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“Trees are the earth’s endless effort to speak to the listgtieaven”

— Rabindranath Tagore, Fireflies, 1928

Alice was walking beside the White Knight in Looking Glassd.a

"You are sad.” the Knight said in an anxious tone: "let me sipgu a song to comfort you.”
"Is it very long?” Alice asked, for she had heard a good deapoktry that day.

"It's long.” said the Knight, "but it's very, very beautifulEverybody that hears me sing it
- either it brings tears to their eyes, or else -”

"Or else what?” said Alice, for the Knight had made a suddeniga.

"Or else it doesn’t, you know. The name of the song is calleadétbcks’ Eyes.
"Oh, that’s the name of the song, is it?” Alice said, tryingfeel interested.
"No, you don’t understand,” the Knight said, looking a lgtvexed. "That’s what the name
is called. The name really is 'The Aged, Aged Man.”

"Then | ought to have said 'That’'s what the song is called’Aio& corrected herself.

"No you oughtn't: that's another thing. The song is calleddy¥$ and Means’ but that's
only what it's called, you know!”

"Well, what is the song then?” said Alice, who was by this ticeenpletely bewildered.

"I was coming to that,” the Knight said. "The song really is-gitting On a Gate’: and the
tune’s my own invention.”

So saying, he stopped his horse and let the reins fall on itk:rtben slowly beating time
with one hand, and with a faint smile lighting up his genttelish face, he began...

— Lewis Carroll, Alice Through the Looking Glass, 1865

Lecture Il
BALANCED SEARCH TREES

Anthropologists inform us that there is an unusually largemhber of Eskimo words for snow. The
Computer Science equivalent of ‘snow’ is the ‘tree’ woftd; b)-tree, AVL tree B-tree, binary search
tree, BSP tree, conjugation tree, dynamic weighted tregefitree, half-balanced tree, heaps, interval
tree, leftist tree kd-tree, quadtree, octtree, optimal binary search tree, ptyjosearch tree, R-trees,
randomized search tree, range tree, red-black tree, segtrem splay tree, suffix tree, treaps, tries,
weight-balanced tree, etc. | have restricted the above list to trees which are used aslseata
structures. If we include trees arising in specific appio# (e.g., Huffman tree, DFS/BFS tree, alpha-
beta tree), we obtain an even more diverse list. The list @artlarged to include variants of these
trees: thus there are subspecieBetrees called3 - and B*-trees, etc.

If there is a most important entry in the above list, it has éobiinary search tree. It is the first
non-trivial data structure that students encounter, #ftear structures such as arrays, lists, stacks and
gueues. Trees are useful for implementing a varietglastract data types We shall see that all the
common operations for search structures are easily impleadeising binary search trees. Algorithms
on binary search trees have a worst-case behavior thatpsgiianal to the height of the tree. The height
of a binary tree om nodes is at leagtig n|. We say that a family of binary treesh&lancedif every
tree in the family om nodes has heigl®(logn). The implicit constant in the big-Oh notation here
depends on the particular family. Such a family usually comguipped with algorithms for inserting
and deleting items from trees, while preserving membetishtipe family.

balance-ness is a
family property

Many balanced families have been invented in computer seiehey come in two basic forms:
height-balancedandweight-balanced schemedn the former, we ensure that the height of siblings are
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“approximately the same”. In the latter, we ensure that thalmer of descendants of sibling nodes are
“approximately the same”. Height-balanced schemes requdrto maintain less information than the
weight-balanced schemes, but the latter has some extrhifigxinat are needed for some applications.
The first balanced family was invented by the Russians Adiel'¢el'skii and Landis in 1962, and are
calledAVL trees. We will describe several balanced families, including Avées and red-black trees.
The notion of balance can be applied to non-binary trees; iWetwdy the family of (a, b)-treesand
generalizations. Tarjar¥] gives a brief history of some balancing schemes.

STUDY GUIDE: all our algorithms for search trees are destiin such a
way that they can be internalized, and we expect studentarty out hand;
simulations on concrete examples. We do not provide any atenpode, bu
once these algorithms are understood, it should be podsilieplementing
them in your favorite programming language.

—F

§1. Search Structures with Keys

Search structures store a set of objects subject to segrahéthmodification of these objects. Search
structures can be viewed as a collectiomotiesthat are interconnected by pointers. Abstractly, they
are just directed graphs with labels. Each node stores oesepts an object which we call &am.

We will be informal about how we manipulate nodes — they walfiously look like ordinary variables
and pointersas in the programming langua@é C++, or like references idava. Let us look at some
intuitive examples, relying on your prior knowledge abordggramming and variables.

"‘ keyl‘ datal ‘Q‘

N ‘ keyl‘ datal ‘0—‘—>‘ keyz‘ data2 M / \
y M keyz‘ data2 M ‘?‘ keyS‘ data3 ‘ ‘

v V‘ key4‘ datad ‘ A

Legend:
E—)—> Non-null Pointe
(@) Z Null Pointer

Figure 1: Two Kinds of Nodes: (a) linked lists, (b) binarydse

91. Keys and Items. Each item is associated withkay. The rest of the information in an item is
simply calleddata, so that we may regard arem as a painKey, Data). Besides an item, each node
also stores one or more pointers to other nodes. Since thatabefiof a node includes (pointers) to
other nodes, this is a recursive definition. Two simple typfasodes are illustrated in Figufie nodes
with only one pointer (Figuré(a)) are used to forming linked lists; nodes with two poistegin be used

1 The concept ofocativesintroduced by Lewis and Denenberi nay also be used: a locativeis like a pointer variable
in programming languages, but it has properties like annargi variable. Informallyu will act like an ordinary variable in
situations where this is appropriate, and it will act likeainper variable if the situation demands it. This is achitbg suitable
automatic referencing and de-referencing semantics fdr sariables.
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to form a binary trees (Figur&(b)), or doubly-linked lists. Nodes with three pointers ¢enused in
binary trees that require parent pointers. First, suppésga node variable of the type in Figutéa).
ThusN has thredields, and we may name these fieldskasy, dat a, next . Each field has some data
type. E.g.key is typically integerdat a can be string, but it can almost anything, beixt has to be

a pointer to nodes. This field information constitutes thypé&f’ of the node. To access these fields, we
write N.key, N.dat a or N.next . The type ofN.next is not that of a node, but pointer to a node. In
our figures, we indicate the values of pointers by a directemha Node pointer variables act rather like
node variables: if variable is a pointer to a node, we can also writdkey, u.dat a andu.next to
access the fields in the node. There is a special pointer gallesl thenull pointer, pointing to nothing.
This value is sometimes denoteill and in figures, null pointers are indicated by a slash synamin
Figurel.

In search queries, we sometimes need to return a set of ifEhesconcept of an iterator captures
thisin an abstract way: dterator as a node: that, in addition to the fields.key andu.dat a, also has
an associated field.next . This field points to another iterator, or is equahib Thus, by following
thenext pointer until we reachil, we can visit a list of items in some un-specified order.

Programming semantics: The difference between a nodeblarié and 4
node pointer variable is best seen using the assignment operation. Let us
assume that the node typegieey, dat a, next ), M is another node variable
andv another node pointer variable. In the assignméat<~ M’, we copy
each of the three fields @ff into the corresponding fields @f. But in the
assignmentt < v’, we simply makeu point to the same node asReferring
to Figurel(a), we see that is initially pointing to N, andv pointing to M.
After the assignment < v, both pointers would point td/.

