Lecture IV Page 1

“Liesez Euler, liesez Euler, c’est notre fiv@ a tous”

(Read Euler, read Euler, he is our master in everything)
— Pierre-Simon Laplace (1749-1827)

Lecture IV
PURE GRAPH ALGORITHMS

Graph Theory is said to have originated with Euler (1707-278The citizens of the city of
Konigsberg asked him to resolve their favorite pastimestios: is it possible to traverse all the 7
bridges joining two islands in the River Pregel and the maa, without retracing any pathSee
Figure 1(a) for a schematic layout of these bridges. Euler recogRizethis problem the essense of
Leibnitz’s earlier interest in founding a new kind of mathedios called “analysis situs”. This can be
interpreted as topological or combinatorial analysis irdera language. A graph corresponding to the 7
bridges and their interconnections is shown in Figl(®. Computational graph theory has a relatively
recent history. Among the earliest papers on graph algostare Boruvka’s (1926) and Jarnik (1930)
minimum spanning tree algorithm, and Dijkstra’s shorteghpalgorithm (1959). Tarjan is one of the
first to systematically design and analyze many of the basiglgalgorithms, including applications of
DFS which we will study.

@ (b)

Figure 1: The 7 Bridges of Konigsberg

Graphs are useful for modeling abstract mathematicalioalsiin computer science as well as in
many other disciplines. Here are some examples of graphs:

Adjacency between CountriesFigure2(a) shows a political map afcountries. Figur@(b) represents
a graph with vertex sét’ = {1,2,..., 7} representing these countries. An edgeg represents

1 This formerly Prussian city is now in Russia, called Kanmasly See an article by Walter Gautschi (SIAM Review, Vol.50,
No.1, 2008, pp.3-33) on occasion of the 300th Anniversitioler’s birth.

2 His paper was entitled “Solutio problematis ad geometridms pertinentis” (The solution of a problem relating to the
geometry of position).

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

Lecture IV Page 2

the relationship between countrieand; that share a continuous (i.e., connected) common bor-
der. Note that countrie3 and 3 share two continuous common borders, and so we have two
copies of the edg2—3.

Flight Connections A graph can represent the flight connections of a particutéine, with the set
V representing the airports and the &etepresenting the flight segments that connect pairs of
airports. Each edge will typically have auxiliary data asated with it. For example, the data
may be numbers representing flying time of that flight segment

Hypertext Links In hypertext documents on the world wide web, a documentgeitierally have links
(“hyper-references”) to other documents. We can repretbese linkages by a graph whose
verticesV represent individual documents, and each gdge) € V' x V indicates that there is
a link from document: to documenb.

@ (b)

Figure 2: (a) Political map df countries (b) Their adjacency relationship

A graph is fundamentally a set of mathematical relationbddancidence relations) connecting two
sets, a vertex séf and an edge sét. In Figurel(b), the vertex seti¥ = { A, B, C, D} and the edges
are the7 arcs connecting pairs of vertices. A simple notion of an edge £ is wheree is a pair of
verticesu, v € V. The pair can be ordered= (u,v) or unordere@ = {u, v}, leading to two different
kinds of graphs. We shall dendtsuch a pair by #—v”, and rely on context to determine whether an
ordered or unordered edge is meant. For unordered edgeswse-hv = v—u; but for ordered edges,
u—v # v—u unlessu = v. Note that this simple model of edges (as ordered or unoddea&s) is
unable to model the Konigsberg graph Figli¢e) since it has two copies of the edge betwdeand B.
Such multiple copies of edges requires the general formonlaf graphs as a relationship between two
independent sefg andE.

In many applications, our graphs have associated data suaimgerical values (“weights”) attached
to the edges and vertices. These are calledjhted graphs The flight connection graph above is an
example of this. Graphs without such numerical values alleccpure graphs. In this chapter, we
restrict attention to pure graph problems; weighted grapiisbe treated in later chapters. Many
algorithmic issues of pure graphs relate to the conceptsmfiectivity and paths. Many of these algo-
rithms can be embedded in one of two graph searching stestegiled depth-first search (DFS) and
breadth-first search (BFS).

What can be impure of
graphs?

Shell Programming
again!

Some other important problems of pure graphs are: testingifjraph is planar, finding a maxi-
mum matching in a bigraph, and testing isomorphism of bigsap Tarjan {{] was one of the first to
systematically study the DFS algorithm and its applicatioA lucid account of basic graph theory is
Bondy and Murty []; for a more algorithmic treatment, see Sedgewigk [

3 We have taken this highly suggestive notation from Seddesviiook [3].

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§1. VARIETIES OF GRAPHS Lecture IV Page 3

§1. Varieties of Graphs

In this book, “graphs” refer to either directed graphs (fdighs”) or undis
rected graphs (“bigraphs”). Additional graph terminolagjgollected in Lect
ture | (Appendix A) for reference.

q1. Set-Theoretic Notations for Simple Graphs. Although there are many varieties of graph con-
cepts studied in the literature, two main ones are emphasizihis book. These correspond to graphs
whose edges—v aredirected or undirected. Graphs with directed edges are caltbcbcted graphs

or simply,digraphs. Undirected edges are also said todidirectional, and the corresponding graphs
are known asindirected graphsor bigraphs.

A graphG is basically given by two setd/ and E. These are called theertex setandedge set
respectively. We focus on the “simple” versions of threemadrieties of graphs. The terminology
“simple” will become clear below.

For any sel” and integek > 0, let

1%
vk 2V (k) (1)

denote, respectively, thefold Cartesian product of V', power setof V' and theset of k-subsetsof V.
The first two notationsi(* and2"') are standard notations; the last one is less so. Theséamstanve
a certain “umbral quality” because they satisfy the follogrequations on set cardinality:

()l= ()

We can define our 3 varieties of simple graphs as follows:

umbra = shade or
shadow (Latin)

V=V =2

e A hypergraph is a pairG = (V, E) whereE C 2V,
e A directed graph (or simply,digraph) is a pairG = (V, E) whereE C V2.
e A undirected graph (or* simply, bigraph) is a pairG = (V, E) whereE C ().

In all three cases, the elementsiofare calledvertices Elements ofF are calleddirected edgedor
digraphsundirected edgedor bigrpahs, andyperedgesfor hypergraphs. Formally, a directed edge
is an ordered paifu, v), and an undirected edge is a $et v}. But we shall also use the notatiop-v

to represent andgewhich can be directed or undirected, depending on the confexis convention is
useful because many of our definitions cover both digrapti®araphs. Similarly, the terigraph will
cover both digraphs and bigraphs. Hypergraphs are songetiaiedset systemgsee matroid theory
in Chapter 5).

Sou—wv can mean
(u,v) or{u,v}!

An edgeu—v is said to bencident on u andv; conversely, we say andv boundsthe edge{u, v}.
This terminology comes from the geometric interpretatibedges as a curve segment whose endpoints
are vertices. In case—v is directed, we call, the start vertex andv thestop vertex

If G = (V,E)andG" = (V', E’) are graphs such thdf C V' andE C E’ then we callG a
subgraphof G'. WhenE = E' N (‘2/) we callG’ the subgraph off that isinduced by V.

4 While the digraph terminology is fairly common, the bigraiminology is peculiar to this book. We hope that this
convenient and suggestive terminology find wider adoption.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§1. VARIETIES OF GRAPHS Lecture IV Page 4

92. Graphical Representation of Graphs. Bigraphs and digraphs are “linear graphs” in which each
edge is incident on one or two vertices. Such graphs haveatartaphical (i.e., pictorial) represen-
tation: elements of are represented by points (small circles, etc) in the plawkestements oF are
represented by finite curve segments connecting thesespoint

(a) bigraph (b) digraph

Figure 3: Two graphs

In Figure 3(a), we display a bigraph(V,E) where V. = {a,b,c,d,e} and E =
{a—b,b—c,c—d,d—a,c—e, b—d}. In Figure3(b), we display a digrapti’, £) whereV = {1,2,...,6}
andE = {1-5,5—4,4-3,3-2,2—1,1-6,2—6,3—6,4—6,5—6,5—2,5—3,2—3}. We display a di-
graph edge:—v by drawing an arrow from the start vertexo the stop vertex. E.g., in Figure3(b),
vertex6 is the stop vertex of each of the edges that it is incident analBthese edges are “directed”
towards vertex. In contrast, the curve segments in bigraphs are undirébtetirectional).

€3. Non-Simple Graphs. Our definition of bigraphs, digraphs and hypergraphs is inetnly rea-
sonable one, obviously. To distinguish them from other fpdsspproaches, we call the graphs of our
definition “simple graphs”. Let us see how some non-simpéphgs might look like. An edge of the
form u—u is called aloop. For bigraphs, a loop would correspond to a&etu} = {u}. But such
edges are excluded by definition. If we want to allow loopsmusst defineZ as a subset df!) U (V).
Note that our digraphs may have loops, which is at variandk some other definitions of “simple
digraphs”. In Figured(b) and in2(b), we see the phenemenonmilti-edges(also known aparallel

edge3. These are edges that can occur more than once in the graph.

More generally, we views as a multiset. Anultiset S is an ordinary sef together with a function
u: S — N. We call S theunderlying set of S and u(«) is the multiplicity of z € S. E.g., if
S ={a,b,c} andu(a) = 1, u(b) = 2, u(c) = 1, then we could displag as{a, b, b, ¢}, and this is not
the same as the multisgt, b, b, b, ¢}, for instance.

94. Special Classes of Graphs. In Appendix (Lecture 1), we defined special graphs such aslacy
graphs and trees. We mention note some additional classgapiis here.

First consider bigraphs. The complete grdph and the complete bipartite grapgty,, ,, were also
defined in Lecture | Appendix. See Figutéa,b) for the cases dk; and K3 3. In generalbipartite
graphsare those whose vertex sétcan be partitioned in two disjoint setsw B = U such that each
edge is incident on some vertexihand on some vertex iB. Instead of writingG = (V, E), we may
write G = (A, B, V) for such a bipartite graph witly C A x B. Bipartite graphs are important in
practice because they model relations between two setgitiésriman versus woman, students versus
courses, etc).

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§1. VARIETIES OF GRAPHS Lecture IV Page 5

@) @) (b)

O—@
(&—©

2 (d

Figure 4: (a)Ks, (&) K5, (b) K33, () L4, (d)Cy

Planar graphs are those bigraphs which can be embedded in the Euclideae piech that no two
edges cross. Informally, it means that we draw them on a miepaper so that the curves representing
edges do not intersect. Planar graphs have many specia@rtiesp for instance, a planar graph with
vertices has at most — 6 edges. The two smallest examples of non-planar graphs ersotlealled
Kuratowski graphd<s and K5 3 in Figure4(a,b). We have re-drawf’; in Figure4(a’), this time to
minimize the number of edge crossings. The graph; is also known as the “utilities graph”. TheWhy is K3 3 so called?
proof that these two graphs are nonplanar are found in Eses¢in this section, and also in Appendix
of Chap. 1).

We can also define thiéne graphs L,, whose nodes arél, ..., n}, with edgesi—i + 1 for i =
1,...,n — 1. Closely related is theyclic graphs C,, which is obtained froni.,, by adding the extra
edgen—1. These are illustrated in Figuséc,d).

These graphs<,,, K., », L., C,, are usually viewed as bigraphs, but there are obvious digrap
versions of these.

