Basic Version April 7, 2011

§3. HUFFMAN CODE Lecture V Page 12

(P) Given a string of characters (or letters or symbols) taken from an alphgbehoose
avariable length cod€’ for X so as to minimize the space to encode the stsing

Before making this problem precise, it is helpful to know tduatext of such a problem. A computer
file may be regarded as a stringso problem (P) can be called tfiee compression problem Often,
the characters in computer files are extended ASCII chagsacléhis means the alphabEthas size
28 = 256, and there is a standard way to represent each charactes-bjt &inary string, represented
by a functionCs. : ¥ — {0, 1}8. Thus ASCII code dixed-length binary codé.e., |Cys.(2)| = 8
for all z € X, So the ASCII encoding of a file of: characters is a binary string of lengthn. Can
we do better? The idea of Huffman coding is to usegable length codein order to take advantage
of the relative frequency of different characters. Foranse, in typical English texts, the letteks *
and ‘" are most frequent and it is a good idea to use shorter lerafesfor them. On the other hand,
infrequent letters likeq’ or * 2’ could have longer length codes. An example of a variablgtleicode
is Morse code (see Notes at the end of this section). To setadd#ional properties are needed in
variable-length codes, let us give some definitions:

A (binary) codefor ¥ is an injective function
C:¥—{0,1}".

A string of the formC'(x) (x € X) is called acode word The strings = z129 - -z, € ¥* is then
encoded as

C(s) :=C(z1)C(x2) - C(zxy,) € {0,1}".
This raises the problem of decodidy s), i.e., recoverings from C(s). For a general’’ ands, one
cannot expect unique decoding. One solution is to introduoew symbol$’ and use it to separate
eachC(x;). If we insist on using binary alphabet for the code, this ésras to convert, say)“to ‘ 00’,
‘1’to ‘01’ and ‘$’ to * 11". This doubles the number of bits, and seems to be wasteful.

19. Prefix-free codes. A better solution to unique decoding is to insist tikabe prefix-free. This
means thatif, b € ¥ anda # b, thenC/(a) is not a prefix ofC'(b). Itis not hard to see that the decoding
problem has a unique solution for prefix-free codes. Witkeslé preprocessing (basically to construct
the “code tree” foi, defined next) decoding can be done very simply in an on-hskibn. We leave
this for an exercise.

We represent a prefix-free codeby a binary treel~ with n = || leaves. Each leaf iff- is
labeled by a charactérc X such that the path from the root&as represented bg'(b) in the natural
way: starting from the root, we use successive bit€'{id) to decide to make a left branch or right
branch from the current node @%.. We call T a code treefor C. For simplicity, we will henceforth
assume that all code trees are full binary treBgjure3 shows two such trees representing prefix codes
for the alphabeE = {a,b, ¢,d}. The first code, for instance, correspond€it@) = 00, C(b) = 010,
C(c) =011 andC(d) = 1.

Returning to the informal problem (P), we can now interphnét problem as the construction of the
best prefix-free cod€’ for s, i.e., the code that minimizes the lengifi(s)| of C(s). It is easily seen
that the only statistics important abouts the number, denotefi (x), of occurrences of the character
x in s. In general, call a function of the form

f:¥—N (13)

a frequency function. So we now regard the input data to our problem to be a frequiemztion
f = fs rather than the string. Relative tof, thecostof C' is defined to be

COST(f,C) =" |C(a)|- f(a). (14)

acx

Chee-Keng Yap Basic Version April 7, 2011

§3. HUFFMAN CODE Lecture V Page 13

COST=11+8+3=22 COST=11+6+3=20

Figure 3: Two prefix-free codes and their code trees: assi(me= 5, f(b) = 2, f(c) = 1, f(d) = 3.

ClearlyCOST(fs, C) is the length ofC(s). Finally, thecostof f is defined by minimization over all
choices ofC:
COST(f) := mcin COST(f,C)

over all prefix-free code€' on the alphabet. A codeC is optimal for f if COST(f,C) attains this
minimum. It is easy to see that an optimal code tree must fodl &inary tree (i.e., non-leaves must
have two children).

For the codes in Figurg, assuming the frequencies of the charactetsc, d are5, 2,1, 3 (respec-
tively), the cost of the firstcode is- 2+ 2 -3+ 1 -3 + 3 - 1 = 22. The second code is better, with cost
20.

We now precisely state the informal problem (P) asHiuéfman coding problem:

Given a frequency functiorf : ¥ — N, find an optimal prefix-free cod€
for f.

Relative to a frequency functiohon X, we associate aeight W (u) with each node: of the code
treeT: the weight of a leaf is just the frequengyx) of the character at that leaf, and the weight of
an internal node is the sum of the weights of its children. Lgt: denote such aeighted code tree
In general, a weighted code tree is just a code tree togetitlermeights on each node satisfying the
property that the weight of an internal node is the sum of thayhts of its children. For example, see
Figure3 where the weight of each node is written next to it. TWedght of 7 ¢ is the weight of its root,
and itscostCOST (T,c) defined as the sum of the weights of alliitsernalnodes. In Figur&(a), the
internal nodes have weights8, 11 and so theCOST (Ty,c) = 3+ 8+ 11 = 22. In general, the reader
may verify that

COST(f,C)=COST(Ty,c). (15)

We need thenerge operation on code trees: Tf; is a code tree on the alphabet (: = 1,2) and
31 N Xy is empty, then we can merge them into a code fremn the alphabet; U X, by introducing
a new node as the root @fand77, 75 as the two children of the root. We also writg + 15 for T'. If
Ty, T, are weighted code trees, the reslilis also a weighted code tree.

We now present a greedy algorithm for the Huffman coding b

Chee-Keng Yap Basic Version April 7, 2011

§3. HUFFMAN CODE Lecture V Page 14

HUFFMAN CODE ALGORITHM:

Input: Frequency functiorf : ¥ — N.

Output: Optimal code tre@™ for f.

1. LetS be asetof weighted code trees. Initialfyis the set of, = || trivial trees,
each tree having only one node representing a single cleainét.

2. while S has more than one tree,
2.1. Choosd’, T’ € S with the minimum and the next-to-minimum weights, respeai.
2.2. Merg€l', T’ and insert the resulf + 7" into S.
2.3. Deletel’, T’ from S.

3. NowS has only one tre&™. Output?™.

A Huffman tree is defined as a weighted code tree thatild be output by this algorithm. We
say “could” because we regard the Huffman code algorithnoasleterministic — when two trees have
the same weight, the algorithm does not distinguish betvileem in its choices. Let us illustrate the
algorithm with perhaps the most famolisletter string in computinghel | o wor | d! . The alphabet
Y for this string and its frequency function may be represgbiethe following two arrays:

_5
o

letter hle|l |o
frequency |1 1|3]2

[

w
1

Note that the exclamation marK @nd blank space |) are counted as letters in the alphabetThe
final Huffman tree is shown in Figure The number shown inside a nodef the tree is theveight of
the node. This is just sum of the frequencies of the leavdsastibtree at. Each leaf of the Huffman
tree is labeled with a letter from.

Figure 4: Huffman Tree forliel | o wor | d! ”: weights are displayed inside each node, but ranks are
outside the nodes.

To trace the execution of our algorithm, in Figureve indicate the ordef)(1,2, ..., 16) in which
the nodes were extracted from the priority queue. For igtatine leavek ande are the first two to be
extracted in the queue. The root is the lasit) to be extracted from the queue.

110. Implementation and complexity. The input for the Huffman algorithm may be implemented as
an arrayf[1..n] where f[i] is the frequency of théth letter andX| = n. The output is a binary tree
whose leaves are labeled franto n. This algorithm can be implemented using a priority queu@on
setS of binary tree nodes. Recall (8l111.2) that a priority queusorts two operations, (a) inserting

Chee-Keng Yap Basic Version April 7, 2011

§3. HUFFMAN CODE Lecture V Page 15

a keyed item and (b) deleting the item with smallest key. Teguency of the code tree serves as its
key. Any balanced binary tree scheme (such as AVL trees itukedV) will give an implementation
in which each queue operation takeflog ») time. Hence the overall algorithm takégn log n).

f11. Correctness. We show that the produced codé has minimum cost. This depends on the
following simple lemma. Let us say that a pair of node&inis adeepest pairif they are siblings and
their depth is the depth of the tr&e. In a full binary tree, there is always a deepest pair.

LeEMMmA 3 (Deepest Pair Property)or any frequency functiorf, there exists a code treg that is
optimal for f, with the further property that some least frequent chagacand some next-to-least
frequent character, form a deepest pair.

Proof. Supposeé, ¢ are two characters at depth¥b), D(c) (respectively) in a weighted code tree
T. If we exchange the weights of these two nodes to get a newtoeel€’ where

fO)D(b) + f(c)D(c) = f(b)D(c) = f(c)D(b)
= [f(0) = F(I[D(b) = D(c)]

wheref is the frequency function. I has the least frequency aifit{ ¢) is the depth of the tre® then
clearly

COST(T) — COST(T")

COST(T) — COST(T") > 0.

That is, the cost of the tree can only decrease when we mowstftfequent characters to the deepest
leaf. Hence ifc, ¢’ are the two characters labeling a deepest pair and dnare the two least frequent
characters, then by a similar argument, we may exchangateésb < o’ andc < ¢’ without increas-
ing the cost of the code. If the tree is optimal, then this exde proves that there is a deepest pair
formed by two least frequent characters. Q.E.D.

We are ready to prove the correctness of Huffman’s algorit®uppose by induction hypothesis
that our algorithm produces an optimal code whenever theablgt sizdX| is less tham. The basis
case,n = 1, is trivial. Now supposéX| = n > 1. After the first step of the algorithm in which we
merge the two least frequent charactiers, we can regard the algorithm as constructing a code for a
modified alphabeE’ in which b, b" are replaced by a new characigt’] with modified frequency/’
such thatf’([bt']) = f(b)+ f(¥'), andf’(x) = f(x) otherwise. By induction hypothesis, the algorithm
produces the optimal code’ for f’:

COST(f") = COST(f',C"). (16)
This codeC” is related to a suitable codefor X in the obvious way and satisfies
COST(f,C)=COST(f',C")+ f(b) + f(V). a7)

By our deepest pair lemma, and using the fact that the COS3umaover the weights of internal nodes,
we conclude that
COST(f) =COST(f")+ f(b)+ f(b). (18)

[More explicitly, this equation says that if is the optimal weighted code tree fgrand 7' has the
deepest pair property, then by removing the deepest pdirweightsf(b) and f(b’), we get an op-
timal weighted code tree fof’.] From equations16), (17) and (8), we concludeCOST(f) =
COST(f,C),i.e, Cisoptimal.m

Chee-Keng Yap Basic Version April 7, 2011

§3. HUFFMAN CODE Lecture V Page 16

112. Top-down Representation of the Code Tree. When we transmit the Huffman cod&(s) for a
string s, we ought also to transmit the corresponding cod&Ve now address this issue of encodirig

Assume our alphabét is a subset 0{0, 1}, ands € X*. It is assumed that the receiver knotvs
but notX. For example, in a realistic situation= 8 andX is just a subset of the ASCII set.

LetC : ¥ — {0,1}" be an optimal prefix-free code fer If T = T¢ is the code tree fof’, then
we know that it is a full binary tree with = |X| leaves. Thug" has2n — 1 internal nodes. We can
represent’ as an arraylr[0..2n — 2] where the nodes afe 1, . . ., 2n — 2 satisfying:

e The rootis nod®,

* If nodei is a leaf, themd[i] = —1. Alternatively, A [i] can store a character from(provided
the character is distinguishable from the natural numbersur examples, we use this approach.

* If nodei is an internal node, the+ 1 will be the left-child ofi and Ay [i] gives the right-child of
1.

For instance, the tree in FiguBéa) is represented by the array of Figbre

0 1 2 3 4 5 6

A: 6 3 ‘a’ 5 |0 | ¢ |

Figure 5: ArrayA representing Figurg(a)

For instance, in Figurg, Ar[0] = 6 tells us the the right child of the root is no@eThere is some
leeway for choosing the valuér [i] as the right-child of any non-leaf nodeSupposed[i] = j. Then
we sayj is the “natural choice” foi if the subarrayAr[i + 1..5 — 1] represents the subtree rooted at
Arl[i + 1]. In Figure5, we use this natural choice. For instance, the subatrg..5) represents the
left subtree of the roadl.

Besides the array representatiorifgfa key issue is how to represent the shap& ebmpactly as a
binary string for the purposes of transmission.

The initial idea is simple: let us prescribe a systematic teatyaversel’. Starting from the root, we
always go down the left child first. Each edge is traversedawinitially downward and later upward.
Then if we “spit” out a0 for going down an edge and “spit” outlafor going up an edge, we would
have faithfully output a description of the shapeloby the time we return to the root for the second
time. For instance, traversing the first tree in Fig8ingould spit out the sequence

0010,0101, 1101 (19)

(where commas are only decorative to help parsing). Thisreehuseg bits per edge. Since there are

2n — 2 edges, the representation Has— 4 bits. We emphasizehis representation depends on knowing

thatT is a full binary tree Where have we exploited tt
fact?