But what about N «+— «’ and ‘u « N'? In the former case, it has the
same effect asN «— M’ wherew points toM. In the latter case, it has the
same effect ag/ < v’ wherew is any pointer taV (v may not actually exist).
In each case, the variable on the left-hand side deterntireggroper assign
ment action. Once we admit all these four assignment pdiseii there ig
little distinction between manipulating nodes and theinpers. This is what
we meant earlier, when we said that our notion of nodes wiliotesly look|
like ordinary variableN or pointersu. Indeed thelava language eschews
pointers, and introduces an intermediate concept calfedenece.

Recall the Lewis Carroll quotation at the beginning of thisyater: The
four main players in our story are the two variabtesind N, the pointe The clue from the story
value ofu, and the node thaV refers to. Then is ‘Haddocks’ Eyes’' N is of Alice and the White
‘Ways and Means’, the pointer value is ‘The Aged, Aged Mang ¢he node Knight
is ‘A-sitting On a Gate'.

Very informally
speaking

Examples of search structures:

(i) An employee databasehere each item is an employee record. The key of an emplepeed is
the social security number, with associated data such ass&ldame, salary history, etc.

(i) A dictionarywhere each item is a word entry. The key is the word itselpeissed with data such
as the pronunciation, part-of-speech, meaning, etc.

(iii) A scheduling queuim a computer operating systems where each item in the qeeu@b that is
waiting to be executed. The key is the priority of the job, ethis an integer.
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It is natural to refer such structureskasyed search structures From an algorithmic point of view,
the properties of the search structure are solely detedvigethe keys in items, the associated data
playing no role. This is somewhat paradoxical since, forubkers of the search structure, it is the
data that is more important. With this caveat, we will nodyanore the data part of an item in our
illustrations, thusdentifying the item with the key onlyA default assumption is that the keys in a keyed
search structure are unique, i.e., distinct items haveiffexeht keys. In the few places where we drop
this assumption, it will be stated explicitly.

Paradox: what is the
point of searching for
keys with no

associated data?
Default assumption of
unigue keys

Binary search trees is an example of a keyed search structiseally, each node of the binary
search trees stores an item. In this case, our terminologyoafes” for the location of items happily
coincides with the concept of “tree nodes”. However, theevarsions of binary search trees whose
items resides only in the leaves — the internal nodes onfg &ieys for the purpose of searching.

In examples, keys:

92. Uses of Key. Key values usually come from a totally ordered set. Typjcalle use the set of integers!

integers for our totally ordered set. Another common chiic&ey values are character strings ordered
by lexicographic ordering. For simplicity, the default asgption is that items have unique keys. When
we speak of the “largestitem”, or “comparison of two item< are referring to the item with the largest

key, or comparison of the keys in two items, etc. Keys are=ddlly different names to suggest their

function in the structure. For example, a key may varioualied:

e priority , if there is an operation to select the “largest item” in tharsh structure (see example
(iii) above);

o identifier, if the keys are unique (distinct items have different keys) our operations use only
equality tests on the keys, but not its ordering properses g€xamples (i) and (ii));

e costor gain, depending on whether we have an operation to find the miniifuzost) or maxi-
mum (if gain);

e weight, if key values are non-negative. Why is| ook Up the
most important
operation of search
structures? Without it,
the data structure
would be like the

. . . . . . _notion of a “write-only
SinceS represents a set of items, two other basic operations wetmwigfht to support are inserting memory”.

an item and deleting an item. K is subject to both insertions and deletions, we Sadl dynamic set
since its members are evolving over time. In case insertimrtaot deletions, are supported, we ¢all
a semi-dynamic set In case both insertion and deletion are not allowed, we<alktatic set Thus,
the dictionary example (ii) above is a static set from thewieint of users, but it is a dynamic set from
the viewpoint of the lexicographer.

We may define aearch structure S as a representation of a set of items that supports dlod Up
query, among other possible operations. The lookup querg, g@iven keyK andJS, returns a node
in S such that the item im has keyK. If no such node exists, it returns= nil.

§2. Abstract Data Types

This section contains a general discussion on abstract tggas (ADT's). |
may be used as a reference; a light reading is recommendetédirst time

Students might be familiar with the conceptioferface in the programming languagkava. In

the data structures literature, the general concept is krasmbstract data type (ADT). Using the Javafans: ADT =

interface

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 7, 2011



§2. ABSTRACTDATA TYPES Lecture lll Page 5

terminology of object-oriented languages suctCas or Java, we may view a search data structure
is an instance of aontainer class Each instance stores a set of items and have a well-defined se
members(i.e., variables) andhethods(i.e., operations). Thus, a binary tree is just an instaridchen
“binary tree class”. The “methods” of such class supportessobset of the following operations listed
below.

€3. ADT Operations. We will now list all the main operations found in all the ADTilsat we will
study.We emphasize that each ADT will only require a proper subidtiese operations. The full set of
ADT operations listed here is useful mainly as a referende.will organize these operations into four

groups (I)-(1V):

(D) Initializer and Destroyers ~ nake()—Structure
kill()

(1) Enumeration and Order l'ist()—Node
succ(Node—Node
pr ed(Nodg—Node
m n()—Node
max()—Node

(1) Dictionary-like Operations | ookUp(Key)—Node
i nsert (Item—Node
del et e(Nod9g,
del et eM n()—ltem

(IV) Set Operations spl it (Key)— Structure
nmer ge(Structurg.

Most applications do not need the full suite of the these ajmars. Below, we will choose various
subsets of this list to describe some well-known ADT's. Theaming of these operations are fairly
intuitive. We will briefly explain them. Lef, S’ be search structures, viewed as instances of a suitable
class. LetK be a key and: a node. Each of the above operations are invoked from s®ntaus,
S.make() will initialize the structureS, andS.nmax () returns the maximum value ii.

When there is only one structufs we may suppress the referencestoE.g.,S.nmer ge(S’) can be
simply written as frer ge(S’)".

Group (1): We need to initialize and dispose of search stmast Thusrake (with no arguments)
returns a brand new empty instance of the structure. Thedawdmake iski | | , to remove a structure.
These are constant time operations.

Group (Il): This group of operations are based on some lioe@ering of the items stored in the
data structure. The operatibm st () returns a node that is an iterator. This iterator is the beggof
a list that contains all the items il in some arbitraryorder. The ordering of keys is not used by the
iterators. The remaining operations in this group depenithemrdering properties of keys. Then()
andnmex () operations are obvious. The successocc (u) (resp., predecesspr ed(u)) of a nodeu
refers to the node ity whose key has the next larger (resp., smaller) value. Thisdgfined ifu has
the largest (resp., smallest) valueSn

Note thatl i st () can be implemented using n() andsucc(u) or max() andpr ed(u). Such a
listing has the additional property of sorting the outpukiy value.
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Group (III): The first three operations of this group,
| ookUp(K) —u, insert(K,D)—u, delete(u),

constitute the “dictionary operations”. In many ADT’s, $ieeare the central operations.

The nodeu returned byl ookUp(K) has the property thatkey = K. In conventional program-
ming languages such &% nodes are usually represented by pointers. In this casaiiltpointer is
returned by thé ook Up function when there is no item ifi with key K.

In case no such item exists, or it is not unique, some convestiould be established. At this level,
we purposely leave this under-specified. Each applicationlsl further clarify this point. For instance,
in case the keys are not unique, we may requireltoat Up (K') returns an iterator that represents the
entire set of items with key equal 8.