Graph Isomorphism. The concept of graph isomorphism (see Appendix,
Lecture I) is important to understand. It is implicit in maofyour discussions
that we are only interested in grapiys to isomorphismFor instance, we de
fined K,, (n € N) as “the complete graphs envertices” (Appendix, Lecturg
1). But we never specified the vertex setldf,. This is becausé,, is really
an isomorphism class. For instance= (V, E) whereV = {a,b, ¢, d} and
E = (%) andG’ = (V/,E') whereV’ = {1,2,3,4} andE' = (%) are
isomorphic to each other. Both belong to the isomophisnsdias Another
example of two isomorphic graphs is the Kuratowski grdph but repre-
sented differently as in Figur{a) and Figured(a’). There is usually a waly
to avoid isomorphism classes, but picking a canonical ssative. In the
case ofK,,, we can just view it as a bigraph whose vertex set is a paaticul
set,V,, = {1,2,...,n}. Then the edge set (in case &f,) is completely
determined. Likewise, we defink, andC,, above as graphs on the vertex

set{1,2,...,n} because this allows a compact description. Neverthelgss, i
should be understood that we intend to viéw andC,, as an isomorphisrr
class.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§2. PaTH CONCEPTS Lecture IV Page 6

95. Auxiliary Data Convention. We may want to associate some additional data with a gragh. Su
pose we associate a real numbE(e) for eache € E. Then grapiG = (V, E; W) is calledweighted
graph with weight functionliv : £ — R. Again, suppose we want to designate two verticéss V' as
the sourceanddestination, respectively. We may write this graph@s= (V, E; s, t). In general, aux-
iliary data such a#V, s, t will be separated from the pure graph data by a semi-cdlos, (V, E; - - -).
Alternatively,G is a graph, and we want to add some additional data we may also writdG’; d, d’),
etc.

EXERCISES

Exercise 1.1: (Euler) Convince the citizens of Kdnigsberg that theredsway to traverse all seven
bridges in Figurel(a) without going any bridge twice. &

Exercise 1.2: Suppose we have a political map as in Figd¢a), and its corresponding adjacency
r(‘a/lation is a multigraplds = (V, E') whereFE is not a multiset whose underlying set is a subset of
((g))Suppose vertex has the property that there is a unique vertesuch thatu—v is an edge.
What can you say about the country corresponding?o
(b) Suppose:—v has multiplicity> 2. Consider the sé/ = {w € V : w—v € E,w—u € E}.
What can you say about the 3&t? &

Exercise 1.3: Prove or disprove: there exists a bigragh= (V, E) where|V| is odd and the degree of
each vertex is odd. &

Exercise 1.4:
(i) How many bigraphs, digraphs, hypergraphs are there wertices?
(i) How many non-isomorphic bigraphs, digraphs, hypeptsare there on vertices? Estimate
these with upper and lower bounds. &

Exercise 1.5: A trigraph isG = (V, FE) whereE C (‘g) An elementf € E is called aface (not
“edge”). A pair{u,v} € (‘2/) is called aredgeprovided{u, v} C f for some facef; in this case,
we sayf is incident on e, ande bound f). The trigraph is an (abstractyrfaceif each edge
bounds exactly two faces. How many nonisomorphic surfacedreere onn = |V| vertices?
First consider the case= 4,5, 6. &

END EXERCISES

§2. Path Concepts

We now go into some of these concepts in slightly more ddtédilst basic concepts of pure graphs
revolve around the notion of a path.

LetG = (V, E) be a graphi(e., digraph or bigraph). Il.—v is an edge, we say thatis adjacent
to u, and alsou is adjacent from v. The typical usage of this definition of adjacency is in a pang
loop:

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§2. PaTH CONCEPTS Lecture IV Page 7

For each v adjacent ta,

do“...v.."7
Letp = (vo,v1,,...,vk), (k > 0) be a sequence of vertices. We gah path if v; is adjacent to
vi—q foralli =1,2,..., k. Inthis case, we can denqgiéy (vg—v1— - - - —vg).

Thelength of p is k (notk + 1). The path igrivial if it has length0, p = (vg). Call vy is thesource
andvy, thetarget of p. Bothvg andv areendpointsof p. We also say is a pathfrom v, to v The
pathp is closedif vy = v, and it issimpleif all its vertices, with the possible exception@f = vy, are
distinct. Note that a trivial path is closed and simple. Téaerseof p = (vo—v1— - - - —vy) is the path

Pt = (

Vg —Uk—1— """ =)

In a bigraphyp is a path iffp’ is a path.

96. The Link Distance Metric. Definedg(u,v), or simplyd(u,v), to be the minimum length of a
path fromu to v. If there is no path frona to v, thend(u, v) = oo. We also calb(u, v) thelink distance
from w to v; this terminology will be useful whe#hi(u, v) is later generalized to weighted graphs, and
when we still need to refer to the ungeneralized concept.foll@ving is easy to see:

e (Non-negativity)y(u, v) > 0, with equality iffu = v.
e (Triangular Inequality) (u,v) < §(u, w) + §(w, v).
e (Symmetry) Wher@ is a bigraph, thed(u, v) = (v, u).

These three properties amount to saying that v) is a metric onV" in the case of a bigraph. If
d(u,v) < oo, we sayv is reachable fromw.

Suppos€vy—v1— - - - —v) is aminimum link path (sometimes called “shortest path”) between
vg andwg. Thus,dé(vg, vx) = k. Then we have the following basic property: forak= 0,1, ..., k,
d(vo,v;) = i. Thisis also called the “dynamic programming principlef foinimum link paths (we
will study dynamic programming in Lecture 7).

q7. Subpaths. Letp andq be two paths:

p= (UO_UI_"'—’Uk), q= (UO—Ul—"'—ue),

If p terminates at the vertex where patbegins, i.e.pr, = ug, then the operation afoncatenationis
well-defined. The concatenation pfindq gives a new path, written

P;q = (Vo—V1— " —Vp—1—Vp—UI—Ug— " —Up).

Note that the common vertey andug are “merged” inp; ¢q. Clearly concatenation of paths is associa-
tive: (p;q);r = p; (¢q;r), which we may simply write ag; ¢; ». We say that a path containsg as a
subpathif p = p’; q; p” for somep’, p”. If in addition, ¢ is a closed path, we caxciseq from p to
obtain the path’;p”. Whenever we write a concatenation expression such;ag, it is assume that
the operation is well-defined.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

Distance notation:
dc(u,v)

§2. PaTH CONCEPTS Lecture IV Page 8

q8. Cycles. Two paths, ¢ arecyclic equivalentif there exists paths, ' such that

We writep = ¢ in this case.

For instance, the following four closed paths are cycliciegjent:
(1-2-3-4-1) = (2-3-4-1-2) = (3—4-1-2-3) = (4—1-2-3—-4).
The first and the third closed paths are cyclic equivalenabse of the following decomposition:

(1-2—3-4-1) = (1-2-3); (3—4—1), (3—4—1-2-3) = (3—4—1); (1-2—3).

If p=r;r" andr’;r is defined, them must be a closed path because the soureeanfd the target
of ’ must be the same, and so the source and targetoé identical. Similarlyg must be a closed
path.

It is easily checked that cyclic equivalence is a matherabhgquivalence relation. We define a
cycleas an equivalence class of closed paths. If the equivaldasg ofp is the cycleZ, we callp a
representativeof Z; if p = (vg, v1, ..., vx) then we writeZ as

Z =[p] = [vi—v2— - —vg] = [v2—v3— - —vp—v1].

Note that ifp hask + 1 vertices, therjp] is written with only % vertices since the last vertex may be
omitted. In case of digraphs, we can have self-loops of tha fo—« andp = (u,u) is a closed path.
The corresponding cycle {&]. However, the trivial patlp = (vg) gives rise to the cycle which is an
empty sequencg = []. We call this therivial cycle. Thus, there is only one trivial cycle, independent
of any choice of vertexy.

Path concepts that are invariant under cyclic equivaleneéteansferred” to cycles automatically.
Here are some examples: [Bt= [p] be a cycle.

Thelength of Z is the length op.

SayZ is simpleif p is simple.

We may speak of subcycles &t if we excise zero or more closed subpaths from a closed;path
we obtain a closed subpaghcall [¢] asubcycleof [p]. In particular, the trivial cycle is a subcycle
of Z. For instance|l —2—3] is a subcycle of

[1-2—a—b—c—2—3—d—e—3).

Thereverseof Z is the cycle which has the reversepoés representative.

Acycle Z = [p] is trivial if p is a trivial path. So a trivial cycle is writtelfvg)] = [].

We now define the notion of a “cyclic graph”. For a digraphwe say it iscyclic if it contains any
nontrivial cycle. But for bigraphs, this simple definitiorilwnot do. To see why, we note that every
edgeu—uv in a bigraph gives rise to the nontrivial cydle, v]. Hence, to define cyclic bigraphs, we
proceed as follows: first, define a closed path (vo—v1— - —vg—_1,v0) to bereducible if £ > 2
and forsome =1, ...k,

Vi—1 = Uit+1

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§2. PaTH CONCEPTS Lecture IV Page 9

where subscript arithmetic are moduto(so v, = vp andwvi;1 = wv1). Otherwisep is said to be
irreducible. A cycle Z = [p] is reducible iff any of its representatiyas reducible. Finally, a bigraph
is said to becyclic if it contains some irreducible non-trivial cycle.

Let us explore some consequences of these definitions oapbigr by definition, the trivial path
(vp) is irreducible. Hence the trivial cycle] is irreducible. There are no cycles of lengthand any
cycle[u, v] of length2 is always reducible. Hence, irreducible non-trivial cycleave length at least
If a closed pathvy, . .., vk—1, vp) is reducible and > 3, then it is a non-simple path.

99. Connectivity. Let G = (V, E) be a graph (either di- or bigraph). Two vertices in G are
connectedif there is a path from: to v and a path from to «. Equivalently,d(u,v) andd(v,u) are
both finite. Clearly, connectedness is an equivalenceioalan V. A subsetC' of V' is aconnected
componentof G if it is an equivalence class of this relation. For short, waynsimply callC' a
componentof G. Alternatively,C' is a non-empty maximal subset of vertices in which any two are
connected. Thu¥ is partitioned into disjoint components.df has only one connected component, it
is said to beconnected When|C| = 1, we call it atrivial component. The subgraph off induced by
C'is called acomponent graphof G. NOTE: It is customary we may add the qualifier “strong” when
discussing components of digraphs. Thus strong comporseaiigays a reference to digraphs.

\ @ (D

®\ (9 @
Q%

(a) (b) (c)

Figure 5: (a) Digraplt7s, (b) Component graph af' = {2, 3,5}, (c) Reduced grap

For example, the grapfis in Figure5(a) hasC' = {2, 3,5} as a component. The component graph
corresponding t@' is shown in Figuré(b). The other components 6fare{1}, {4}, {6}, all trivial.

Given G, we define theeduced graphG¢ = (V¢, E€) whose vertices comprise the components
of G, and whose edges af€, C’) € E° such that there exists an edge from some verteX tn some
vertex inC’. This is illustrated in Figuré(c).

CLAIM: G*¢is acycic. In proof, suppose there is a non-trivial cy£lein G°. This translates into a
cycleZ in G thatinvolves at least two componeiitsC’. The existence of contradicts the assumption
thatC, C’ are distinct components.

Although the concept of connected components is meanifgflligraphs and digraphs, the concept
of reduced graph is trivial for bigraphs: this is becauseglage no edges i@ whend is a bigraph.
Hence the concept of reduced graphs will be reserved foapligr only. For bigraphs, we will intro-
duce another concept callbitonnected componentdelow. WhenG is a bigraph, the notatio&“
will be re-interpreted using biconnectivity.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§3. GRAPH REPRESENTATION Lecture IV Page 10

€10. DAGs and Trees. We have defined cyclic bigraphs and digraphs. A gra@ciglicif it is not

cyclic. The common acronym fordirected acyclic graphis DAG. A tree is a DAG in which there is

a vertexu called theroot such that there exists a unique path frogito any other vertex. Clearly, the

root is unique. Trees, as noted in Lecture Ill, are ubiqustoucomputer science. Motto: “know thy tree”

A free tree is a connected acyclic bigraph. Such a tree it has exg¢tly- 1 edges and for every
pair of vertices, there is a unique path connecting themsé@tawo properties could also be used as the
definition of a free tree. Aooted treeis a free tree together with a distinguished vertex calleddbt.

We can convert a rooted tree into a directed graph in two wayslirecting each of its edges away from
the root (so the edges are child pointers), or by directiru ealge towards the root (so the edges are
parent pointers).

