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“Liesez Euler, liesez Euler, c’est notre maı̂tre á tous”

(Read Euler, read Euler, he is our master in everything)
– Pierre-Simon Laplace (1749–1827)

Lecture IV
PURE GRAPH ALGORITHMS

Graph Theory is said to have originated with Euler (1707–1783). The citizens of the city1 of
Königsberg asked him to resolve their favorite pastime question: is it possible to traverse all the 7
bridges joining two islands in the River Pregel and the mainland, without retracing any path?See
Figure1(a) for a schematic layout of these bridges. Euler recognized2 in this problem the essense of
Leibnitz’s earlier interest in founding a new kind of mathematics called “analysis situs”. This can be
interpreted as topological or combinatorial analysis in modern language. A graph corresponding to the 7
bridges and their interconnections is shown in Figure1(b). Computational graph theory has a relatively
recent history. Among the earliest papers on graph algorithms are Boruvka’s (1926) and Jarnı́k (1930)
minimum spanning tree algorithm, and Dijkstra’s shortest path algorithm (1959). Tarjan is one of the
first to systematically design and analyze many of the basic graph algorithms, including applications of
DFS which we will study.
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Figure 1: The 7 Bridges of Konigsberg

Graphs are useful for modeling abstract mathematical relations in computer science as well as in
many other disciplines. Here are some examples of graphs:

Adjacency between CountriesFigure2(a) shows a political map of7 countries. Figure2(b) represents
a graph with vertex setV = {1, 2, . . . , 7} representing these countries. An edgei−j represents

1 This formerly Prussian city is now in Russia, called Kaninsgrad. See an article by Walter Gautschi (SIAM Review, Vol.50,
No.1, 2008, pp.3-33) on occasion of the 300th Anniversity ofEuler’s birth.

2 His paper was entitled “Solutio problematis ad geometriam situs pertinentis” (The solution of a problem relating to the
geometry of position).
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the relationship between countriesi andj that share a continuous (i.e., connected) common bor-
der. Note that countries2 and3 share two continuous common borders, and so we have two
copies of the edge2−3.

Flight Connections A graph can represent the flight connections of a particular airline, with the set
V representing the airports and the setE representing the flight segments that connect pairs of
airports. Each edge will typically have auxiliary data associated with it. For example, the data
may be numbers representing flying time of that flight segment.

Hypertext Links In hypertext documents on the world wide web, a document willgenerally have links
(“hyper-references”) to other documents. We can representthese linkages by a graph whose
verticesV represent individual documents, and each edge(u, v) ∈ V × V indicates that there is
a link from documentu to documentv.

(b)(a)

1
2

3

4

5
7

6

2

4

1

6

7

3

5

Figure 2: (a) Political map of7 countries (b) Their adjacency relationship

A graph is fundamentally a set of mathematical relations (called incidence relations) connecting two
sets, a vertex setV and an edge setE. In Figure1(b), the vertex set isV = {A, B, C, D} and the edges
are the7 arcs connecting pairs of vertices. A simple notion of an edgee ∈ E is wheree is a pair of
verticesu, v ∈ V . The pair can be orderede = (u, v) or unorderede = {u, v}, leading to two different
kinds of graphs. We shall denote3 such a pair by “u−v”, and rely on context to determine whether an
ordered or unordered edge is meant. For unordered edges, we haveu−v = v−u; but for ordered edges,
u−v 6= v−u unlessu = v. Note that this simple model of edges (as ordered or unordered pairs) is
unable to model the Konigsberg graph Figure1(b) since it has two copies of the edge betweenA andB.
Such multiple copies of edges requires the general formulation of graphs as a relationship between two
independent setsV andE.

In many applications, our graphs have associated data such as numerical values (“weights”) attached
to the edges and vertices. These are calledweighted graphs. The flight connection graph above is an
example of this. Graphs without such numerical values are called pure graphs. In this chapter, we
restrict attention to pure graph problems; weighted graphswill be treated in later chapters. Many

What can be impure of
graphs?

algorithmic issues of pure graphs relate to the concepts of connectivity and paths. Many of these algo-
rithms can be embedded in one of two graph searching strategies called depth-first search (DFS) and
breadth-first search (BFS).

Shell Programming
again!

Some other important problems of pure graphs are: testing ifa bigraph is planar, finding a maxi-
mum matching in a bigraph, and testing isomorphism of bigraphs. Tarjan [4] was one of the first to
systematically study the DFS algorithm and its applications. A lucid account of basic graph theory is
Bondy and Murty [1]; for a more algorithmic treatment, see Sedgewick [3].

3 We have taken this highly suggestive notation from Sedgewick’s book [3].
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§1. Varieties of Graphs

In this book, “graphs” refer to either directed graphs (“digraphs”) or undi-
rected graphs (“bigraphs”). Additional graph terminologyis collected in Lec-
ture I (Appendix A) for reference.

¶1. Set-Theoretic Notations for Simple Graphs. Although there are many varieties of graph con-
cepts studied in the literature, two main ones are emphasized in this book. These correspond to graphs
whose edgesu−v aredirected or undirected. Graphs with directed edges are calleddirected graphs
or simply,digraphs. Undirected edges are also said to bebidirectional , and the corresponding graphs
are known asundirected graphsor bigraphs.

A graphG is basically given by two sets,V andE. These are called thevertex setandedge set,
respectively. We focus on the “simple” versions of three main varieties of graphs. The terminology
“simple” will become clear below.

For any setV and integerk ≥ 0, let

V k, 2V ,

(

V

k

)

(1)

denote, respectively, thek-fold Cartesian product of V , power setof V and theset ofk-subsetsof V .
The first two notations (V k and2V ) are standard notations; the last one is less so. These notations have
a certain “umbral quality” because they satisfy the following equations on set cardinality:

umbra = shade or
shadow (Latin)

∣

∣V k
∣

∣ = |V |k,
∣

∣2V
∣

∣ = 2|V |,

∣

∣

∣

∣

(

V

k

)
∣

∣

∣

∣

=

(

|V |

k

)

.

We can define our 3 varieties of simple graphs as follows:

• A hypergraph is a pairG = (V, E) whereE ⊆ 2V .

• A directed graph (or simply,digraph) is a pairG = (V, E) whereE ⊆ V 2.

• A undirected graph (or4 simply,bigraph) is a pairG = (V, E) whereE ⊆
(

V

2

)

.

In all three cases, the elements ofV are calledvertices. Elements ofE are calleddirected edgesfor
digraphs,undirected edgesfor bigrpahs, andhyperedgesfor hypergraphs. Formally, a directed edge
is an ordered pair(u, v), and an undirected edge is a set{u, v}. But we shall also use the notationu−v
to represent anedgewhich can be directed or undirected, depending on the context. This convention is

Sou−v can mean
(u, v) or {u, v}!

useful because many of our definitions cover both digraphs and bigraphs. Similarly, the termgraph will
cover both digraphs and bigraphs. Hypergraphs are sometimes calledset systems(see matroid theory
in Chapter 5).

An edgeu−v is said to beincident onu andv; conversely, we sayu andv boundsthe edge{u, v}.
This terminology comes from the geometric interpretation of edges as a curve segment whose endpoints
are vertices. In caseu−v is directed, we callu thestart vertex andv thestop vertex.

If G = (V, E) andG′ = (V ′, E′) are graphs such thatV ⊆ V ′ andE ⊆ E′ then we callG a
subgraphof G′. WhenE = E′ ∩

(

V

2

)

, we callG′ the subgraph ofG that isinduced byV .

4 While the digraph terminology is fairly common, the bigraphterminology is peculiar to this book. We hope that this
convenient and suggestive terminology find wider adoption.
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¶2. Graphical Representation of Graphs. Bigraphs and digraphs are “linear graphs” in which each
edge is incident on one or two vertices. Such graphs have natural graphical (i.e., pictorial) represen-
tation: elements ofV are represented by points (small circles, etc) in the plane and elements ofE are
represented by finite curve segments connecting these points.

(b) digraph(a) bigraph
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b c
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Figure 3: Two graphs

In Figure 3(a), we display a bigraph(V, E) where V = {a, b, c, d, e} and E =
{a−b, b−c, c−d, d−a, c−e, b−d}. In Figure3(b), we display a digraph(V, E) whereV = {1, 2, . . . , 6}
andE = {1−5, 5−4, 4−3, 3−2, 2−1, 1−6, 2−6, 3−6, 4−6, 5−6, 5−2, 5−3, 2−3}. We display a di-
graph edgeu−v by drawing an arrow from the start vertexu to the stop vertexv. E.g., in Figure3(b),
vertex6 is the stop vertex of each of the edges that it is incident on. So all these edges are “directed”
towards vertex6. In contrast, the curve segments in bigraphs are undirected(bi-directional).

¶3. Non-Simple Graphs. Our definition of bigraphs, digraphs and hypergraphs is not the only rea-
sonable one, obviously. To distinguish them from other possible approaches, we call the graphs of our
definition “simple graphs”. Let us see how some non-simple graphs might look like. An edge of the
form u−u is called aloop. For bigraphs, a loop would correspond to a set{u, u} = {u}. But such
edges are excluded by definition. If we want to allow loops, wemust defineE as a subset of

(

V

2

)

∪
(

V

1

)

.
Note that our digraphs may have loops, which is at variance with some other definitions of “simple
digraphs”. In Figures1(b) and in2(b), we see the phenemenon ofmulti-edges(also known asparallel
edges). These are edges that can occur more than once in the graph.

More generally, we viewE as a multiset. Amultiset S is an ordinary setS together with a function
µ : S → N. We call S the underlying set of S andµ(x) is the multiplicity of x ∈ S. E.g., if
S = {a, b, c} andµ(a) = 1, µ(b) = 2, µ(c) = 1, then we could displayS as{a, b, b, c}, and this is not
the same as the multiset{a, b, b, b, c}, for instance.

¶4. Special Classes of Graphs. In Appendix (Lecture I), we defined special graphs such as acyclic
graphs and trees. We mention note some additional classes ofgraphs here.

First consider bigraphs. The complete graphKn and the complete bipartite graphKm,n were also
defined in Lecture I Appendix. See Figure4(a,b) for the cases ofK5 andK3,3. In general,bipartite
graphsare those whose vertex setV can be partitioned in two disjoint setsA ⊎ B = U such that each
edge is incident on some vertex inA and on some vertex inB. Instead of writingG = (V, E), we may
write G = (A, B, V ) for such a bipartite graph withE ⊆ A × B. Bipartite graphs are important in
practice because they model relations between two sets of entities (man versus woman, students versus
courses, etc).
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Figure 4: (a)K5, (a’) K5, (b) K3,3, (c) L4, (d)C4

Planar graphs are those bigraphs which can be embedded in the Euclidean plane such that no two
edges cross. Informally, it means that we draw them on a pieceof paper so that the curves representing
edges do not intersect. Planar graphs have many special properties: for instance, a planar graph withn
vertices has at most3n − 6 edges. The two smallest examples of non-planar graphs are the so-called
Kuratowski graphsK5 andK3,3 in Figure4(a,b). We have re-drawnK5 in Figure4(a’), this time to
minimize the number of edge crossings. The graphK3,3 is also known as the “utilities graph”. TheWhy isK3,3 so called?
proof that these two graphs are nonplanar are found in Exercises (in this section, and also in Appendix
of Chap. 1).

We can also define theline graphs Ln whose nodes are{1, . . . , n}, with edgesi−i + 1 for i =
1, . . . , n − 1. Closely related is thecyclic graphsCn which is obtained fromLn by adding the extra
edgen−1. These are illustrated in Figure4(c,d).

These graphsKn, Km,n, Ln, Cn are usually viewed as bigraphs, but there are obvious digraphs
versions of these.