To improve this representation, observe that a contiguegeence of ones can be replaced by a
single1 since we know where to stop when going upward from a leaf (o at the first node whose
right child has not been visited). This also takes advantdgkee fact that we have a full binary tree.
Previously we usedn — 2 ones. With this improvement, we only useones (corresponding to the
leaves). The representation now has diy— 2 bits. Then (9) is now represented by

0010,0101, 01. (20)

Chee-Keng Yap Basic Version April 7, 2011

§3. HUFFMAN CODE Lecture V Page 17

Finally, we note that eachis immediately followed by & (since thel always leads us to a node whose
right child has not been visited, and we must immediately gwrdto that child). The only exception
to this rule is the final when we return to the root; this finalis not followed by a). We propose to
replace all such0 sequences by a plain Since there are ones (corresponding to theleaves), we How abowtl — 1?
would have eliminated — 1 zeros in this way. This gives us the final representation @sith- 1 bits.
The scheme0) is now shortened to:
0010, 111. (21)

The final scheme(1) will be known as theeompressed bit representationvy of a full binary treeT.
Assumel” has more than one node, then always begins with & and ends with &, and the shortest
such string i011. If 7" has only one node, it is natural to represent inas= 1. Some additional
simple properties are summarized as follows:

LEMMA 4. LetT be a full binary tre€l’ withn. > 1 leaves.

(i) |ar| = 2n — 1 withn — 1 zeros andh ones.

(ii) The number of zeros is at least the number of ones in aoyerprefix ot .

(iii) The setS C {0, 1}" of all such compressed bit representatien forms a prefix-free set.
(iv) There is a simple algorithm taking binary string inputkich checks membershipéh

We leave the proof as an Exercise. Another way to describpriéix free property (iii) of thevr
representation is that it is “self-limiting”: viz., if we law the beginning of the representation, we can
tell when we reach the end of the representation. This ha®Hliog/ing consequence:

THEOREMS5. Suppos& : ¥ — {0,1}" is a prefix-free code whose code tfEg is a full binary tree
onn leaves. There is a protocol to transmit a binary string of length

Cn—1)+tn=n(t+2)—1

to a receiver so that the cod& can be completely recovered from this string. The receiea&schot
knowC or X but knows > 1 and the fact thak C {0, 1}".

Proof. The stringsc has two parts: the first part is the compressed bit represemta;,,. The
second part is a list of the elementsdn The elements in this list arebit binary strings, and they
appear in their order as labels of théeaves ofl=. We havear,, | = 2n — 1, and the listing o uses
nt bits. This gives the claimed boundoft + 2) — 1.

By the pre-fix free property, the receiver can detect the dnal;0 while processing. At the
point, the receiver also knows Since the receiver knows it can also parse each symbolXfin the
rest ofsc. Q.E.D.

Remarks: The publication of the Huffman algorithm in 1952 by D. A. Hufan was considered
a major achievement. This algorithm is clearly useful fompoessing binary files. See “Conditions
for optimality of the Huffman Algorithm”, D.S. ParkeS(AM J.Comp.9:3(1980)470-48% rratum
27:1(1998)317), for a variant notion of cost of a Huffmaretamd characterizations of the cost functions
for which the Huffman algorithm remains valid.

113. Notes on Morse Code. In the Morsé code, letters are represented by a sequence of dots andstashe
a=-—b=— - ..andz=— — .. The code is also meant to be sounded: dot is pronoun&d(or

‘di-" when non-terminal), dash is pronouncethh’ (or ‘ da-’ when non-terminal). So the famous distress signal
“S.0.S”isdi - di - di - da-da-da-di-di -di t. Thus @’ is di — dah, ‘2’ is da — da — di — dit. The code
does not use capital or small letters. Here is the full alphab

1 samuel Finley Breese Morse (1791-1872) was Professor dfitésature of the Arts of Design in the University of the City
of New York (now New York University) 1832-72. It was in theiversity building on Washington Square where he completed
his experiments on the telegraph.

Chee-Keng Yap Basic Version April 7, 2011

§3. HUFFMAN CODE Lecture V Page 18

Letter [Code [[Letter [Code I

Fullstop() | - — - — - — Comma() | — — -+ — —
Query(?) | - - — — - Slash (/) — =
BT (pause) — = AR (end message) - — - — -
SK (end contact)| - - - — - —

PORNO<SKSCOVOOZTXRTOMO P
|
|
|
ONUWRNX<L—-HUDUZrS“ITO®
|

Note that Morse code assigns a dotet@nd a dash td , the two most frequent English letters. These two
assignments dash any hope for a prefix-free code. So how cgawdsend or decode messages in Morse code?
Spaces! Since spaces are not part of the Morse alphabethakeyan informal status as an explicit character (so
Morse code is not strictly a binary code). There are 3 kindspafces: space betweéit’'s and dah’s within a
letter, space between letters, and space between wordss Bssume somit space Then the above three types
of spaces are worth 1, 3 and 7 units, respectively. Thess cait also be interpreted as “unit time” when the code
is sounded. Hence we simply sagit without prejudice. Next, the system of dots and dashes &anked brought
into this system. We say that spaces are just “empty unitsilewlit’s anddah’s are “filled units”. dit is one filled
unit, anddah is 3 filled units. Of course, this brings in the question: whgr@l 7 instead of 2 and 4 in the above?
Today, Morse code is still required of HAM radio operators @wuseful in emergencies.

EXERCISES

Exercise 3.1: Give a Huffman code for the stringhel l o! this is nmy little world!”

O

Exercise 3.2: What is the length of the Huffman code for the string: “pl ease conpress ne”.
Show your hand computation. &

Exercise 3.3: Consider the following letter frequencies:

a=5b=1c=3,d=3,e=7,f=0,9g=2,h=1,i=5,7=0,k=1,1=2,m =0,
n=50=3p=0,g=0,r=6,s=3,t=4u=1L,v=0w=0,z=0,y=1,z=1.

Please determine the cost of the optimal tree. NOTE: you miagre letters with the zero fre-
qguency. &

Exercise 3.4: Give an example of a prefix-free codé: > — {0,1}" anda frequency functiory :
Y — N with the property that (iCOST(C, f) is optimal, but (ii)C could not have arisen from
the Huffman algorithm. HINT: you can chooRe| = 4. O

Chee-Keng Yap Basic Version April 7, 2011

§3. HUFFMAN CODE Lecture V Page 19

Exercise 3.5: True or False? I andT’ are two optimal prefix-free code for the frequency function
f ¥ — N, thenT andT’ are isomorphic as unordered trees. Prove or show countergaa
NOTE: a binary tree is an ordered tree because the two chilofra node are ordered. &

Exercise 3.6: In the text, we prove that for any frequency functipnthere is an optimal code tree in
which there is a deepest pair of leaves whose frequencigbaiteast frequent and the next-to-
least frequent. Consider this stronger statemiéfit:is any optimal code tree faf, there must be
a deepest pair whose frequencies are least frequent andoidsast frequentProve it or show a
counter example. &

Exercise 3.7:Let C : ¥ — {0,1}" be any prefix-free code whose code tieis a full-binary tree.
Prove that there exists a frequency functjonX — N such thatC is optimal. &

Exercise 3.8: Joe Smart suggested that we can slightly improve the corsguidsit representation of
full binary trees om leaves as follows: since the first bit is alwdyand the last bit is always,
we can use onlgn — 3 bits instead o2n — 1. What are some issues that might arise with this
improvement? O

Exercise 3.9: The text gave a method to represent any full binary ffeen n leaves using a binary
string ar with 2n — 1 bits. Clearly, not every binary string of lengdm — 1 represents a full
binary tree. For instance, the first and last bits must a@d 1, respectively. Give a necessary
and sufficient condition for a binary string to be a valid esg@ntation.

&

Exercise 3.10: For any binary full tre€l’, we have given two representations: the atdgyand the bit
stringar. Give detailed algorithms for the following conversion plems:
(a) To construct the stringr from the arrayAr.
(b) To construct the arraytr from the stringar.

Exercise 3.11:Let T be a full binary tree om leaves. Give an algorithm to convert its compressed bit
representation,[1..2n — 1] to adn — 4 array B[1..4n — 4] representing the traversal Bt

&

Exercise 3.12: Suppose we want to represent an arbitrary binary tree, retssarily full. HINT: there
is a bijection between arbitrary binary trees and full bynees. Exploit our compressed bit-
representation of full binary trees. &

Exercise 3.13:(a) Prove 15).
(b) Itis important to note that we defin€tD.ST (T ¢) to be the sum of (u) whereu range over
theinternalnodes ofl; . That means that ifS| = 1 (or Ty, has only one node which is also
the root) therCOST (T) = 0. Why does Huffman code theory break down at this point?
(c) Suppose we (accidentally) defin€d.ST (T) to be the sum off (v) whereu range over
theall nodes ofl’; . Where in your proofin (a) would the argument fail? &

Chee-Keng Yap Basic Version April 7, 2011

§3. HUFFMAN CODE Lecture V Page 20

Exercise 3.14:Below is President Lincoln’s address at Gettysburg, Pdrasia on November 19,
1863.
(a) Give the Huffman code for the string comprising the first two sentences of the address.
Also state the length of the Huffman code féyrand the percentage of compression so obtained
(assume that the original string uses 7 bits per charadfey caps and small letters as distinct
letters, and introduce symbols for space and punctuatioksn8ut ignore the newline charac-
ters.
(b) The previous part was meant to be done by hand. Now writegram in your favorite pro-
gramming language to compute the Huffman code for the e@fittysburg address. What is the
compression obtained?

Four score and seven years ago our fathers brought forth on this continent a new nation
conceived in liberty and dedicated to the proposition that all nmen are created equal
Now we are engaged in a great civil war, testing whether that nation or any nation so
concei ved and so dedicated can | ong endure. W are net on a great battlefield of that
war. We have conme to dedicate a portion of that field as a final resting-place for those
who here gave their lives that that nation mght live. It is altogether fitting and
proper that we should do this. But in a |larger sense, we cannot dedi cate, we cannot
consecrate, we cannot hallow this ground. The brave nen, living and dead who struggl ed
here have consecrated it far above our poor power to add or detract. The world will
little note nor |Iong renmenber what we say here, but it can never forget what they did
here. It is for us the living rather to be dedicated here to the unfinished work which
t hey who fought here have thus far so nobly advanced. It is rather for us to be here
dedi cated to the great task renmaining before us -- that fromthese honored dead we take
increased devotion to that cause for which they gave the last full measure of devotion
-- that we here highly resolve that these dead shall not have died in vain, that this
nati on under God shall have a new birth of freedom and that governnment of the people,
by the people, for the people shall not perish fromthe earth

O

Exercise 3.15:Let (fo, f1,..., fn) be the frequencies of + 1 symbols (assuming-| = n + 1).
Consider the Huffman code in which the symbol with frequefiag represented by thi¢gh code
word in the following sequence

1,01,001,0001,...,00---01,00---001,00 - - -000.
—_— —) —

n—1 n n

(a) Show that a sufficient condition for optimality of thisdmis

fo =2 fH+fotfat+-+ fa,
fi = fo+fa+F fas
for = fat+o+ fa,

fn—2 2 fn—l""fn-

(b) Suppose the frequencies are distinct. Give a set of rifiand necessary conditions.

Exercise 3.16: Suppose you are given the frequencfes sorted order. Show that you can construct
the Huffman tree in linear time. &

Exercise 3.17:(Representation of Binary Trees) In the text, we showed ahfail binary tree omn
leaves can be represented usitng- 1 bits. Supposé’ is an arbitrary binary tree, not necessarily

Chee-Keng Yap Basic Version April 7, 2011

§3. HUFFMAN CODE Lecture V Page 21

full. With how many bits can you represefi? HINT: by extendingl” into a full binary treer”,
then we could use the previous encodingidn &

Exercise 3.18: Generalize ta3-ary Huffman codesC : ¥ — {0, 1,2}*, represented by the corre-
sponding-ary code trees (where each node has degree at3)iost
(a) Show that in an optimal-ary code tree, any node of degree 2 must have leaves as both it
children.
(b) Show that there are either no degree 2 nodel&(ifs odd) or one degree 2 node (E| is
even).
(c) Show that when there is one degree 2 node, then the defithabfildren must be the height
of the tree.
(d) Give an algorithm for constructing an optindaary code tree and prove its correctness<)

Exercise 3.19: Further generalize th&-ary Huffman tree construction to arbitrakyary codes fok >

4. &

Exercise 3.20: Suppose that the cost of a binary code wari$ z + 20 wherez (resp.o) is the number
of zeros (resp. ones) im. Call this theskew cost So ones are twice as expensive as zeros (this
cost model might be realistic if a code word is converted amgzquence of dots and dashes as in
Morse code). We extend this definition to thieew costof a codeC' or of a code tree. A code
or code tree iskew Huffman if it is optimum with respect to this skew cost. For exampksg s
Figure6 for a skew Huffman tree for alphabgt, b, ¢} and f(a) = 3, f(b) = 1 andf(c) = 6.

Figure 6: A skew Huffman tree with skew cost of 21.