EXERCISES
Exercise 2.1: Letu be a vertex in a grap8y.
(a) Canu be adjacent to itself if7 is a bigraph?
(b) Canu be adjacent to itself if7 is a digraph?
(c) Letp = (vg,v1,v2,vp) be a closed path in a bigraph. Cabe non-simple? &

Exercise 2.2: Define N (m) to be the largest value of such that there is aonnectedigraphG =
(V, E) with m = |F| edges andh = |V| vertices. For instancéy (1) = 2 since with one edge,
you can have at mo&tnodes in the connected graph We also see tha¥ (0) = 1. What is
N (2)? Prove a general formula fa¥ (m).

&

Exercise 2.3: Give an algorithm which, given two closed paths= (vo—v1—---—v;) andq =
(up—u1—- - - —uy), determine whether they represent the same cycle (i.eecarealent). The
complexity of your algorithm should b@(%?) in general, buO(k) for whenq is a simple cycle.
NOTE: Assume that vertices are integers, and the closedppattfvo— - - - —vy,) is represented
by an array of integerg|0..k], wherep[i] = v; andp[0] = p[k]. &

END EXERCISES

§3. Graph Representation

The representation of graphs in computers is relativegigiitforward if we assume array capabili-
ties or pointer structures. The three main representagions

e Edge list: this consists of a list of the vertices(@fand a list of the edges ¢f. The lists may be
singly- or doubly-linked. If there are no isolated vertice® may omit the vertex list. E.g., the
edge list representations of the two graphs in Figneuld be “a—b" denotes an edge

{a—b,b—c,c—d,d—a,d—b,c—e}

and
{1-6,2—1,2-3,2—6,3-2,3—6,4—3,4—6,5—2,5—3,5—6}.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§3. GRAPH REPRESENTATION Lecture IV Page 11

e Adjacency list: a list of the vertices @f and for each vertex, we store the list of vertices that
are adjacent to. If the vertices adjacenttoarev,, v, . . ., v, We may denote an adjacency list
foru by (u : vi,ve,...,v,). E.g., the adjacency list representation of the graphsgareB are

{(a:0,d),(b:a,d,c),(c:b,d,e),(d:a,b,c),(e:c)}

and
{(1:5,6),(2:1,3,6),(3:2,6),(4:3,6),(5:4,6),(6:)}

Typically, we have an array[1..n] indexed by the vertices. Each array enttfy] points to the
adjacency list for vertex, represented by a linked list.

e Adjacency matrix: this is @ x n Boolean matrix where thé, j)-th entry is1 iff vertex j is
adjacent to vertex E.g., the adjacency matrix representation of the grapkgjure3 are

1 00001 1

a 01010
2 101001

b 101 10
3 01000 1

¢ 010 1 1
, 4 001001

d 11100
) 00100 5 01110 1
b e d . 6 000000
1 23 45 6

Note that the matrix for bigraphs are symmetric. The adjagematrix can be generalized to store
arbitrary values to represent weighted graphs.

q11. Size Parameters. Two size parameters are used in measuring the computatiomgdlexity of
graph problems[V'| and|E|. These are typically denoted byandm. Thus the running time of graph
algorithms are typically denoted by a function of the fdfifr,). A linear time algorithm would have
T(n,m) = O(m + n). Itis clear that», m are not independent, but satisfy the boufids m < n?.
Thus, the edge list and adjacency list methods of represgegtaphs us®(m + n) space while the last
method use®)(n?) space.

If m = o(n?) for graphs in a family, we sayg is asparsefamily of graphs; otherwise the family is
dense Thus the adjacency matrix representation is not a spdicéeat way to represent sparse graphs.
Some algorithms can exploit sparsity of input graphs. Fange, the familyG of planar bigraphs is
sparse because (as noted earlierk 3n — 6 in such graphs (Exercise). Planar graphs are those that
can be drawn on the plane without any crossing edges.

912. Arrays and Attributes. If A is an array, and < j are integers, we writél[i..j] to indicate that
the arrayA hasj — i + 1 elements which are indexed froio j. ThusA contains the set of elements
{A[i], Ali +1],..., A[5]}.

In description of graph algorithms, it is convenient to asstthat the vertex set of a graphlis=
{1,2,...,n}. The list structures can now be replaced by arrays indexetidyertex set, affording
great simplification in our descriptions. Of course, arralg® has more efficient access and use less
space than linked lists. For instance, arrays allows usetatié over all the vertices using an integer
variable.

Often, we want to compute and store a particakiibute (or property) with each vertices. We can
use an arrayi[1..n] whereA[i] is the value of thed-attribute of vertex. For instance, if the attribute
values are real numbers, we often céli] the “weight” of vertex:. If the attribute values are elements
of some finite set, we may cafl[i] the “color” of vertexi.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§4. BREADTH FIRST SEARCH Lecture IV Page 12

€13. Coloring Scheme. In many graph algorithms we need to keep track of the procgstatus of
vertices. Initially, the vertices are unprocessed, andlfirtaey are processed. We may need to indi-
cate some intermediate status as well. Viewing the statoslass, we then have a three-color scheme:
whi t e orgr ay or bl ack. They correspond to unprocessed, partially processeda@ngletely pro-
cessed statuses. Alternatively, the three colors may bedoahseen, seen anddone (resp.), or
0,1, 2. Initially, all vertices are unseen or white @r The color transitions of each vertex are always in

this order:
white = gray = bl ack,

unseen = seen = done (2)
0 =1=2.

For instance, let the color status be represented by thgentaraycol or [1..n], with the convention
thatwhi t e/unseenis0, gr ay/seenis 1 andbl ack/done is 2. Then color transition for vertexis
achieved by the increment operatiosiLor[i]++. Sometimes, a two-color scheme is sufficient: in this
case we omit thgr ay color or thedone status.

EXERCISES

Exercise 3.1: The following is a basic operation for many algorithms: givgedigraphG represented
by adjacency lists, compute the reverse digragh’ in time O(m + n). Recall (Lecture 1,
Appendix) thatu—wv is an edge ofy iff v—u is an edge of7"¢?. Show that your algorithm has
the stated running time. &

Exercise 3.2: Let GG is a planar bigraph.
(a) Show that if a planar embedding@fhasf faces, thew —e + f = n —m + f = 2 where
v=mn=|V|,e =m = |E|. Thus,f is independent of the choice of embedding. HINT: use
induction onf. Note that wherf = 1, G is a free tree.
(b) Show thae > 3f. HINT: Count the number of (edge-face) incidences in two svalyy
summing over all edges, and by summing over all faces.
(c) Conclude that < 3v — 6. When is equality attained? &

Exercise 3.3: The average degree of vertices in a planar bigraph is lea$itha &

Exercise 3.4: Let G be a planar bigraph with0 vertices. What is the maximum number of edges it
may have? &

Exercise 3.5: Prove thatk(s 5 is nonplanar. HINT: Use the fact that every face of an embegidf
K3 3 isincident on at least 4 edges. Then counting the numbgidat, face) incidences in two
ways, from the viewpoint of edges, and from the viewpointaafes. From this, obtain an upper
bound on the number of faces, which should contradictioeEformulav — e + f = 2. O

END EXERCISES

64. Breadth First Search

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§4. BREADTH FIRST SEARCH Lecture IV Page 13

Hey, haven’t we seen

A graph traversal is any systematic method to “visit” each vertex and each eflggraph. In this .
grap ysy ggrap this before for trees?

section, we study two main traversal methods, known as BEISD&S. The graph traversal problem
may be traced back to the Greek mythology about threadimyitfirmazes (Theseus and the Minotaur
legend), and to Trémaux’s cave exploration algorithm & 1Bth Century§]. Tarjan’s 1972 paper on
DFS was seminal in Computer Science.

Here is the generic graph traversal algorithm: the idea imddk the vertices with “colors” where
the colors are initiallunseen, and after we have visited the vertex, we col@éen:

GENERIC GRAPH TRAVERSAL:

Input: G = (V, E}; sp) wheres is source nod
Color all vertices as initiallpinseen.
Mark sy asseen, and insert inta
While @ is non-empty

u — Q.Remove()
For each vertex adjacent tau
If visunseen,
color it asseen
Q.insert (v)

11%)

This algorithm will reach all nodes that are reachable framgources,. To visit all nodes, we can
use another driver routine which invokes this traversatineuwith different choices for source nodes
(see Below). The se is stored in some container data-structure. There are @valatd containers:
either a queue or a stack. These two data structures giveoriee two algorithms for graph traversal:
Breadth First Search (BFS) andDepth First Search(DFS), respectively.

Both traversal methods apply to digraphs and bigraphs. Mew®FS is often described for bi-
graphs only and DFS for digraphs only. We generally folloig tradition. In both algorithms, the input
graphG = (V, E; s¢) is represented by adjacency lists, agde V' is called thesourcefor the search.

The idea of BFS is to systematically visit vertices that a¥arer tos, before visiting those vertices
that are further away. For example, suppose we start segréfum vertexs, = « in the bigraph of
Figure3(a). From vertex:, we first visit the vertices andd which are distancé from vertexa. Next,
from vertexb, we find vertices andd that are distancé away; but we only visit vertex but not vertex
d (which had already been visited). And so on. The trace ofgbésch can be represented by a tree as
shown in Figures(a). It is called the “BFS tree”.

O—6—Q

@) (b)

Figure 6: (a) BFS tree. (b) Non-tree edges.

More precisely, recall that u, v) denote the (link) distance fromto v in a graph. The characteristic

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§4. BREADTH FIRST SEARCH Lecture IV Page 14

property of the BFS algorithm is that we will visitbeforev whenever
0(s0,u) < 6(s0,v) < 0. 3)

If §(sp,u) = oo, thenu will not be visited froms,. The BFS algorithm does not explicitly compute the
relation @) to decide the next node to visit: we will prove below thastisi a consequence of using the
queue data structure.

q14. The BFS Shell. The key to the BFS algorithm is ttpieue ADT which supports the insertion
and deletion of an item following the First-In First-Out {®) discipline. IfQ is a queue and an item,
we denote the insert and delete operations by

Q.enqueue(x), x < Q.dequeue(),

respectively. To keep track of the status of vertices we ugk the color scheme in the previous sec-
tion (see B)). We could use three colors, but for our current purposes,suffice: whi t e/gr ay or
unseen/seen.

We formulate the BFS algorithm as a “skeleton” or shell nogiti

BFS SHELL

Input: G = (V, E; so) agraph (bi- or di-).

Output: This is application specific.

> Initialization:
< If this is standalone, then color all vertices excepasunseen
Initialize the queué) to contain justs.

VISIT(sp,nil)| < Visitv as root

> Main Loop:
while Q # () do
u < @Q.dequeue(). < Begin processing
For each v adjacentta: do < Process edge—v
|PREVISIT(,u)| < Previsito fromu
if visunseen then
Colorv seen

VISIT(v,u)| < Visitv fromu

Q.enqueue(v).

10 POSTVISIT()
11 CLEANUP(G)

N R O

© 0o N O W

Our shell program contains the following shell macros
INIT, PREVISIT, VISIT, POSTVISIT, CLEANUP 4)

which will be application-specific. These macros may be mssb to be null operations unless other-
wise specified. The term “macro” also suggests only smallacal (i.e.,O(1) time) modications. An
application of BFS will amount to filling these shell macroshnactual code. We can usually omit the
PREVISIT step, but se&b6 for an example of using this macro.

5 Alternatively, we could fold the coloring steps into thesaams, so that they may be non-null. But we choose to expose
these coloring steps in our BFS shell.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§4. BREADTH FIRST SEARCH Lecture IV Page 15

Note that VISIT,u) represents visitingv from w«; a similar interpretation holds for
PREVISIT@,u). We alloww = nil in casev is the root of a BFS tree. If this BFS algorithm is a
standalone code, then INIE(sg) may be expected to initialize the color of all verticesutoseen,
andsg has colorseen. Otherwise, the initial coloring of vertices must be dontobecalling BFS.