Graph Isomorphism. The concept of graph isomorphism (see Appendix,
Lecture I) is important to understand. It is implicit in manyof our discussions
that we are only interested in graphsup to isomorphism. For instance, we de-
finedKn (n ∈ N) as “the complete graphs onn vertices” (Appendix, Lecture
I). But we never specified the vertex set ofKn. This is becauseKn is really
an isomorphism class. For instance,G = (V, E) whereV = {a, b, c, d} and
E =

(

V

2

)

andG′ = (V ′, E′) whereV ′ = {1, 2, 3, 4} andE′ =
(

V ′

2

)

are
isomorphic to each other. Both belong to the isomophism class K4. Another
example of two isomorphic graphs is the Kuratowski graphK5, but repre-
sented differently as in Figure4(a) and Figure4(a’). There is usually a way
to avoid isomorphism classes, but picking a canonical representative. In the
case ofKn, we can just view it as a bigraph whose vertex set is a particular
set,Vn = {1, 2, . . . , n}. Then the edge set (in case ofKn) is completely
determined. Likewise, we defineLn andCn above as graphs on the vertex
set{1, 2, . . . , n} because this allows a compact description. Nevertheless, it
should be understood that we intend to viewLn andCn as an isomorphism
class.
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¶5. Auxiliary Data Convention. We may want to associate some additional data with a graph. Sup-
pose we associate a real numberW (e) for eache ∈ E. Then graphG = (V, E; W ) is calledweighted
graph with weight functionW : E → R. Again, suppose we want to designate two verticess, t ∈ V as
thesourceanddestination, respectively. We may write this graph asG = (V, E; s, t). In general, aux-
iliary data such asW, s, t will be separated from the pure graph data by a semi-colon,G = (V, E; · · · ).
Alternatively,G is a graph, and we want to add some additional datad, d′, we may also write(G; d, d′),
etc.

EXERCISES

Exercise 1.1: (Euler) Convince the citizens of Königsberg that there is no way to traverse all seven
bridges in Figure1(a) without going any bridge twice. ♦

Exercise 1.2: Suppose we have a political map as in Figure2(a), and its corresponding adjacency
relation is a multigraphG = (V, E) whereE is not a multiset whose underlying set is a subset of
(

V

2

)

.
(a) Suppose vertexu has the property that there is a unique vertexv such thatu−v is an edge.
What can you say about the country corresponding tou?
(b) Supposeu−v has multiplicity≥ 2. Consider the setW = {w ∈ V : w−v ∈ E, w−u ∈ E}.
What can you say about the setW? ♦

Exercise 1.3: Prove or disprove: there exists a bigraphG = (V, E) where|V | is odd and the degree of
each vertex is odd. ♦

Exercise 1.4:
(i) How many bigraphs, digraphs, hypergraphs are there onn vertices?
(ii) How many non-isomorphic bigraphs, digraphs, hypergraphs are there onn vertices? Estimate
these with upper and lower bounds. ♦

Exercise 1.5: A trigraph isG = (V, E) whereE ⊆
(

V
3

)

. An elementf ∈ E is called aface (not
“edge”). A pair{u, v} ∈

(

V
2

)

is called anedgeprovided{u, v} ⊆ f for some facef ; in this case,
we sayf is incident on e, ande bound f ). The trigraph is an (abstract)surface if each edge
bounds exactly two faces. How many nonisomorphic surfaces are there onn = |V | vertices?
First consider the casen = 4, 5, 6. ♦

END EXERCISES

§2. Path Concepts

We now go into some of these concepts in slightly more detail.Most basic concepts of pure graphs
revolve around the notion of a path.

Let G = (V, E) be a graph (i.e., digraph or bigraph). Ifu−v is an edge, we say thatv is adjacent
to u, and alsou is adjacent from v. The typical usage of this definition of adjacency is in a program
loop:
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For each v adjacent tou,
do “ . . . v . . .”

Let p = (v0, v1, , . . . , vk), (k ≥ 0) be a sequence of vertices. We callp a path if vi is adjacent to
vi−1 for all i = 1, 2, . . . , k. In this case, we can denotep by (v0−v1− · · · −vk).

Thelength of p is k (notk +1). The path istrivial if it has length0, p = (v0). Call v0 is thesource
andvk the target of p. Bothv0 andvk areendpointsof p. We also sayp is a pathfrom v0 to vk The
pathp is closedif v0 = vk and it issimple if all its vertices, with the possible exception ofv0 = vk, are
distinct. Note that a trivial path is closed and simple. Thereverseof p = (v0−v1− · · · −vk) is the path

pR := (vk−vk−1− · · · −v0).

In a bigraph,p is a path iffpR is a path.
Distance notation:

δG(u, v)

¶6. The Link Distance Metric. DefineδG(u, v), or simplyδ(u, v), to be the minimum length of a
path fromu to v. If there is no path fromu tov, thenδ(u, v) =∞. We also callδ(u, v) thelink distance
from u to v; this terminology will be useful whenδ(u, v) is later generalized to weighted graphs, and
when we still need to refer to the ungeneralized concept. Thefollowing is easy to see:

• (Non-negativity)δ(u, v) ≥ 0, with equality iff u = v.

• (Triangular Inequality)δ(u, v) ≤ δ(u, w) + δ(w, v).

• (Symmetry) WhenG is a bigraph, thenδ(u, v) = δ(v, u).

These three properties amount to saying thatδ(u, v) is a metric onV in the case of a bigraph. If
δ(u, v) <∞, we sayv is reachable fromu.

Suppose(v0−v1− · · · −vk) is a minimum link path (sometimes called “shortest path”) between
v0 andvk. Thus,δ(v0, vk) = k. Then we have the following basic property: for alli = 0, 1, . . . , k,
δ(v0, vi) = i. This is also called the “dynamic programming principle” for minimum link paths (we
will study dynamic programming in Lecture 7).

¶7. Subpaths. Let p andq be two paths:

p = (v0−v1− · · · −vk), q = (u0−u1− · · · −uℓ),

If p terminates at the vertex where pathq begins, i.e.,vk = u0, then the operation ofconcatenationis
well-defined. The concatenation ofp andq gives a new path, written

p; q := (v0−v1− · · · −vk−1−vk−u1−u2− · · · −uℓ).

Note that the common vertexvk andu0 are “merged” inp; q. Clearly concatenation of paths is associa-
tive: (p; q); r = p; (q; r), which we may simply write asp; q; r. We say that a pathp containsq as a
subpath if p = p′; q; p′′ for somep′, p′′. If in addition,q is a closed path, we canexciseq from p to
obtain the pathp′; p′′. Whenever we write a concatenation expression such as “p; q”, it is assume that
the operation is well-defined.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version March 3, 2011



§2. PATH CONCEPTS Lecture IV Page 8

¶8. Cycles. Two pathsp, q arecyclic equivalent if there exists pathsr, r′ such that

p = r; r′, q = r′; r.

We writep ≡ q in this case.

For instance, the following four closed paths are cyclic equivalent:

(1−2−3−4−1) ≡ (2−3−4−1−2) ≡ (3−4−1−2−3) ≡ (4−1−2−3−4).

The first and the third closed paths are cyclic equivalent because of the following decomposition:

(1−2−3−4−1) = (1−2−3); (3−4−1), (3−4−1−2−3) = (3−4−1); (1−2−3).

If p = r; r′ andr′; r is defined, thenp must be a closed path because the source ofr and the target
of r′ must be the same, and so the source and target ofp are identical. Similarly,q must be a closed
path.

It is easily checked that cyclic equivalence is a mathematical equivalence relation. We define a
cycleas an equivalence class of closed paths. If the equivalence class ofp is the cycleZ, we callp a
representativeof Z; if p = (v0, v1, . . . , vk) then we writeZ as

Z = [p] = [v1−v2− · · ·−vk] = [v2−v3− · · ·−vk−v1].

Note that ifp hask + 1 vertices, then[p] is written with onlyk vertices since the last vertex may be
omitted. In case of digraphs, we can have self-loops of the form u−u andp = (u, u) is a closed path.
The corresponding cycle is[u]. However, the trivial pathp = (v0) gives rise to the cycle which is an
empty sequenceZ = [ ]. We call this thetrivial cycle . Thus, there is only one trivial cycle, independent
of any choice of vertexv0.

Path concepts that are invariant under cyclic equivalence are “transferred” to cycles automatically.
Here are some examples: letZ = [p] be a cycle.

• Thelength of Z is the length ofp.

• SayZ is simple if p is simple.

• We may speak of subcycles ofZ: if we excise zero or more closed subpaths from a closed pathp,
we obtain a closed subpathq; call [q] asubcycleof [p]. In particular, the trivial cycle is a subcycle
of Z. For instance,[1−2−3] is a subcycle of

[1−2−a−b−c−2−3−d−e−3].

• Thereverseof Z is the cycle which has the reverse ofp as representative.

• A cycleZ = [p] is trivial if p is a trivial path. So a trivial cycle is written[(v0)] = [ ].

We now define the notion of a “cyclic graph”. For a digraphG, we say it iscyclic if it contains any
nontrivial cycle. But for bigraphs, this simple definition will not do. To see why, we note that every
edgeu−v in a bigraph gives rise to the nontrivial cycle[u, v]. Hence, to define cyclic bigraphs, we
proceed as follows: first, define a closed pathp = (v0−v1− · · ·−vk−1, v0) to bereducible if k ≥ 2
and for somei = 1, . . . , k,

vi−1 = vi+1
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where subscript arithmetic are modulok (so vk = v0 andvk+1 = v1). Otherwisep is said to be
irreducible . A cycleZ = [p] is reducible iff any of its representativep is reducible. Finally, a bigraph
is said to becyclic if it contains some irreducible non-trivial cycle.

Let us explore some consequences of these definitions on bigraphs: by definition, the trivial path
(v0) is irreducible. Hence the trivial cycle[ ] is irreducible. There are no cycles of length1, and any
cycle [u, v] of length2 is always reducible. Hence, irreducible non-trivial cycles have length at least3.
If a closed path(v0, . . . , vk−1, v0) is reducible andk ≥ 3, then it is a non-simple path.

¶9. Connectivity. Let G = (V, E) be a graph (either di- or bigraph). Two verticesu, v in G are
connectedif there is a path fromu to v and a path fromv to u. Equivalently,δ(u, v) andδ(v, u) are
both finite. Clearly, connectedness is an equivalence relation onV . A subsetC of V is a connected
component of G if it is an equivalence class of this relation. For short, we may simply callC a
componentof G. Alternatively,C is a non-empty maximal subset of vertices in which any two are
connected. ThusV is partitioned into disjoint components. IfG has only one connected component, it
is said to beconnected. When|C| = 1, we call it atrivial component. The subgraph ofG induced by
C is called acomponent graphof G. NOTE: It is customary we may add the qualifier “strong” when
discussing components of digraphs. Thus strong componentsis always a reference to digraphs.

(c)(b)(a)
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Figure 5: (a) DigraphG6, (b) Component graph ofC = {2, 3, 5}, (c) Reduced graphGc
6

For example, the graphG6 in Figure5(a) hasC = {2, 3, 5} as a component. The component graph
corresponding toC is shown in Figure5(b). The other components ofG are{1}, {4}, {6}, all trivial.

GivenG, we define thereduced graphGc = (V c, Ec) whose vertices comprise the components
of G, and whose edges are(C, C′) ∈ Ec such that there exists an edge from some vertex inC to some
vertex inC′. This is illustrated in Figure5(c).

CLAIM: Gc is acycic. In proof, suppose there is a non-trivial cycleZc in Gc. This translates into a
cycleZ in G that involves at least two componentsC, C′. The existence ofZ contradicts the assumption
thatC, C′ are distinct components.

Although the concept of connected components is meaningfulfor bigraphs and digraphs, the concept
of reduced graph is trivial for bigraphs: this is because there are no edges inGc whenG is a bigraph.
Hence the concept of reduced graphs will be reserved for digraphs only. For bigraphs, we will intro-
duce another concept calledbiconnected componentsbelow. WhenG is a bigraph, the notationGc

will be re-interpreted using biconnectivity.
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¶10. DAGs and Trees. We have defined cyclic bigraphs and digraphs. A graph isacyclic if it is not
cyclic. The common acronym for adirected acyclic graph is DAG. A tree is a DAG in which there is
a vertexu0 called theroot such that there exists a unique path fromu0 to any other vertex. Clearly, the
root is unique. Trees, as noted in Lecture III, are ubiquitous in computer science. Motto: “know thy tree”

A free tree is a connected acyclic bigraph. Such a tree it has exactly|V | − 1 edges and for every
pair of vertices, there is a unique path connecting them. These two properties could also be used as the
definition of a free tree. Arooted tree is a free tree together with a distinguished vertex called the root.
We can convert a rooted tree into a directed graph in two ways:by directing each of its edges away from
the root (so the edges are child pointers), or by directing each edge towards the root (so the edges are
parent pointers).