(a) Argue that in some sense, there is no greedy solutiomthkeés its greedy decisions based on
a linear ordering of the frequencies.

(b) Consider the special case where all letters of the akgtads equal frequencies. Describe the
shape of such code trees. For anys the skew Huffman tree unique?

(c) Give an algorithm for the special case considered inBe)sure to argue its correctness and
analyze its complexity. HINT: use an “incremental algamthin which you extend the solution
for n letters to one fon + 1 letters. &

Exercise 3.21:(Golin-Rote) Further generalize the problem in the presiexercise. FiXY) < a < 3
and let the cost of a code wordbe« - z 4+ 3 - 0. Supposey/(is a rational number. Show a
dynamic programming method that take»°*2) time. NOTE: The best result currently known
gets rid of the 42" in the exponent, at the cost of two non-trivial ideas. &

Exercise 3.22:(Open) Give a non-trivial algorithm for the problem in thepious exercise wheke/ 3
is not rational. An algorithm is “trivial” here if it essematly checks all binary trees with leaves.

&

Chee-Keng Yap Basic Version April 7, 2011

84. DyNAMIC HUFFMAN CODE Lecture V Page 22

Exercise 3.23: The range of the frequency functighwas assumed to be natural numbers. If the range
is arbitrary integers, is the Huffman theory still meanin@fls there fix? What if the range is the
set of non-negative real numbers? O

Exercise 3.24: (Elias) Consider the following binary encoding scheme Far infinite alphabelN (the
natural numbers): an integerc N is represented by a prefix string @ n | 0’s followed by the
binary representation of. This required + 2 |lgn] bits.

(a) Show that this is a prefix-free code.

(b) Now improve the above code as follows: replacing the pifi lg n| 0's and the firstl by a
representation oflg n | the same scheme as (a). Now we use dnly|lgn]| + 2 |1g(1 + 1gn) |
bits to encode:. Again show that this is a prefix-free code. &

Exercise 3.25: (Shift Key in Huffman Code) We want to encode small as well &sital letters in our
alphabet. Thus ‘a’ and ‘A’ are to be distinguished. Theretax@methods to do this. (I) View the
small and capital letters as distinct symbols. (11) Introea special “shift” symbol, and each letter
is assumed to be small unless it is preceded by a shift syrimbawhich case the following letter
is capitalized. As input string for this problem, use thet ithis question. Punctuation marks
are part of this string, but there is only one SPACE charattewlines and tabs are regarded as
instances of SPACE. Two or more consecutive SPACE chasaaterreplace by a single SPACE.
(a) What is the length of the Huffman code for our input strirging method (1). Note that the
input string begins with “We want to en...” and ends withrigle SPACE.".

(b) Same as part (a) but using method (II).

(c) Discuss the pros and cons of (I) and (II).

(d) There are clearly many generalizations of shift keysesn in modern computer keyboards.
The general problem arises when our letters or charactera@tonger indivisible units, but
exhibit structure (as in Chinese characters). Give a géfegraulation of such extensions. <

END EXERCISES

84. Dynamic Huffman Code

Here is the typical sequence of steps for compressing ansitriiting a strings using the Huffman
code algorithm:

(i) First make a pass over the stringo compute its frequency function.
(i) Next compute a Huffman code trég: corresponding to some codé
(iii)y UsingT¢, compute the compressed stri@igs).

(iv) Finally, transmitthe tre@. (Theorenb), together with the compressed strifigs), to the receiver.

The receiver receivéi- andC(s), and hence can recover the stringsince the sender must process
the strings in two passes (steps (i) and (iii)), the original Huffmaretadgorithm is sometimes called
the “2-pass Huffman encoding algorithm”. There are two deficies with this 2-pass process: (a)
Multiple passes over the input strisggnakes the algorithm unsuitable for realtime data transoriss
Note that ifs is a large file, this require extra buffer space. (b) The Haffirnode tree must be explicitly

Chee-Keng Yap Basic Version April 7, 2011

84. DyNAMIC HUFFMAN CODE Lecture V Page 23

transmitted before the decoding can begin. We need someanerycbdel . This calls for a separate
algorithm to handl€ ¢ in the encoding and decoding process.

An approach called “Dynamic Huffman coding” (or adaptiveftrnan coding) overcomes these
problems: there is no need to explicitly transmit the code,tand it passes over the strinngnly once.
In fact, it does not even have to pass over the entire strirg ence, but can transmit as much of the
string as has been read! This property is important for trattisg continuous stream of data that has no
apparent end (e.g., ticker tape, satellite signals). Twawknalgorithms for dynamic Huffman coding
[6] are theFGK Algorithm (Faller 1973, Gallager 1978, Knuth 1985) and tteenbda Algorithm
(Vitter 1987). The dynamic Huffman code algorithm can bedufee data compression: for example,
in the Unix utility conpr ess/ unconpr ess. However, this particular utility has been replaced by
better compression schemes.

114. Sibling Property. The key idea here is the “sibling property” of Gallagher. Ldbe a weighted
code tree withk > 0 internal nodes. S@' hask + 1 leaves ork + 1 nodes in all. We sa§" has the
sibling property if its nodes can beanked from 0 to 2k satisfying:

(S1) (Weights are non-decreasing with rank)lf is the weight of node with rank thenw; _; < w;
fori=1,...,2k.

(S2) (Siblings have consecutive ranks) The nodes with radl)kand2j + 1 are siblings (forj =
0,...,k—1).

For example, the weighted code tree in Figdrkas been given the rankingsl, 2,...,16. We
check that this ranking satisfies the sibling property.

Note that node with rankk is necessarily the root, and it has no siblings. In general(l) denote
the rank of node:. If the weights of nodes are all distinct, then the rafk) is uniquely determined by
Property (S1).

LEMMA 6. LetT be weighted code tree. Thé&his Huffman iff it has the sibling property.

Proof. If T'is Huffman then we can rank the nodes in the order that two :iademerged, and this
ordering implies the sibling property. Conversely, thdisgpproperty ofI” determines an obvious order
for merging pairs of nodes to form a Huffman tree. Q.E.D.

Example: the code tree in Figudels Huffman. Since it is Huffman, there must be some ranking
that satisfies the sibling property. Indeed, such a rankasgaiready been indicated.

115. Compact Representation of Huffman Tree. We provide a compact representation Huffman
trees using arrays; moreover, the sibling property is tiyaatnessed by this representation so that we
can easily confirm Huffman-ness. LEtbe a Huffman tree wittk + 1 > 1 leaves. Each of itk + 1
nodes may be identified by its rarike., a number fron® to 2k. Hence nodé has ranki. We use two
arrays

Wt[0..2k], Lc[0..2K]

of length2k + 1 whereW¢[i] is theweightof nodei, andLc[:] is theleft child of nodei. So Lc[i] + 1 is
the right child of node. In case node is a leaf, we let.c[i] = —1. Alternative, we can leLc|[i] store

Chee-Keng Yap Basic Version April 7, 2011

84. DyNAMIC HUFFMAN CODE Lecture V Page 24

some representation of a letter of the alphabée.g., ASCII code). In this case, we assume that it is
possible to distinguish these two uses of the afray

For instance, the Huffman tree in Figutavill be represented by the arrays in Talile

Rank||0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|
Lc hjejlU|lw|r|d|!|o|0]|2| 4| 6 14 8 | 10| 12| 15
Wit 1/1(1(1(1|1(1|2|2|2|] 2|3 |3|4|5]|7]12

Table 1: Compact representation of Huffman tree in Figure

NOTE: The arrayLc[0..2k] can be viewed alottom-up array representation of a full binary tree;
it should be contrasted to the top-down representatiory atrawhich we introduced in 32 . In the
top-down representation, the rootds-[0], but with the bottom-up approach, the roofig/2k].

16. The Restoration Problem. The key problem of dynamic Huffman tree is how to restore
Huffman-ness under a particular kind of perturbation:ffebe Huffman and suppose the weight of
a leafu is incremented by. So weights of all the nodes along the path froro the root are similarly
incremented. The result is a weighted code fféebut it may no longer be Huffmarnformally, our
problem is to restore Huffman-ness in such a ffée

u — parent(u)
----- -

Figure 7: Restoring Huffmanness after incrementing thguescy of letter

Let us first give some intuition of what has to be done, usingexample othe//o wor ¢d! .
Begin with the Huffman tree after having transmitted thefigree/. Assume that, somehow, we
managed to construct a Huffman tree for this string as shaviigure7(a). The letterd,, ¢ and/ are
stored in noded, 3 and1 (respectively). Note that there is a leaf with weightout we ignore this
for now. Each letter has frequency (=weight)lofThe next transmitted letter & and if we simply
increase the frequency of nodgwhich representg) to 2 = 1 + 1, we would violate the ranking
property (S1) of §4. This is because the weight of a node of rankould now be greater than the

Chee-Keng Yap Basic Version April 7, 2011

84. DyNAMIC HUFFMAN CODE Lecture V Page 25

weights of nodes with greater rank §nd4). The key idea is to firsswap nodel with node4. This

is shown in Figurer(b). Now, the letter is represented by nodg and incrementing its weight by

1 is no longer a problem. The result is seen in Figli@. We must next increment the weight of
the parent of nodd, namely nodes. So the focus moves to nodeas indicated by Figuré(d). We
can simply increment the weight of nod€in general we may have to do a swap first). The result is
Figure7(e). The process stops since we have reached the root oéthe tr

Consider the following algorithm for restoring Huffmanssan7'. For each node in 7', let R(v)
denote its rank in the original tré@. If we use the convention thatis identified with an integer frort
to 2k, thenR(v) = v. Letu be the current node. Initially, is the leaf whose weight was incremented.
We use the following iterative process:

RESTORE(u)
> u IS a node whose weight is to be incremented
While (u is not the root) do

1. Find the node with the largest rani(v)
subject to the constraiftt[v] = Wit[u].
2 If (v # u)
3. Swap(u,v). < This swaps the subtrees rootediaandv.
4, Witlu]++. < Increment the weight af
5 u — parent(u). < Resel
6. Wit[u]++. < Now,u is the root

We need to explain two details in theeERTOREroutine.
(A) In line 5, u to reset toparent(u). The parent information can be explicitly represented by ye
another array. But using thiec array, we can compute the parentofising the following macro:

paren{u)
0—2|u/2|
for p « uto 2k
if (Lclp] = ¢), Return(p).

(B) The swapping in line 3 needs to be explained: conceptuallappingu andv means the subtree
rooted atu and the subtree rooted atexchange places. This can be confusing to explain since our
encoding identifies the nodesandv with their rank. So for the moment, imagine thais a node in a
tree where nodes have parent, left child and right child feos etc. Suppos€ andv’ were the parents
(respectively) ofu andv before the swap. Then after the swap(resp.,u’) becomes the parent af
(resp.,v). Coming back to our representation using fhearray, we only have exchange the values in
the array entried.c[u] and L¢[v]:

SWAP(u, v)
tmp «— Lcful; Le[u] «— Le[v]; Le[v] < tmp

We do not even have to exchanyét[u] and Wt[v] since these have the same values according to
method of finding in line 1. However, the rank af is greater or equal to rank af (i.e.,v > u). We

Chee-Keng Yap Basic Version April 7, 2011

84. DyNAMIC HUFFMAN CODE Lecture V Page 26

only do a swap iy > w (line 2). Thus the rank of the current nodés strictly increased by such swaps.
After swappingu andw, their siblings will change (recall that rart§ and rank2; + 1 nodes must be
siblings).

The reader may verify that the informal example of Figuis really an operation of the BSTORE
routine.

But let us walk through an example of the operations 86RORE this time seeing its transfor-
mation on theLc, Wt arrays. Suppose we have just completely processed our fastiong ‘he/l/o
wor | d!' 7, and assume that the resulting Huffman tiiées given by Figurel. Let the next character to
be transmitted bel (space character), and seto the node correspondingito SoWt[u] is to be incre-
mented, and we call BsTORHu). We use the representationBfby the arrayd.c, W+t above: in this
caseu is the node (whose rank ig)(or v9, for clarity). It has weigh#V¢[vs] = 1 and so we must find
the largest ranked node with weightnamely nodes. Swappingvy with vg, and then incrementing
the weight ofvg, we get:

Rank [0]i[2[3[4]5] 6 [7[8|9[i0[i1 121314 [15] 16|
Lc hie|!|w|r|d| U |0|0|2]| 4|6 | ¢]| 8 |10]|12]15
W i1(1|1|1)1 1|1+ |2|2|2|2 |3 |3 |4 |5 |7]12
After first swap v u

Next, u is set to the parent of node of rafiknamelywvy;. This has weigh8, and so we must swap
it with the element;, which is the highest ranked node with weightAfter swappingy;; andv;,, we
increment the new;». The following table illustrates the remaining changes:

Rank [0[i[2[3[4]5] 6 [7[8|9[i0[il] 12 [13[14] 15 | 16
Lc hije|!l|w|r|[d| U |o|]0|2] 4 L 6 8 | 10 12 15
W 11 (1|11 |1 |1+41|2|2|2| 2 |3 |3+1| 4| 5 7 12
After second swap v u

Lc hije|! |w|r|d| U |o|0|2]| 4 14 6 8 | 10 12 15
W 111|111 |1+1|2|2|2| 2 |3 |3+1| 4 |5 | 7+1 12
No third swap U=

Lc hie|! |w|r|d U |o|l0]2] 4 L 6 8 | 10 12 15
W 1(1(1|2 |11 |21+1|2|2|2| 2 | 3 |3+1| 4 | 5 | 7+1 | 12+1
No final swap U=

917. The0-Node: how to add a new letter. Our dynamic Huffman code tréE must be capable of
expanding its alphabet. E.g., if the current alphabét is {h, e} and we next encounter the letler
we want to expand the alphabetto= {h, e, | }. For this purpose, we introduceTha special leaf with
weight0. Call this the0-node This node does not represent any letters of the alphabtet) bnother
sense, it represents all the yet unseen letters. We miglithagathe0-node represents the character
Upon seeing a new letter lide, we take three steps: to upddte

1. First, we “expand” thé@-node by giving it two children. lIts left child is the netvnode, and its
right child v is a new leaf representing the letter

Chee-Keng Yap Basic Version April 7, 2011

84. DyNAMIC HUFFMAN CODE Lecture V Page 27

2. Next, we must give ranks to all the nodes: the flemode has rank, the new leaf, has ranki,
and all the previous nodes have their ranks incrementeti by particular, the originaf-node
will have rank2.