Bothi nsert anddel et e have the obvious basic meaning. In some applications, weprefgr
to have deletions that are based on key values. But such totetgperation can be implemented as
‘del et e(l ookUp(K))'. In casel ookUp(K) returns an iterator, we would expect the deletion to be
performed over the iterator.

The fourth operatior.del et eM n() in Group (Ill) is not considered a dictionary operation. The
operation returns the minimum itefin .S, and simultaneously deletes it fro§& Hence, it could
be implemented adel et e(m n()). But because of its importanceel et eM n() is often directly
implemented using special efficient techniques. In most statictures, we can repladel et eM n by
del et eMax without trouble. However, this is not the same as being abéeipport botldel et eM n
anddel et eMax simultaneously.

Group (IV): The final group of operations,
Ssplit(K)— S, SMerge(S),

represent manipulation of entire search structusesnd S’. If S.split (K) — S’ then all the items
in S with keys greater thai” are moved into a new structuf®; the remaining items are retainedsn
Conversely, the operatigfimer ge(S’) moves all the items i’ into .S, andS’ itself becomes empty.
This operation assumes that all the key$'iare less than all the items #{. Thusspl i t andner ge
are inverses of each other.

94. Implementation of ADTs using Linked Lists. The basic premise of ADTs is that we should
separate specification (given by the ADT) from implementat\We have just given the specifications,
so let us now discuss a concrete implementation.

Data structures such as arrays, linked list or binary setieds are calledoncrete data types
Hence ADTs are to be implemented by such concrete data tygesvill now discuss a simple imple-
mentation of all the ADT operations using linked lists. Thignble data structure comesdrvarieties
according to Tarjanq]. For concreteness, we use the variety that Tarjan eatitogeneous doubly-
linked list. Endogeneous means the item is stored in the node itsefffithion a node:, we can directly
accessi.key andu.dat a. Doubly-linked means has two pointers.next andu.pr ev. These two
pointers satisfies the invariantnext = v iff v.prev = u. We assume students understand linked
lists, so the following discussion is partly a review of lgtklists.

Let L be a such a linked list. Conceptually, a linked list is set ofl@s organized in some linear
order. The linked list has two special nodéshead and L.t ai | , corresponding to the first and last
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node in this linear order. We can visit all the nodedirusing the following routine with a simple
while-loop:

LISTTRAVERSAL(L)
u — L.head
while (u # nil)

u «— u.next
CLEANUP()

List traversal Shell

Here, VISIT{@) and CLEANUP() arenacros meaning that they stand for pieces of code that will be

textually substituted before compiling and executing thegpam. We will indicate a macro ABC by

framing it in a box Iik. Macros should be contrasted gabroutines, which are independent

procedures. In most situations, there is no semantic difiee between macros and subroutines (except

that macros are cheaper to implement). But see the impleti@ntofl ook Up(K') next. Note that

macros, like subroutines, can take arguments. depend @pfieation. As a default, they do nothing

(“no-op”). We call LSTTRAVERSAL a shell program; this theme will be taken up more fully when we macros are not
discuss tree traversal belo4]. Since the while-loop (by hypothesis) visits every nadé | there is subroutines!
a unique node; (assume. is non-empty) withu.next = nil. This node isL.t ai | .

It should be obvious how to implement most of the ADT operatiosing linked lists. We ask
the student to carry this out for the operations in Groupait (I1). Here we focus on the dictionary
operations:

e | 0okUp(K): We can use the above ListTraversal routine but replace ™I&)” by the follow-
ing code fragment:

: if (ukey = K) Return(u)

Since VISIT is a macro and not a subroutine, Return in VISIT is nota return from VISIT, but
a return from theé ook Up routine! The CLEANUP macro is similarly replaced by

CLEANUP()|: Return(nil)

The correctness of this implementation should be obvious.

e i nsert (K, D): We use the ListTraversal shell, but define VIGLT as the following macro:

: if (u.key=K) Return(nil)

Thus, if the keyK is found inu, we returmil, indicating failure (duplicate key). The CLEANUP()
macro is:

CLEANUP()|

u «— new(Node)

u.key := K;u.data:= D
u.next := L.head
L.head :=u

Return(u)
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wherenew(Node) returns a pointer to space on the heap for a node.

e del et e(u): Sinceu is a pointer to the node to be deleted, this amounts to thelatdmeletion
of a node from a doubly-linked list:

u.next .prev «— u.prev
u.prev.next «— u.next
del(u)

wheredel(u) is a standard routine to return a memory to the system heagtakes timeJ(1)

5. Complexity Analysis. Another simple way to implement our ADT operations is to useys
(Exercise). In subsequent sections, we will discuss hownf@ément the ADT operations using bal-
anced binary trees. In order to understand the tradeoftseiset alternative implementations, we now
provide a complexity analysis of each implementation. lsadla this for our linked listimplementation.

We can provide a worst case time complexity analysis. Far thé need to have a notion of input
size: this will ben, the number of nodes in the (current) linked list. Consisteith our principles in
Lecture I, we will perform @-order analysis.

The complexity of ookUp(K) is ©(n) in the worst case because we have to traverse the entire list
in the worst case. Bothnsert (K, D) anddel et e(u) are preceded byookUp’s, which we know
takes©(n) in the worst case. Theel et e operation isO(1). Note that such an efficient deletion is
possible because we use doubly-linked lists; with singlikdd lists, we nee®(n) time.

More generally, with linked list implementation, all the A»perations can easily be shown to have
time complexity eithe® (1) or ©(n). The principal goal of this chapter is to show that é@:) can be
replaced by (logn). This represents an “exponential speedup” from the linistdrhplementation.

96. Some Abstract Data Types. The above operations are defined on typed domains (keystiates,
items) with associated semantics. Alstract data type(acronym “ADT") is specified by

e one or more “typed” domains of objects (such as integerstisets, graphs);
e a set of operations on these objects (such as lookup an itearfian item);

e properties (axioms) satisfied by these operations.

These data types are “abstract” because we make no assaraptiat the actual implementation.

It is not practical or necessary to implement a single datecatre that has all the operations listed
above. Instead, we find that certain subset of these opesatiork together nicely to solve certain
problems. Computer science has discovered that followibges of operations to be widely applicable:

e Dictionary ADT : | ookUpl[, i nsert[, del et €]].
e Ordered Dictionary ADT : | ookUp, i nsert,del et e, succ, pr ed.

e Priority queue ADT: del eteM n,i nsert[, del et e[, decr easeKey]].
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e Fully mergeable dictionary ADT: | ookUp,i nsert,del et e,merge[, split].

In some stripped-down versions of these ADT, operationisiwjt - - | may be omitted. For instance,
a dictionary ADT withoutel et e is called asemi-dynamic dictionary, and if it also omits nsert,
it is called astatic dictionary. Note that the latter only has one operatibookUp. If we omit the
spl it operation in fully mergeable dictionary, then we obtaintiergeable dictionary ADT.

Alternatively, some ADT’s can be enhanced by additionarapens. For instance, a priority queue
ADT traditionally supports onlydel et eM n andi nsert. But in some applications, it must be
enhanced with the operationdél et e and/ordecr easeKey. The latter operation can be defined as

decr easeKey(K,K') = [u «— | ookUp(K);del et e(u);i nsert (K',u.dat a)]

with the extra condition thak” < K (assuming a min-queue). In other words, we change the fyriori
of the itemu in the queue fronk to K’. SinceK’ < K, this amounts to increasing its priority ofin
a min-queue.