EXERCISES

Exercise 2.1: Let u be a vertex in a graphG.
(a) Canu be adjacent to itself ifG is a bigraph?
(b) Canu be adjacent to itself ifG is a digraph?
(c) Letp = (v0, v1, v2, v0) be a closed path in a bigraph. Canp be non-simple? ♦

Exercise 2.2: DefineN(m) to be the largest value ofn such that there is aconnectedbigraphG =
(V, E) with m = |E| edges andn = |V | vertices. For instance,N(1) = 2 since with one edge,
you can have at most2 nodes in the connected graphG. We also see thatN(0) = 1. What is
N(2)? Prove a general formula forN(m).

♦

Exercise 2.3: Give an algorithm which, given two closed pathsp = (v0−v1− · · · −vk) and q =
(u0−u1− · · · −uℓ), determine whether they represent the same cycle (i.e., areequivalent). The
complexity of your algorithm should beO(k2) in general, butO(k) for whenq is a simple cycle.
NOTE: Assume that vertices are integers, and the closed pathp = (v0− · · · −vk) is represented
by an array of integersp[0..k], wherep[i] = vi andp[0] = p[k]. ♦

END EXERCISES

§3. Graph Representation

The representation of graphs in computers is relatively straightforward if we assume array capabili-
ties or pointer structures. The three main representationsare:

• Edge list: this consists of a list of the vertices ofG, and a list of the edges ofG. The lists may be
singly- or doubly-linked. If there are no isolated vertices, we may omit the vertex list. E.g., the
edge list representations of the two graphs in Figure3 would be “a−b” denotes an edge

{a−b, b−c, c−d, d−a, d−b, c−e}

and
{1−6, 2−1, 2−3, 2−6, 3−2, 3−6, 4−3, 4−6, 5−2, 5−3, 5−6}.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version March 3, 2011



§3. GRAPH REPRESENTATION Lecture IV Page 11

• Adjacency list: a list of the vertices ofG and for each vertexv, we store the list of vertices that
are adjacent tov. If the vertices adjacent tou arev1, v2, . . . , vm, we may denote an adjacency list
for u by (u : v1, v2, . . . , vm). E.g., the adjacency list representation of the graphs in Figure3 are

{(a : b, d), (b : a, d, c), (c : b, d, e), (d : a, b, c), (e : c)}

and
{(1 : 5, 6), (2 : 1, 3, 6), (3 : 2, 6), (4 : 3, 6), (5 : 4, 6), (6 :)}

Typically, we have an arrayA[1..n] indexed by the vertices. Each array entryA[v] points to the
adjacency list for vertexv, represented by a linked list.

• Adjacency matrix: this is an × n Boolean matrix where the(i, j)-th entry is1 iff vertex j is
adjacent to vertexi. E.g., the adjacency matrix representation of the graphs inFigure3 are

a
b
c
d
e













0 1 0 1 0
1 0 1 1 0
0 1 0 1 1
1 1 1 0 0
0 0 1 0 0













a b c d e

,

1
2
3
4
5
6

















0 0 0 0 1 1
1 0 1 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 1 1 1 0 1
0 0 0 0 0 0

















1 2 3 4 5 6 .

Note that the matrix for bigraphs are symmetric. The adjacency matrix can be generalized to store
arbitrary values to represent weighted graphs.

¶11. Size Parameters. Two size parameters are used in measuring the computationalcomplexity of
graph problems:|V | and|E|. These are typically denoted byn andm. Thus the running time of graph
algorithms are typically denoted by a function of the formT (n, m). A linear time algorithm would have
T (n, m) = O(m + n). It is clear thatn, m are not independent, but satisfy the bounds0 ≤ m ≤ n2.
Thus, the edge list and adjacency list methods of representing graphs useO(m+n) space while the last
method usesO(n2) space.

If m = o(n2) for graphs in a familyG, we sayG is asparsefamily of graphs; otherwise the family is
dense. Thus the adjacency matrix representation is not a space-efficient way to represent sparse graphs.
Some algorithms can exploit sparsity of input graphs. For example, the familyG of planar bigraphs is
sparse because (as noted earlier)m ≤ 3n − 6 in such graphs (Exercise). Planar graphs are those that
can be drawn on the plane without any crossing edges.

¶12. Arrays and Attributes. If A is an array, andi ≤ j are integers, we writeA[i..j] to indicate that
the arrayA hasj − i + 1 elements which are indexed fromi to j. ThusA contains the set of elements
{A[i], A[i + 1], . . . , A[j]}.

In description of graph algorithms, it is convenient to assume that the vertex set of a graph isV =
{1, 2, . . . , n}. The list structures can now be replaced by arrays indexed bythe vertex set, affording
great simplification in our descriptions. Of course, arraysalso has more efficient access and use less
space than linked lists. For instance, arrays allows us to iterate over all the vertices using an integer
variable.

Often, we want to compute and store a particularattribute (or property) with each vertices. We can
use an arrayA[1..n] whereA[i] is the value of theA-attribute of vertexi. For instance, if the attribute
values are real numbers, we often callA[i] the “weight” of vertexi. If the attribute values are elements
of some finite set, we may callA[i] the “color” of vertexi.
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¶13. Coloring Scheme. In many graph algorithms we need to keep track of the processing status of
vertices. Initially, the vertices are unprocessed, and finally they are processed. We may need to indi-
cate some intermediate status as well. Viewing the status ascolors, we then have a three-color scheme:
white or gray or black. They correspond to unprocessed, partially processed and completely pro-
cessed statuses. Alternatively, the three colors may be called unseen, seen anddone (resp.), or
0, 1, 2. Initially, all vertices are unseen or white or0. The color transitions of each vertex are always in
this order:

white ⇒ gray ⇒ black,
unseen ⇒ seen ⇒ done
0 ⇒ 1⇒ 2.

(2)

For instance, let the color status be represented by the integer arraycolor[1..n], with the convention
thatwhite/unseen is 0, gray/seen is 1 andblack/done is 2. Then color transition for vertexi is
achieved by the increment operationcolor[i]++. Sometimes, a two-color scheme is sufficient: in this
case we omit thegray color or thedone status.

EXERCISES

Exercise 3.1: The following is a basic operation for many algorithms: given a digraphG represented
by adjacency lists, compute the reverse digraphGrev in time O(m + n). Recall (Lecture 1,
Appendix) thatu−v is an edge ofG iff v−u is an edge ofGrev. Show that your algorithm has
the stated running time. ♦

Exercise 3.2: Let G is a planar bigraph.
(a) Show that if a planar embedding ofG hasf faces, thenv − e + f = n −m + f = 2 where
v = n = |V |, e = m = |E|. Thus,f is independent of the choice of embedding. HINT: use
induction onf . Note that whenf = 1, G is a free tree.
(b) Show that2e ≥ 3f . HINT: Count the number of (edge-face) incidences in two ways: by
summing over all edges, and by summing over all faces.
(c) Conclude thate ≤ 3v − 6. When is equality attained? ♦

Exercise 3.3: The average degree of vertices in a planar bigraph is less than 6. ♦

Exercise 3.4: Let G be a planar bigraph with60 vertices. What is the maximum number of edges it
may have? ♦

Exercise 3.5: Prove thatK3,3 is nonplanar. HINT: Use the fact that every face of an embedding of
K3,3 is incident on at least 4 edges. Then counting the number of(edge, face) incidences in two
ways, from the viewpoint of edges, and from the viewpoint of faces. From this, obtain an upper
bound on the number of faces, which should contradiction Euler’s formulav − e + f = 2. ♦

END EXERCISES

§4. Breadth First Search
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A graph traversal is any systematic method to “visit” each vertex and each edgeof a graph. In this Hey, haven’t we seen
this before for trees?section, we study two main traversal methods, known as BFS and DFS. The graph traversal problem

may be traced back to the Greek mythology about threading through mazes (Theseus and the Minotaur
legend), and to Trémaux’s cave exploration algorithm in the 19th Century [3]. Tarjan’s 1972 paper on
DFS was seminal in Computer Science.

Here is the generic graph traversal algorithm: the idea is tomark the vertices with “colors” where
the colors are initiallyunseen, and after we have visited the vertex, we color itseen:

GENERIC GRAPH TRAVERSAL:
Input: G = (V, E; s0) wheres0 is source node

Color all vertices as initiallyunseen.
Mark s0 asseen, and insert intoQ
While Q is non-empty

u← Q.Remove()
For each vertexv adjacent tou

If v is unseen,
color it asseen
Q.insert(v)

This algorithm will reach all nodes that are reachable from the sources0. To visit all nodes, we can
use another driver routine which invokes this traversal routine with different choices for source nodes
(see Below). The setQ is stored in some container data-structure. There are two standard containers:
either a queue or a stack. These two data structures give riseto the two algorithms for graph traversal:
Breadth First Search (BFS) andDepth First Search(DFS), respectively.

Both traversal methods apply to digraphs and bigraphs. However, BFS is often described for bi-
graphs only and DFS for digraphs only. We generally follow this tradition. In both algorithms, the input
graphG = (V, E; s0) is represented by adjacency lists, ands0 ∈ V is called thesourcefor the search.

The idea of BFS is to systematically visit vertices that are nearer tos0 before visiting those vertices
that are further away. For example, suppose we start searching from vertexs0 = a in the bigraph of
Figure3(a). From vertexa, we first visit the verticesb andd which are distance1 from vertexa. Next,
from vertexb, we find verticesc andd that are distance1 away; but we only visit vertexc but not vertex
d (which had already been visited). And so on. The trace of thissearch can be represented by a tree as
shown in Figure6(a). It is called the “BFS tree”.

(b)

a

b d

e

c

a

b d

e

c

(a)

Figure 6: (a) BFS tree. (b) Non-tree edges.

More precisely, recall thatδ(u, v) denote the (link) distance fromu tov in a graph. The characteristic
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property of the BFS algorithm is that we will visitu beforev whenever

δ(s0, u) < δ(s0, v) <∞. (3)

If δ(s0, u) =∞, thenu will not be visited froms0. The BFS algorithm does not explicitly compute the
relation (3) to decide the next node to visit: we will prove below that this is a consequence of using the
queue data structure.

¶14. The BFS Shell. The key to the BFS algorithm is thequeueADT which supports the insertion
and deletion of an item following the First-In First-Out (FIFO) discipline. IfQ is a queue andx an item,
we denote the insert and delete operations by

Q.enqueue(x), x← Q.dequeue(),

respectively. To keep track of the status of vertices we willuse the color scheme in the previous sec-
tion (see (2)). We could use three colors, but for our current purposes, two suffice:white/gray or
unseen/seen.

We formulate the BFS algorithm as a “skeleton” or shell routine:

BFS SHELL

Input: G = (V, E; s0) a graph (bi- or di-).
Output: This is application specific.
⊲ Initialization:

0 INIT(G, s0) ⊳ If this is standalone, then color all vertices excepts0 asunseen
1 Initialize the queueQ to contain justs0.

2 VISIT(s0, nil) ⊳ Visit v as root
⊲ Main Loop:

while Q 6= ∅ do
3 u← Q.dequeue(). ⊳ Begin processingu
4 For each v adjacent tou do ⊳ Process edgeu−v

5 PREVISIT(v, u) ⊳ Previsitv fromu

6 if v is unseen then
7 Colorv seen
8 VISIT(v, u) ⊳ Visit v fromu

9 Q.enqueue(v).
10 POSTVISIT(u)

11 CLEANUP(G)

Our shell program contains the following shell macros

INIT, PREVISIT, VISIT, POSTVISIT, CLEANUP (4)

which will be application-specific. These macros may be assumed5 to be null operations unless other-
wise specified. The term “macro” also suggests only small andlocal (i.e.,O(1) time) modications. An
application of BFS will amount to filling these shell macros with actual code. We can usually omit the
PREVISIT step, but see§6 for an example of using this macro.