3. Finally, we must update the weights. The weight of the fievade is0, and the weight of. is 1.
We must now increase the weight of all the nodes along thefpatinthe old0-node to the root:
this is done by calling RsToREoON the old0-node.

The operations of the restore function using thisode convention is illustrated in Figuge Here,
we begin with an initial Huffman tree containing just thenode, and show successive Huffman trees
on inserting the first five letters of our hello example.

Figure 8: Evolving Huffman tree on inserting the strimgl | o

Note that the transition fromel tohel | is already described in detail in Figure

118. Interface between Huffman Code and Canonical Encoding LetY denote the set of characters
in the current Huffman code. We viel as a subset of a fixed universal §éwhereU C {0,1}%.
Call U thecanonical encoding In reality, U might be the set of ASCII characters with = 8. A more
complicated example is whelé is some unicode set. We assume the transmitter and recaitker b
know this global paramete¥ and the setU. In the encoding process, we assume that each character
of the string comes frorfy. Upon seeing a letter, we must decide whethere X (i.e., in our current
Huffman tree), and if so, what is its current Huffman code]Uf is not too large (e.g/[U| = 2°%),

we can provide an arrag[1..2"V] such thatC[x] maps to a leaf of the Huffman tree. To be specific,
supposdX| = k and the current Huffman treE is represented by the arrayg[0..2k], Wt[0..2k]. If

x € {0, 1}N, let C[z] = i if nodei (of ranks) is the leaf ofT" representing the letter. Initially, let
C[z] = —1for all z. Hence, the arrag’ is a representation of the alphabet

For instance, ifC|x] is the0-node, this means is not inX. If |U] is large, we can use hashing
techniques.

Chee-Keng Yap Basic Version April 7, 2011

84. DyNAMIC HUFFMAN CODE Lecture V Page 28

Even though we know the leaf, it requires some work to obtaéndorresponding Huffman code.
[This is the encoding problem — but the Huffman code treeéssly designed for the inverse problem,
i.e., decoding problem.] One way to solve this encoding [gmolis assume that our Huffman tree has
parent pointer. In terms of outc, Wt array representation, we now add another awPay..2k| for
parent pointers.

Here now is the dynamic Huffman coding method for transmtg strings:

DYNAMIC HUFFMAN TRANSMISSIONALGORITHM:
Input: A string s of indefinite length.
Output: The dynamically encoded sequence representing
> Initialization
Initialize T' to contain just thé@-node.
> Main Loop
while s is non-empty
Remove the next charactefrom the front of strings.
Letu = Clx] be the leaf off that corresponds to.
Usingu, transmit the code word fat.
If uis the0-node <« z is a new character
Expand thé-node to have two children, both with weight
Letwu be the right sibling, representing the charaater
and the left sibling represent the néwode.
Call RESTORHu).
Signal termination, using some convention.

ourONPE

~

Decoding is also relatively straightforward. We are preags a continuous binary sequence, but
we know where the implicit “breaks” are in this continuousjgence. Call the binary sequence be-
tween these breaksweord. We know how to recognize these words by maintaining the ssynamic
Huffman code tred” as the transmission algorithm. For each received word, wegvkihether it is (a)

a code word for some character, (b) signal to add a new letttret alphabek, or (c) the canonical
representation of a letter. Thus the receiver can faithf@produce the original string

Another practical issue is that whenever we insert a new jtbdaanks of current nodes implicitly
increases by, and a literal implementation requires updating the erairay for Lc andWWt. There
is a simple solution to this. Let us store the array in reversier. All invocations of.c[i] is really an
invocation ofL¢[2k — i]. Similarly for Wt[i]. We leave it to the student to work out this detail.

REMARKS: It can be shown that the FGK Algorithm transmit atsn®H,(s) + 4/|s| bits. The
Lambda Algorithm of Vitter ensures that the transmittethgttength is< Hs(s) + |s| — 1 whereHs(s)
is the number of bits transmitted by tBepass algorithm fog, independent of alphabet size. Another
approach to dynamic compression of strings is based on tive-toefront heuristic and splay treed [
(see Lecture VI).

9119. Unicode. The Unicode is an evolving standard for encoding the cherastets of most human languages
(including dead ones like Egyptian hieroglyphs). Here, westrmake a basic distinction betweeharacters

(or graphemes) and their maglyphs (or graphical renderings). The idea is to assign a uniquebenntalled a
code point to each character. Typically, we write such a number as UXXXX where the X's are hexadecimal.
As usual, leading zeros are insignificant. For instance the 28 code points in Unicode, U+0000 to U+007F,
correspond to the ASCII code. The code points below U+002&antrol characters in ASCII code. But there are
many subtle points because human languages and writingrmakably diverse. Characters are not always atomic

Chee-Keng Yap Basic Version April 7, 2011

84. DyNAMIC HUFFMAN CODE Lecture V Page 29

objects, but may have internal structure. Thus, should warteé as a single Unicode character, or as the character
“e” with a combining acute “"? (Answer: both solutions an@yided in unicode.) If combined, what kinds of
combinations do we allow? Coupled with this, we must meetntieds of computer applications: computers use
unprintable or control characters, but should these beactens for Unicode? (Answer: of course, this is part of
ASCIL.)

There are other international standards (ISO) and these $@mwe compatibility with Unicode. For instance,
the first 256 code points corresponds to ISO 8859-1. Thervarmethods for encoding in Unicode called Unicode
Transformation Format (UTF) and Universal Character S&t%)) These leads to UTF-n, UCS-n for various values
of n. Let us just focus on one of these, UTF-8. This was created.fjpétmpson and R.Pike, which is a de facto
standard in many applications (e.g., electronic mail). as la basic 8-bit format with variable length extensions
that uses up to 4 bytes (32 bits). It is particularly compactXSCII characters: only 1 byte suffices for the 128
US-ASCII characters. A major advantage of UTF-8 is that ipfBSClI string is also a valid UTF-8 string (with
the same meaning of course). Here is UTF-8 in brief:

1. Any code point below U+0080 is encoded by a single byte sTO#00X'Y whereX < 8 can be represented
by the single byteXY" that has a leading 0-bit.

2. Code points between U+0080 to U+07FF uses two bytes. Tidjite begins with 110, second byte begins
with 10.

3. Code points between U+0800 to U+FFFF uses three bytesfirShbyte begins with 1110, remaining two
bytes begin with 10.

4. Code points between U+100000 to U+10FFFF uses four bytesfirst byte begins with 11110, remaining
three bytes begin with 10.

EXERCISES

Exercise 4.1: In this question, we are asking for three numbers. But youtrsusimarize to show
intermediate results of your computations. Assume thaalpleabe® is a subset of0, 1}8 (i.e.,
ASCII code).

(a) What is the length of the (static) Huffman code of thengttiHel | o, wor | d! "?

(b) How many bits does it take to transmit the Huffman codétfferstring of (a)?

(c) How many bits would be transmitted by the Dynamic Huffnreade algorithm in sending the
string “Hel | o, wor | d!"? O

Exercise 4.2: What binary string would you transmit in order to send théngt‘now i s t he
ti me”, under the dynamic Huffman algorithm? Show your workingot& you would have
to transmit ascii codes for the lettarso, w, etc. Just write ASC(In) , ASCII(0) , ASCII(w) ,
etc.

&

Exercise 4.3:
(a) Please reconstruct the Huffman code ffefieom the following representation:

r(T) = 0000, 1111, 0011, 011d, mrit, yo

CONVENTIONS: the commas in(T") are just decorative, and meant to help you parse the string.
Other tharD/1 symbols, the letterd, m, i, etc, stands fog-bit ASCII codes. The leftmost leaf in
the tree is thé@-node, and its label (namely”) is implicit. The remaining leaves are labeled by

Chee-Keng Yap Basic Version April 7, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 30

8-bit ASCII codes fowl, m, r,,t,y, o, in left-to-right order.
(b) Here is a string encoded using this Huffman code:

0001,1110, 1001, 1001, 0111, 1011, 10

Decode the string.
(c) Assume that the leaves of the Huffman tree in (a) has thasfimg frequencies (or weights):

f) =0, f(d)=f(m)=[f(i)=f{t)=dly) =1, [f(r)=flo)=2.

Assign a rank (i.e., numbers frof 1, . .., 14) to the nodes of the tree in (a) so that the sibling
property is obeyed. Redraw this tree with the ranking listest to each node. Also, write the
arraysL[0..14] andW0..14] which encodes this ranking of the Huffman tree. Recall thase
arrays encode the left-child relation and weights (fre@ies), respectively.

(d) Suppose that we now insert a new lettefblank space) into the weighted Huffman code tree
of (c). Draw the new Huffman tree with updated ranking. Alsioow the updated arrays0..16]

andW0..16].
(e) Give the Huffman code for the stringli‘rty roonf. What is the relation between this
string and the one in (b)? &

Exercise 4.4: Give a careful and efficient implementation of the dynamidfian code. Assume the
compact representation of Huffman tree using the arveyand L described in the text. &

Exercise 4.5: Consider3-ary Huffman tree code. State and prove the Sibling profdertyhis code.
¢

Exercise 4.6: A previous exercise (1.2) asks you to construct the stanidaffinan code of Lincoln’s
speech at Gettysburg.
(a) Construct the optimal Huffman code tree for this spe®&tbase give the length of Lincoln’s
coded speech. Also give the size of the code tree (use Eger&3.
(b) Please give the length of the dynamic Huffman code farspeech. How much improvement
is it over part (a)? Also, what is the code tree at the end oflytmamic coding process? <

Exercise 4.7: The correctness of the dynamic Huffman code depends on¢héht the weight at the
leaves are integral and the change-is
(a) Suppose the leave weights can be any positive real nyat@the change in weight is also
by an arbitrary positive number. Modify the algorithm.
(b) What if the weight change can be negative? &

END EXERCISES

85. Minimum Spanning Tree

In the minimum spanning forest problemwe are given a costed bigraph

G=V,E;C)

Chee-Keng Yap Basic Version April 7, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 31

whereC : E — R. An acyclic setl’ C E of maximum cardinality is called spanning forest in this
case,|T| = |V| — ¢ whereG hasc > 1 components. TheostC(T') of any subsef’” C E is given by
C(T) = > .cr C(e). Anacyclic set isninimum if its cost is minimum. Itis conventional to make the
following simplification:

‘ The input bigraphG is connected,

In this case, a spanning forestis actually a tree, and the problem is known as tfi@imum
spanning tree (MST) problem The simplification is not too severe: if our graph is not cected,
we can first compute its connected component (another besgihgproblem that has efficient solution)
and then apply the MST algorithm to each component. Altérelyt it is not hard to modify an MST
algorithm so that it applies even if the input is not connécte

Figure 9: A bigraph with edge costs.

Consider the bigraph in Figur® with verticesV = {a,b,c,d,e}. One such MST is
{b—c,d—e,a—c,a—e}, with cost6. It is easy to verify that there are six MST's, as shown in Fegi0.

120. Generic MST Algorithm. There several distinct algorithms for MST. They all fit inteetfol-
lowing framework:

GENERIC GREEDY MST ALGORITHM
Input: G = (V, E; C) a connected bigraph with edge costs.
Output: S C FE, a MST forG.
S — 0.
fori=1to|V|—1do
1. Greedy Step: find ane E — S that is “good forS”.
2. S~ S+e.
OutputS as the minimum spanning tree.

NOTATION: as illustrated in line 2, we shall write5*+ e” for “ S U {e}". Likewise, “S — e” shall
denote the setS'\ {e}".

What does it mean fore‘to be good forS™? It is based on some greedy criterion. A necessary
condition is thatS + e must be contained in some MST. But we will usually want addiil properties
in order to be able maintain or update our greedy criterion.