There is an underlying tree structure in each BFS compurtatie root issq. If v is seen fromu
(see Line 6 in the BFS Algorithm), then the edgew is an edge in this tree. This tree is called the
BFS tree(see Figures(a)). ABFS listing at sg is a list of all the vertices reachable frosm in which
a vertexu appears before another vertexn the list whenever3) holds. E.g., leG be the bigraph in
Figure3(a) ands is vertexa. Then two possible BFS listing atare

(a,b,d,c,e) and (a,d,b,c,e). (5)

We can produce such a listing just by enumerating the vertiéehe BFS tree in the order they are
visited.

q15. Applications of BFS. We now show how to program the shell macros in BFS to solveiatyar
of problems:

e Suppose you wish to print a BFS listing of the vertices rebtshftom sy. Then POSTVISITY)
simply prints the key (or some identifier or name)aOther macros can remain null operations.

e Suppose you wish to compute the BFS tiéelf we view T" as a set of edges, then INKF(so)
could initialize the sef’ to be empty. In VISIT(,), we add the edge—v to T'.

e Suppose you wish to determine the degjta of each vertex: in the BFS tree. Then INITE, s¢)

could initialize .
| oo if u # s,
dlu] = { 0 if u=so.

and in VISIT@, u), we setd[v] = 1 + d[u]. Also, the coloring scheme (unseen/seen) could
be implemented using the arrajl..n| instead of having a separate array. More precisely, we
interpret a node to be unseen ifflu] = cc.

e Suppose you wish to detect cycles in an bigraph. Let us asthenaput graph is connect. In
PREVISIT(v, u), if v is seen, then you have detected a cycle, and you return "CECLI

You only reach the final CLEANUE) (step 11) if your did not return earlier through PREVISIT.
So, CLEANUP simply returns "ACYCLIC".

916. BFS Analysis. We shall derive basic properties of the BFS algorithm. Thesalts will apply
to both bigraphs and digraphs unless otherwise noted. Tloavfog two properties are often taken for
granted:

LEMMA 1.
(i) The BFS algorithms terminates.
(ii) Starting from sources, the BFS algorithm visits every node reachable frgm

We leave its proof for an Exercise. For instance, this assusehat each vertex of the BFS tree will
eventually become the front element of the queue.

Leto(v) > 0 denote thelepth of a vertexv in the BFS tree. Note that if is visited fromu, then
d(v) = 6(u) + 1. We prove a key property of BFS:

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§4. BREADTH FIRST SEARCH Lecture IV Page 16

LEMMA 2 (Monotone0 — 1 Property). Let the vertices in the queu@ at some time instance be
(u1,us,...,ux) for somek > 1, with u; the earliest enqueued vertex aagthe last enqueued vertex.
The following invariant holds:

O(ur) < o(ug) < -+ < 6(ug) < 1+ 0(ur). (6)

Proof. The result is clearly true whefn = 1. Supposéuy,...,uy) is the state of the queue at the
beginning of the while-loop, and) holds. In Line 3, we removed; and assign it to the variabte
Now the queue contain(so, . .., uy) and clearly, it satisfies the corresponding inequality

8(us) < b(ug) <+ < 6(ur) <1+ 0(us).

Suppose in the for-loop, in Line 9, we enqueued a notleat is adjacent ta = u;. Then@ contains
(ua,...,uk,v) and we see that

S(ug) < 6(ug) < -+ < 6(ur) < 6(v) < 1+ 5(ug)

holds becaus&(v) = 1+d(u1) < 1+d(uz). Infact, every vertex enqueued in this for-loop preserves
this property. This proves the invariari(Q.E.D.

This lemma shows thaf(u;) is monotone non-decreasing. Indeé¢y;) will remain constant
throughout the list, except possibly for a single jump to tfext integer. Thus, it has thi9"“— 1
property”, thate; := 6(uj41) — 6(u;) =0orlforallj =4,...,k — 1. Moreover, there is at most one
j such that; = 1. From this lemma, we deduce other basic properties the BiBitdm:

LEMMA 3. For each vertex. in the BFS tree,
d(u) = 0(so,u),

i.e.,0(u) is the link distance from to w.

Proof.Let 7 : (up—uq—u2— - - - —uy) be a shortest path fromy = s to ux, = u of lengthk > 1.
It is sufficient to prove thaé(u;) = k. Fori > 1, lemma2 tells us that(u;) < 6(u;—1) + 1. This
impliesd(ux) < k + d(up) = k. On the other hand, the inequalifyu;) > k is immediate because,
d(so,ur) = k by our choice ofr, andd(uy) > d(so, ur) because there is a path of lengttu,,) from
so to uy. Q.E.D.

As corollary: if we print the verticesuy, us, ..., u; of the BFS tree, in the order that they are
enqueued, this would represent a BFS listiribhis is becausé(u;) is non-decreasing with, and

Another basic property is:

LEMMA 4. If §(u) < d(v) thenw is VISITed before is VISITed, and: is POSTVISITed beforeis
POSTVISITed.

q17. Classifying Bigraph Edges. Let us now consider the case of a bigraghThe edges ofr can
be classified into the following types by the BFS Algorithrh &igure6(b)):

e Tree edgesthese are the edges of the BFS tree.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§4. BREADTH FIRST SEARCH Lecture IV Page 17

e Level edgesthese are edges between vertices in the same level of thér8&SE.g., edgéd in
Figure6(b).

e Cross-Level edgesthese are non-tree edges that connect vertices in twaelifféevels. But
note that the two levels differ by exactly one. E.g., edgé Figure6(b).

e Unseen edgesthese are edges that are not used during the computati@ninV¥blved vertices
not reachable fromg.

Each of these four types of edges can arise (see Fig(bjefor tree, level and cross-level edges).
But is the classification complete (i.e., exhaustive)?, lbecause any other kind of edges must connect
vertices at non-adjacent levels of the BFS tree, and thrmdden by Lemm&. Hence we have:

THEOREM 5 (Classification of Bigraph Edges)f G is a bigraph, the above classification of edges is
complete.

We will leave it as an exercise to fill in our BFS shell macropitoduce the above classification of
edges.

€18. Applications of Bigraph Edge Classification. Many basic properties of link distance can be
deduced from it. We illustrate this by showing two conse@esrhere (try proving them without the
classification theorem!).

1. LetT be a BFS tree rooted a§. Consider the DAQ obtained fronil” by adding all the cross-level
edges. All the edges i@@ are given a direction which is directed away frop(so each edge goes from
some level > 0 to leveli 4 1). CLAIM: Every minimum link path starting fromy appears as a path
in the DAGD. In proof, the classification theorem implies that each patfi is a mininum link path,
as there are no edges that can skip a level.

2. Consider a bigrapf¥ with n vertices and with a minimum link pagh= (vo—v1— - - - —vg). CLAIM:

If ¥ > n/2then there exists a vertex (i = 1, ...,k — 1) such that every path from, to v, must pass
throughv;. To see this, consider the BFS tree rooted@t This has more tham /2 levels since
d(vo,vr) = k > mn/2. Ifthereis alevel (: = 1,...,k — 1) with exactly one vertex, then this vertex
must bew;, and thisv; will verify our claim. Otherwise, each levélhas at least two vertices for all
i=1,...,k—1. Thusthere are atleadt = (k + 1) + (k — 1) vertices { + 1 vertices are in the path
p andk — 1 additional vertices in levels, ..., k — 1) Butk > n/2 implies2k > n, contradiction.

€19. Driver Program. In our BFS algorithm we assume that a source vestex V' is given. This

is guaranteed to visit all vertices reachable fregn What if we need to process all vertices, not just
those reachable from a given vertex? In this case, we writkiger program” that repeatedly calls our
BFS algorithm. We assume a global initialization which sditsertices tounseen. Here is the driver
program:

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§4. BREADTH FIRST SEARCH Lecture IV Page 18

BFS DRIVER ALGORITHM
Input: G = (V, E) agraph.
Output: Application-dependent.
> Initialization:

1 Color all vertices asinseen.
2 | GLOBALINIT(G)]
> Main Loop:
3 For each vertexv in V do
4 if visunseen then
5 call BFS(V, E;v)).

Note that with the BFS Driver, we add another shell macraedaGLOBALINIT to our collection
(4).

€20. Time Analysis. Letus determine the time complexity of the BFS Algorithm éimelBFS Driver
program. We will discount the time for the application-sfieanacros; but as long as these macros
are O(1) time, our complexity analysis remains valid. Also, it is@sed that the Adjacency List
representation of graphs is used. The time complexity véligiven as a function ok = |V| and

m = |E|.

Here is the time bound for the BFS algorithm: the initialiaatis O(1) time and the main loop
is ©(m') wherem’ < m is the number of edges reachable from the sougceThis giving a total
complexity of©(m').

Next consider the BFS Driver program. The initializatiorfién) and line 3 is executed times.
For each actual call tBF'S, we had shown that the time®j(m’) wherem' is the number of reachable
edges. Summing over all sueh’, we obtain a total time o®(m). Here we use the fact the sets of
reachable edges for different calls to the BFS routine aimvis® disjoint. Hence the Driver program
takes timed(n + m).

921. Application: Computing Connected Components. Suppose we wish to compute the con-
nected components of a bigragh AssumingV = {1,...,n}, let us encode this task as computing
an integer array’[1..n] satisfying the property’[u] = C[v] iff u,v belongs to the same component.
Intuitively, C[u] is the name of the component that containghe component number is arbitrary.

To accomplish this task, we assume a global variable calleant that is initialized to0O by
GLOBAL_INIT(G). Inside the BFS algorithm, the INIT so) macro simply increments theount
variable. Finally, the VISIT{, u) macro is simply the assignmert[v] — count . The correctness
of this algorithm should be clear. If we want to know the nhumifecomponents in the graph, we can
output the value ofount at the end of the driver program.

922. Application: Testing Bipartiteness. A graphG = (V, E) is bipartite if V can be patrtititioned
intoV =V, WV, such thate C (V4 x Va) U (V2 x V7). Note that this definition applies to digraphs as
well as bigraphs. It is clear that all cycles in a bipartitefgrs must beven(i.e., has an even number
of edges). The converse is shown in an Exercise= tfias noodd cyclesthenG is bipartitite. We
use the Driver Driver to call call BRY, E; s) for variouss. It is sufficient to show how to detect odd
cycles in the component ef If there is a level-edgé, v), then we have found an odd cycle: this cycle

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§4. BREADTH FIRST SEARCH Lecture IV Page 19

comprise the tree path from the rootdpthe edggu—uv), and the tree path from back to the root.
In the exercise, we ask you to show that all odd cycles is sgmted by such level-edges. It is now a
simple matter to modify BFS to detect level-edges.

In trying to implement the Bipartitite Test above, and esqlcin recursive
routines, it is useful to be able to jump out of nested macib subroutine
calls. For this, theJava'’s ability to throw exceptionsand tocatch excep-
tions is very useful. In our bipartite test, BFS can immediatelsoth an
exception when its finds a level-edge. This exception is baby the BFS
Driver program.

EXERCISES

Exercise 4.1: Prove Lemmal: that the BFS algorithm terminates, and every vertex thataghable
from sy will be seen by BFS(). &

Exercise 4.2: Show that each node is VISITed and POSTVISITed at most orscthid true for PRE-
VISIT as well? &

Exercise 4.3: Assumeu—u.
(a) Show that(v) < 1+ §(u).
(b) Show that in digraphs, the inequality in (a) can be aribyjtéar from an equality.
(c) Show that in bigraph$(u) — 6(v)| < 1. O

Exercise 4.4: Reorganize the BFS algorithm so that the coloring stepsadded into the shell macros
of INIT, VISIT, etc. O

Exercise 4.5: Fill in the shell macros so that the BFS Algorithm will cortigcclassify every edge of
the input bigraph.