5 Alternatively, we could fold the coloring steps into these macros, so that they may be non-null. But we choose to expose
these coloring steps in our BFS shell.
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Note that VISIT(v, u) represents visitingv from u; a similar interpretation holds for
PREVISIT(v, u). We allow u = nil in casev is the root of a BFS tree. If this BFS algorithm is a
standalone code, then INIT(G, s0) may be expected to initialize the color of all vertices tounseen,
ands0 has colorseen. Otherwise, the initial coloring of vertices must be done before calling BFS.

There is an underlying tree structure in each BFS computation: the root iss0. If v is seen from u
(see Line 6 in the BFS Algorithm), then the edgeu−v is an edge in this tree. This tree is called the
BFS tree(see Figure6(a)). A BFS listing at s0 is a list of all the vertices reachable froms0 in which
a vertexu appears before another vertexv in the list whenever (3) holds. E.g., letG be the bigraph in
Figure3(a) ands0 is vertexa. Then two possible BFS listing ata are

(a, b, d, c, e) and (a, d, b, c, e). (5)

We can produce such a listing just by enumerating the vertices of the BFS tree in the order they are
visited.

¶15. Applications of BFS. We now show how to program the shell macros in BFS to solve a variety
of problems:

• Suppose you wish to print a BFS listing of the vertices reachable froms0. Then POSTVISIT(u)
simply prints the key (or some identifier or name) atu. Other macros can remain null operations.

• Suppose you wish to compute the BFS treeT . If we view T as a set of edges, then INIT(G, s0)
could initialize the setT to be empty. In VISIT(v, u), we add the edgeu−v to T .

• Suppose you wish to determine the depthd[u] of each vertexu in the BFS tree. Then INIT(G, s0)
could initialize

d[u] =

{

∞ if u 6= s0,
0 if u = s0.

and in VISIT(v, u), we setd[v] = 1 + d[u]. Also, the coloring scheme (unseen/seen) could
be implemented using the arrayd[1..n] instead of having a separate array. More precisely, we
interpret a nodeu to be unseen iffd[u] =∞.

• Suppose you wish to detect cycles in an bigraph. Let us assumethe input graph is connect. In
PREVISIT(v, u), if v is seen, then you have detected a cycle, and you return ”CYCLIC”.

You only reach the final CLEANUP(G) (step 11) if your did not return earlier through PREVISIT.
So, CLEANUP simply returns ”ACYCLIC”.

¶16. BFS Analysis. We shall derive basic properties of the BFS algorithm. Theseresults will apply
to both bigraphs and digraphs unless otherwise noted. The following two properties are often taken for
granted:

LEMMA 1.
(i) The BFS algorithms terminates.
(ii) Starting from sources0, the BFS algorithm visits every node reachable froms0.

We leave its proof for an Exercise. For instance, this assures us that each vertex of the BFS tree will
eventually become the front element of the queue.

Let δ(v) ≥ 0 denote thedepth of a vertexv in the BFS tree. Note that ifv is visited fromu, then
δ(v) = δ(u) + 1. We prove a key property of BFS:
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LEMMA 2 (Monotone0 − 1 Property). Let the vertices in the queueQ at some time instance be
(u1, u2, . . . , uk) for somek ≥ 1, with u1 the earliest enqueued vertex anduk the last enqueued vertex.
The following invariant holds:

δ(u1) ≤ δ(u2) ≤ · · · ≤ δ(uk) ≤ 1 + δ(u1). (6)

Proof.The result is clearly true whenk = 1. Suppose(u1, . . . , uk) is the state of the queue at the
beginning of the while-loop, and (6) holds. In Line 3, we removedu1 and assign it to the variableu.
Now the queue contains(u2, . . . , uk) and clearly, it satisfies the corresponding inequality

δ(u2) ≤ δ(u3) ≤ · · · ≤ δ(uk) ≤ 1 + δ(u2).

Suppose in the for-loop, in Line 9, we enqueued a nodev that is adjacent tou = u1. ThenQ contains
(u2, . . . , uk, v) and we see that

δ(u2) ≤ δ(u3) ≤ · · · ≤ δ(uk) ≤ δ(v) ≤ 1 + δ(u2)

holds becauseδ(v) = 1+δ(u1) ≤ 1+δ(u2). In fact, every vertexv enqueued in this for-loop preserves
this property. This proves the invariant (6). Q.E.D.

This lemma shows thatδ(ui) is monotone non-decreasing. Indeed,δ(ui) will remain constant
throughout the list, except possibly for a single jump to thenext integer. Thus, it has this “0 − 1
property”, thatεj := δ(uj+1)− δ(uj) = 0 or 1 for all j = i, . . . , k − 1. Moreover, there is at most one
j such thatεj = 1. From this lemma, we deduce other basic properties the BFS algorithm:

LEMMA 3. For each vertexu in the BFS tree,

δ(u) = δ(s0, u),

i.e.,δ(u) is the link distance froms0 to u.

Proof.Let π : (u0−u1−u2− · · · −uk) be a shortest path fromu0 = s0 to uk = u of lengthk ≥ 1.
It is sufficient to prove thatδ(uk) = k. For i ≥ 1, lemma2 tells us thatδ(ui) ≤ δ(ui−1) + 1. This
impliesδ(uk) ≤ k + δ(u0) = k. On the other hand, the inequalityδ(uk) ≥ k is immediate because,
δ(s0, uk) = k by our choice ofπ, andδ(uk) ≥ δ(s0, uk) because there is a path of lengthδ(uk) from
s0 to uk. Q.E.D.

As corollary: if we print the verticesu1, u2, . . . , uk of the BFS tree, in the order that they are
enqueued, this would represent a BFS listing.This is becauseδ(ui) is non-decreasing withi, and
δ(ui) = δ(s0, ui).

Another basic property is:

LEMMA 4. If δ(u) < δ(v) thenu is VISITed beforev is VISITed, andu is POSTVISITed beforev is
POSTVISITed.

¶17. Classifying Bigraph Edges. Let us now consider the case of a bigraphG. The edges ofG can
be classified into the following types by the BFS Algorithm (cf. Figure6(b)):

• Tree edges: these are the edges of the BFS tree.
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• Level edges: these are edges between vertices in the same level of the BFStree. E.g., edgebd in
Figure6(b).

• Cross-Level edges: these are non-tree edges that connect vertices in two different levels. But
note that the two levels differ by exactly one. E.g., edgecd in Figure6(b).

• Unseen edges: these are edges that are not used during the computation. The involved vertices
not reachable froms0.

Each of these four types of edges can arise (see Figure6(b) for tree, level and cross-level edges).
But is the classification complete (i.e., exhaustive)? It is, because any other kind of edges must connect
vertices at non-adjacent levels of the BFS tree, and this is forbidden by Lemma3. Hence we have:

THEOREM 5 (Classification of Bigraph Edges).If G is a bigraph, the above classification of edges is
complete.

We will leave it as an exercise to fill in our BFS shell macros toproduce the above classification of
edges.

¶18. Applications of Bigraph Edge Classification. Many basic properties of link distance can be
deduced from it. We illustrate this by showing two consequences here (try proving them without the
classification theorem!).
1. LetT be a BFS tree rooted atv0. Consider the DAGD obtained fromT by adding all the cross-level
edges. All the edges inG are given a direction which is directed away fromv0 (so each edge goes from
some leveli ≥ 0 to leveli + 1). CLAIM: Every minimum link path starting fromv0 appears as a path
in the DAGD. In proof, the classification theorem implies that each path in G is a mininum link path,
as there are no edges that can skip a level.
2. Consider a bigraphG with n vertices and with a minimum link pathp = (v0−v1− · · ·−vk). CLAIM:
If k > n/2 then there exists a vertexvi (i = 1, . . . , k − 1) such that every path fromv0 to vk must pass
through vi. To see this, consider the BFS tree rooted atv0. This has more thann/2 levels since
δ(v0, vk) = k > n/2. If there is a leveli (i = 1, . . . , k − 1) with exactly one vertex, then this vertex
must bevi, and thisvi will verify our claim. Otherwise, each leveli has at least two vertices for all
i = 1, . . . , k − 1. Thus there are at least2k = (k + 1) + (k − 1) vertices (k + 1 vertices are in the path
p andk − 1 additional vertices in levels1, . . . , k − 1) But k > n/2 implies2k > n, contradiction.

¶19. Driver Program. In our BFS algorithm we assume that a source vertexs0 ∈ V is given. This
is guaranteed to visit all vertices reachable froms0. What if we need to process all vertices, not just
those reachable from a given vertex? In this case, we write a “driver program” that repeatedly calls our
BFS algorithm. We assume a global initialization which setsall vertices tounseen. Here is the driver
program:
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BFS DRIVER ALGORITHM

Input: G = (V, E) a graph.
Output: Application-dependent.
⊲ Initialization:

1 Color all vertices asunseen.
2 GLOBAL INIT(G)

⊲ Main Loop:
3 For each vertexv in V do
4 if v is unseen then
5 call BFS((V, E; v)).

Note that with the BFS Driver, we add another shell macro called GLOBAL INIT to our collection
(4).

¶20. Time Analysis. Let us determine the time complexity of the BFS Algorithm andthe BFS Driver
program. We will discount the time for the application-specific macros; but as long as these macros
areO(1) time, our complexity analysis remains valid. Also, it is assumed that the Adjacency List
representation of graphs is used. The time complexity will be given as a function ofn = |V | and
m = |E|.

Here is the time bound for the BFS algorithm: the initialization is O(1) time and the main loop
is Θ(m′) wherem′ ≤ m is the number of edges reachable from the sources0. This giving a total
complexity ofΘ(m′).

Next consider the BFS Driver program. The initialization isΘ(n) and line 3 is executedn times.
For each actual call toBFS, we had shown that the time isΘ(m′) wherem′ is the number of reachable
edges. Summing over all suchm′, we obtain a total time ofΘ(m). Here we use the fact the sets of
reachable edges for different calls to the BFS routine are pairwise disjoint. Hence the Driver program
takes timeΘ(n + m).

¶21. Application: Computing Connected Components. Suppose we wish to compute the con-
nected components of a bigraphG. AssumingV = {1, . . . , n}, let us encode this task as computing
an integer arrayC[1..n] satisfying the propertyC[u] = C[v] iff u, v belongs to the same component.
Intuitively, C[u] is the name of the component that containsu. The component number is arbitrary.

To accomplish this task, we assume a global variable calledcount that is initialized to0 by
GLOBAL INIT(G). Inside the BFS algorithm, the INIT(G, s0) macro simply increments thecount
variable. Finally, the VISIT(v, u) macro is simply the assignment,C[v] ← count. The correctness
of this algorithm should be clear. If we want to know the number of components in the graph, we can
output the value ofcount at the end of the driver program.

¶22. Application: Testing Bipartiteness. A graphG = (V, E) is bipartite if V can be partititioned
into V = V1 ⊎ V2 such thatE ⊆ (V1 × V2)∪ (V2 × V1). Note that this definition applies to digraphs as
well as bigraphs. It is clear that all cycles in a bipartite graphs must beeven(i.e., has an even number
of edges). The converse is shown in an Exercise: ifG has noodd cyclesthenG is bipartitite. We
use the Driver Driver to call call BFS(V, E; s) for variouss. It is sufficient to show how to detect odd
cycles in the component ofs. If there is a level-edge(u, v), then we have found an odd cycle: this cycle
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comprise the tree path from the root tou, the edge(u−v), and the tree path fromv back to the root.
In the exercise, we ask you to show that all odd cycles is represented by such level-edges. It is now a
simple matter to modify BFS to detect level-edges.

In trying to implement the Bipartitite Test above, and especially in recursive
routines, it is useful to be able to jump out of nested macro and subroutine
calls. For this, theJava’s ability to throw exceptionsand tocatch excep-
tions is very useful. In our bipartite test, BFS can immediately throw an
exception when its finds a level-edge. This exception is caught by the BFS
Driver program.