921. Some Greedy MST Criteria. Let us say that is acandidatefor S if S + e is acyclic. IfU is
a connected component6f = (V, S), ande = (u,v) is a candidate such thate U orv € U then

Chee-Keng Yap Basic Version April 7, 2011

85. MINIMUM SPANNING TREE Lecture V Page 32

Figure 10: MST's of a bigraph.

we say that extendsU. Note that ife extendd’ then the grapliz” = (V, S + e) will not haveU as a
component. The following are 4 notions of what it means fois‘good forS™:

* (Simple)S + e is extendible to some MST.
 (Kruskal) Edge: has the least cost among all the candidates.

¢ (Boruvka) There is a connected compon@rdf G’ = (V, .S) such that has the least cost among
all the candidates that extend

* (Prim) This has, in addition to Boruvka’s condition, theu&rement that the grapfi” = (V, .S +
e) has only one non-trivial component. [A component is trivia has only a single vertex.]

This first criterion is computational ineffective. The ramiag three criteria are named for the
inventors of three well-known MST algorithms. In realitgete are additional algorithmic techniques
that are needed before we finally achieve the best realizafithese ideas:

* (Kruskal) How can we quickly tell i5 + e is acyclic? Ife is u—wv, this amounts to checkingif, v
are in the same connected component of the gtaphk (V,S). A simple method is to do this
is have a linked list for each connected componer@ot= (V, S), with the nodes of the linked
list representing each vertex of the connected componemen@ vertexu, assume we have a
pointer fromu to the representative node folin such a linked list. To decide if two verticesv
are in the same connected component, we go to the linkedhlbistss the representandv, and

Chee-Keng Yap Basic Version April 7, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 33

follow the links till the end of their respective linked kstThe ends of these two linked list are
equal iffS + e has a cycle.

The elaborations of this linked list idea will ultimatelyalé us to the union-find data structure
which is studied in Chapter 13. An Exercise below will explspme of these ideas.

¢ (Boruvka) We must maintain for each connected compone6t f (V, S), the least cost edge
that extends it. Again we need some form of union-find datectiire. A key feature of Boruvka’s
algorithm is that we can select the good edges in “phasestevbach phase calls for a pass
through the set of remaining edges. This feature can be igglm parallel algorithms. We
explore these ideas in the Exercise.

< (Prim) Because of its additional restriction to one nawmit connected component, Prim’s al-
gorithm is easier to implement than Boruvka’s. We shall ds below. But the best version of
Prim’s algorithm is taken up in Chapter 6 (amortization ta@ghes).

Let us call those setS C E that may arise during the execution of the generic MST allgori
simply-good, Boruvka-good, Kruskal-good or Prim-good, depending on which of the above criteria
is used. The correctness of these algorithms amounts toispohat “X-good implies simply-godd
where X = Kruskal, Boruvka or Prim. Letus now show the comess of the algorithm of Boruvka. By
definition, Prim-good implies Boruvka-good, and so Prinigoaithm is also correct. Indeed, Kruskal-
good also implies Boruvka-good, so this also show the coress of Kruskal's algorithm.

LEMMA 7 (Correctness of Boruvka'’s AlgorithmBoruvka-good sets are simply-good.

Proof. We use induction on the siZ&| of Boruvka-good sets. Clearly if S = (), thenS is
Boruvka-good and this is clearly simply-good. Next supp8se S’ + e whereS’ is Boruvka-good.
We need to prove thef is simply-good. By definition of Boruvka-goodness, thera isomponent/
of the graphGG’ = (V, S”) such that has the least cost among all edges that extén@®y induction
hypothesis, we may assunsé is simply-good. Hence there is a MGT that containss’. If ¢ € T7,
then we are done (a8’ would be a witness to the fact thdt= S’ + e is simply-good). So assume
egT'.

Figure 11: Extending a compondiitby e = (u, v).

Write e = (u,v) such thatu € U andv ¢ U. Hencel” + e contains a unique closed path of the
form
Z = (u—v—v1—vg— -+ —Vp—u).
There exists some= 0, ..., k such that; ¢ U andv; 1, € U. Write

7 = (u—v—v1— - —0;—Vjp1— - —U)

(wherev = vy andu = vg41 in this notation). Let’ := (v;—v;41). Note thatl :=T" + e — €’ is
acyclic and is a spanning tree. Moreov€¥e) < C(e’), by our choice ok. HenceC(T) < C(T").
SinceC(T”) is minimum, so isC(T'). This shows thaf is simply-good, a$ containsT'. Q.E.D.

Chee-Keng Yap Basic Version April 7, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 34

122. Good sets of vertices. Let us extend the notion of “goodness” to sets of verticeg. dfy set
S C E of edges, lef/(S) denote the set of vertices that are incident on some edge dfe say a
setU C V' is X-goodif there exists anX-good setS C E such that/ = V(S). Here, X is equal to
‘simply’, ‘Prim’, ‘Kruskal’ or ‘Boruvka’. Let us also declee any singleton set with only one vertex to

be X-good.

123. Hand Simulation of MST Algorithms. Students are expected to understand those aspects of
Kruskal’'s and Prim’s algorithms that are independent ofrthltimate realizations via efficient data
structures. That is, you must do “hand simulations” wherne gct as the oracle for queries to the data
structures. For Kruskal’s algorithm, this is easy — we jisitthe edges by non-decreasing weight order
and indicate the acceptance/rejection of successive edges

For Prim’s algorithm, we just maintain an arrdjl ..n] assuming the vertex set¥s = {1,...,n}.
We shall maintain a subsstC V representing the set of vertices which we know how to contoettie
source nodé in a MST. The sef5 is “Prim good”. Initially, letS = () andd[1] = 0 andd[v] = oo for
v =2,...,n. Ingeneral, the entrg[v] (v € V \ S) represents the “cheapest” cost to connect vertex
to the MST on the sef. Our simulation consists in building up a matrix which is an x n matrix,
where theOth row representing the initial array Each time the array is updated, we rewrite it as a
new row of a matrixi/.

At stagei > 1, suppose we pick a node € V' \ S whered[v;] = min{d[j] : j € V' \ S}. We add
v; t0.S, and update all the value$u| for eachu € V'\ S that is adjacent to,. The update rule is this:

d[u] = min{d[u], COST[v;, u]}.

The resulting array is written as raiwn our matrix.

Let us illustrate the process on the graph of Figl2eThe vertex seti¥ = {vy, v, ..., v11,v12}.
The cost of an edge is the sum of the costs associated to edgek.\e.g.,C'(v1,vs) = C(v1)+C(vg) =
1+ 6 = 7. The final matrix is the following:

Stage” 1 2 3 4| 5 6 7 8| 9 10 11 12
0 0 o0 o | o0 o |l o 00 o
1 X 3 1 7 |00 00 o0 00|00 00 00 00
2 X 6 3

3 X 6

4 X 8

5 X 7

6 X 6 6
7 3 X 3 2

8 1 1 X 2
9 X

10 6 X

11 X
12 X

Conventions in this matrix: We mark the newly picked nodeastestage with an ‘X’. Also, any
value that is unchanged from the previous row may be leftlblahus, in stage 2, the nodes picked
and we updaté[v,] usingd[vs] = min{d[v4], COST[v3,4]} = min{7,6} = 6.

The final cost of the MST is 37. To see this, each X correspamdsvertexv that was picked, and

Chee-Keng Yap Basic Version April 7, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 35

the last value ofl[v] contributes to the cost of the MST. E.g., the X correspontbngertex 1 has cost
0, the X corresponding to vertex 2 has cost 3, etc. Summing/apail X’s, we get 37.

Remarks: Boruvka (1926) has the first MST algorithm; his algorithm wediscovered by Sollin
(1961). The algorithm attributed to Prim (1957) was discedesarlier by Jarnik (1930). These algo-
rithms have been rediscovered many times. Sgéof further references. Both Boruvka and Jarnik’s
work are in Czech. The Prim-Jarnik algorithm is very simitestructure to Dijkstra’s algorithm which
we will encounter in the chapter on minimum cost paths.

EXERCISES

Exercise 5.1: We consider minimum spanning trees (MST's) in an undiregteghG = (V, E') where
each vertex € V is given a numerical valu€'(v) > 0. ThecostC(u, v) of an edggu—v) € F
is defined to b&”(u) + C'(v).
(a) LetG be the graph in Figur@2. Compute an MST of7 using Boruvka’s algorithm. Please

3

Figure 12: The house graph: The cost of edgev, is defined as”(v;) + C(v;), whereC(v) is the
value indicated nextto. E.g.C'(v1—v4) =146 =17.

organize your computation so that we can verify intermediasults. Also state the cost of your
minimum spanning tree.

(b) Can you design an MST algorithm that takes advantageeofatt that edge costs has the
special formC (u,v) = C(u) + C(v)? &

Exercise 5.2: Suppose~ is the complete bipartite gragh,, ,,. That is, the vertice¥” are partitioned
into two subsetd, andV; where|Vy| = m andVi| = nandE = V; x V;. Give a simple
description of an MST of,,, ,,. Argue that your description is indeed an MST. HINT: tramsfo
an arbitrary MST into your description by modifying one edge time. &

Exercise 5.3: Let GG,, be the bigraph whose vertices dre= {1,2,...,n}. The edges are defined
as follows: for each € V, if i is prime, then(1,:) € E with weighti. [Recall thatl is not
considered prime, spis the smallest prime.] Far < i < j, if 7 divides; then we adds, j) to
E with weightj /i.

(a) Draw the grapldsyg.

(b) Compute the MST of+;5 using Prim’s algorithm, using nodeas the source vertex. Please
use the organization described in the appendix below.

(c) Are there special properties of the graghsthat can be exploited? &

Chee-Keng Yap Basic Version April 7, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 36

Exercise 5.4: LetG = (V, E; W) be a connected bigraph with edge weight funcliin Fix a constant
M and define the weight functio’” whereW’(e) = M — W (e) for eache € E. LetG’ =
(V, E;W'). Show thatl" is a maximum spanning tree 6f iff 7" is a minimum spanning tree of
G’. NOTE: Thus we say that the concepts of maximum spanningatneeminimum spanning
tree are “cryptomorphic versions” of each other. &

Exercise 5.5: Describe the rule for reconstructing the MST from the mafvixusing in our hand-
simulation of Prim’s Algorithm. O

Exercise 5.6: Hand Simulation of Kruskal's Algorithm on the graph of Figur2. This exercise sug-
gests a method for carry out the steps of this algorithm. Wisider each edge in their sorted
order, maintaining a partition df = {1,...,12} into disjoint sets. Lef.(i) denote the set con-
taining vertexi. Initially, each node is in its own set, i.€.{i) = {i}. Whenever an edge-j is
added to the MST, we merge the correspondingbétgJL(j). E.g., in the first step, we add edge
1-3. Thus the lists.(1) = {1} andL(3) = {1} are merged, and we gé&{(1) = L(3) = {1, 3}.
To show the computation of Kruskal’s algorithm, for eachedfthe edge is “rejected”, we mark
it with an “X”. Otherwise, we indicate the merged list resudt from the union ofL(¢) and L(j):
Please fill in the last two columns of the table (we have fillethie first 4 rows for you).

| Sorting Order|| Edge Weight Merged List Cumulative Weight

1 1- 3: 1 {1,3} 1
2 6-11: 1 {6,11} 2
3 10 11 1 {6,10,11} 3
4 6- 10: 2 X 3
5 7- 11. 2
6 11- 12: 2
7 1- 2 3
8 3-8: 3
9 6-7: 3
10 7- 10: 3
11 2-5: 6
12 3-4: 6
13 5 7. 6
14 5-12: 6
15 9-10: 6
16 1- 4: 7
17 4- 6: 7
18 8- 9: 8
19 4-5: 10
20 4-9: 11

Exercise 5.7: This question considers two concrete ways to implementhkaiissalgorithm. Letl =
{1,2,...,n} and D[1..n] be an array of size that represents forest G(D) with vertex sefl’
and edge seff = {(i, D[i]) : i € V'}. More preciselyG(D) is an directed graph that has no
cycles except for self-loops (i.e., edges of the fdim)). A vertex: such thatD[i] = i is called
aroot. The setV is thereby partitioned into disjoint subséts= 1, U V5, U - - - U V;, (for some
k > 1) such that eacly; has a unique root;, and from everyj € V; there is a path fromj to r;.
For example, witm = 7, D[1] = D[2] = D[3] = 3, D[4] = 4, D[5] = D[6] = 5 andD[7] = 6
(see Figure.3). We callV; acomponentof the graph (D) (this terminology is justified because
V; is a component in the usual sense if we viéWD) as anundirectedgraph).

Chee-Keng Yap Basic Version April 7, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 37

©
®

Vi Va Vy

Figure 13: Directed grapf¥(D) with three componentdAg, Vs, V3)

(i) Consider two restrictions on our data structure: $eig list type if each componentis a linear
list. SayD is star type if each component is a star (i.e., each vertex in the comg@uants to
the root). E.g., in Figurd3, V5 andVs are linear lists, whilé’, andV; are stars. Let ROQT)
denote the root of the component containing Give a pseudo-code for computing RO@JT
and give its complexity in the 2 cases: [@)is list type, (2)D is star type.