If the deletion in dictionaries are based on keys (see conatmve) then we may think of a dictio-
nary as a kind ofissociative memory The operationsake andki | | (from group (I)) are assumed
to be present in every ADT.

Variant interpretations of all these operations are péssior instance, some versioniafiser t
may wish to return a boolean (to indicate success or failorejot to return any result (in case the
application will never have an insertion failure). Otheefus functions can be derived from the
above. E.g., it is useful to be able to create a strucfuo®ntaining just a single itemi. This can
be reduced toS.make(); Si nsert (I)’. The concept of ADT was a major research topic in the
1980’s. Many of these ideas found their way into structunegymmming languages such as Pascal
and their modern successors. An interface in Java is a kidddf where we capture only the types
of operation. Our discussion of ADT is informal, but one waystudy them formally is to describe
axioms that these operations satisfy. For instanc8,iff a stack, then we can postulate the axiom
that pushing an item on S followed by poppingS should return the item. In our treatment, we
relied on informal understanding of these ADT’s to avoid éx@matic treatment.

EXERCISES

Exercise 2.1: Recall our discussion of pointer semantics. Consider threeot of a “pointer to a
pointer” (also known as a handler).
(a) Let the variablep, ¢ have the type pointer-to-pointer-to-node, whileand N have types
pointer-to-node and node (resp.). It is clear what- ¢ means. But what shoulg '« ',
‘p— N',' N «— p’, and ‘u < p’ mean? Or should they have meaning?
(b) Give some situations where this concept might be useful. &

Exercise 2.2: In 94, we provided implementations of the dictionary operatiosing linked list. Please
complete this exercise by implementing the full suite of ADJerations using linked lists. We
want you to do this within the shell programming framework. &

Exercise 2.3: Consider the dictionary ADT.
(a) Describe algorithms to implement this ADT when the cetemata structures are arrays.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 7, 2011



§3. BINARY SEARCHTREES Lecture lll Page 10

HINT: A difference from implementation using linked liststb decide what to do when the array
is full. How do you choose the larger size? What is the anaaguhe ListTraversal Shell?

(b) Analyze the complexity of your algorithms in (a). Com@dnis complexity with that of the
linked list implementation. O

Exercise 2.4: Repeat the previous question for the priority queue ADT. &

Exercise 2.5: SupposeD is a dictionary with the dictionary operations of lookupseént and delete.
List a complete set of axioms (properties) for these opemati &

END EXERCISES

§3. Binary Search Trees

We introduce binary search trees and show that such treesupgort all the operations described
in the previous section on ADT. Our approach will be somewimaionventional, because we want to
reduce all these operations to the single operation of timtéa

Recall the definition and basic properties of binary treeg@nAppendix of Chapter I. Figur2
shows two binary trees (small and big) which we will use in tlustrations. For each node of the

tree, we store a valuekey called its key. The keys in Figuteare integers, used simply as identifiers
for the nodes.

@ (b)

Figure 2: Two binary (not search) trees: (a) small, (b) big

Briefly, a binary tre€l" is a set’V. > 0 of nodes where each nodehas two pointersy.| ef t and
u.r i ght . Moreover,N is either the empty set, @¥ has a node called theroot. The remaining nodes
N\ {u} are partitioned into two sets of nodes that recursively fbmary trees7’;, andTr. Moreover,
u.l eft andwu.ri ght points to the roots of, and Ty (resp.). IfTL (Tr) is empty, thenu.l ef t
(u.ri ght)isnil.

This definition of binary trees is based stuctural induction . Thesizeof T is | N|, and denoted
|T|; alsoTy, Tr are theleft andright subtrees of T'. Figure2 illustrates two binary trees whose node
sets are (respectivelyy = {1,2,3,4,5} (small tree) andV = {1,2,3,...,15} (big tree).
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@ (b)

Figure 3: (a) Binary Search Tree on kejis 2, 3,4, ..., 14, 15}. (b) Afterr ot at e(2).

The keys of the binary trees in FiguPeare just used as identifiers. To turn them into a binary
searchtree, we must organize the keys in a particular way. Such arpisearch tree is illustrated in
Figure3(a). Structurally, it is the big binary tree from Figuzéb), but now the keys are no longer just
arbitrary identifiers.

BST are binary trees
A binary treeT is called abinary search tree(BST) each node € T satisfies théST property: that satisfy the BST
property!
ur.key < u.key < up.key. (1)

whereuy, andug are (resp.) anyeft descendantandright descendantof «. Please verify that the
binary search trees in FiguBobey (1) at each node.

The “standard mistake” is to replacg) by u.l ef t .key < u.key < w.ri ght .key. By defi- good quiz question...
nition, a left (right) descendant ef is a node in the subtree rooted at the left (right) child.ofThe
left and right children of: are denoted by..| ef t andwu.ri ght . This mistake focuses on a necessary,
but not sufficient, condition in the concept of a BST. Seléckt construct a counter example to the
standard mistake using a binary tree withodes (actuallp nodes suffice).

Fundamental Rule about binary tre@sost properties about binary trees are
best proved by induction on the structure of the tree. Likeywalgorithms for
binary trees are often best described using structural atigdun.

q7. Lookup. The algorithm for key lookup in a binary search tree is almoshediate from the
binary search tree property: to look for a k&y we begin at the root (remember the Fundamental Rule
above?). In general, suppose we are lookingoin some subtree rooted at nodelf u.key = K,

we are done. Otherwise, eith&r < u.key or K > u.key. In the former case, we recursively search
the left subtree ofi; otherwise, we recurse in the right subtree.ofin the presence of duplicate keys,
what does lookup return? There are two interpretationsW@ an return the first nodewe found to
have the given keyK'. (2) We may insist on locating all nodes whose ke¥is

In any case, requirement (2) can be regarded as an exterfgib)y aamely, given a node, find
all the other nodes below with same same key askey. This subproblem can be solved separately
(Exercise). Hence we may assume interpretation (1) in thesfing.
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€8. Insertion. To insert an item with key<, we proceed as in the Lookup algorithm. If we fiAdin
the tree, then the insertion fails (assuming distinct ke@gherwise, we reach a noddhat has at most
one child. There are two possibilities: eithekey > K oru.key < K. If u.key > K (u.key < K)
thenw has no left (right) child, and the item is inserted as the (iefht) child of u. In any case, the
inserted item must be a new leaf of the tree.

99. Rotation. This is not a listed operation if2, but it is a key operation. On the face of it, it
does not do anything essential. It just moves the pointexsrat, reorganizing the search structure.
Two search structures that store exactly the same set of ieensaid to bequivalent Rotation is an

example of aaquivalence transformation i.e., it transforms a binary search tree into an equivalen}

one. Remarkably, we shall show that rotation“ctmm the basis for all other binary tree operations. tmay not. look doing
anything useful...

The operatiom ot at e(u) is a null operation (“no-op” or identity transformation) @ is a root.
So assume is a non-root node in a binary search t®eThenr ot at e(u) amounts to the following
transformation off” (see figuret).

Q rotate(u)
A rotate(v)

Figure 4: Rotation at and its inverse.