EXERCISES

Exercise 4.1: Prove Lemma1: that the BFS algorithm terminates, and every vertex that isreachable
from s0 will be seen by BFS(s0). ♦

Exercise 4.2: Show that each node is VISITed and POSTVISITed at most once. Is this true for PRE-
VISIT as well? ♦

Exercise 4.3: Assumeu−v.
(a) Show thatδ(v) ≤ 1 + δ(u).
(b) Show that in digraphs, the inequality in (a) can be arbitarily far from an equality.
(c) Show that in bigraphs,|δ(u)− δ(v)| ≤ 1. ♦

Exercise 4.4: Reorganize the BFS algorithm so that the coloring steps are folded into the shell macros
of INIT, VISIT, etc. ♦

Exercise 4.5: Fill in the shell macros so that the BFS Algorithm will correctly classify every edge of
the input bigraph. ♦

Exercise 4.6: Classification the edges of a digraph relative to a given BFS tree. ♦

Exercise 4.7: Let G = (V, E; λ) be a connected bigraph in which each vertexv ∈ V has an associated
valueλ(v) ∈ R.
(a) Give an algorithm to compute the sum

∑

v∈V λ(v).
(b) Give an algorithm to label every edgee ∈ E with the value|λ(u) − λ(v)| wheree = u−v.

♦

Exercise 4.8: Give an algorithm that determines whether or not a bigraphG = (V, E) contains a cycle.
Your algorithm should run in timeO(|V |), independent of|E|. You must use the shell macros,
and also justify the claim that your algorithm isO(|V |). ♦
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Exercise 4.9: The text sketched an algorithm for testing if a graph is bipartite. We verify some of the
assertions there:
(a) Prove that if a bigraph has no odd cycles, then it is bipartite.
(b) Prove that if a connected graph has an odd cycle, then BFS search from any source vertex will
detect a level-edge.
(c) Write the pseudo code for bipartite test algorithm outlined in the text. This algorithm is to
return YES or NO only. You only need to program the shell routines.
(d) Modify the algorithm in (c) so that in case of YES, it returns a Boolean arrayB[1..n] such that
V0 = {i ∈ V : B[i] = false} andV1 = {i ∈ V : B[i] = true} is a witness to the bipartiteness of
G. In the case of NO, it returns an odd cycle. ♦

Exercise 4.10:Let G be a digraph. Aglobal sink is a nodeu such that for every nodev ∈ V , there is
path fromv to u. A global sourceis a nodeu such that for every nodev ∈ V , there is path from
u to v.
(a) AssumeG is a DAG. Give a simple algorithm to detect ifG has a global sink and a global
source. Your algorithm returns YES if both exists, and returns NO otherwise. Make sure that
your algorithm takesO(m + n) time.
(b) Does your algorithm work ifG is not a DAG? If not, give a counter example which makes
your algorithm fail. ♦

Exercise 4.11:Let k ≥ 1 be an integer. Ak-coloring of a bigraphG = (V, E) is a functionc : V →
{1, 2, . . . , k} such that for allu−v in E, c(u) 6= c(v). We sayG is k-colorable if G has ak-
coloring. We sayG is k-chromatic if it is k-colorable but not(k− 1)-colorable. Thus, a graph is
bipartite iff it is 2-colorable.
(a) How do you test the 3-colorability of bigraphs if every vertex has degree≤ 2?
(b) What is the smallest graph which is not 3-colorable?
(c) Thesubdivision of an edgeu−v is the operation where the edge is deleted and replaced by
a pathu−w−v of length2 andw is a new vertex. CallG′ a subdivision of another graphG if
G′ is obtained fromG be a finite sequence of edge subdivisions. Dirac (1952) showsthatG is
4-chromatic, then it contains a subdivision ofK4. Is there a polynomial time to determine if a
given connected bigraphG contains a subdivision ofK4? ♦

Exercise 4.12:Let G = (V, E) be a bigraph onn vertices, and foru, v ∈ V , we haveδ(u, v) > n/2.
(a) Prove that there is a nodew in the path fromu to v such that every path fromu to v must pass
throughw. Note that the text already gave a proof of this fact using theclassification of edges by
BFS. So we are asking for an independent proof that does not depend on BFS.
(b) Show that the inequalityδ(u, v) > n/2 is tight for this result. ♦

Exercise 4.13:Let G = (V, E) be a bigraph onn vertices. Supposen+1 is not a multiple of3. If there
exists verticesu, v ∈ G such thatδ(u, v) > n/3 then there exists two vertices whose removal
will disconnectu andv, i.e.,δ(u, v) will become∞. ♦

Exercise 4.14:An articulation point of a bigraph is a vertex whose removal (together will all edges
incident on the vertex) will increase the number of connected components in the graph. Use BFS
to find all articulation points. HINT: What does it mean for a BFS tree to have a level with only
one vertex. ♦

END EXERCISES
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§5. Simple Depth First Search

The DFS algorithm turns out to be more subtle than BFS. In someapplications, however, it is
sufficient to use a simplified version that is as easy as the BFSalgorithm. In fact, it might even be easier
because we can exploit recursion.

Here is an account of this simplified DFS algorithm. As in BFS,we use a 2-color scheme: each
vertex isunseen orseen. We similarly define aDFS treeunderlying any particular DFS computation:
the edges of this tree are precisely thoseu−v such thatv is seen from u. Starting the search from the
sources0, the idea is to go as deeply as possibly along any pathwithout visiting any vertex twice. When
it is no longer possible to continue a path, we backup towardsthe sources0. But we only backup enough
for us to go forward in depth again.

In illustration, supposeG is the digraph in Figure3(b), ands0 is vertex1. One possible deepest path
from vertex1 is (1−5−2−3−6). From vertex6, we backup to vertex2, from where we can advance to
vertex3. Again we need to backup, and so on. The DFS tree is a trace of this search process; this tree is
shown in Figure7(a). The non-tree edges of the graph are shown in dashed lines. For the same graph,
if we visit adjacent nodes in a different order, we get a different DFS tree, as in Figure7(b). However,
the DFS tree in Figure7(a) is the unique solution if we follow our usual convention of visiting vertices
with smaller indices first.

(a) (b)

1

5

2

3

6

4

1

5

2

6

4

3

Figure 7: Two DFS Trees for the digraph in Figure3(b).

¶23. Simple DFS and Driver. The simple DFS algorithm is compactly presented using recursion as
follows:

SIMPLE DFS
Input: G = (V, E; s0) a graph (bi- or di-)

The vertices inV have been coloredseen or unseen.
Output Application dependent

1 Colors0 asseen.
2 For each v adjacent tos0 do
3 PREVISIT(v, s0)
4 if v is unseen then
5 Colorv seen.

6 VISIT(v, s0) .

7 Simple DFS((V, E; v)) ⊳ Recursive call
8 POSTVISIT(s0) .
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In this recursive version, there is no INIT(G, s0) step — we do not want to initializeG with every
recursive call. Also, VISIT(v, u) is called just before each DFS call. But we could consider a variant6

in which we do the VISIT after the recursive call (i.e., interchange lines 6 and 7). As in BFS, we choose
to expose the coloring steps rather than putting them insidethe shell macros. The first call to this DFS
algorithm must be made by some DFS Driver Program which performs the necessary setup:

DFS DRIVER

Input: G = (V, E) a graph (bi- or dip)
Output: Application-specific

1 GLOBAL INIT(G)
2 Color each vertex inV asunseen.
3 For each v in V do
4 if v is unseen then

5 INIT(G, v)

6 Simple DFS(V, E; v) ⊳ recursive call

7 CLEANUP(V, E; v)

As in the BFS case, we view both the above algorithms as algorithmic skeletons, and their complete
behaviour will depend on the specification of the shell macros,

PREVISIT, VISIT, POSTVISIT, GLOBALINIT, INIT, CLEANUP. (7)

These shell macros may be assumed to be null operations unless otherwise specified.

¶24. DFS Tree. The root of the DFS tree iss0, and the vertices of the tree are those vertices visited
during this DFS search (see Figure7(a)). This tree can easily be constructed by appropriate definitions
of INIT(G, s0), VISIT(v−u) and POSTVISIT(u), and is left as an Exercise. We prove a basic fact about
DFS:

LEMMA 6 (Unseen Path).Let u, v ∈ V . Thenv is a descendent ofu in the DFS tree if and only if at
the time thatu was first seen, there is7 a “unseen path” fromu to v, i.e., a path(u− · · ·−v) comprising
only of unseen vertices.

Proof.Let t0 be the time when we first seeu.

(⇒) We first prove the easy direction: ifv is a descendent ofu then there is an unseen path fromu
to v at timet0. For, if there is a path(u−u1− · · · −uk−v) from u to v in the DFS tree, then eachui

must be unseen at the time we first seeui−1 (u0 = u anduk+1 = v). Let ti be the time we first seeui.
Then we havet0 < t1 < · · · < tk+1 and thus eachui was unseen at timet0. Here we use the fact that
each vertex is initially unseen, and once seen, will never revert to unseen.

(⇐) We use an inductive proof. The subtlety is that the DFS algorithm has its own order for visiting
vertices adjacent to eachu, and your induction must somehow account for this order. We proceed

6 We could also entertain a visitbefore, and another visitafter, the recursive call.
7 If we use the white-black coloring scheme, this would be called a “white path” as in [2].
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by defining a total order on all paths fromu to v: If a, b are two vertices adjacent to a vertexu and
we visit a beforeb, then we say “a <dfs b (relative tou)”. If p = (u−u1−u2− · · · −uk−v) and
q = (u−v1−v2− · · · −vℓ−v) (wherek, ℓ ≥ 0) are two distinct paths fromu to v, we sayp <dfs q if
there is anm (1 ≤ m < min{k, ℓ}) such thatu1 = v1, . . . , um = vm andum+1 < vm+1 relative to
um. Note thatm is well-defined. Now define theDFS-distancebetweenu andv to be the length of the
<dfs-leastunseen pathfrom u to v at time we first seeu. By anunseen pathfrom u to v, we mean
one

π : (u−u1− · · ·−uk−v) (8)

where each nodeu1, . . . , uk, v is unseen at time when we first seeu. If there are no unseen paths from
u to v, the DFS-distance fromu to v is infinite.

For anyk ∈ N, let IND(k) be the statement: “If the DFS-distance fromu to v has lengthk + 1, and
(8) is the<dfs-least unseen path fromu to v, then this path is a path in the DFS tree”. Hence our goal
is to prove the validity of IND(k).

BASE CASE: Supposek = 0. The<dfs-least unseen path fromu to v is just (u−v). So v is
adjacent tou. Suppose there is a vertexv′ such thatv′ <dfs v (relative tou). Then there does not exist
an unseen pathπ′ from v′ to v; otherwise, we get the contradiction that the path(u−v′); π′ is <dfs

than than(u−v)). Hence, when we recursively visitv′, we will never colorv asseen (using the easy
direction of this lemma). Hence, we will eventually colorv asseen from u, i.e., u−v is an edge of the
DFS tree.

INDUCTIVE CASE: Supposek > 0. Let π in (8) be the<dfs-least unseen path of lengthk + 1
from u to v. As before, ifv′ <dfs u1 then we will recursively visitv′, we will never color any of the
verticesu1, u2, . . . , uk, v asseen. Therefore, we will eventually visitu1 from u at some timet1 > t0.
Moreover, the sub pathπ′ : (u1−u2− · · ·−uk−v) is still unseen at this time. Moreover,π′ remains
the<dfs-least unseen path fromu1 to v at timet1. By IND(k − 1), the subpathπ′ is in the DFS tree.
Hence the pathπ = (u−u1); π

′ is in the DFS tree. Q.E.D.

¶25. Classification of edges. First consider a digraphG. Upon callingDFS(G, s0), the edges ofG
becomes classified as follows (see Figure7(b)):

• Tree edges: these are the edges belonging to the DFS tree.

• Back edges: these are non-tree edgesu−v ∈ E wherev is an ancestor ofu. Note: u−u is
considered a back edge. E.g., edges2−1 and3−2 in Figure7(b).