(i) Let COMP(i) C V denote the component that contains Define the operation
MERGE(i,j) that transformsD so that COMRi) and COMRj) are combined into a new
component (but all the other components are unchanged), tBeggcomponents in Figure3
are{1,2,3},{4} and{5,6,7}. After M ERGE(1,4), we have two component§], 2, 3,4} and
{5,6,7}. Give a pseudo-code that implemeMSZ RGE (i, j) under the assumption thatj are
roots andD is list type which you must preserve. Your algorithmusthave complexityD(1). To
achieve this complexity, you need to maintain some additiorformation (perhaps by a simple
modification ofD).

(iii) Similarly to part (ii), implement\ ERGE(i, j) whenD is star type. Give the complexity of
your algorithm.

(iv) Describe how to use ROQT) and M ERGE(i, j) to implement Kruskal’s algorithm for
computing the minimum spanning tree (MST) of a weighted eated undirected graph.

(v) What is the complexity of Kruskal’s in part (iv) if (1 is list type, and if (2)D is star type.
AssumeH hasn vertices andn edges. &

Exercise 5.8: Give two alternative proofs that the suggested algorithncdonputing minimum base is
correct:
(a) By verifying the analogue of the Correctness Lemma.
(b) By replacing the cost'(e) (for eache € E) by the costy — C(e). Choose large enough
so thatcy — C(e) > 0. O

Exercise 5.9: Let G be a bigraplz with distinct weights. Give a direct argument for the (a) &
(a) Prove that the MST aff must contain that the edge of smallest weight.
(b) Prove that the MST aff must contain that the edge of second smallest weight.
(c) Must it contain the edge of third smallest weight? &

Exercise 5.10: Show that every MST can be obtained from Kruskal’'s algorithyna suitable re-
ordering of the edges which have identical weights. Corelildt when the edge weights are
unique, then the MST is unique. &

Exercise 5.11: Student Joe wants to reduce the minimum base problem fortaccomtroid(S, I; C)
to the MIS problem for(.S, I; C’) whereC" is a suitable transformation @f. See next section
for matroid definitions.

Chee-Keng Yap Basic Version April 7, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 38

(a) Student Joe considers the modified cost funafi6fe) = 1/C(e) for eache. Construct an
example to show that the MIS solution f6f need not be the same as the minimum base solution

for C.

(b) Next, student Joe considers another variation: he ndimesC’(e¢) = —C(e) for eache.

Again, provide a counter example. &
Exercise 5.12: Extend the algorithm to finding MIS in contracted matroids. &

Exercise 5.13:1f S C E'is Prim-good, then clearlg’ = (V(5), S) is clearly a tree. Prove thatis
actually an MST of the restricted graghV (S). &

Exercise 5.14:
(a) Enumerate th&'-good sets of vertices in FiguBe Here, X is ‘simply’, ‘Kruskal’, ‘Boruvka’
or ‘Prim’.
(b) Characterize the good singletons (relative to any oftihee notions of goodness). &

Exercise 5.15: This question will develop Boruvka’s approach to MST: focleaertexv, pick the edge
(v—u) that has the least cost among all the nodébat are adjacent to. Let P be the set of
edges so picked.

(a) Show that/2 < P < n — 1. Give general examples to show that these two extreme bounds
are achieved for each

(b) Show that if the costs are unigu,cannot contain a cycle. What kinds of cycles can form if
weights are not unique?

(c) Assume edges iR are picked with the tie breaking rule: among the edges; (: = 1,2,...)
adjacent ta that have minimum cost, pick the that is the smallest numbered vertex (assume
vertices are numbered frointo n). Prove thatP is acyclic and has the following property: if
adding an edgeto P creates a cycl¢ in P + e, thene has the maximum cost among the edges
in Z.

(d) For any costed bigrap¥ = (V, E;C), andP C FE, define a new costed bigraph denoted
G/ P as follows. First, two vertices df are said to be equivalent modutif they are connected
by a sequence of edgesih Forv € V, let [v] denote the equivalence classwof The vertex
set of G/Pis {[v] : v € V}. The edge set off/ P comprises thos€u]—[v]) such that there
exists an edgéu’—v') € FE whereu’ € [u] andv’ € [v]. The cost of([u]—[v]) is defined as
min{C(u/,v") : v € [u],v" € [v],(v'—v") € E}. Note thatG/P has at mosti/2 vertices.
Moreover, we can pick another set of edges in/ P using the same rules as before. This gives
us another grapfiz/ P)/ P’ with at mostn /4 vertices. We can continue this unitilhas 1 vertex.
Please convert this informal description into an algoritonsompute the cost of the MST. (You
need not show how to compute the MST.)

(e) Determine the complexity of your algorithm. You will ik specify suitable data structures
for carrying out the operations of the algorithm. (Pleasedeta structures that you know up to
this point.) &

Exercise 5.16: (Tarjan) Consider the followingeneric accept/reject algorithmfor MST. This con-
sists of steps that eithacceptor reject edges. In our generic MST algorithm, we only explicitly
accept edges. However, we may be implicitly rejecting edgesell, as in the case of Kruskal's
algorithm. LetS, R be the sets of accepted and rejected edges (so far). We sa\511?) is
simply-goodif there is an MST that contain$ but not containing any edge @f. Note that this
extends our original definition of “simply good”. Prove tlilg following extensions of and R
will maintain minimal goodness:

Chee-Keng Yap Basic Version April 7, 2011

§5. MINIMUM SPANNING TREE Lecture V Page 39

(a) LetU C V be any subset of vertices. The set of edges of the farm) whereu € U and

v ¢ U is called al/-cut. If e is the minimum cost edge ofla-cut and there are no accepted edges
in theU-cut, then we may extendl by e.

(b) If e is the maximum cost edge in a cyaleand there are no rejected edge€inhen we may
extendR by e. O

Exercise 5.17: With respect to the generic accept/reject version of MST:
(a) Give a counter example to the following rejection rukt:elande’ be two edges in &-cut.
If C(e) > C(¢’) then we may reject’.
(b) Can the rule in part (a) be fixed by some additional pragethat we can maintain?
(c) Can you make the criterion for rejection in the previoxsreise (part (b)) computationally
effective? Try to invent the “inverses” of Prim’s and Borask algorithm in which we solely
reject edges.
(d) Is it always a bad idea tonly reject edges? Suppose that we alternatively accept arat reje
edges. Is there some situation where this can be a win?

Exercise 5.18: Consider the following recursive “MST algorithm” on inptit= (V, E; C):
(I) SubdivideV =V, W V5.
(I) Recursive find a “MST"T; of G|V; (i = 1, 2).
(1N Find e in the V;-cut of minimum cost. Returif} + e + T5.
Give a small counter-example to this algorithm. Can you fig gigorithm? &

Exercise 5.19:Is there an analogue of Prim and Boruvka’s algorithm for tH8 problem for matroids?

&

Exercise 5.20:Let G = (V, E; C) be the complete graph in which each vertex V is a point in
the Euclidean plane and(u, v) is just the Euclidean distance between the poingsdv. Give
efficient methods to compute the MST f6t O

Exercise 5.21:Fix a connected undirected graph= (V, E). LetT C F be any spanning tree ¢}.
A pair (e, ¢’) of edges is called swappable pair for T if
(i) e € T ande’ € E\ T (Notation: for sets4, B, their difference is denoted \ B = {a € A :
a ¢ BY})
(i) The set(T \ {e}) U {€'} is a spanning tree.
Let T'(e, e’) denote the spanning tré& \ {e}) U {¢’} obtained fromI" by swappinge and ¢’
(see illustration in Figuré4(a), (b)).

(a) Supposée, ¢') is a swappable pair féf ande’ = (u,v). Prove that lies on the unique path,
denoted byP (u, v), of T fromu to v. In Figurel4(a),e’ = (1-5) = (5—1). So the path is either
P(1,5) = (1-2—3—5) or P(5,1) = (5—3—2—1).

(b) Letn = |V|. Relative tol", we define a» x n matrix F'irst indexed by pairs of vertices, v,
where First[u,v] = w means that the first edge in the unique pBth, v) is (u,w). (In the
special case of = v, let Firstu, u] = u.) In Figurel4(a), First[1,5] = 2 andFirst[5, 1] = 3.
Show the matrixF'irst for the treeT" in Figure14(a). Similarly, give the matrix'irst for the
treeT (e, ') in Figurel4(b).

(c) Describe arO(n?) algorithm calledUpdate(First, e, e’) which updates the matrikirst
after we transfornil” to T'(e,¢’). HINT: For which pair of verticedx,y) does the value of
First[z,y] have to change? Suppose= (v/,v") andP(v',v") = (ug,u1,...,us) is as illus-
trated in Figurel4(c). Thenu’' = ug,v’ = wuy, and alsce = (uy, ur4+1) for some0 < k < 2.
Then, originally Flirst[ug, u¢] = wuy but after the swapFirstug, us] = ue. What else must

Chee-Keng Yap Basic Version April 7, 2011

§6. MATROIDS Lecture V Page 40

@7T (b) (e, €’) (c) PathP (ug, uy).

Figure 14: (a) A swappable pdit, ¢') for spanning tre€’. (b) The new spanning tre®(e, ¢’') [NOTE:
tree edges are indicated by thick lines]

change?
(d) Analyze your algorithm to show that that it@%n?). Be sure that your description in (c) is
clear enough to support this analysis. &

END EXERCISES

86. Matroids

An abstract structure that supports greedy algorithms tsaiaks. Indeed, we will see that Kruskal's
algorithm for MST is an instance of a general greedy methosbtoe a matroid problem. We first
illustrate the idea of matroids.

f24. Graphic matroids. Let G = (V,S) be a bigraph. A subset C S is acyclicif it does not
contain any cycle. Lef be the set of all acyclic subsets 6f The empty set is a acyclic and hence
belongs tal. We note two properties df:

Hereditary property: If A C BandB € [thenA € I.
Exchange property: If A, B € I and|A| < |B|thenthereis anedgec B— AsuchthatAU{e} € I.

The hereditary property is obvious. To prove the exchangeety, note that the subgraghy :=

(V, A) has|V| — |A| (connected) components; similarly the subgraph := (V, B) has|V| — |B|
components. If every componetit C V' of G is contained in some component©@f of G 4, then
|[V| — |B| < |[V] — |A] implies that some component 6f4 contains no vertices, contradiction. Hence
assumd/ C V' is a component off g that is not contained in any component®f. LetT := BN ([2’)
Thus(U, T') is a tree and there must exist an edge (u—v) € T such that: andv belongs to different
components of7 4. Thise will serve for the exchange property.

For example, in Figur® the setsA = {a—b,a—c,a—d} and B = {b—c¢,c—a,a—d,d—e} are
acyclic. Then the exchange property betweeand B is witnessed by the edgé-e € B\ A4, since
addingd—e to A will result in an acyclic set.

Chee-Keng Yap Basic Version April 7, 2011

§6. MATROIDS Lecture V Page 41

125. Matroids. The above systerfiS, I) is called thegraphic matroid corresponding to grapi =
(V,S). In general, anatroid is a hypergraph cset system

M =(S.1)

whereS is a non-empty sef is a non-empty family of subsets 6f(i.e., I C 2°) such thatl has both
the hereditary and exchange properties. TheSsistcalled theground set Elements off are called
independent sets other subsets of are calleddependent sets Note that the empty set is always
independent.

Another example of matroids arise with numerical matrides:any matrix)/, let S be its set of
columns, and be the family of linearly independent subsets of columndl. tB& the matrix matroid
of M. The terminology of independence comes from this settirigs Was the motivation of Whitney,
who coined the term ‘matroid’.

The explicit enumeration of the sétis usually out of the question. So, in computational proldem
whose input is a matroids, I), the matroid is usually implicitly represented. The aboxareples
illustrate this: a graphic matroid is represented by a gr@pland the matrix matroid is represented
by a matrixM. The size of the input is then taken to be the siz&5obr M, not of |I| which can
exponentially larger.

126. Submatroids. Given matroids\/ = (S,) andM’ = (S’,I’), we callM’ asubmatroid of M
if S C SandI’ C I. There are two general methods to obtain submatroidsirgfdrom a non-empty
subsetk? C S:

(i) Induced submatroids. Th&-induced submatroid of M is

MI|R = (R,INn2%).

(ii) Contracted submatroids. Thék-contracted submatroid of M is
MAR := (R,I \NR)

wherel AR :={ANR: A€l S—RC A}. Thus, there is a bijective correspondence between
the independent set§’ of M A R and those independent setsof M which containS — R. Indeed,
A’ = AN R. Of course, ifS — R is dependent, theh A R is empty.

We leave it to an exercise to show thd R andM A R are matroids. Special cases of induced and
contracted submatroids arise whBn= S — {e} for somee € S. In this case, we say that/|R is
obtained bydeletinge andM A R is obtained bycontracting e.