Inr ot at e(u), we basically want to invert the parent-child relation beéwu and its parent. The
other transformations are more or less automatic, giverthiearesult is to remain a binary search tree.
If the subtreest, B, C' (any of these can be empty) are as shown in figuthen they must re-attach as
shown. This is the only way to reattach as childrem @idv, since we know that

A<u<B<uv<(C

in the sense that each key ihis less than, which is less than any key iB, etc. Actually, only the
parent of the root of3 has switched fromu to v. Notice that after ot at e(u), the former parent of
(not shown) will now have: instead ofv as a child. Clearly the inverse obt at e(u) isr ot at e(v).
The explicit pointer manipulations for a rotation are leftan exercise. After a rotation af the depth
of u is decreased by. Note thatr ot at e(u) followed byr ot at e(v) is the identity operation, as
illustrated in figured.

Recall that two search structures are equivalent if theyaionithe same set of items. Clearly, rotation

is an equivalence transformation.

€10. Graphical convention: Figure4 encodes two conventions: consider the figure on the left side
of the arrow (the same convention hold for the figure on thietrigde). First, the edge connectingo

2 Augmented by simple natural operations such as adding avieg a node.
3Also known as null operation or no-op
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its parent is directed vertically upwards. This indicatestt can be the left- or right-child of its parent.
Second, the two edges fromto its children are connected by a circular arc. This is tadatd thatu
and its sibling coultl exchange places (i.es,could be the right-child of even though we choose to
showu as the left-child). Thus Figuréis a compact way to represent four distinct situations.

€11. Implementation of rotation. Let us discuss how to implement rotation. Until now, when we
draw binary trees, we only display child pointers. But we tmesv explicitly discuss parent pointers.

Let us classify a node into one of thredypes left, right or root. This is defined in the obvious
way. E.g.uis alefttypeiffitis notaroot and is a left child. The typewfs easily testedu is type root
iff w.parent = nil, andu is type left iff u.par ent .| eft = u. Clearly,r ot at e(u) is sensitive to
the type ofu. In particular, ifu is a root therr ot at e(u) is the null operation. 1T € {l ef t ;ri ght }
denote left or right type, itsomplementary typeis denotedl’, wherel ef t = ri ght andri ght =
left.

rot at e(u)

rotate(v)

-
AN

Figure 5: Links that must be fixed mot at e (u).

We are ready to discuss the functioot at e(u), which we assume will return the node Assume
u is not the root, and its type i € {l eft,right}. Letv = u.parent, w = v.parent and
x = v.T. Note thatw andz might benil. Thus we have potentially three child-parent pairs:

(2, u), (u,v), (v,w). 2
But after rotationy andv are interchanged, and we have the following child-pareinspa
(z,v), (v, u), (u, w). 3)

These pairs are illustrated in Figusewhere we have explicitly indicated the parent pointers a6 we
as child pointers. Thus, to implement rotation, we need &ssgn6 pointers § parent pointers angl
child pointers). We show that it is possible to achieve thiggsignment using exactiyassignments.

_— . _— .
T @y —
~___-" ~_.__--" ~_.__--

Figure 6: Simplified view of ot at e(u) as fixing a doubly-linked listz, u, v, w).

Such re-assignments must be done in the correct order.dsigdsee what is needed by thinking of
(2) as a doubly-linked listz, u, v, w) which must be converted into the doubly-linked Ijst v, u, w)

4 If this were to happen, the subtreds B, C' needs to be appropriately relabeled.
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in (3). This is illustrated in Figuré. For simplicity, we use the terminology of doubly-linkestlso that
u.next andu.pr ev are the forward and backward pointers of a doubly-linked kere is the code:

ROTATE(u):
> Fix the forward pointers
1. w.prev.next < u.next
<4 x.next =wv
2. wu.next «— u.next.next
<4 u.next =w
3. wu.prev.next.next «— u
<4 v.next =u
> Fix the backward pointers
4. w.next.prev.prev < u.prev
q4 v.prev ==z
5. wu.next.prev «—u
<4 w.prev =u
6. wu.prev «— u.prev.next
< u.prev=u

We can now translate this sequencesadissignments into the corresponding assignments for binary
trees: theu.next pointer may be identified with.par ent pointer. Howevery.pr ev would beu.T'
whereT € {l ef t,ri ght} is the type ofz. Moreover,v.prev isv.T. Also w.prev isw.T" for
another typel”. A further complication is that or/andw may not exist; so these conditions must be
tested for, and appropriate modifications taken.

If we use temporary variables in doing rotation, the codelmasimplified (Exercise).

€12. Variations on Rotation. The above rotation algorithm assumes that for any nadee can
access its parent and grandparent”. This is true if each node has a parent pointgrar ent . This

is our default assumption for binary tree algorithnifsive have no parent pointers, it is usually possible
to organize many of our algorithms so that we kn@wu’, ") when we try to rotate ai, and to pass
this information into the subroutine call.

Some authors replace rotation with a pair of variants, dédit-rotation andright-rotation . These
can be defined as follows:

left-rotate(u) =rotate(uleft), right-rotate(u)=rotate(uright).

It is not hard to modify all our rotation-based algorithmsige the left- and right-rotation formulation
if we do not have parent pointers.

€13. Double Rotation. Suppose: has a parent and a grandparent. Then two successive rotations
onu will ensure thaty andw are descendants af We may denote this operation byt at e?(u).
Up to left-right symmetry, there are two distinct outcomes ot at e?(u): (i) eitherv, w are becomes
children ofu, or (ii) only w becomes a child of andv a grandchild of.. These depend on whether
is theouter or inner grandchildren ofv. These two cases are illustrated in FigidrgAs an exercise,
we ask the reader to draw the intermediate tree after thafiptcation ofr ot at e(w) in this figure.]

It turns out that case (i) is the more important case. Forynpamposes, we would like to view the
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() (u)
Q A rot at e?(u) A Q
® L = o\
AN swamene /3

()
Q A r ot at e’(u)
(u)

/i

A A Zig-zag Case

Figure 7: Two outcomes afot at e (u)

two rotations in this case as one indivisible operation:ceeme introduce the terouble rotation to
refer to case (ii) only. For emphasis, we might call the oxdirotation asingle rotation.

These two cases are also known as the zig-zig (or zag-zagigwzég (or zag-zig) cases, respec-
tively. This terminology comes from viewing a left turn agzand a right turn as zag, as we move from
up aroot path. The Exercise considers how we might implemeiouble rotation more efficiently than
by simply doing two single rotations.

914. Five Canonical Paths from a node. A path is a sequence of nodés, u1, . . ., u,) where each

u; is a child ofu;_, or eachu; is a parent of;_;. The length of this path is, andu,, is also called

thetip of the path. E.g.(2,4,8,12) is a path in Figur&(b), with tip 12. Relative to a node, there ®

are 5 canonical paths that originate framThe first of these is the path fromto the root, called the

root path of u. In figures, the root path is displayed as an upward pathoviatlg parent pointers from

the nodeu. E.g., ifu = 4 in Figure2(b), then the root path ist, 2, 1). Next we introduce 4 downward odhe!
paths fromu. Theleft-path of  is simply the path that starts fromand keeps moving towards the d Qd v
left or right child until we cannot proceed further. Thight-path of « is similarly defined. E.g., with
u = 4 as before, the left-path {d, 7) and right-path ig4, 8). Next, we define th&eft-spine of a nodeu

is defined to be the pattu, rightpati{u.| ef t)). In caseu.l ef t = nil, the left spine is just the trivial
path(u) of length0. Theright-spine is similarly defined. E.g., with. as before, the left-spine {d, 7)
and right-spine ig4, 8, 12). The tips of the left- and right-paths atcorrespond to the minimum and
maximum keys in the subtree@t The tips of the left- and right-spingsiovided they are different from
u itself, correspond to the predecessor and successor Gfearly,u is a leaf iff all these four tips are
identical and equal ta.