• Forward edges: these are non-tree edgesu−v ∈ E wherev is a descendent ofu. E.g., edges
1−6 and5−6 in Figure7(b).

• Cross edges: these are edgesu−v that are not classified by the above, but whereu, v are visited.
E.g., edges4−6, 3−6 and4−3 in Figure7(b).

• Unseen edges: all other edges are put in this category. These are edgesu−v in whichu is unseen
at the end of the algorithm.

¶26. DFS of Bigraphs. As we noted, DFS applies to bigraphs as well as digraphs. There are two
ways to view such bigraphs in DFS: (1) One is to view the bigraph as a digraph whose directed edges
happen to come in pairs of the form(u, v) and(v, u), one such pair for each undirectedu−v. (2) Adopt
the convention that an undirected edge{u, v} will regarded as the directed edge(u−v) if u is seen
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beforev. Then the other edge(v−u) will not appear as a tree or non-tree edge. Ifu, v remain unseen,
then{u, v} will remain undirected. Call (2) ourstandard treatment of bigraph edges, and it will be
assumed unless otherwise noted. The classification of bigraph edges under (2) will be simplified; see
Exercises.

Unfortunately, our simple DFS algorithm cannot easily determine these edge classification. In par-
ticular, the bicolor scheme (seen/unseen) is no longer sufficient. E.g., we cannot distinguish a cross
edge from a forward or back edge. We will defer the problem of classifying edges of the DFS tree to
the next section.

¶27. Biconnectivity. When we discussed reduced graph above, we said that it is not auseful concept
for bigraphs. We now introduce the appropriate analogue forbigraphs.

Let G be a bigraphG = (V, E). A subsetC ⊆ V is abiconnected setof G if for every pairu, v of
distinct vertices inC, there is a simple cycle of length≥ 3 containingu andv. If, in addition,C is not
properly contained in a biconnected subset ofG, then we callC a biconnected component. If G has
only one biconnected component, thenG is called abiconnected graph. Trivially, any singleton set is
biconnected; no8 subset of size2 can be biconnected. Biconnected components of size1 are said to be
trivial .

Biconnectivity is clearly a strong notion of connectivity.E.g., the graph in Figure3(a), has two
biconnected components,{a, b, c, d} and{e}. A more interesting example is Figure8 which has11
biconnected components, of which3 are nontrivial. There are also 9 bridges, indicated by thickline
segments.

cut-vertex

bridge

non cut-vertex

Figure 8: Graph with 3 non-trivial biconnected components

A vertexv of G is called9 a cut-vertex if the removal ofv, and also all edges incident onv, will
increase the number of connected (not biconnected!) components of resulting bigraph. Alternatively,
if there exist verticesa, b (both different fromv) such that all paths froma to b must pass throughv.
Clearly, if G has a cut-vertex, then it is not biconnected. The converse isalso true. There is an edge
analogue of cut-vertex: an edgeu−v is called abridge if the removal of this edge will increase the

8 Some authors regard a bridge as a biconnected component.
9 Or, articulation point.
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number of connected components of the resulting bigraph. Clearly, at least one endpoint of a bridge
must be a cut-vertex.

E.g., in the line graphLn (see Figure4(c)) with vertex setV = {1, . . . , n}, a vertexi is a cut-vertex
iff 1 < i < n. Also, every edge ofLn is a bridge. The graph in Figure3(a), has one cut-vertexc and
one bridgec−e.

Note that two biconnected components ofG can share at most one vertex, which is necessarily a
cut-vertex. Given a bigraphG, we define10 a bigraphGc = (V c, Ec) such that the elements ofV c

are the biconnected components ofG, and(C, C′) ∈ Ec iff C ∩ C′ is non-empty. It follows from the
preceding remark that two biconnected components share at most one vertex thatGc is acyclic. We may
call Gc thereduced graphfor G.

AssumeG is connected, andT is a DFS tree ofG. There are two ways in which a vertexu is a
cut-vertex, as shown in the following lemma:

LEMMA 7. Letu be a vertex in the DFS treeT . Thenu is a cut-vertex iff one of the following conditions
hold:
(i) If u is the root ofT and has more than one child.
(ii) If u is not the root, but it has a childu′ such that for any descendentv of u′, if v−w is an edge, then
w is also a descendent ofu. Note that a node is always a descendent of itself.

Proof. If (i) or (ii) holds, it is easy to see thatu must be a cut-vertex. Conversely, supposeu is a
cut-vertex. LetC, C′ be two distinct biconnected components containingu. If u is the root, thenu must
have a childv ∈ C and a childv′ ∈ C′. Thusu has more than one child, i.e., property (i) holds. Finally,
assumeu is not the root. Thenu has a parentp. Wlog, letC be the biconnected component ofp. Then
one of the childrenu′ of u must belong toC′. Suppose there exists a descendentv of u′ such that there
is an edgev−w with w not a descendent ofu. Since the BFS tree has only back edges,w must be an
ancestor ofu. So there is a path in the BFS tree fromw to v. This path, together with the edgev−w
forms a cycleZ that passes throughp andu′. This contradicts the assumption thatp ∈ C andu′ ∈ C′.
Thus,u′ is the witness for property (ii). Q.E.D.

There is another property we need: supposev−w is a non-tree edge. Then we claim thatv is a
descendent ofw or vice-versa, and in fact, this edge appears as a back edge inthe classification of DFS
tree edges. It is now an exercise to program the shell macros of the DFS algorithm to detect cut-vertices,
and hence recognize biconnectivity.

¶28. Connection with BFS. There is a sense in which BFS and DFS are the same search strategies
except for their use of a different container ADT. Basically, recursion is an implicit way to use thestack
ADT. The stack ADT is similar to the queue ADT except that the insertion and deletion of items into
the stack are based on the Last-In-First-Out (LIFO) discipline. These two operations are denoted

S.push(x), x← S.pop(),

whereS is a stack andx an item.

It is instructive to try to make this connection between the DFS and BFS algorithms more explicit.
The basic idea is to avoid recursion in DFS, and to explicitlyuse a stack in implementing DFS. Let us

10 Recall thatGc is the same notation used for the reduced graph of a digraphG. Since we will not apply the reduced graph
concept to bigraphs, and we will not apply the concept of biconnectedness to digraphs, there should be no confusion in reusing
this Gc notation.
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begin with a simple experiment: what if we simply replace thequeue ADT in BFS by the stack ADT?
Here is the hybrid algorithm which we may callBDFS, obtainedmutatis mutandisfrom BFS algorithm:

BDFS ALGORITHM

Input: G = (V, E; s0) a graph.
Output: Application specific
⊲ Initialization:

0 Initialize the stackS to contains0.
1 INIT(G, s0) ⊳ If standalone, make all verticesunseen except fors0

⊲ Main Loop:
while S 6= ∅ do

2 u← S.pop().
3 For each v adjacent tou do
4 PREVISIT(v, u)
5 if v is unseen then
6 colorv seen
7 VISIT(v, u)
8 S.push(v).
9 POSTVISIT(u)

This algorithm shares properties of BFS and DFS, but is distinct from both. Many standard com-
putations can still be accomplished using BDFS. To write a non-recursive version of DFS using this
framework, we need to make several changes.

LetS.top() refer to the top element of the stack. The invariant is that the sequence of vertices in the
stack is path to the current vertexcurr. Assume that we have two functionsfirst(u) andnext(u, v)
that gives enables us to iterate over the adjacency list ofu: first(u) returns the first vertex that is
adjacent tou, andnext(u, v) returns the next vertex afterv that is adjacent tou (assumingv is adjacent
to u). Both functions may return a null pointer, and alsonext(nil, v) = nil.
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NONRECURSIVEDFS ALGORITHM

Input: G = (V, E; s0) a graph.
Output: Application specific
⊲ Initialization:

0 Initialize the stackS to contains0.
1 INIT(G, s0) ; ⊳ If standalone, make all verticesunseen except fors0

2 curr ← first(s0);
⊲ Main Loop:

3 while S 6= ∅ do
4 if (curr 6= nil)

5 PREVISIT(curr, S.top())

6 if curr is unseen
7 colorcurr seen

8 VISIT(curr, S.top())

9 S.push(curr)
10 curr ← first(curr)
11 else curr ← next(S.top(), curr)
12 else
13 curr ← S.pop()

14 POSTVISIT(curr)
15 curr ← next(S.top(), curr) ⊳ may benil

We leave it as an exercise to prove that this code is equivalent to the Simple (recursive) DFS algo-
rithm.

EXERCISES

Exercise 5.1:
(a) Give the appropriate definitions for INIT(G), VISIT((v, u)) and POSTVISIT(u) so that our
DFS Algorithm computes the DFS Tree, say represented by a data structureT
(b) Prove that the objectT constructed in (a) is indeed a tree, and is the DFS tree as defined in the
text. ♦

Exercise 5.2: Programming in the straightjacket of our shell macros is convenient when our format fits
the application. But the exact placement of these shell macros, and the macro arguments, may
sometimes require some modifications.
(a) We have defined VISIT(u, v) to take two arguments. Show that we could have defined this
it as VISIT(u), and not lost any functionality in our shell programs. HINT: take advantage of
PREVISIT(u, v).
(b) Give an example where it is useful for the Driver to call CLEANUP(u) after DFS(u). ♦

Exercise 5.3: Explore the relationship between the traversals of binary trees and DFS.
(a) Why are there not two versions of DFS, corresponding to pre- and postorder tree traversal?
What about inorder traversal?
(b) Give the analogue of DFS for binary trees. As usual, you must provide place holders for shell
routines. Further assume that the DFS returns some values which is processed at the appropriate
place. ♦
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Exercise 5.4: Why does the following variation of the recursive DFS fail?

SIMPLE DFS (recursive form)
Input: G = (V, E; s0) a graph.

1 For each v adjacent tos0 do
2 if v is unseen then

3 VISIT(v, s0) .

4 Simple DFS((V, E; v))

5 POSTVISIT(s0) .
6 Colors0 asseen.

♦

Exercise 5.5: Give an alternative proof of the Unseen Path Lemma, without explicitly invoking the
ordering properties of<dfs. Also, do not invoke properties of the Full DFS (with time stamps).

♦

Exercise 5.6: Prove that our classification of edges for DFS is complete. ♦

Exercise 5.7: SupposeT is the DFS Tree for a connected bigraphG. Recall our standard treatment of
edges of a bigraph in DFS. Letu−v be an edge ofG. Prove that
(a) Eitheru is an ancestor ofv or vice-versa in the treeT .
(b) If u−v is a non-tree edge, it is a back edge.
(c) Give a complete classification of the edges as produced bythe DFS algorithm. ♦

Exercise 5.8: Use the characterization of cut-vertices in Lemma7 to design an algorithm to detect
cut-vertices in a bigraph.

HINT: Let ft(u) be the smallest value offirstTime[w], wherew is a vertex that can be reached
by a back edgev−w, for some proper descendentv of u in the DFT tree; if there is no such back
edge, then we defineft(u) to befirstTime[u]. You need to address two questions: (a) How
canft(u) help you determine whether a vertexv is a cut-vertex? (b) How can you compute
sft(u)? ♦

Exercise 5.9: Let G = (V, E) be a connected bigraph. For any vertexv ∈ V define

radius(v, G) := max
u∈V

distance(u, v)

where distance(u, v) is the length of the shortest (link-distance) path fromu to v. Thecenterof
G is the vertexv0 such that radius(v0, G) is minimized. We call radius(v0, G) the radiusof G
and denote it by radius(G). Define thediameterdiameter(G) of G to be the maximum value of
distance(u, v) whereu, v ∈ V .
(a) Prove that2 · radius(G) ≥ diameter(G) ≥ radius(G).
(b) Show that for every natural numbern, there are graphsGn and Hn such thatn =
radius(Gn) = diameter(Gn) and diameter(Hn) = n and radius(Hn) = ⌈n/2⌉. This shows
that the inequalities in (a) are the best possible.
(c) Using DFS, give an efficient algorithm to compute the diameter of a undirected tree (i.e., con-
nected acyclic undirected graph). Please use shell programming. Prove the correctness of your
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algorithm. What is the complexity of your algorithm? HINT: write down a recursive formula for
the diameter of a tree in terms of the diameterandheight of its subtrees.
(d) Same as (c), but compute the radius instead of diameter.
(e,f) Same as (c) and (d) but using BFS instead of DFS. ♦

Exercise 5.10:Re-do the previous question (part (c)) to compute the diameter, but instead of using
DGS, use BFS. ♦

Exercise 5.11:Prove that our nonrecursive DFS algorithm is equivalent to the recursive version. ♦

Exercise 5.12:When might we prefer the BDFS Algorithm in place of the standard DFS or BFS algo-
rithms? ♦

END EXERCISES

§6. Full Depth First Search

For certain computations in the DFS framework, it is necessary to compute additional information
about the DFS tree. In particular, we may need to classify theedges as described in¶25. Instead of
the bicolor scheme, we tricolor each vertex, e.g.,unseen/seen/done. Theseen vertices are those
currently in the recursion stack. The POSTVISIT(u) macro can be used to color the vertexu asdone.