Exercise 4.6: Classification the edges of a digraph relative to a given BE& t &

Exercise 4.7: Let G = (V, E; \) be a connected bigraph in which each vertex IV has an associated
valueA(v) € R.
(a) Give an algorithm to compute the sgm, ., A(v).
(b) Give an algorithm to label every edge= E with the value|A(u) — A(v)| wheree = u—wv.

&

Exercise 4.8: Give an algorithm that determines whether or not a bigi@ph (V, E') contains a cycle.
Your algorithm should run in timé&(|V]), independent ofE|. You must use the shell macros,
and also justify the claim that your algorithmax|V'|). &

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§5. BREADTH FIRST SEARCH Lecture IV Page 20

Exercise 4.9: The text sketched an algorithm for testing if a graph is higarWe verify some of the
assertions there:
(a) Prove that if a bigraph has no odd cycles, then it is hijgart
(b) Prove that if a connected graph has an odd cycle, then B&S8tsfrom any source vertex will
detect a level-edge.
(c) Write the pseudo code for bipartite test algorithm owttl in the text. This algorithm is to
return YES or NO only. You only need to program the shell noesi
(d) Modify the algorithm in (c) so that in case of YES, it retara Boolean arrag[1..n] such that
Vo = {i € V : B[i] = false} andV; = {i € V : BJ[i] = true} is a witness to the bipartiteness of
G. Inthe case of NO, it returns an odd cycle. &

Exercise 4.10: Let GG be a digraph. Agylobal sink is a nodeu such that for every node € V, there is
path fromv to u. A global sourceis a nodeu such that for every node € V, there is path from
u towv.
(a) Assume is a DAG. Give a simple algorithm to detectdf has a global sink and a global
source. Your algorithm returns YES if both exists, and m$uXO otherwise. Make sure that
your algorithm take®)(m + n) time.
(b) Does your algorithm work i€+ is not a DAG? If not, give a counter example which makes
your algorithm fail. &

Exercise 4.11:Let k > 1 be an integer. A-coloring of a bigraphG = (V, E) is a functionc : V' —
{1,2,...,k} such that for allu—v in E, c(u) # ¢(v). We sayG is k-colorableif G has ak-
coloring. We sayG is k-chromatic if it is k-colorable but notk — 1)-colorable. Thus, a graph is
bipartite iff it is 2-colorable.

(a) How do you test the 3-colorability of bigraphs if everytex has degreg 27?

(b) What is the smallest graph which is not 3-colorable?

(c) Thesubdivision of an edgeu—w is the operation where the edge is deleted and replaced by
a pathu—w—uv of length2 andw is a new vertex. Callz’ a subdivision of another gragh if

G’ is obtained from be a finite sequence of edge subdivisions. Dirac (1952) shioais? is
4-chromatic, then it contains a subdivision &f,. Is there a polynomial time to determine if a
given connected bigrapf contains a subdivision af’,? &

Exercise 4.12:Let G = (V, E) be a bigraph om vertices, and fot, v € V, we haved(u, v) > n/2.
(a) Prove that there is a nodein the path fromu to v such that every path fromto v must pass
throughw. Note that the text already gave a proof of this fact usingctassification of edges by
BFS. So we are asking for an independent proof that does pendieon BFS.
(b) Show that the inequality(u, v) > n/2 is tight for this result. O

Exercise 4.13:Let G = (V, E') be a bigraph om vertices. Suppose-+ 1 is not a multiple o8. If there
exists vertices:, v € G such that(u,v) > n/3 then there exists two vertices whose removal
will disconnectu andv, i.e.,d(u, v) will becomeoc. &

Exercise 4.14: An articulation point of a bigraph is a vertex whose removal (together will all edge
incident on the vertex) will increase the number of conméctamponents in the graph. Use BFS
to find all articulation points. HINT: What does it mean for EBtree to have a level with only
one vertex. &

END EXERCISES

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§5. SMPLE DEPTHFIRST SEARCH Lecture IV Page 21

§5. Simple Depth First Search

The DFS algorithm turns out to be more subtle than BFS. In sappdications, however, it is
sufficient to use a simplified version that is as easy as thedg3ithm. In fact, it might even be easier
because we can exploit recursion.

Here is an account of this simplified DFS algorithm. As in BR®, use a 2-color scheme: each
vertexisunseen orseen. We similarly define ®FS treeunderlying any particular DFS computation:
the edges of this tree are precisely thasey such that is seen from u. Starting the search from the
sourcesg, the idea is to go as deeply as possibly along any witiout visiting any vertex twicéVhen
it is no longer possible to continue a path, we backup towdrelsource,. But we only backup enough
for us to go forward in depth again.

Inillustration, supposé/ is the digraph in Figur8(b), ands, is vertexl. One possible deepest path
from vertexl is (1-5—2—3—6). From vertexs, we backup to verteg, from where we can advance to
vertex3. Again we need to backup, and so on. The DFS tree is a tracesaahrch process; this tree is
shown in Figure/(a). The non-tree edges of the graph are shown in dashed koeshe same graph,
if we visit adjacent nodes in a different order, we get a dife DFS tree, as in Figur&b). However,
the DFS tree in Figuré&(a) is the unique solution if we follow our usual conventidivisiting vertices

with smaller indices first.

(b)

Figure 7: Two DFS Trees for the digraph in Figu(®).

€23. Simple DFS and Driver. The simple DFS algorithm is compactly presented using scnras
follows:

SIMPLE DFS
Input: G = (V, E; sp) a graph (bi- or di-)
The vertices i/ have been coloresleen orunseen.
Output Application dependent
Colorsg asseen.
For each v adjacent tosg do
| PREVISIT(, 50) |
if visunseen then
Colorv seen.
Simple DF$(V, F;v)) < Recursive call
| POSTVISITG) |

00 ~NO O WNPE

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &fsion March 3, 2011

§5. SMPLE DEPTHFIRST SEARCH Lecture IV Page 22

In this recursive version, there is no INIF, so) step — we do not want to initializ&' with every
recursive call. Also, VISIT¢, u) is called just before each DFS call. But we could consideariant
in which we do the VISIT after the recursive call (i.e., irfleange lines 6 and 7). As in BFS, we choose
to expose the coloring steps rather than putting them irthielshell macros. The first call to this DFS
algorithm must be made by some DFS Driver Program which pagahe necessary setup:

DFS DRIVER
Input: G = (V, E) agraph (bi- or dip)
Output: Application-specific
| GLOBAL.INIT(G) |
Color each vertex ilY asunseen.
For each vin V do
if visunseen then
Simple DF$V, E;v) < recursive call
| CLEANUP(V, E; v) |

~N o O hAWN P

As in the BFS case, we view both the above algorithms as &lhgoic skeletons, and their complete
behaviour will depend on the specification of the shell macro

PREVISIT, VISIT, POSTVISIT, GLOBALINIT, INIT, CLEANUP. @)

These shell macros may be assumed to be null operationsuilerwise specified.

924. DFS Tree. The root of the DFS tree i, and the vertices of the tree are those vertices visited
during this DFS search (see Figui@)). This tree can easily be constructed by appropriateitiefis

of INIT(G, so), VISIT(v—u) and POSTVISIT{), and is left as an Exercise. We prove a basic fact about
DFS:

LEMMA 6 (Unseen Path)Letu,v € V. Thenv is a descendent of in the DFS tree if and only if at
the time that, was first seen, there’is “unseen path” fromu to v, i.e., a path(u— - - - —v) comprising
only of unseen vertices.

Proof.Let ¢ty be the time when we first see

(=) We first prove the easy direction:ifis a descendent of then there is an unseen path fram
to v at timet,. For, if there is a patlfu—u;,— - - - —uy—v) from w to v in the DFS tree, then eaah
must be unseen at the time we first sge; (ug = v andug1 = v). Lett; be the time we first see;.
Then we have, < t; < --- < t;41 and thus each; was unseen at timg. Here we use the fact that
each vertex is initially unseen, and once seen, will newasrtéo unseen.

(<) We use an inductive proof. The subtlety is that the DFS d@lgorhas its own order for visiting
vertices adjacent to eaah and your induction must somehow account for this order. VWegqed

6 We could also entertain a vidiefore and another visiafter, the recursive call.
7 If we use the white-black coloring scheme, this would beschi “white path” as in7].

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§5. SMPLE DEPTHFIRST SEARCH Lecture IV Page 23

by defining a total order on all paths fromto v: If a,b are two vertices adjacent to a vertexand
we visit o beforeb, then we say § <gfg b (relative tow)”. If p = (u—u;—ug—--- —ur—v) and
q = (u—vyi—va—--- —vg—v) (Wherek, ¢ > 0) are two distinct paths from to v, we sayp <g¢g ¢ if
there is ann (1 < m < min{k, ¢}) such thatu; = v1,..., Uy = vy aNAUuy, 1 < U1 relative to
u,,. Note thatm is well-defined. Now define thBFS-distancebetween: andv to be the length of the
<4fs-leastunseen patlirom « to v at time we first see. By anunseen pathfrom v to v, we mean
one

T (u—uy— - - —up—o) (8)

where each node, ..., ux, v is unseen at time when we first seelf there are no unseen paths from
u to v, the DFS-distance from to v is infinite.

For anyk € N, let IND(k) be the statement: “If the DFS-distance franto v has lengtrk + 1, and
(8) is the< 3¢ g-least unseen path fromto v, then this path is a path in the DFS tree”. Hence our goal
is to prove the validity of INDE).

BASE CASE: Supposé = 0. The <4fg-least unseen path fromto v is just (u—v). Sowv is
adjacent ta:. Suppose there is a verteksuch that’ <g¢g v (relative tou). Then there does not exist
an unseen path’ from ¢’ to v; otherwise, we get the contradiction that the path-v’); 7" is <q¢g
than than(u—wv)). Hence, when we recursively visit, we will never colorv asseen (using the easy
direction of this lemma). Hence, we will eventually coloasseen fromw, i.e., u—wv is an edge of the
DFS tree.

INDUCTIVE CASE: Supposé > 0. Letr in (8) be the<y¢4-least unseen path of length+ 1
fromu tov. As before, ifv” <4¢g w1 then we will recursively visit/, we will never color any of the
verticesuy, us, . . ., ug, v asseen. Therefore, we will eventually visit; from v at some time; > ¢g.
Moreover, the sub path’ : (u;—u2— - - - —ugx—v) is still unseen at this time. Moreoverg’ remains
the <4fg-least unseen path from to v at timet;. By IND(k — 1), the subpath’ is in the DFS tree.
Hence the path = (u—u,); ©’ is in the DFS tree. Q.E.D.

925. Classification of edges. First consider a digrapy. Upon callingDF'S(G, so), the edges o7
becomes classified as follows (see Figu(e)):

e Tree edgesthese are the edges belonging to the DFS tree.

e Back edges these are non-tree edgesv € E wherev is an ancestor ofi. Note: u—u is
considered a back edge. E.g., edges and3—2 in Figure7(b).

e Forward edges these are non-tree edgesv € E wherev is a descendent of. E.g., edges
1—6 and5—6 in Figure7(b).

e Cross edgesthese are edges—v that are not classified by the above, but where are visited.
E.g., edged—6, 3—6 and4—3 in Figure7(b).

e Unseen edgesall other edges are put in this category. These are egdgesn whichw is unseen
at the end of the algorithm.

926. DFS of Bigraphs. As we noted, DFS applies to bigraphs as well as digraphs. eTéer two
ways to view such bigraphs in DFS: (1) One is to view the bigrap a digraph whose directed edges
happen to come in pairs of the forfa, v) and(v, «), one such pair for each undirectedv. (2) Adopt
the convention that an undirected edge v} will regarded as the directed edge—v) if u is seen

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§5. SMPLE DEPTHFIRST SEARCH Lecture IV Page 24

beforev. Then the other edg@—w) will not appear as a tree or non-tree edgeu,lf remain unseen,
then{w, v} will remain undirected. Call (2) owtandard treatment of bigraph edges, and it will be
assumed unless otherwise noted. The classification offdfigedges under (2) will be simplified; see
Exercises.