5 paths from a node
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O rot at e(w) O

®
202 /

Figure 8: Reduction of the left-spine ofafterr ot at e(u.l ef t ) =r ot at e(w).

We now examine what happens to these five paths after a rotation. After performing a left-
rotation atu, we reduce the left-spine length ofby one (but the right-spine af is unchanged). See
Figure8. More generally:

LEMMA 1. Let(ug,uq,...,u;) be the left-spine of andk > 1. Also let(v, . .., v,,) be the root path
of u, whereu = vy anduv,, is the root of the tree. After performingt at e(u.l ef t ), the left-child of
u is transferred from the left-spine to the root path. Moregisely: How rotations affect
the 5 paths
(i) the left-spine oft becomegug, us, ..., uy) of lengthk — 1,
(i) the root path ofu becomeguvy, u1,v1,...,v,) of lengthm + 1, and

(iii) the right-path and right-spine ofi are unchanged.

So repeatedly left-rotations atwill reduce the left-spine ofi to length0. A similar property holds
for right-rotations.

915. Deletion. Suppose we want to delete a nadeln caseu has at most one child, this is easy to
do — simply redirect the parent’s pointerddnto the unique child of: (or nil if w is a leaf). Call this  Th&'ut(u) operation.
procedureCut(u). It is now easy to describe a general algorithm for deletingdeu:

DELETE(T, w):
Input:  w« is node to be deleted froffi.
Output: T, the tree withu deleted.
while u.l ef t = nil do
rotate(uleft).
Cut(w)

If we maintain information about the left and right spinedtes of nodes (Exercise), and the right spine
of u is shorter than the left spine, we can perform the while-losipg right-rotations to minimize the
number of rotations. To avoid maintaining height inforroatiwe can also do this: alternately perform
left- and right-rotates at until one of its 2 spines have lengih The overall effect of this algorithm is
schematically illustrated in Figui@

We ask the reader to simulate the operationBefete(T, 10) whereT is the BST of Figure.
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delete(u)

cut(v)

Figure 9: Deletion: (i) Rotation-based, (ii) Standard.

q16. Standard Deletion Algorithm. The preceding deletion algorithm is simple but it is quit@no
standard. We now describe thandard deletion algorithm:

DELETE(T, w):
Input:  w is node to be deleted froffi.
Output: T, the tree with item in, deleted.
if « has at most one child, applyut(«) and return.
else let v be the tip of the left spine af.
Copy the item inv into « (removing the old item inu)
Cut(v).

This process is illustrated in Figu® Note that in the else-case, the nodés not physically
removed: only the item represented®ys removed. As usual, the nodehat is physically removed
(i.e., cut) has at most one child. If we have to return a vatug useful to return the parent of the node
that was cut — this can be used in rebalancing tree (see Atidalbelow). The reader should simulate
the operations oDelete(T, 10) for the tree in Figure3, and compare the results to the rotation-based
deletion.

The rotation-based deletion is conceptually simpler, ailbb& useful for amortized algorithms
later. However, the rotation-based algorithm seems todweeslas it requires an unbounded number of
pointer assignments.

€17. Inorder listing of a binary tree.

LEMMA 2. LetT be a binary tree om nodes. There is a unique way to assign the Kayg, ..., n}
to the nodes of” such that the result is a binary search tree on these keys.

We leave the simple proof to an Exercise. For exampl€,ig the binary tree in Figuré(b), then
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this lemma assigns the keys, . . ., 15} to the nodes of " as in Figure3(a). In general, the node that is
assigned key (i = 1,...,n) by Lemma2 may be known as thé&h node of 7. In particular, we can
speak of thdirst ( = 1) andlast node(i = n) of T. The unique enumeration of the nodeslofrom
first to last is called then-order listing of 7.

€18. Successor and Predecessorlf u is theith node of a binary tre&, thesuccessoof v refers to
the (i + 1)st node ofl". By definition,u is thepredecessowf v iff v is the successor af. Letsucc(u)

andpr ed(u) denotes the successor and predecessar df coursesucc(u) (resp.,pred(u)) is

undefined ifu is the last (resp., first) node in the in-order listing of treet

We will define a closely related concept, but applied to any ke Let K be a key, not necessarily
occurring inT'. Define thesuccessonf K in T to be the least keyk’ in T' such thatK’ < K’. We
similarly define thepredecessonf K in T to be the greatedt” in 7' such thatk’ < K.

In some applications of binary trees, we want to maintaimigws to the successor and predecessor
of each node. In this case, these pointers may be denctedtc andwu.pr ed. Note that the succes-
sor/predecessor pointers of nodes is unaffected by ratt@ur default version of binary trees do not
include such pointerd.et us make some simple observations:

LEMMA 3. Letw be a node in a binary tree, butis not the last node in the in-order traversal of the
tree.

(i) w.ri ght = niliff  is the tip of the left-spine of some nodeMoreoversucc (u) = v.

(i) If w.ri ght # nilthensucc(u) is the tip of the right-spine of.

It is easy to derive an algorithm farucc (u) using the above observation.

Succ(u):
Output: The successor node of(if it exists) ornil.
1. if wright #nil < return the tip of the right-spine af
1.1 v« u.ri ght;
1.2 while v.l eft #nil, v — v.l eft;
1.3 Return(v).
2. else < returnv whereu is the tip of the left-spine af

2.1 v« u.parent;
2.2 while v # nilandu = v.ri ght,
2.3 (u,v) < (v,v.parent).

2.4 Return(v).

Note that ifsucc(u) = nil thenw is the last node in the in-order traversal of the tree«dwas no
successor). The algorithm fpr ed(u) is similar.

€19. Min, Max, DeleteMin. This is trivial once we notice that the minimum (maximumités
in the first (last) node of the binary tree. Moreover, the f{tast) node is at the tip of the left-path
(right-path) of the root.

920. Merge. To merge two tree§’, T’ where all the keys i are less than all the keys i, we
proceed as follows. Introduce a new nadand form the tree rooted at with left subtreel” and right
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subtreeT”. Then we repeatedly perform left rotationsiatintil w.l ef t = nil. At this point, we can
performCut(u) (seeg15). If you like, you can perform right rotations instead @it Irotations.

921. Split. Suppose we want to split a trédéat a keyK. Recall the semantics of split frofR:
T.split(K) — T'. This says that all the keys less than or equdaktés retained irl’, and the rest are
split off into a new tredl” that is returned.

First we do d ookUp of K in T'. This leads us to a nodethat either contain&” or elseu is the
successor or predecessorifin 7. That is,u.key is either the smallest key it that is greater or
equal toK or the largest key iff" that is less than or equal . Now we can repeatedly rotate at
until © becomes the root ¢f. At this point, we can split off either the left-subtree aght-subtree of
T, renaming them &% and7” appropriately. This paif7’, 7”) of trees is the desired result.

922. Complexity. Letus now discuss the worst case complexity of each of theeatyperations. They
are all©(h) whereh is the height of the tree. It is therefore desirable to be &blaintainO(log n)
bounds on the height of binary search trees.