A more profound embellishment is totime stamp the vertices. Timestamps record the two signif-
icant time instances for each vertex, time when first encountered, and time when last encountered. To
implement time stamps, we assume a global counterclock that is initially 0. Also, we introduce two
arrays,firstTime[v] andlastTime[v] wherev ∈ V . Both arrays are initiallized to−1. When we
see the vertexv for the first time or the last time, the current value ofclock will be assigned to these
array entries; the value ofclock will be incremented after such an assignment.

More precisely, we may use the SIMPLE DFS and the DFS DRIVER shells from¶23, together with
the following macro definitions:

• GLOBAL INIT(G)≡ clock← 0; (for v ∈ V )[firstTime[v]← lastTime[v]← −1].

• VISIT(v, u)≡ firstTime[v]← clock++.

• POSTVISIT(v)≡ lastTime[v]← clock++.

The tricolorwhite/gray/black scheme is subsumed by the time stamp scheme: during to com-
putation, a nodev is white if firstTime[v] < 0; it is gray if firstTime[v] > lastTime[v]; it
is black if firstTime[v] < lastTime[v].

Let active(u) denote the time interval[firstTime[u],lastTime[u]], and we sayu is active
within this interval. It is clear from the nature of the recursion that two active intervals are either
disjoint or has a containment relationship. In case of non-containment, we may writeactive(v) <
active(u) if lastTime[v] < firstTime[u]. We have the following characterization of edges
using time stamps:
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LEMMA 8. Letu, v ∈ V . Thenv is a descendent ofu in the DFS tree if and only if

active(v) ⊆ active(u).

Proof. This result can be shown using the Unseen Path Lemma. If thereis a unseen path, then by
induction on the length of this path, every vertex on this path will be a descendent ofu. Conversely, if
v is descendent ofu then by induction on the distance ofv from u, there will be a unseen path tou.

Now, if there is a unseen path fromu to v when u was first discovered, we must have
firstTime[u] < firstTime[v]. Moreover, since the vertexu will remain active untilv is dis-
covered, we also havelastTime[v] < lastTime[u]. Henceactive(v) ⊆ active(u). Q.E.D.

We return to the problem of classifying every edge of a digraph G relative to a DFS tree onG:

LEMMA 9. If u−v is an edge then

1. u−v is a back edge iffactive(u) ⊆ active(v).

2. u−v is a cross edge iffactive(v) < active(u).

3. u−v is a forward edge iff there exists somew ∈ V \ {u, v} such thatactive(v) ⊆
active(w) ⊆ active(u).

4. u−v is a tree edge iffactive(v) ⊆ active(u) but it is not a forward edge.

This above classification of edges by active ranges is illustrated in Figure9.

cross

back

lastTime[u]firstTime[u]

v

v

u

v

forward/tree
time

Figure 9: Relative positions of active ranges ofu, v and the classification of edge(u−v)

These criteria can be used by the PREVISIT(v, u) macro to classify edges ofG:

PREVISIT(v, u)
⊲ Visitingv, fromu

if (firstTime[v] = −1), marku−v as “tree edge”
elif (firstTime[v] > firstTime[u]), marku−v as “forward edge”
elif (lastTime[v] =∞), marku−v as “back edge”
else marku−v as “cross edge”.
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To verify the correctness of this classification, we first note that tree edges are clearly correctly
labeled. The remaining edges are non-tree edges. An inspection of Figure9 will reveal that the tests
that we perform are sufficient to distinguish among the forward, back and cross edges.

¶29. Application to detecting cycles. We claim that the graph is acyclic iff there are no back edges.
One direction is clear — if there a back edge, we have a cycle. Conversely, if there is a cycleZ =
[u1− · · · −uk], then there must be a vertex (say,u1) in Z that is first reached by the DFS algorithm.
Thus there is an unseen path fromu1 to uk, and soactive(uk) ⊆ active(u1). Thus there is a back
edge fromuk to u1. Hence, we can use the DFS algorithm to check if a graph is acyclic. A simple way
is to run DFS starting from each vertex of the graph, looking for cycles. This takesO(mn) time. A
more efficient solution is given in the Exercise.

Cycle detection is a basic task in many applications. In operating systems, we haveprocessesand
resources: a process canrequesta resource, and a resource can beacquired by a process. We assume
that that processes require exclusive use of resources: a request for a resource will beblocked if that
resource is currently acquired by another process. Finally, a process canreleasea resource that it has
acquired.

r

q

p

s

t

Figure 10: Process-resource Graph:VP = {p, q}, VR = {r, s, t}.

We consider a digraphG = (V, E) whereV = VP ⊎ VR andE ⊆ (VP × VR) ∪ (VR × VP ). With
this restriction onE, we callG a bipartite graph and writeG = (VP , VR, E) instead ofG = (V, E).
See Figure10 for an example with 2 processes and 3 resources. Eachp ∈ VP represents a process and
r ∈ VR represents a resource. An edge(p, r) ∈ E means thatp requestsr but is blocked. An edge
(r, p) ∈ E meansr is acquired byp. If the outdegree ofp is positive, we sayp is blocked. If the
outdegree ofr is positive, we sayr is acquired. The graph satisfies three conditions:

• (1) Either(p, r) or (r, p) is not inE.

• (2) (p, r) ∈ E implies there existp′ such that(r, p′) ∈ E.

• (3) The outdegree of eachr is 0 or 1.

In operating systems (Holt 1971),G is called aprocess-resource graph. It represents the current state
of blocked processes and acquired resources. A cycle inG is called adeadlock if it contains a cycle.
For instance, the graph in Figure10 has a deadlock. In this situation, a certain subset of the processes
could not make any progress. Thus our cycle detection algorithm can be used to detect this situation. In
the Exercise, we elaborate on this model.

EXERCISES
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Exercise 6.1: SupposeG = (V, E; λ) is a strongly connected digraph in whichλ : E → R>0. A
potential function of G is φ : V → R such that for allu−v ∈ E,

λ(u, v) = φ(u)− φ(v).

(a) Consider the cylic graphsCn (see Figure4(d)). Show that ifG = (Cn; λ) thenG does not
have a potential function.
(b) Generalize the observation in part (a) to give an easy-to-check propertyP (G) of G such that
G has a potential function iff propertyP (G) holds.
(c) Give an algorithm to compute a potential function forG iff P (G) holds. You must prove that
your algorithm is correct. EXTRA: modify your algorithm to output a “witness” in caseP (G)
does not hold. ♦

Exercise 6.2: Give an efficient algorithm to detect a deadlock in the process-resource graph. ♦

Exercise 6.3: Process-Resource Graphs. LetG = (VP , VR, E) be a process-resource graph — all the
following concepts are defined relative to such a graphG. We now model processes in some
detail. A processp ∈ VP is viewed as a sequence of instructions of the formREQUEST (r) and
RELEASE(r) for some resourcer. This sequence could be finite or infinite. A processp may
executean instruction to transformG to another graphG′ = (VP , VR, E′) as follows:

• If p is blocked (relative toG) thenG′ = G. In the following, assumep is not blocked.

• Suppose the instruction isREQUEST (r). If the outdegree ofr is zero or if(r, p) ∈ E,
thenE′ = E ∪ {(r, p)}; otherwise,E′ = E ∪ {(p, r)}.

• Suppose the instruction isRELEASE(r). ThenE′ = E \ {(r, p)}.

An execution sequencee = p1p2p3 . . . (pi ∈ VP ) is just a finite or infinite sequence of processes.
Thecomputation path of e is a sequence of process-resource graphs,(G0, G1, G2, . . .), of the
same length ase, defined as follows: letGi = (VP ∪ VR, Ei) whereE0 = ∅ (empty set) and for
i ≥ 1, if pi is thejth occurrence of the processpi in e, thenGi is the result ofpi executing its
jth instruction onGi−1. If pi has nojth instruction, we just defineGi = Gi−1. We saye (and
its associated computation path) isvalid if for eachi = 1, . . . , m, the processpi is not blocked
relative toGi−1, and no process occurs ine more times than the number of instructions ine. A
processp is terminated in e if p has a finite number of instructions, andp occurs ine for exactly
this many times. We say that a setVP of processescan deadlockif some valid computation path
contains a graphGi with deadlock.
(a) Suppose each process inVP has a finite number of instructions. Give an algorithm to decide
if VP can deadlock. That is, does there exist a valid computation path that contains a deadlock?
(b) A process iscyclic if it has an infinite number of instructions and there exists an integern > 0
such that theith instruction and the(i + n)th instruction are identical for alli ≥ 0. Give an
algorithm to decide ifVP can deadlock whereVP consists of two cyclic processes. ♦

Exercise 6.4: We continue with the previous model of processes and resources. In this question, we
refine our concept of resources. With each resourcer, we have a positive integerN(r) which
represents the number of copies ofr. So when a process requests a resourcer, the process does
not block unless the outdegree ofr is equal toN(r). Redo the previous problem in this new
setting. ♦

END EXERCISES
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§7. Further Applications of Graph Traversal

In the following, assumeG = (V, E) is a digraph withV = {1, 2, . . . , n}. Let per[1..n] be an
integer array that represents a permutation ofV in the sense thatV = {per[1], per[2], . . . , per[n]}.
This array can also be interpreted in other ways (e.g., a ranking of the vertices).

¶30. Topological Sort. One motivation is the so-called11 PERT graphs: in their simplest form, these
are DAG’s where vertices represent activities. An edgeu−v ∈ E means that activityu must be per-
formed before activityv. By transitivity, if there is a path fromu to v, thenu must be performed before
v. A topological sort of such a graph amounts to a feasible order of execution of all these activities.

wake up

breakfast

newspaper

go to work

Figure 11: PERT graph

Let
(v1, v2, . . . , vn) (9)

be a listing of the vertices inV . We call it atopological sort if every edge has the formvi−vj where
i < j. In other words, each edge points to the right, no edge pointsto the left. REMARK: if(v1, . . . , vn)
is a topological sort, then(vn, vn−1, . . . , v1) is called areverse topological sort.

If an edgesu−v is intepreted as saying “activityu must precede activityv”, then a topological sort
give us one valid way for doing these activities (do activitiesv1, v2, . . . in this order).

Let us say that vertexvi has rank i in the topological sort (9). Hence, we may represent this
topological sort by a rank attribute arrayRank[1, . . . , n], whereRank[vi] = i for all vi ∈ V .

E.g., (v1, . . . , vn) = (v3, v1, v2, v4) in (9). The corresponding rank attribute array is
Rank[v1, v2, v3, v4] = [2, 3, 1, 4].

We use the DFS algorithm and the DFS Driver to compute the rankattribute array. First, we must
initialize theRank array using the global initialization shell:

GLOBAL INIT (G) ≡ (for v = 1 ⇒ n, Rank[v]← −1).