Unfortunately, our simple DFS algorithm cannot easily deiae these edge classification. In par-
ticular, the bicolor scheme (seen/unseen) is no longercgiiti E.g., we cannot distinguish a cross
edge from a forward or back edge. We will defer the problemladsifying edges of the DFS tree to
the next section.

€27. Biconnectivity. When we discussed reduced graph above, we said that it isusatfal concept
for bigraphs. We now introduce the appropriate analogubifgiaphs.

Let G be a bigrapltz = (V, E). A subsetC C V is abiconnected sebf G if for every pairu, v of
distinct vertices inC', there is a simple cycle of length 3 containingu andv. If, in addition,C' is not
properly contained in a biconnected subset:othen we callC' a biconnected component If G has
only one biconnected component, th@ns called abiconnected graph Trivially, any singleton set is
biconnected; nbsubset of siz€ can be biconnected. Biconnected components oflsae said to be
trivial .

Biconnectivity is clearly a strong notion of connectiviti.g., the graph in Figur&(a), has two
biconnected component§g, b, ¢, d} and{e}. A more interesting example is FiguBewhich hasl1
biconnected components, of whiéhare nontrivial. There are also 9 bridges, indicated by tiiiok
segments.

O cut-vertex

O non cut-vertex

. bridge

Figure 8: Graph with 3 non-trivial biconnected components

A vertexv of G is called a cut-vertex if the removal ofv, and also all edges incident an will
increase the number of connected (not biconnected!) coergerf resulting bigraph. Alternatively,
if there exist vertices, b (both different fromw) such that all paths from to b must pass through.
Clearly, if G has a cut-vertex, then it is not biconnected. The converabs@strue. There is an edge
analogue of cut-vertex: an edge-v is called abridge if the removal of this edge will increase the

8 Some authors regard a bridge as a biconnected component.
9 Or, articulation point.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§5. SMPLE DEPTHFIRST SEARCH Lecture IV Page 25

number of connected components of the resulting bigrapbar@, at least one endpoint of a bridge
must be a cut-vertex.

E.g., in the line grapli,, (see Figurel(c)) with vertex sel = {1, ..., n}, a vertex is a cut-vertex
iff 1 < i < n. Also, every edge of.,, is a bridge. The graph in Figuia), has one cut-vertexand
one bridgez—e.

Note that two biconnected components(dfcan share at most one vertex, which is necessarily a
cut-vertex. Given a bigrapty, we definé® a bigraphG¢ = (V¢, E¢) such that the elements &f¢
are the biconnected componentggfand(C, C’) € E¢ iff C N C’ is non-empty. It follows from the
preceding remark that two biconnected components sharesitane vertex that* is acyclic. We may
call G¢ thereduced graphfor G.

AssumeG is connected, and’ is a DFS tree ofZ. There are two ways in which a vertexis a
cut-vertex, as shown in the following lemma:

LEMMA 7. Letu be a vertex in the DFS tréE. Thenu is a cut-vertex iff one of the following conditions
hold:

(i) If u is the root ofT" and has more than one child.

(i) If « is not the root, but it has a child’ such that for any descendentf’, if v—w is an edge, then
w is also a descendent af Note that a node is always a descendent of itself.

Proof. If (i) or (ii) holds, it is easy to see that must be a cut-vertex. Conversely, suppass a
cut-vertex. LetC, C’ be two distinct biconnected components containin{f « is the root, therm: must
have a childv € C and a childv’ € C’. Thusu has more than one child, i.e., property (i) holds. Finally,
assume is not the root. Them has a pareng. Wlog, letC be the biconnected componentofThen
one of the children’ of u must belong ta@”’. Suppose there exists a descendenitv’ such that there
is an edgev—w with w not a descendent af. Since the BFS tree has only back edgesnust be an
ancestor of:. So there is a path in the BFS tree frammto v. This path, together with the edge-w
forms a cycleZ that passes throughandw’. This contradicts the assumption the¢ C andu’ € C’.
Thus,u’ is the witness for property (ii). Q.E.D.

There is another property we need: supposev is a non-tree edge. Then we claim thais a
descendent ob) or vice-versa, and in fact, this edge appears as a back edge @hassification of DFS
tree edges. Itis now an exercise to program the shell mattbs ®FS algorithm to detect cut-vertices,
and hence recognize biconnectivity.

€28. Connection with BFS. There is a sense in which BFS and DFS are the same searclyistsate
except for their use of a different container ADT. Basicalcursion is an implicit way to use tiséack
ADT. The stack ADT is similar to the queue ADT except that theeirtion and deletion of items into
the stack are based on the Last-In-First-Out (LIFO) digeiplThese two operations are denoted

S.push(z), z < S.pop(),

whereS is a stack and: an item.

It is instructive to try to make this connection between theSCand BFS algorithms more explicit.
The basic idea is to avoid recursion in DFS, and to explicilg a stack in implementing DFS. Let us

10 Recall thatG® is the same notation used for the reduced graph of a digfap&ince we will not apply the reduced graph
concept to bigraphs, and we will not apply the concept of imeztedness to digraphs, there should be no confusion simgeu
this G notation.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§5. SMPLE DEPTHFIRST SEARCH Lecture IV Page 26

begin with a simple experiment: what if we simply replacedoeue ADT in BFS by the stack ADT?
Here is the hybrid algorithm which we may cBIDFS, obtainednutatis mutandifrom BFS algorithm:

BDFS ALGORITHM
Input: G = (V, E;sp)agraph.
Output: Application specific
> Initialization:
Initialize the stacks to containsg.
< If standalone, make all verticemiseen except forsg
> Main Loop:
while S # () do
u <« S.pop().
For each v adjacent ta: do
| PREVISIT(, u)
if visunseen then
colorv seen
S.push(v).

POSTVISIT()

= O

© 0O ~NOUL b~ WN

This algorithm shares properties of BFS and DFS, but isrdisfrom both. Many standard com-
putations can still be accomplished using BDFS. To write a-rexursive version of DFS using this
framework, we need to make several changes.

Let S.t op() refer to the top element of the stack. The invariantis thasquence of vertices in the
stack is path to the current vertexrr. Assume that we have two functiorigrst(u) andnext(u, v)
that gives enables us to iterate over the adjacency list ofirst(u) returns the first vertex that is
adjacent ta;, andnext(u, v) returns the next vertex afterthat is adjacent ta, (assuming is adjacent
to u). Both functions may return a null pointer, and atsact(nil, v) = nil.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§5. SMPLE DEPTHFIRST SEARCH Lecture IV Page 27

NONRECURSIVEDFS ALGORITHM
Input: G = (V, E;sp) agraph.
Output: Application specific
> Initialization:
0 Initialize the stacks' to containsy.
1 ; < If standalone, make all verticemseen except forsg
2 curr «— first(so);
> Main Loop:
3 while S # () do
4 if (curr # nil)
5 \ PREVISIT(urr, S.t op()) \
6 if currisunseen
7 colorcurr seen
8 ‘VISIT(cuW‘, S.top()) ‘
9 S.push(curr)
10 curr «— first(curr)
11 else curr «— next(S.t op(), curr)
12 else
13 curr «— S.pop()
14 POSTVISITEurr) |
15 curr «— next(S.top(),curr) < may benil

We leave it as an exercise to prove that this code is equitvedghe Simple (recursive) DFS algo-
rithm.

EXERCISES

Exercise 5.1:
(a) Give the appropriate definitions for INI®], VISIT((v,«)) and POSTVISIT{) so that our
DFS Algorithm computes the DFS Tree, say represented byaesttatcturel’
(b) Prove that the objedt constructed in (a) is indeed a tree, and is the DFS tree asdéfirthe
text. &

Exercise 5.2: Programming in the straightjacket of our shell macros isyrearent when our format fits
the application. But the exact placement of these shell osa@nd the macro arguments, may
sometimes require some modifications.

(a) We have defined VISIT(v) to take two arguments. Show that we could have defined this
it as VISIT(u), and not lost any functionality in our shell programs. HiNdke advantage of
PREVISIT(u, v).

(b) Give an example where it is useful for the Driver to callEANUP(u) after DFS{:). &

Exercise 5.3: Explore the relationship between the traversals of binagstand DFS.
(a) Why are there not two versions of DFS, corresponding & and postorder tree traversal?
What about inorder traversal?
(b) Give the analogue of DFS for binary trees. As usual, yostrpwovide place holders for shell
routines. Further assume that the DFS returns some valueb wtprocessed at the appropriate

place. &

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§5. SMPLE DEPTHFIRST SEARCH Lecture IV Page 28

Exercise 5.4: Why does the following variation of the recursive DFS fail?

SIMPLE DFS (recursive form)
Input: G = (V, E;so) agraph.
For each v adjacent tas do
if visunseen then
Simple DF$(V, E; v))
| POSTVISITE) |
Colorsg asseen.

o U A W NP

Exercise 5.5: Give an alternative proof of the Unseen Path Lemma, withaptigtly invoking the
ordering properties of 3. Also, do not invoke properties of the Full DFS (with timers{ss).

&

Exercise 5.6: Prove that our classification of edges for DFS is complete. &

Exercise 5.7: Supposéd’ is the DFS Tree for a connected bigraghRecall our standard treatment of
edges of a bigraph in DFS. Let-v be an edge of/. Prove that
(a) Eitheru is an ancestor of or vice-versa in the tre€.
(b) If u—v is a non-tree edge, it is a back edge.
(c) Give a complete classification of the edges as producekebpFS algorithm. &

Exercise 5.8: Use the characterization of cut-vertices in Lemw#o design an algorithm to detect
cut-vertices in a bigraph.

HINT: Let f¢(u) be the smallest value &f r st Ti ne[w], wherew is a vertex that can be reached
by a back edge—w, for some proper descendentf « in the DFT tree; if there is no such back
edge, then we defingt(u) to bef i r st Ti nefu]. You need to address two questions: (a) How
can ft(u) help you determine whether a vertexs a cut-vertex? (b) How can you compute

sft(u)? &

Exercise 5.9: Let G = (V, E) be a connected bigraph. For any vertex V define

radiugv, G) := max distancéu, v)
where distande:, v) is the length of the shortest (link-distance) path froro v. Thecenterof
G is the vertexy, such that radiugy, G) is minimized. We call radiu®,, G) theradiusof G
and denote it by radig&). Define thediameterdiametefG) of G to be the maximum value of
distancéu, v) whereu,v € V.
(a) Prove tha - radiugG) > diametefG) > radiugG).
(b) Show that for every natural number, there are graphs:, and H, such thatn =
radiug§G,) = diamete(G,,) and diametdifl,,) = n and radiusH,,) = [n/2]. This shows
that the inequalities in (a) are the best possible.
(c) Using DFS, give an efficient algorithm to compute the dééenof a undirected tree (i.e., con-
nected acyclic undirected graph). Please use shell pragiiagn Prove the correctness of your

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§6. FULL DEPTHFIRST SEARCH Lecture IV Page 29

algorithm. What is the complexity of your algorithm? HINTrite down a recursive formula for
the diameter of a tree in terms of the diametadheight of its subtrees.

(d) Same as (c), but compute the radius instead of diameter.

(e,f) Same as (c) and (d) but using BFS instead of DFS. &

Exercise 5.10: Re-do the previous question (part (c)) to compute the diambétt instead of using
DGS, use BFS. &

Exercise 5.11: Prove that our nonrecursive DFS algorithm is equivalentiéorecursive version.

Exercise 5.12: When might we prefer the BDFS Algorithm in place of the staddaFS or BFS algo-
rithms? &

END EXERCISES

66. Full Depth First Search

For certain computations in the DFS framework, it is neagsgacompute additional information
about the DFS tree. In particular, we may need to classifyettges as described 25. Instead of
the bicolor scheme, we tricolor each vertex, eumseen/seen/done. Theseen vertices are those
currently in the recursion stack. The POSTVIStY(hacro can be used to color the verteasdone.