We stress that our rotation-based algorithms for inserioth deletion may be slower than the
“standard” algorithms which perform only a constant numtifgpointer re-assignments. If this cost
is not an issue, then rotation-based algorithms are attedmtcause of their simplicity. Other possible
benefits of rotation will be explored in Chapter 6 on amott@aand splay trees.

EXERCISES

Exercise 3.1: Let T' be a binary tree such that all the nodes lie on the leftpatts@bbt. Sal” is just a
linear list.
(a) Suppose: is the tip of the left-path of the root. What is the effect opeated rotation of:
until w becomes the root?
(b) What is the effect of repeated left-rotate of the roof ' dfuntil the root has no left child)?
NOTE: lllustrate your answer to (a) and (b) by drawing thesintediate trees wheh has5
nodes. &

Exercise 3.2: Consider the BST of Figur8(a). This calls for hand-simulation of the insertion and
deletion algorithms. Show intermediate trees after eatdtiom, not just the final tree.
(a) Perform the deletion of the kay this tree using the rotation-based deletion algorithm.
(b) Repeat part (a), using the standard deletion algorithm. &

Exercise 3.3: Suppose the set of keys in a BST are no longer unique, and wetwanodify the
| ookUp(u, K) function to return a linked list containing all the nodes t@iming key K in a
subtre€T’, rooted atu. Write the pseudo-code fdrookUpAll(u, K). O

Exercise 3.4: The function \ERIFY(u) is supposed returtnue iff the binary tree rooted at is a binary
search tree with distinct keys:

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &frsion March 7, 2011

Figure out this little
detail.



§3. BINARY SEARCHTREES Lecture lll Page 20

VERIFY(Nodeu)
if (u = nil) Return(true)
if ((uleft #nil)and u.key < u.l ef t .key)) Return(false)
if ((u.right #nil)and @.key > w.ri ght key)) Return(false)
Return(VERIFY(u.l ef t )AVERIFY(u.ri ght))

Either argue for it's correctness, or give a counter-exaspbwing it is wrong. &

Exercise 3.5: TRUE or FALSE: Recall that a rotation can be implemented Wiflointer assignments.
Suppose a binary search tree maintains successor and @ssdetinks (denoted.succ and
u.pr ed in the text). Now rotation requirel®2 pointer assignments. O

Exercise 3.6: (a) Implement the above binary search tree algorithmst{ootdookup, insert, deletion,
etc) in your favorite high level language. Assume the birieggs have parent pointers.
(b) Describe the necessary modifications to your algoritimga) in case the binary trees do not
have parent pointers. &

Exercise 3.7: Let T' be the binary search tree in figuBe You should recall the ADT semantics of
T — split(T,K)andnerge(T,T") in §2. HINT: although we only require that you show
the trees at the end of the operations, we recommend thathyuselected intermediate stages.
This way, we can give you partial credits in case you makeakést!

(a) Perform the operatidh’ < spl i t (T,5). DisplayT andT” after the split.

(b) Now performi nsert (T, 3.5) whereT is the tree after the operation in (a). Display the tree
after insertion.

(c) Finally, performner ge(7,7") whereT is the tree after the insert in (b) arffd is the tree
after the splitin (a). &

Exercise 3.8: Give the code for rotation which uses temporary variables. &

Exercise 3.9: Instead of minimizing the number of assignments, let usdryntnimize the time. To
count time, we count each reference to a pointer as takindioma. For instance, the assignment
u.next .prev.prev « wu.prev costss time units because in addition to the assignment, we
have to make accedsointers.

(a) What is the rotation time in odirassignment solution in the text?
(b) Give a faster rotation algorithm, by using temporaryafales. &

Exercise 3.10: We could implement a double rotation as two successiveioostand this would take
12 assignment steps.
(a) Give a simple proof that 10 assignments are necessary.
(b) Show that you could do this with 10 assignment steps. &

Exercise 3.11:Open-ended: The problem of implementingt at e(u) without using extra storage or
in minimum time (previous Exercise) can be generalized.d & a directed graph where each
edge (“pointer”) has a name (e.gext , prev,| ef t ,ri ght) taken from a fixed set. Moreover,
there is at most one edge with a given name coming out of eadh. nBuppose we want to
transformG to another grapld’, just by reassignment of these pointers. Under what canmiti
can this transformation be achieved with only one variab(es inr ot at e(«))? Under what
conditions is the transformation achievable at all (usirgyenintermediate variables? We also
want to achieve minimum time. &
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Exercise 3.12: The goal of this exercise is to show thafy, and T} are two equivalent binary search This shows that
trees, then there exists a sequence of rotations that wamsf7}, into 77. Assume the keys in rotation is a
each tree are distinct. We explore two strategies. “universal”
(a) One strategy is to first make sure that the rootgpénd 7; have the same key. Then by equivalence
induction, we can transform the left- and right-subtree$p$o that they are identical to those transformation.

of Ty. Describe an algorithml (77, T») that implements this strategy. The algorithdoes not
modify T5 at all, but transform§? by rotations untill’; has the same shape’Bs Of course, we
assume thdt’, 7> are equivalent BST's.

(@) Let Ra(n) be the worst case number of rotations of algoritAron trees withn keys. Give
a tight analysis o 4 (n).

(b) Another strategy is to show that any tree can be reducadcamonical form. For canonical
form, we choose those binary search trees that form a &ftAileft-list is a binary tree in which
every node has no right-child. If every BST can be rotatea énleft-list, then we can rotate from
any Ty to anyT; as follows: sincel, and7; are equivalent, they can each be rotated into the
same left-listL. To rotate fromI to T, we first transfornil}y to L, and then apply thesverse
of the sequence of rotations that transfafimto L. Give an explicit description of an algorithm
B(T) that transforms any BST into an equivalent BST that is a left-list.

(b”) Let Rp(n) be worst case number of rotations for algorit®(i") on trees withn keys. Give
atight analysis oRR(n). O

Exercise 3.13: Prove Lemm&, that there is a unique way to order the nodes of a binaryfré®t is
consistent with any binary search tree based oRlINT: remember the Fundamental Rule about
binary trees. &

Exercise 3.14:Implement the Cuyt:) operation in a high-level informal programming language- A
sume that nodes have parent pointers, and your code shodtdewen ifu.par ent = nil. Your
code should explicitly “delete)” after you physically remove a node If « has two children,
then Cutu) must be a no-op.

&

Exercise 3.15:Design an algorithm to find both the successor and predecessogiven keyK in
a binary search tree. It should be more efficient than justrfqnthe successor and finding the
predecessor independently. &

Exercise 3.16: Show that if a binary search tree has heiglandu is any node, then a sequence of
k > 1 repeated executions of the assignment successor(u) takes timeO(h + k). O

Exercise 3.17: Show how to efficiently maintain the heights of the left arghtispines of each node.
(Use this in the rotation-based deletion algorithm.) &

Exercise 3.18: We refine the successor/predecessor relation. Supposé‘thiatobtained fronil” by
pruning all the proper descendantagfsow is a leaf inT™). Then the successor and predecessor
of u in T" are called (respectively) thexternal successoandpredecessornf u in T' Next, if
T, is the subtree at, then the successor and predecessariafT, are called (respectively) the
internal successorandpredecessoof v in T'

(a) Explain the concepts of internal and external successmt predecessors in terms of spines.
(b) What is the connection between successors and predesé¢sgshe internal or external ver-
sions of these concepts? O
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Exercise 3.19: Give the rotation-based version of the successor algorithm &

Exercise 3.20: Suppose that we begin withpointing at the first node of a binary tree, and continue to
apply the rotation-based successor (see previous qugstitinu is at the last node. Bound the
number of rotations made as a functionofthe size of the binary tree). &

Exercise 3.21: Suppose we allow allow duplicate keys. Und&}, (we can modify our algorithms
suitably so that all the keys with the same value lie in consee nodes of some “right-path
chain”.