727. Bases. Let M = (S, I) be a matroid. IfA C B andB < I then we callB anextensionof A; if
A = B, the extension igmproper and otherwise it iproper. A baseof M (alternatively: anaximal
independent se} is an independent set with no proper extensiond.Uf{e} is independentand ¢ A,
we call A U {e} asimple extensionof A and say that extendsA. If R C S, we may relativize these
concepts taR: we may speak of A C R being a base oR”, “ e extendsA in R”, etc. This is the same
as viewingA as a set of the induced submatraif] R.

2 Contracted submatroids are introduced here for complssen€hey are not used in the subsequent development (but the
exercises refer to them).

Chee-Keng Yap Basic Version April 7, 2011

§6. MATROIDS Lecture V Page 42

128. Ranks. We note a simple propertyll bases of a matroid have the same sitfed, B are bases
and|A| > |B| then there is am € A — B such thatB U {e} is a simple extension aB. This is a
contradiction. Note that this property is true evesihas infinite cardinality. Thus we may define the
rank of a matroid)/ to be the size of its bases. More generally, we may define tileabanyR C S

to be the size of the bases Bf(this size is just the rank af/|R). Therank function

ra 2% = N

simply assigns the rank @@ C S'tory, (R).

129. Problems on Matroids. A costed matroidis given byM = (S, I; C') where(S, I) is a matroid
andC : S — R. is a cost function. The cost of a set C S is just the sumd___, C(z). The
maximum independent set problem(abbreviated, MIS) is this: given a costed matroidI; C'), find
an independent set C S with maximum cost. A closely related problem is thaximum base
problem where, given(S, I; C'), we want to find a bas& C S of maximum cost. If the costs are
non-negative, then it is easy to see the MIS problem and thémoan base problem are identical. The
following algorithm solves the maximum base problem:

GREEDY ALGORITHM FOR MAXIMUM BASE:
Input: matroidM = (S, I; C') with cost functionC'.
Output: a baseA € I with maximum cost.
1. SortS ={z1,...,2,} by cost.
Suppose&’(z1) > C(xg) > -+ > C(xy).
2. Initialize A « 0.
3. Fori=1ton,
putz; into A provided this does not maké dependent.
4. ReturnA.

The steps in this abstract algorithm needs to be instadtiat@articular representations of matroids.
In particular, testing if a set is independent is usually non-trivial (recall that matsgde usually given
implicitly in terms of other combinatorial structures). \Biscuss this issue for graphic matroids below.
It is interesting to note that the usual Gaussian algoritbmcbmputing the rank of a matrix is an
instance of this algorithm where the cd3fx) of each element is unit.

Let us see why the greedy algorithm is correct.

LEMMA 8 (Correctness)Suppose the elements.fare put intoA in this order:
2152254+ Zm,

wherem = |A|. LetA; = {z1,29,...,2i},i=1,...,m. Then:

1. Ais abase.

2. Ifx € S extends; theni < mandC(z) < C(zi41)-

3. LetB = {uy,...,u;} be an independent set whet&u;) > C(ug) > --- > C(ux). Thenk < m
andC(u;) < C(z;) for all 4.

Proof. 1. By way of contradiction, suppose € S extendsA. Thenx ¢ A and we must have
decided not to place into the set4d at some pointin the algorithm. That is, for sopn& m, A; U {z}

3 Recall our convention that costs may be negative. If thescast non-negative, we call a a “weight function”.

Chee-Keng Yap Basic Version April 7, 2011

§7. MATROIDS Lecture V Page 43

is dependent. This contradicts the hereditary propertabseA; U {«} is a subset of the independent
setA U {z}.

2. Suppose: extendsA;. By part 1,i < m. If C(z) > C(z;41) then for somej < i, we must have
decided not to place into A;. This means4; U {z} is dependent, which contradicts the hereditary
property sinced; U {z} C A; U{z} andA; U {z} is independent.

3. Since all bases are independent sets with the maximunmneditg we havek < m. The result

is clearly true fork = 1 and assume the result holds inductively for- 1. SoC(u;) < C(z;) for

j < k—1. We only need to show'(uy) < C(zy). Since|B| > |Ax_1]|, the exchange property says
that thereisam € B — A;_; thatextendsi;_;. By part 2,C(z) > C(z). ButC(x) > C(us), since

uy, is the lightest element i by assumption. Thu€'(uy) < C(zy), as desired. Q.E.D.

From this lemma, it is not hard to see that an algorithm foli® problem is obtained by replacing
the for-loop (for i = 1 to n”) in the above Greedy algorithm bydr i = 1 to m” wherexz,,, is the last
positive elementin the ligtey, ..., @m, ..., Tn).

130. Greedoids. While the matroid structure allows the Greedy Algorithm torly it turns out that a
more general abstract structure calipdedoidsis tailor-fitted to the greedy approach. To see what this
structure looks like, consider the set syste$nF') wheresS is a non-empty finite set, anfl C 2°. In

this context, eachl € F is called afeasible set We call(S, F') agreedoidif

Accessibility property If A is a non-empty feasible set, then there is seneeA such thatd \ {e} is
feasible.

Exchange property: If A, B are feasible anfd| < | B| then there is somee B\ A such thatdU{e}
is feasible.

EXERCISES

Exercise 6.1: Consider the graphic matroid in Figuse Determine its rank function. &

Exercise 6.2: The text described a modification of the Greedy Maximum Bagerthm so that it will
solve the MIS problem. Verify its correctness. &

Exercise 6.3:
(a) Interpret the induced and contracted submatrdid® and M A R in the bigraph of Figuré,
for various choices of the edge $8t When isM|R = M A R?
(b) Show thatV |R and M A R are matroids in general. &

Exercise 6.4: Show that; (AUB)+ry (ANB) < ras(A)+ra (B). Thisis called thsubmodularity
property of the rank function. It is the basis of further generaliaati of matroid theory. <

Exercise 6.5: In Gavril's activities selection problem, we have a gebf intervals of the fornis, f).
Recall that a subsef C A is said to be compatible if is pairwise disjoint. Does the set of
compatible subsets of form a matroid? If yes, prove it. If no, give a counter example <

Chee-Keng Yap Basic Version April 7, 2011

§7. CENERATING PERMUTATIONS Lecture V Page 44

END EXERCISES

87. Generating Permutations

In 81, we saw how the general bin packing problem can be rebitacénear bin packing. This
reduction depends on the ability to generate all permutataf » elements efficiently. Since there
are many uses for such permutation generators, we will taeadl detour to address this interesting
topic. A survey of this classic problem is given by Sedgewi@lk Perhaps the oldest incarnation of
this problem is the “change ringing problem” of bell-ringém early 17th Century English churché$.|
This calls for ringing a sequence ofbells in alln! permutations.

The problem of generating all permutations efficiently ipresentative of an important class of
problems called¢ombinatorial enumeration. For instance, we might want to general all sizeubsets
of a set, all graphs of size, all convex polytopes based some given sehaofertices, etc. Such an
enumerations would be considered optimal if the algorithkesO(1) time to generate each member.

It is good to fix some terminology. A-permutation of a finite setX is a surjective function
p : {l,...,n} — X. Surjectivity ofp impliesn > |X|. The functionp may be represented by
a sequencép(1),p(2),...,p(n)). Here we are interested in the case= |X|, i.e., permutation of
distinct elements. We use a path-like notation for permutationgjngri‘(p(1)— - - - —p(n))” for the

permutationp(1), p(2),...,p(n)).

Let S,, denote the set of all permutations &f = {1,2,...,n}; each element of,, is called an
n-permutation. Note thatS,,| = n!. E.g., the following is a listing ob:

(1-2-3), (1-3-2), (3—1-2); (3—2—1), (2-3—1), (2—1-3). (22)

Two n-permutationsr = (x1—---—x,) andn’ = (z}—---—x/,) are said to bedjacent (to each
other) if there is somé = 2,...,n such thatr;_, = z} andz; = z}_,, and for all otherj, z; = =’.
Indeed, we writer’ = FEuxch;(x) in this case. E.gq = (1-2—4-3) andn’ = (1-4—2-3) are
adjacent since’ = Fachs(r). An adjacency ordering of a setS of permutations is a listing of the
elements ofS such that every two consecutive permutations in this liséire adjacent. For instance,
the listing of S5 in (22) is an adjacency ordering.

[Figure: Adjacency Graph for 3-permutations]

We need another concept:if= (21— --- —z,_1) is an(n — 1)-permutation, and’ is obtained
from = by inserting the letter. into 7, then we callr’ anextensionof «. Indeed, ifn is inserted just
before theith letter in, then we writer’ = Ext;(7) fori = 1,...,n. The meaning of Ext, (7)"

should be clear: it is obtained by appendimg to the end of the sequence Note that there are
extensions ofr. E.g., ifm = (1—2) then the three extensionsofare(3—1-2), (1-3-2), (1-2-3).

131. The Johnson-Trotter Ordering. Among the several known methods to generatenall
permutations, we will describe one that is independentigaiered by S.M.Johnson and H.F.Trotter
(1962), and apparently known tdrth Century English bell-ringers3]. The two main ideas in the
Johnson-Trotter algorithm are (1) thepermutations are generated as an adjacency ordering2and (
then-permutations are generated recursively. Supposeikan(n — 1)-permutation that has been re-
cursively generated. Then we note thatthextensions ofr can given one of two adjacency orderings.
Itis either

UP(r) : Exty(n), BExty(n), ..., Ext, ()

Chee-Keng Yap Basic Version April 7, 2011

§7. CENERATING PERMUTATIONS Lecture V Page 45

or the reverse sequence
DOWN () : Exty (), Extyp_1(7), ..., Exti(r).
E.g.,.UP(1-2-3) is equal to
(4-1-2-3), (1-4—-2-3), (1-2-4-3), (1-2—3—4).
Note that if7’ is anothern — 1)-permutation that is adjacent g then the concatenated sequences
UP(r); DOWN (7')
and
DOW N (m); UP(n")
are both adjacency orderings. We have thus shown:

LEMMA 9 (Johnson-Trotter ordering)f 7y, ..., 7,—1y iS an adjacency ordering of,,_, then the
concatenation of alternating DOWN/UP sequences

DOWN (m1); UP(ma); DOWN (73);- -+ s DOWN (7(r—1)1)

is an adjacency ordering of,,.

For example, starting from the adjacency orderin@-plermutationgm; = (1-2),m = (2—1)),
our above lemma says thBYOW N (1), U P(72) is an adjacency ordering. Indeed, this is the ordering
shown in @2).

Let us define th@ermutation graph G, to be the bigraph whose vertex sefSis and whose edges
comprise those pairs of vertices that are adjacent in theesaefined for permutations. We note that
the adjacency ordering produced by Leménia actually a cycle in the grapfi,,. In other words, the
adjacency ordering has the additional property that thedird the last permutations of the ordering are
themselves adjacent. A cycle that goes through every veftexgraph is said to belamiltonian. If
(m—mg— -+ - —my) (form = (n — 1)!) is a Hamiltonian cycle fo6,,—1, then it is easy to see that

(DOWN (71); UP(m3); - - - ; UP(m))

is a Hamiltonian cycle fo6,,.

132. The Permutation Generator. We proceed to derive an efficient means to generate suceessiv
permutations in the Johnson-Trotter ordering. We need progpiate high level view of this generator.
The generated permutations are to be used by some “perorutathsumer” such as our greedy linear
bin packing algorithm. There are two alternative views & telation between the “permutation gener-
ator” and the “permutation consumer”. We may view the coreuas calling the generator repeatedly,
where each call to the generator returns the next permuotaéitiernatively, we view the generator as

a skeleton program with the consumer program as a (shelfpstibe. We prefer the latter view, since
this fits the established paradigm of BFS and DFS as skeletmrams (see Chapter 4). Indeed, we
may view the permutation generator as a bigraph travetsalntplicit bigraph here is the permutation
graphG,,.

In the following, ann-permutation is represented by the arpay[1..n]. We will transformper by
exchange of two adjacent values, indicated by
perli] < per[i — 1] (23)

forsomei =2,...,n,0r
perli] < per[i+ 1]
wherei=1,...,n—1.

4 The generator in this viewpoint isa@-routine. It has to remember its state from the previous calll.

Chee-Keng Yap Basic Version April 7, 2011

§7. CENERATING PERMUTATIONS Lecture V Page 46

133. A Counter for n factorial. To keep track of the successive exchanges in Johnson-getter-

ator, we introduce an array efcounters
C[1..n]

where eachC]i] is initialized to1 but always satisfying the relation < C[i] < i. Of course,C/[1]
may be omitted since its value cannot change under ouragsirs. The array countér hasn! distinct
values. We say théth counter isfull iff C[i{] = i. Thelevel of the C is the largest indexX such
that the/-th counter is not full. If all the counters are full, the léwdé C is defined to bel. E.g.,
C[1..5] =[1,2,2,1, 5] has levell. We define théncrement of this counter array as follows: if the level
of the counter i¢, then (1) we incremenr®[¢] provided¢ > 1, and (2) we seC[i] = 1 forall i > /.
E.g., the increment of'[1..5] = [1, 2,2, 1, 5] gives[1, 2,2, 2, 1]. In code:

INC(C)
{— n.
while (C[{] =) A (£ > 1)
Cl--] 1.
If(¢>1)
Cl)++.
Return(¢)

Note that NC returns the level of the original counter value. This masra generalization of the usual
incrementation of binary counters (Chapter 6.1). For mstaforn = 4, starting with the initial value
of [1, 1, 1], successive increments of this array produce the followyalic sequence:

C2,3,4 = [1,1,1]—[1,1,2] = [1,1,3] — [1,1,4] — [1,2,1] (24)
- [1,2,2] = [1,2,3] = [1,2,4] — [1,3,1] — -~
— [2,3,3] —[2,3,4] — [1,1,1] — - .