A more profound embellishment is tone stamp the vertices. Timestamps record the two signif-
icant time instances for each vertex, time when first enarent and time when last encountered. To
implement time stamps, we assume a global coutitetk that is initially 0. Also, we introduce two
arraysfirst Ti ne[v] andl ast Ti me[v] wherev € V. Both arrays are initiallized te-1. When we
see the vertex for the first time or the last time, the current valuecabck will be assigned to these
array entries; the value eflock will be incremented after such an assignment.

More precisely, we may use theM8>LE DFS and the DFS RIVER shells from§23, together with
the following macro definitions:

e GLOBAL_INIT(G)= clock « 0; (forv € V)[f i r st Ti me[v] — | ast Ti me[v] «— —1J.
e VISIT(v,u)=firstTi me[v] — clock++.
e POSTVISIT@)=1 ast Ti me[v] «— clock++.

The tricolorwhi t e/gr ay/bl ack scheme is subsumed by the time stamp scheme: during to com-
putation, a node iswhi t e if firstTi nefv] < 0;itisgray if firstTi nefv] > 1 ast Ti me[v]; it
isbl ackif firstTi nefv] < astTi mefv].

Letact i ve(u) denote the time intervadf i r st Ti me[u],| ast Ti ne[u]], and we say is active
within this interval. It is clear from the nature of the resian that two active intervals are either
disjoint or has a containment relationship. In case of nemt&inment, we may writacti ve(v) <
active(u) if l ast Ti mefv] < firstTi neu]. We have the following characterization of edges
using time stamps:

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§6. FULL DEPTHFIRST SEARCH Lecture IV Page 30

LEMMA 8. Letu,v € V. Thenv is a descendent af in the DFS tree if and only if

active(v) Cactive(u).

Proof. This result can be shown using the Unseen Path Lemma. If thereinseen path, then by
induction on the length of this path, every vertex on thihpaill be a descendent af. Conversely, if
v is descendent af then by induction on the distance @from u, there will be a unseen path 0

Now, if there is a unseen path from to v when u was first discovered, we must have
firstTime[u] < firstTinmefv]. Moreover, since the vertex will remain active untilv is dis-
covered, we also haveast Ti nefv] < | ast Ti ne[u]. Henceacti ve(v) C active(u). Q.E.D.

We return to the problem of classifying every edge of a digr@pelative to a DFS tree o'

LEMMA 9. If u—v is an edge then

1. u—vis aback edge ifbct i ve(u) C acti ve(v).
2. u—vis across edge ifict i ve(v) < acti ve(u).

3. u—v is a forward edge iff there exists some € V \ {u,v} such thatactive(v) C
active(w) Cactive(u).

4. u—vis atree edgeifacti ve(v) C acti ve(u) butit is not a forward edge.

This above classification of edges by active ranges is ilitestl in Figured.

firstTime[ul |astTinme[y
I I
U

time

forward/tree

-
v

-

Figure 9: Relative positions of active ranges:0b and the classification of edge—v)

These criteria can be used by the PREVISIT() macro to classify edges o6f:

|PREVISIT(),u)|
> Visiting v, fromu
if (firstTinme[v]=-1), marku—v as “tree edge”
elif (fi rstTi mefv] > firstTinefu]), marku—v as “forward edge
elif (1 ast Ti me[v] = o0), marku—v as “back edge”
else marku—v as “cross edge”.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§6. FULL DEPTHFIRST SEARCH Lecture IV Page 31

To verify the correctness of this classification, we firstentitat tree edges are clearly correctly
labeled. The remaining edges are non-tree edges. An ingpexftFigure9 will reveal that the tests
that we perform are sufficient to distinguish among the fadyback and cross edges.

€29. Application to detecting cycles. We claim that the graph is acyclic iff there are no back edges.
One direction is clear — if there a back edge, we have a cyctmvérsely, if there is a cyclg =
[u1—-- - —uy], then there must be a vertex (say,) in Z that is first reached by the DFS algorithm.
Thus there is an unseen path framto u;, and saact i ve(uy) C acti ve(up). Thus there is a back
edge fromu;, to ;. Hence, we can use the DFS algorithm to check if a graph idiacycsimple way

is to run DFS starting from each vertex of the graph, lookiogdycles. This take®(mn) time. A
more efficient solution is given in the Exercise.

Cycle detection is a basic task in many applications. In ajreg systems, we haygocessesand
resources a process carequesta resource, and a resource carabquired by a process. We assume
that that processes require exclusive use of resourcesjuasefor a resource will blelocked if that
resource is currently acquired by another process. Firalhrocess careleasea resource that it has
acquired.

O

Figure 10: Process-resource Graph: = {p, q}, Vg = {r, s, t}.

We consider a digrapf = (V, E) whereV = Vp W Vg andE C (Vp x Vi) U (Vg x Vp). With
this restriction onZ, we callG abipartite graph and writeG = (Vp, Vg, E) instead ofG = (V, E).
See Figurel0for an example with 2 processes and 3 resources. Eaclp represents a process and
r € Vi represents a resource. An edger) € E means thap requests: but is blocked. An edge
(r,p) € E meansr is acquired byp. If the outdegree op is positive, we say is blocked. If the
outdegree of is positive, we say is acquired. The graph satisfies three conditions:

e (1) Either(p,r) or (r,p) is notinE.
e (2) (p,r) € E implies there exisp’ such thafr,p’) € E.
e (3) The outdegree of eaahis 0 or 1.

In operating systems (Holt 197X}, is called aprocess-resource graphlt represents the current state
of blocked processes and acquired resources. A cydgimcalled adeadlockif it contains a cycle.
For instance, the graph in Figui® has a deadlock. In this situation, a certain subset of thegsses
could not make any progress. Thus our cycle detection @lgorgan be used to detect this situation. In
the Exercise, we elaborate on this model.

EXERCISES

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§7. FURTHERAPPLICATIONS OFGRAPH TRAVERSAL Lecture IV Page 32

Exercise 6.1: Suppose = (V, E; \) is a strongly connected digraph in whigh: £ — Ryg. A
potential function of G is ¢ : V' — R such that for alu—v € F,

Au,v) = ¢(u) — ¢(v).

(a) Consider the cylic graphs,, (see Figurel(d)). Show that ifG = (C,,; \) thenG does not
have a potential function.

(b) Generalize the observation in part (a) to give an easshexk property?(G) of G such that
G has a potential function iff propert)(G) holds.

(c) Give an algorithm to compute a potential function oiff P(G) holds. You must prove that
your algorithm is correct. EXTRA: modify your algorithm taiput a “witness” in casé®(G)
does not hold. &

Exercise 6.2: Give an efficient algorithm to detect a deadlock in the pregesource graph. &

Exercise 6.3: Process-Resource Graphs. (et= (Vp, Vi, E) be a process-resource graph — all the
following concepts are defined relative to such a gréphWe now model processes in some
detail. A procesp € Vp is viewed as a sequence of instructions of the f&mQU EST (r) and
RELEASE(r) for some resource. This sequence could be finite or infinite. A procgsaay
executean instruction to transfor& to another graplt’’ = (Vp, Vi, E') as follows:

e If pis blocked (relative t@) thenG’ = G. In the following, assume is not blocked.

e Suppose the instruction BEQU EST (r). If the outdegree of is zero or if(r,p) € E,
thenE’ = E U {(r,p)}; otherwise £’ = EU {(p,7)}.

e Suppose the instruction BELEASE(r). ThenE' = E\ {(r,p)}.

An execution sequence = p1paps . .. (p; € Vp) is just afinite or infinite sequence of processes.
The computation path of e is a sequence of process-resource grafiis, G1, G, .. .), of the
same length as, defined as follows: le€; = (Ve U Vg, E;) whereE, = () (empty set) and for
i > 1, if p; is thejth occurrence of the procepsin e, thenG; is the result ofp; executing its
jth instruction onGG;_;. If p; has nojth instruction, we just defin&’; = G,_;. We saye (and
its associated computation path)vialid if for eachi = 1,...,m, the procesp; is not blocked
relative toG,;_1, and no process occurs irmore times than the number of instructions:inA
proces® is terminated in e if p has a finite number of instructions, apdccurs ine for exactly
this many times. We say that a 9ét of processesan deadlockif some valid computation path
contains a grapty; with deadlock.

(a) Suppose each processlip has a finite number of instructions. Give an algorithm to deci
if Vp can deadlock. That is, does there exist a valid computattimhat contains a deadlock?
(b) A process igyclicif it has an infinite number of instructions and there existégegem > 0
such that theth instruction and théi 4+ n)th instruction are identical for ail > 0. Give an
algorithm to decide it/p can deadlock wher&p consists of two cyclic processes. &

Exercise 6.4: We continue with the previous model of processes and ressuin this question, we
refine our concept of resources. With each resourcee have a positive intege¥ () which
represents the number of copiesofSo when a process requests a resouytee process does
not block unless the outdegree ofs equal toN(r). Redo the previous problem in this new
setting. &

END EXERCISES

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§7. FURTHERAPPLICATIONS OFGRAPH TRAVERSAL Lecture IV Page 33

§7. Further Applications of Graph Traversal

In the following, assum& = (V, E) is a digraph witht” = {1,2,...,n}. Letper[l..n] be an
integer array that represents a permutatioVoh the sense tha' = {per[1], per[2],...,per[n]}.
This array can also be interpreted in other ways (e.g., amgriK the vertices).

€30. Topological Sort. One motivation is the so-callédPERT graphs: in their simplest form, these
are DAG’s where vertices represent activities. An edge € E means that activity, must be per-
formed before activity. By transitivity, if there is a path from to v, thenu must be performed before
v. A topological sort of such a graph amounts to a feasiblerayflexecution of all these activities.

| newspaper

Figure 11: PERT graph

Let
(U1,v2,...,0p) 9)

be a listing of the vertices il¥. We call it atopological sortif every edge has the formy—v; where
1 < j. In other words, each edge points to the right, no edge ptitke left. REMARK: if (v1, . .., v,,)
is a topological sort, thefv,,, v,,—1,...,v1) is called areverse topological sort

If an edgesu—w is intepreted as saying “activity must precede activity”, then a topological sort
give us one valid way for doing these activities (do act®sti, vo, . .. in this order).

Let us say that vertex; hasrank i in the topological sortg). Hence, we may represent this
topological sort by a rank attribute arr&@unk[1, .. ., n], whereRank[v;] = i forallv; € V.

E.g., (v1,...,u,) = (vs,v1,v2,v4) in (9). The corresponding rank attribute array is
Rank[vy,ve,vs,v4] = [2,3,1,4].

We use the DFS algorithm and the DFS Driver to compute the a#nibute array. First, we must
initialize the Rank array using the global initialization shell:

GLOBAL_INIT(G) = (forv =1 = n, Rank[v] «— —1).

Indeed, we need not use a separate color array: we simplgpiatethe Rank of —1 asunseen.
The idea is to use DHK8) to assign a rank te: but before we could assign a rank #p we must
(recursively) assign a larger rank to the vertices reaehibmv. To do this, we use a global counter
R that is initialized ton. Each time a vertex is to receive a rank, we use the curreneaf 2, and
then decremenk. So by the timev receives its rank, all those vertices reachable fromould have
received a larger rank. This idea can be implemented by progring the postvisit shell as follows:

POSTVISIT(v) = (Rank[v] — R; R — R — 1).

11 PERT stands for “Program Evaluation and Review Technigagiroject management technique that was developed for
the U.S. Navy's Polaris project (a submarine-launchedsiallmissile program) in the 1950's. The graphs here are eddled
networks. PERT is closely related to the CriticalPath Mdt{©PM) developed around the same time.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§7. FURTHERAPPLICATIONS OFGRAPH TRAVERSAL Lecture IV Page 34

It is easy to prove the correctness of this procedure, peavitle input graph is a DAG. But what can
go wrong in this code if the input is not a DAG?