Indeed, we need not use a separate color array: we simply interpret theRank of −1 asunseen.
The idea is to use DFS(v) to assign a rank tov: but before we could assign a rank tov, we must
(recursively) assign a larger rank to the vertices reachable fromv. To do this, we use a global counter
R that is initialized ton. Each time a vertex is to receive a rank, we use the current value ofR, and
then decrementR. So by the timev receives its rank, all those vertices reachable fromv would have
received a larger rank. This idea can be implemented by programming the postvisit shell as follows:

POSTV ISIT (v) ≡ (Rank[v]← R; R← R− 1).

11 PERT stands for “Program Evaluation and Review Technique”,a project management technique that was developed for
the U.S. Navy’s Polaris project (a submarine-launched ballistic missile program) in the 1950’s. The graphs here are also called
networks. PERT is closely related to the CriticalPath Method (CPM) developed around the same time.
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It is easy to prove the correctness of this procedure, provided the input graph is a DAG. But what can
go wrong in this code if the input is not a DAG?

REMARKS: Note that the rank function is just as the order ofv according tolastTime[v].
In our strong component algorithm below, we prefer to compute the inverse of Rank, i.e., an ar-
ray Per[1..n] such thatPer[i] = v iff Rank[v] = i. The topological sort (9) is then equal to
(Per[1], P er[2], . . . , P er[n]). We leave it as an easy exercise to modify the above code to computer
Per directly.

¶31. Robust Topological Sort. Suppose we want a more robust algorithm that will detect an error
in case the input is not a DAG. We need the following fact:G is cyclic iff there exists a back edge in
every DFS traversal. This was shown in the previous section. To detect back edges, when we need two
modifications. The previous solution is implicitly a 2-color scheme (Rank[v] = −1 if v is unseen,
and otherwisev is seen). Now, we need to a 3-color scheme where

Rank[v]







= −1 if v is unseen,
= 0 if v is seen,
> 0 if v is done.

To implement this, we just need to program the shell for visiting a vertex:

V ISIT (v, u) ≡ (Rank[v]← 0.)

The second modification is to check for back edges. This can bedone during previsits to a vertexv from
u:

PREV ISIT (v, u) ≡ ( if (Rank[v] = 0) then ThrowException("Cycle detected"))

¶32. Strong Components. Computing the components of digraphs is somewhat more subtle than
the corresponding problem for bigraphs. In fact, at least three distinct algorithms for this problem are
known. Here, we will develop the version based on “reverse graph search”.

Let G = (V, E) be a digraph whereV = {1, . . . , n}. For clarity, we also write “vi” for
i ∈ V . Let Per[1..n] be an array that represents some permutation of the vertices, so V =
{Per[1], P er[2], . . . , P er[n]}. Let DFS(i) denote the DFS algorithm starting from vertexi. Con-
sider the following method to visit every vertex inG:

STRONG COMPONENT DRIVER(G, per)
INPUT: DigraphG and permutationPer[1..n].
OUTPUT: A set of DFS Trees.

⊲ Initialization
1. Fori = 1, . . . , n, color[i] =unseen.
⊲ Main Loop
2. Fori = 1, . . . , n,
3. If (color[Per[i]] =unseen)
4. DFS1(Per[i]) ⊳ Outputs a DFS Tree

This program is the usual DFS Driver program, except that we usePer[i] to determine the choice of
the next vertex to visit, and it callsDFS1, a variant ofDFS. We assume thatDFS1(i) will (1) change
the color of every vertex that it visits, fromunseen to seen, and (2) output the DFS tree rooted ati.
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If Per is correctly chosen, we want each DFS tree that is output to correspond to a strong component
of G.

First, let us see how the above subroutine will perform on thedigraphG6 in Figure5(a). Let us also
assume that the permutation is

Per[1, 2, 3, 4, 5, 6] = [6, 3, 5, 2, 1, 4]

= [v6, v3, v5, v2, v1, v4]. (10)

The output of STRONG COMPONENT DRIVER will be the DFS trees for on the following sets of vertices
(in this order):

C1 = {v6}, C2 = {v3, v2, v5}, C3 = {v1}, C4 = {v4}.

Since these are the four strong components ofG6, the algorithm is correct. It is not not hard to see that
there always exist “good permutations” for which the outputis correct. Here is the formal definition of
what this means:

A permutationPer[1..n] is good if, for any two strong componentsC, C′ of G, if there is a path
from C to C′, then thefirst vertex ofC′ is listed before the first vertex ofC′.

It is easy to see that our Strong Component Driver will give the correct output iff the given permu-
tation is good. But how do we get good permutations? Roughly speaking, they correspond to weak
forms of “reverse topological sort” ofG. There are two problems: topological sorting ofG is not really
meaningful whenG is not a DAG. Second, good permutations requires some knowledge of the strong
components which is what we want to compute in the first place!Nevertheless, let us go ahead and run
the topological sort algorithm (not the robust version) onG. We may assume that the algorithm returns
an arrayPer[1..n] (the inverse of theRank[1..n]). The next lemma shows thatPer[1..n] almost has
the properties we want. For any setC ⊆ V , we first define

Rank[C] = min{i : Per[i] ∈ C} = min{Rank[v] : v ∈ C}

LEMMA 10. LetC, C′ be two distinct strong components ofG.
(a) If u0 ∈ C is the first vertex inC that is seen, thenRank[u0] = Rank[C].
(b) If there is path fromC to C′ in the reduced graph ofG, thenRank[C] < Rank[C′].

Proof. (a) By the Unseen Path Lemma, every nodev ∈ C will be a descendent ofu0 in the DFS
tree. Hence,Rank[u0] ≤ Rank[v], and the result follows sinceRank[C] = min{Rank[v] : v ∈ C}.
(b) Letu0 be the first vertex inC ∪ C′ which is seen. There are two possibilities: (1) Supposeu0 ∈ C.
By part (a),Rank[C] = Rank[u0]. Since there is a path fromC to C′, an application of the Unseen
Path Lemma says that every vertex inC′ will be descendents ofu0. Let u1 be the first vertex ofC′ that
is seen. Sinceu1 is a descendent ofu0, Rank[u0] < Rank[u1]. By part(a),Rank[u1] = Rank[C′].
ThusRank[C] < Rank[C′]. (2) Supposeu0 ∈ C′. Since there is no path fromu0 to C, we would have
assigned a rank tou0 before any node inC is seen. Thus,Rank[C0] < Rank[u0]. But Rank[u0] =
Rank[C′]. Q.E.D.

This lemma implies that, in the reverse “topological sort” ordering,

[Per[n], P er[n− 1], . . . , P er[1]] (11)

if there is path fromC to C′, then thelast vertex ofC′ in this list appearsbeforethe last vertex ofC in
this list. So this is not quite good.

We use another insight: consider the reverse graphGrev (i.e., u−v is an edge ofG iff v−u is an
edge ofGrev). It is easy to see thatC is a strong component ofGrev iff C is a strong component ofG.
However, there is a path fromC to C′ in Grev iff there is a path fromC′ to C in G.
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LEMMA 11. If Per[1..n] is the result of running topological sort onGrev thenPer is a good permuta-
tion for G.

Proof. Let C, C′ be two components ofG and there is a path fromC to C′ in G. Then there is a
path fromC′ to C in the reverse graph. According to the above, the last vertexof C is listed before the
last vertex ofC′ in (11). That means that the first vertex ofC is listed after the first vertex ofC′ in the
listing [Per[1], P er[2], . . . , P er[n]]. This is good. Q.E.D.

We now have the complete algorithm:

STRONG COMPONENT ALGORITHM(G)
INPUT: DigraphG = (V, E), V = {1, 2, . . . , n}.
OUTPUT: A list of strong components ofG.

1. Compute the reverse graphGrev.
2. Call topological sort onGrev.

This returns a permutation arrayPer[1..n].
3. Call STRONG COMPONENT DRIVER(G, Per)

Remarks. Tarjan [4] gave the first linear time algorithm for strong components.R. Kosaraju and
M. Sharir independently discovered the reverse graph search method described here. The reverse graph
search is conceptually elegant. But since it requires two passes over the graph input, it is slower in
practice than the direct method of Tarjan. Yet a third methodwas discovered by Gabow in 1999. For
further discussion of this problem, including history, we refer to Sedgewick [3].

EXERCISES

Exercise 7.1: Modify our topological sort algorithm so that it outputs thepermutation arrayPer[1..n]
that is the inverse ofRank[1..n]. ♦

Exercise 7.2: Give an algorithm to compute the numberN [v] of distinct paths originating from each
vertexv of a DAG. ThusN [v] = 1 iff v is a sink, and ifu−v is an edge,N [u] ≥ N [v]. ♦

Exercise 7.3: Let G be a DAG.
(a) Prove thatG has a topological ranking.
(b) If G hasn vertices, thenG has at mostn! topological rankings.
(c) LetG consists of 3 disjoint linear lists of vertices withn1, n2, n3 vertices (resp.). How many
topological rankings ofG are there? ♦

Exercise 7.4: Prove that a digraphG is cylic iff every DFS search ofG has a back edge. ♦

Exercise 7.5: Consider the following alternative algorithm for computing strong components of a di-
graphG: what we are trying to do in this code is to avoid computing thereverse ofG.
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STRONG COMPONENT ALGORITHM(G)
INPUT: DigraphG = (V, E), V = {1, 2, . . . , n}.
OUTPUT: A list of strong components ofG.

1. Call topological sort onG.
This returns a permutation arrayPer[1..n].

2. Reverse the permutation:
for i = 1, . . . , ⌊n/2⌋, do the swapPer[i]↔ Per[n + 1− i].

3. Call STRONG COMPONENT DRIVER(G, Per)

Either prove that this algorithm is correct or give a counterexample. ♦

Exercise 7.6: An edgeu−v is inessentialif there exists aw ∈ V \ {u, v} such that there is a path from
u to w and a path fromw to v. Otherwise, we say the edge isessential. Give an algorithm to
compute the essential edges of a DAG. ♦

Exercise 7.7: Let G0 be a DAG withm edges. We want to construct a sequenceG1, G2, . . . , Gm of
DAG’s such that eachGi is obtained fromGi−1 by reversing a single edge so that finallyGm is
the reverse ofG0. Give anO(m + n) time algorithm to compute an ordering(e1, . . . , em) of the
edges corresponding to this sequence of DAGs.

NOTE: this problem arises in a tie breaking scheme. LetM be a triangulated mesh that represents a terrain.
Each vertexv of M has a heighth(v) ≥ 0, and each pairu, v of adjacent vertices ofM gives rise to a
directed edgeu−v if h(u) > h(v). Note that if the heights are all distinct, the resulting graph is a DAG.
If h(u) = h(v), we can arbitrarily pick one direction for the edge, as long as the graph remain a DAG.
This is the DAGG0 in our problem above. Suppose now we have two height functions h0 andh1, and we
want to interpolate them: for eacht ∈ [0, 1], let ht(v) = th0(v) + (1 − t)h1(v). We want to represent the
transformation fromh0 to h1 by a sequence of graphs, where each successive graph is obtained by changing
the direction of one edge. ♦

Exercise 7.8: Let D[u] denote the number of descendents a DAGG = (V, E). Note thatD[u] = 1 iff
u is a sink. Show how to computeD[u] for all u ∈ V by programming the shell macros. What is
the complexity of your algorithm? ♦

Exercise 7.9: A vertexu is called abottleneck if for every other vertexv ∈ V , either there is a path
from v to u, or there is a path fromu to v. Give an algorithm to determine if a DAG has a
bottleneck. HINT: You should be able to do this in at mostO(n(m + n)) time. ♦

Exercise 7.10: In the previous problem, we defined bottlenecks. Now we want to classify these bot-
tlenecks into “real” and “apparent” bottlenecks. A bottlenecku is “apparent” if there exists an
ancestorv ( 6= u) and a descendentw ( 6= u) such thatv−w is an edge. Such an edgev−w is called
a by-pass foru. Give an efficient algorithm to detect all real bottlenecks of a DAGG. HINT: This
can be done inO(n + m log n) time. ♦

Exercise 7.11:Given a DAGG, let D[u] denote the number of descendents ofu. Can we compute
D[u] for all u ∈ V in o((m + n)n) time, i.e., faster than the obvious solution? ♦

END EXERCISES
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