Let the cost of incrementing the counter array be equalto1 — ¢ where/ is the level. CLAIM: the
cost to increment the counter array frgm1,...,1]t0[2,3,...,n]is < 2(n!). In proof, note thaC'[¢]

is updated after every! /¢! steps, so that the overafl}[¢] is updated! times. Hence the total number
of updates for thes — 1 counters is

nl4+(n— 1D+ 421 <2(n!),

which proves our Claim.

This gives us the top level structure for our permutationegator:

JOHNSON-TROTTER GENERATOR (SKETCH)
Input: natural numben > 2
> Initialization
per[l.n] < [1,2,...,n]. < Initial permutation
C[2..n] < [1,1,...,1]. < Initial counter value
> Main Loop
do
l— Inc(C)
UPDATE(/) <« The permutation is updates
CONSUME(fper) < Permutation is consumed
while (¢ > 1)

The shell macro CONSUME is application-dependent. As defawe simply use it to print the
current permutation.

Chee-Keng Yap Basic Version April 7, 2011

§7. CENERATING PERMUTATIONS Lecture V Page 47

134. How to update the permutation. We now describe the UPDATE macro. It uses the previous
counter level to transform the current permutation to the next permutat@r example, the successive
counter values ind4) correspond to the following sequence of permutations:

[1,1,1] [1 1,4]

DU (g3 g) L (g4 g3) 12 (1_ gy g9 gy 2 (4 1-3-9) (25)
22 (1og30) B2 (13 g o) 2 (13 0 4y (31 o 42T
223 (1-a-2-3) 22 (1-2-4-3) B2 (1-2-3-4) —

To interpret the above, consider a general step of the form

. leacarcal (x1—To—T3—T4) [e2:¢5 4l () —xh—ah—al)) - -

We start with the counter valyez, c3, c4] and permutatioriz, —zo—z3—x4). After callingl nc, the
counter is updated t@}, ¢4, ¢;], and it returns the level of [co, c3, c4]. If £ = 1, we may terminate;
otherwise/ € {2, 3,4}. We find the index such thatz; = ¢ (for somei = 1,2, 3,4). UPDATE will

then exchange; with its neighborr; ; or z;_,. The resulting permutation (g} —z5—x5—x).

In (25), we indicater; by an underscoreg;”. The choice of which neighbor{_; orz; ;) depends
on whether we are in the “UP” phase or “DOWN" phase of lelieLet U P[1..n| be a Boolean array
whereU P[¢] is true in the UP phase, and false in the DOWN phase when weenementing a counter
at level/. Moreover, the value of/ P[/] is changed (flipped) each tim&[/] is reinitialized tol. For
instance, in the first row of25), UP[4] = false and so the entry is moving down with each swap
involving 4. In the next rowlJ P[4] = true and so the entry is moving up with each swap.

Hence we modify our previousic macro to include this update:

INCREMENT(C')
Output: Incrementg”, updated/ P, and returns the previous level ©f
l — n.
while (C[¢] =¢) A (¢ > 1) < Loop to find the counter level
C[f] — 1;
UP[{] — -~UP[{]; < Flipsthe boolean valu& P|/]
l--.
If(¢>1)
Cle]++.
Return(¥).

For a given level, the UPDATE macro need to find the “positiohivhereper(i] = ¢ (i = 1,...,n).
We could search for this position i®?(n) time, but it is more efficient to maintain this information
directly: letpos[¢] denote the current position éf Thus thepos[1..n] is just the inverse of the array
per[l..n] in the sense that

per[pos[l]] = ¢ (L=1,...,n).

We can now specify the UPDATE macro to update hathandper:

5 In case we want to continue, the cdse 1 is treated as if = n. E.g., in £5), the case = 1 is treated ag = 4.

Chee-Keng Yap Basic Version April 7, 2011

§7. CENERATING PERMUTATIONS Lecture V Page 48

UPDATE(Y)

if (UP[())
per[pos[l]] < per[pos[f] + 1]; < modify permutation
pos[per[pos[f]]] < pos[f]; < update position array
pos[{]++; < update position array

else
per[pos[(]] < per[pos[¢] —1];
pos|per|[pos[t]]] — pos[l];
posll]- - ;

Thus, the final algorithm is:

JOHNSON-TROTTER GENERATOR
Input: natural numben > 2
> Initialization

per[l.n] < [1,2,...,n]. < Initial permutation

pos[l.n] — [1,2,...,n]. < Initial positions

C[2..n] < [1,1,...,1]. < Initial counter value
> Main Loop

do

¢ «— Increment(C);

UPDATE(/); < The permutation is updated

CONSUME(fer); < Permutation is consumed
while(¢ > 1)

Remarks:
1. In practice, we can introduce early termination critémta our permutation generator. For instance,
in the bin packing application, there is a trivial lower bduon the number of bins, namely =
[(>°, w;)/M7. We can stop when we found a solution withbins. If we want only an approximate
optimal, say within a factor df, we may exit when the we achiey¥e2b, bins.
2. We have focused on permutations of distinct objects. &®the objects may be identical, more
efficient techniques may be devised. For more informati@uapermutation generation, see the book
of Paige and WilsonZ]. Knuth’s much anticipated 4th volume will treat permutais; this will no
doubt become a principle reference for the subject.
3. The Java code for the Johnson-Trotter Algorithm is priegkim an appendix of this chapter.

EXERCISES

Exercise 7.1:
(a) Draw the adjacency bigraph corresponding-fmermutations. HINT: first draw the adjacency
graph for3-permutations and view-permutations as extension ®fpermutations.
(b) How many edges are there in the adjacency bigraphmérmutations?
(c) What is the radius and diameter of the bigraph in part ([§@e definition of radius and
diameter in Exercise 4.8 (Chapter 4).] &

Exercise 7.2: Another way to list all then-permutations in.S, is lexicographic ordering:
(x1—---—mp) < (x)—---—ax)) if the first indexi such thate; # z} satisfiest; < 2. Thus

Chee-Keng Yap Basic Version April 7, 2011

§7. CENERATING PERMUTATIONS Lecture V Page 49

the lexicographic smallest-permutation is(1—-2— - -- —n). Give an algorithm to generate
permutations in lexicographic ordering. Compare this afjm to the Johnson-Trotter algorithm.
o

Exercise 7.3: All adjacency orderings df- and3-permutations are cyclic. Is it true éfpermutations?

¢

Exercise 7.4: Two n-permutationsr, 7’ arecyclic equivalentif 7 = (x1—23— - —x,) andn’ =
(ri—2ip1— - —xp—x1—2T2— -~ —x;—1) fOr somei = 1,...,n. A cyclic n-permutation is an
equivalence class of the cyclic equivalence relation. Nlo&t there are exacthy permutations
in each cyclicn-permutation. LetS!, denote the set of cyclia-permutations. SS/| = (n —
1)!. Again, we can define the cyclic permutation gragh whose vertex set i§’, and edges
determined by adjacent pairs of cyclic permutations. Giveflicient algorithm to generate a
Hamiltonian cycle of&’,. &

Exercise 7.5: Suppose you are given a sebf n points in the plane. Give an efficient method to gen-
erate all the convex polygons whose vertices are fforeive the complexity of your algorithm
as a function ofu. &

END EXERCISES

Chee-Keng Yap Basic Version April 7, 2011

8A. APPENDIX: AvA CODE

Lecture V

Page 50

8A. APPENDIX: Java Code for Permutations

/**

* Per (mutations)
* Thi s generates the Johnson-Trotter permnutation order.

By n-pernutation,

Usage:
% j avac

Per.java

% java Per [n=3] [n=0O]

I f nFl,

Thus "java Per" will
(1,2,3), (1,3,2),

*
*
*
*
*
*
* will pri
*
*
*
*
*
*

nt all n-pernutations.

out put in verbose node.

print

(3,1,2), (3,2,1), (2,3,1)
See Lecture Notes for details of this algorithm

**/

public class Per {

/1 d obal variables
NNy,
/1 n-pernutations are being considered
/1 Quirk: Followi ng arrays are indexed from1l to n

static int n;

static int[] per;
static int[] pos;

static int[] C

static boolean[] UP;

11
11
11
11
11

represents t he current

Def aul t val ues n=

we nmean a permnutation of the synbols {1,2,...,n}.

3 and n¥0.

, (2,1,3).

n- per mut ati on

inverse of per: per[pos[i]]=i (for i=1..n)

Counter array: 1 <= (
UP[i]=true iff pos[i]
(going up) in the

/1 Display permutation or position arrays

FEELEEEEEErr b r bbb bbb rrrnny

static void showArray(int[] myArray, String nessage){
System out . print (nessage) ;
Systemout.print("(" + myArray[1]);

for (int i=2;
System out .

}

i<=n; i++)

print("," + nmyArray[i]);
Systemout.printin(")");

/] Print counter

FEEEEEEEErEr bbb r i rrrrr

static void showC(String m{
Systemout.print(n);

Systemout.print("(" + (2]);

for (int i=3;
System out .

}

i<=n; i++)

print("," + dil);
Systemout.printin(")");

/1l lIncrement counter
THLLELLEEE i rirririrrir
static int inc(){

int ell=n;

while ((Clell]==ell) && (ell>1)){

UP[el I]

= 1(UP[ell]);

/1 flip Boolean flag

i] <=i (for i=1..n)
i s increasing
current phase

Chee-Keng Yap

Basic Version

April 7, 2011

8A. APPENDIX: :AvA CODE Lecture V Page 51

Cell--1=1,;
}
if (ell>1)
Clell]++;
return ell; /1 level of previous counter val ue

}

/1l Update per and pos arrays
FEEEEEEE T bbb r i rrrrr
static void update(int ell){

int tnpSynbol ; /1 this is not necessary, but for clarity
if (UP[ell]) {
t npSynbol = per[pos[ell]+1]; // Assert: pos[ell]+1 nakes sense!
per[pos[ell]] = tnpSynbol;
per[pos[ell]+1] = ell;

pos[el |] ++;
pos[tnpSynbol] --;
} else {

t npSynbol

= per[pos[ell]-1]; [/ Assert: pos[ell]-1 nakes sense!
per[posf[ell]]=

t npSynbol ;

per[pos[ell]-1] = ell;
pos[ell]--;
pos[t npSynbol] ++;

}
}

/1 Main program
NNy
public static void main (String[] args)
throws java.io.| OException
{
/[Comrand |ine Processing
n=3; // default value of n
bool ean verbose=false; // default is false (corresponds to second argunment = 0)
if (args.!|ength>0)
n = Integer.parselnt(args[0]);
if ((args.length>1) && (Integer.parselnt(args[1]) !'= 0))
verbose = true;

[llnitialize
per = new int[n+1];

pos = new int[n+1];
C = newint[n+l];
UP = new bool ean[n+1];
for (int i=0; i<=n; i++) {
per[i]=i;
pos[i]=i;
ai]=1;
UP[i] =fal se;
}
/1 Setup For Loop
i nt count=0; /1 only used in verbose node
int ell=1;

Systemout. println("Johnson-Trotter ordering of "+ n + "-pernutations");
if (verbose)

showArray(per, count + ", level="+ell + " :\t");
el se

showArray(per, "");

Chee-Keng Yap Basic Version April 7, 2011

8A. APPENDIX: :AvA CODE Lecture V Page 52

/1 Mai n Loop
do {
ell =inc();
update(el lI');
if (verbose)
count ++;
showArray(per, count + ", level="+ell + " :\t");
el se
showArray(per, "");
} while (ell>1);

}/ /' main
}//class Per

References

[1] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. échlly adaptive data compression
scheme Comm. of the ACIVR9(4):320-330, 1986.

[2] E. Page and L. WilsonAn Introduction to Computational Combinatoric€ambridge Computer
Science Texts, No. 9. Cambridge University Press, 1979.

[3] T. W. Parsons. Letter: A forgotten generation of perrtiotes, 1977.

[4] R. Sedgewick. Permutation generation methd@ismputing Survey9(2):137-164, 1977.

[5] R. E. Tarjan.Data Structures and Network AlgorithmSIAM, Philadelphia, PA, 1974,

[6] J. S. Vitter. The design and analysis of dynamic huffmades.J. ACM 34(4):825-845, 1987.

Chee-Keng Yap Basic Version April 7, 2011

	 THE GREEDY APPROACH
	 Joy Rides and Bin Packing
	 Interval Problems
	 Huffman Code
	 Dynamic Huffman Code
	 Minimum Spanning Tree
	 Matroids
	 Generating Permutations
	 APPENDIX: Java Code for Permutations