REMARKS: Note that the rank function is just as the ordervoficcording tol ast Ti ne[v].
In our strong component algorithm below, we prefer to corapthe inverse of Rank, i.e., an ar-
ray Per[l..n] such thatPer[i] = v iff Rank[v] = 4. The topological sort9) is then equal to
(Per[1], Per[2],..., Per[n]). We leave it as an easy exercise to modify the above code tpuem
Per directly.

€31. Robust Topological Sort. Suppose we want a more robust algorithm that will detect eor er
in case the input is not a DAG. We need the following fa@Gtis cyclic iff there exists a back edge in
every DFS traversalThis was shown in the previous section. To detect back edgden we need two
modifications. The previous solution is implicitly a 2-cokcheme Rank[v] = —1 if v isunseen,
and otherwise is seen). Now, we need to a 3-color scheme where

=—1 if vis unseen,
Ranklv]¢ =0 if vis seen,
>0 if vis done.

To implement this, we just need to program the shell for ivigit. vertex:
VISIT (v,u) = (Rank[v] < 0.)

The second modification is to check for back edges. This calobe during previsits to a vertexrom
u:

PREVISIT (v,u) = (if (Rank[v] = 0) then ThrowFEzception(" Cycl e detected"))

€32. Strong Components. Computing the components of digraphs is somewhat moreestheh
the corresponding problem for bigraphs. In fact, at leaseldistinct algorithms for this problem are
known. Here, we will develop the version based on “reversplgisearch”.

Let G = (V,E) be a digraph wherd” = {1,...,n}. For clarity, we also write ¢;" for
it € V. Let Per[l.n] be an array that represents some permutation of the vertsmeyd =
{Per[l], Per[2],..., Per[n]}. Let DF'S(i) denote the DFS algorithm starting from vertexCon-
sider the following method to visit every vertexd

STRONG_COMPONENT.DRIVER(G, per)
INPUT: DigraphG and permutatioPer[1..n)].
OuTPUT: A set of DFS Trees.

> Initialization

1. Fori =1,...,n, color[i] =unseen.

> Main Loop

2. Fori=1,...,n,

3. If (color|Per[i]] =unseen)

4. DFS;(Per[i]) < Outputs a DFS Tree

This program is the usual DFS Driver program, except thatseder[i] to determine the choice of
the next vertex to visit, and it call® 'Sy, a variant of D F'S. We assume thdd 5, (i) will (1) change
the color of every vertex that it visits, froomseen to seen, and (2) output the DFS tree rootediat

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§7. FURTHERAPPLICATIONS OFGRAPH TRAVERSAL Lecture IV Page 35

If Per is correctly chosen, we want each DFS tree that is outputii@spond to a strong component
of G.

First, let us see how the above subroutine will perform ordigeaphGyg in Figure5(a). Let us also
assume that the permutation is

Per[1,2,3,4,5,6] = [6,3,5,2,1,4]

= [’06,1)3,1)5,’02,’01,1)4]. (10)

The output of SRONG_.CoOMPONENT.DRIVER Will be the DFS trees for on the following sets of vertices
(in this order):

01 = {’06}, CQ = {’03,’02,’05}, 03 = {’Ul}, 04 = {’04}.
Since these are the four strong componentsgfthe algorithm is correct. It is not not hard to see that
there always exist “good permutations” for which the ouipudorrect. Here is the formal definition of
what this means:

A permutationPer[1..n] is goodif, for any two strong components, C’ of G, if there is a path
from C to C’, then thefirst vertex ofC’ is listed before the first vertex 6f'.

It is easy to see that our Strong Component Driver will give ¢brrect output iff the given permu-
tation is good. But how do we get good permutations? Rougbdaking, they correspond to weak
forms of “reverse topological sort” @. There are two problems: topological sorting(éfs not really
meaningful wher is not a DAG. Second, good permutations requires some kilgwlef the strong
components which is what we want to compute in the first plamlertheless, let us go ahead and run
the topological sort algorithm (not the robust versionYanWe may assume that the algorithm returns
an arrayPer[1..n] (the inverse of theRank[1..n]). The next lemma shows th#&er[1..n] almost has
the properties we want. For any €tC V', we first define

Rank[C] = min{i : Per[i] € C} = min{Rank[v] : v € C}

LEMMA 10. LetC, C’ be two distinct strong components@f
(a) If ug € C'is the first vertex irC' that is seen, theRank[ug] = Rank[C].
(b) If there is path fronC' to C” in the reduced graph af, thenRank[C] < Rank[C’].

Proof. (a) By the Unseen Path Lemma, every nede C will be a descendent af, in the DFS
tree. HenceRank[ug] < Rank[v], and the result follows sincRank[C] = min{ Rank[v] : v € C'}.
(b) Letug be the first vertex itC' U C” which is seen. There are two possibilities: (1) Suppase C.
By part (a),Rank[C] = Rank[ug]. Since there is a path frod to C’, an application of the Unseen
Path Lemma says that every vertex(fiwill be descendents afy. Letwu; be the first vertex o€’ that
is seen. Since, is a descendent afy, Rank[ug] < Rank[ui]. By part(a),Rank[ui] = Rank[C"].
ThusRank[C] < Rank[C']. (2) Suppose, € C’. Since there is no path from, to C, we would have
assigned a rank ta, before any node i is seen. ThusRank[Cy] < Rank[ug]. But Rank[ug] =
Rank[C']. Q.E.D.

This lemma implies that, in the reverse “topological sordering,
[Per[n], Perin —1],..., Per[1]] (11)
if there is path fromC to C’, then thdastvertex ofC” in this list appearbeforethelastvertex ofC' in

this list. So this is not quite good.

We use another insight: consider the reverse g@EpH (i.e., u—v is an edge of7 iff v—u is an
edge ofG"*"). It is easy to see thét is a strong component ¢¥"< iff C'is a strong component @f.
However, there is a path frofi to C’ in G"¢ iff there is a path fronC’ to C'in G.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§7. FURTHERAPPLICATIONS OFGRAPH TRAVERSAL Lecture IV Page 36

LEMMA 11. If Per[l..n] is the result of running topological sort ai"<* then Per is a good permuta-
tion for G.

Proof. Let C, C’ be two components af and there is a path frori to C’ in G. Then there is a
path fromC” to C in the reverse graph. According to the above, the last veiftéxis listed before the
last vertex ofC” in (11). That means that the first vertex 6fis listed after the first vertex af” in the
listing [Per[1], Per[2],..., Per[n]]. This is good. Q.E.D.

We now have the complete algorithm:

STRONG_.COMPONENT-ALGORITHM(G)
INPUT: DigraphG = (V, E), V ={1,2,...,n}.
OuTPUT: A list of strong components df.

1. Compute the reverse graphic’.
2. Call topological sort oid"“".

This returns a permutation arrder|[1..n].
3. Call STRONG_.COMPONENT.DRIVER(G, Per)

Remarks. Tarjan4] gave the first linear time algorithm for strong componeri®s.Kosaraju and
M. Sharir independently discovered the reverse graph keaethod described here. The reverse graph
search is conceptually elegant. But since it requires twasg@mover the graph input, it is slower in
practice than the direct method of Tarjan. Yet a third metivad discovered by Gabow in 1999. For
further discussion of this problem, including history, veder to Sedgewickd].

EXERCISES

Exercise 7.1: Modify our topological sort algorithm so that it outputs fhermutation array’er[1..n]
that is the inverse aRank[1..n]. &

Exercise 7.2: Give an algorithm to compute the numh¥fv] of distinct paths originating from each
vertexv of a DAG. ThusN [v] = 1iff v is a sink, and ifu—v is an edgeN [u] > N|v]. O

Exercise 7.3: Let G be a DAG.
(a) Prove that7 has a topological ranking.
(b) If G hasn vertices, theriz has at most! topological rankings.
(c) Let G consists of 3 disjoint linear lists of vertices with, ny, ng vertices (resp.). How many
topological rankings ofs are there? O

Exercise 7.4: Prove that a digrap& is cylic iff every DFS search off has a back edge. O

Exercise 7.5: Consider the following alternative algorithm for compufistrong components of a di-
graphG: what we are trying to do in this code is to avoid computingréherse of.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§7. FURTHERAPPLICATIONS OFGRAPH TRAVERSAL Lecture IV Page 37

STRONG_.COMPONENT-ALGORITHM(G)
INPUT: DigraphG = (V, E),V ={1,2,...,n}.
OuTPUT: A list of strong components df.

1. Call topological sort oid.
This returns a permutation arrder|[1..n].
2. Reverse the permutation:
fori=1,...,|n/2], dothe swapPer[i] < Per[n + 1 —i.
3. Call STRONG_.COMPONENT.DRIVER(G, Per)
Either prove that this algorithm is correct or give a cousteample. &

Exercise 7.6: An edgeu—uv is inessentialif there exists av € V'\ {u, v} such that there is a path from
u to w and a path fromw to v. Otherwise, we say the edgedssential Give an algorithm to
compute the essential edges of a DAG. &

Exercise 7.7: Let Gy be a DAG withm edges. We want to construct a seque@geGs, ..., G, of
DAG's such that eaclt/; is obtained froni7;,_; by reversing a single edge so that finadly, is
the reverse of7y. Give anO(m + n) time algorithm to compute an orderifg, . . ., e,,) of the
edges corresponding to this sequence of DAGs.

NOTE: this problem arises in a tie breaking scheme. Melbe a triangulated mesh that represents a terrain.
Each vertexv of M has a height(v) > 0, and each pait, v of adjacent vertices ol gives rise to a
directed edge:—wv if h(u) > h(v). Note that if the heights are all distinct, the resultingpirés a DAG.

If h(u) = h(v), we can arbitrarily pick one direction for the edge, as losghe graph remain a DAG.
This is the DAGG| in our problem above. Suppose now we have two height furefigrand k., and we
want to interpolate them: for ea¢he [0, 1], let hy(v) = tho(v) + (1 — t)h1(v). We want to represent the
transformation fronho to k1 by a sequence of graphs, where each successive graph iseabbgi changing
the direction of one edge. O

Exercise 7.8: Let D[u] denote the number of descendents a DAG= (V, E). Note thatD[u] = 1 iff
u is a sink. Show how to compuf@|[u] for all w € V' by programming the shell macros. What is
the complexity of your algorithm? &

Exercise 7.9: A vertexu is called abottleneck if for every other vertex € V, either there is a path
from v to u, or there is a path from to v. Give an algorithm to determine if a DAG has a
bottleneck. HINT: You should be able to do this in at mO$t(m + n)) time. &

Exercise 7.10:1n the previous problem, we defined bottlenecks. Now we waidssify these bot-
tlenecks into “real” and “apparent” bottlenecks. A botdekw is “apparent” if there exists an
ancestow (# u) and a descendent(# u) such thav—w is an edge. Such an edge w is called
a by-pass for:. Give an efficient algorithm to detect all real bottlenecka ®AG G. HINT: This
can be done i®(n + mlogn) time. O

Exercise 7.11:Given a DAGG, let D[u] denote the number of descendenta.ofCan we compute
Dlu]forallu € Vin o((m + n)n) time, i.e., faster than the obvious solution? O

END EXERCISES

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

§7. FURTHERAPPLICATIONS OFGRAPH TRAVERSAL Lecture IV Page 38

References

[1] J. A. Bondy and U. S. R. MurtyGraph Theory with Application$North Holland, New York, 1976.

[2] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stdimtroduction to Algorithms The MIT
Press and McGraw-Hill Book Company, Cambridge, Massadtwiaed New York, second edition,

2001.

[3] R. Sedgewick. Algorithms in C: Part 5, Graph AlgorithmsAddison-Wesley, Boston, MA, 3rd
edition edition, 2002.

[4] R. E. Tarjan. Depth-first search and linear graph algong. SIAM J. Computingl(2), 1972.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 3, 2011

	 PURE GRAPH ALGORITHMS
	 Varieties of Graphs
	 Path Concepts
	 Graph Representation
	 Breadth First Search
	 Simple Depth First Search
	 Full Depth First Search
	 Further Applications of Graph Traversal