(a) Show how to modify lookup on kel so that we list all the items whose keyA&

(b) Discuss how this property can be preserved during mtainsertion, deletion.

(c) Discuss the effect of duplicate keys on the complexitsotédition, insertion, deletion. Suggest
ways to improve the complexity. &

Exercise 3.22: Consider the priority queue ADT. Describe algorithms to lienpent this ADT when
the concrete data structures are binary search trees.
(b) Analyze the complexity of your algorithms in (a). &

END EXERCISES

54. Tree Traversals and Applications

In this section, we describe systematic methods to visthalhodes of a binary tree. Such methods Unix fans — shell
are calledree traversals Tree traversals provide “algorithmic skeletons” stiellsfor implementing programming is not

many useful algorithms. We had already seen this concefpd jnvhen implemented ADT operations ~ what you think it is
using linked lists.

€23. In-order Traversal. There are three systematic ways to visit all the nodes in arpitnee: they
are all defined recursively. Perhaps the most importaneigtiorder or symmetric traversal. Here
is the recursive procedure to perform an in-order traverfaltree rooted at:

Fundamental Rule of
binary trees!

IN-ORDER(u):

Input:  w is root of binary tredl” to be traversed.

Output: The in-order listing of the nodes if.
I n-order (ul eft).

1.
2. [VISIT(w)]
3.

I n-order (u.ri ght).

This recursive program uses two macros called BASE and VISdT traversals, the BASE macro can
be expanded into the following single line of code:
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BASEQ)}
if (u=nil) Return.

The VISIT(u) macro is simply:

VST

Printukey.

In illustration, consider the two binary trees in figite The numbers on the nodes are keys, but they
are not organized into a binary search tree. They simplyesasudentifiers.

An in-order traversal of the small tree in Figuitevill produce(2,4, 1,5, 3). For a more substantial
example, consider the output of an in-order traversal obtgdree:

(7,4,12,15,8,2,9,5,10,1,3,13, 11, 14, 6)

Basic fact:if we list the keys of a BST using an inorder traversal, thenkiiys will be sorted.

For instance, the in-order traversal of the BST in Figaivell simply produce the sequence
(1,2,3,4,5,...,12,13,14,15).

This yields an interesting conclusiosorting a setS of numbers can be reduced to constructing a
binary search tree on a set of nodes witlas their keys.

924. Pre-order Traversal. We can re-write the above In-Order routine succinctly as:
IN(u) = [| BASE(u)}; IN (u.l ef t );| VISIT(u) |; IN (u.ri ght )]

Changing the order of Steps 1, 2 and 3 in the In-Order proeeghut always doing Step 1 before
Step 3), we obtain two other methods of tree traversal. Tihug perform Step 2 before Steps 1 and 3,
the result is called thpre-order traversal of the tree:

PRE(u) = | BASE(u)}| VISIT(u) | PRE(u.l ef t ); PRE(u.r i ght )]

Applied to the small tree in figurg we obtain(1, 2,4, 3,5). The big tree produces

(1,2,4,7,8,12,15,5,9,10,3,6, 11, 13, 14).

€25. Post-order Traversal. If we perform Step 2 after Steps 1 and 3, the result is callegptist-
order traversal of the tree:

POST (u) = [ BASE(u)} POST (u.l ef t ); POST (u.ri ght );| VISIT(u) |

Using the trees of Figur2 we obtain the output sequendés2, 5, 3, 1) and

(7,15,12,8,4,9,10,5,2,13,14,11,6,3, 1).
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926. Applications of Tree Traversal: Shell Programming Tree traversals may not appear interest-
ing on their own right. However, they serve as shells for mgmany interesting problems. That is,
many algorithms can be programmed by taking a tree travehsdl, and replacing the named macros
by appropriate code: for tree traversals, we have two suangsacalled BASE and VISIT.

To illustrate shell programming, suppose we want to comghaeheight of each node of a BST.
Assume that each nodehas a variable. H that is to store the height of node If we have recursive
computed the values afl ef t .H andw.ri ght .H, then we see that the heightottan be computed
as
w.H =1+ max{uleft.H+uright.H}.
computing height in

This suggests the use of post-order shell to solve the hergiiilem: We keep the previous BASE post-order

subroutine, but modify’ 1,517 () to the following task:

if (u.l eft =nil)then L «— —1.
else L — uleft.H.

if (u.ri ght =nil)then R «— —1.
else R « w.ri ght .H.

u.H «— 14 max{L, R}.

On the other hand, suppose we want to compute the depth ofrealeh Again, assume each nade
stores a variable.D to record its depth. Then, assuming thab has been computed, then we could
easily compute the depths of the childreruaising

computing depth in
pre-order

uleft.D=wuright.D=1+u.D.

This suggests that we use the pre-order shell for compugpthd

927. Return Shells. For some applications, we want a version of the above traleositines that
return some value. We call them “return shells” here. Letlustrate this by modifying the postorder
shell POSTY) into a new version rPOSTJ which returns a value of tyg€. For instance]” might be
the type integer or the type node. The returned value fromrsae calls are then passed to the VISIT
macro:

RPOST()
o]
L — rPOST(u.l eft).
R «— rPOST (u.ri ght).

[VISIT(u, L, R) |

Note that bothr BASE(u) andrVISIT (u, L, R) returns some value of tygg.

As an application of this rPOST routine, consider our prasisolution for computing the height of
binary trees. There we assume that every notlas an extra field called H that we used to store the
height ofu. Suppose we do not want to introduce this extra field for emede. Instead of POS#),
we can use rPOST] to return the height of.. How can we do this? First, BASE) should be modified
to return the height afil nodes:
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RBASE(u):
if (u=nil) Return(—1).

Second, we must re-visit the VISIT routine, modifying (siifypng!) it as follows: no pun intended

RVISIT(u, L, R)
Return(1l + max{L, R}).

The reader can readily check that rPOST solves the heightgaroelegantly. As another application
of such “return shell”, suppose we want to check if a binagg fis a binary search tree. This is explored
in Exercises below.

The motif of using shell programs such as BASE and VISIT wllfarther elaborated when we
study graph traversals. Indeed, we can view graph traweasah generalization of tree traversal. Usin%a attention when the
shells is a great unifying aspect in the study of traverggor@hms: we cannot over emphasize this yprofessor says this
point.

EXERCISES

Exercise 4.1: Give the in-order, pre-order and post-order listing of tlee in Figurel4. &

Exercise 4.2: Tree traversals.
(@) Let the in-order and pre-order traversal of a binary tfEewith 10 nodes be
(a,b,c,d e, f,g,h,i,5)and(f,d,b,a,c e h,g,j, 1), respectively. Draw the treE.
(b) Prove that if we have the pre-order and in-order listihthe nodes in a binary tree, we can
reconstruct the tree.
(c) Consider the other two possibilities: (c.1) pre-orded g@ost-order, and (c.2) in-order and
post-order. State in each case whether or not they havertiergagonstruction property as in (b).
If so, prove it. If not, show a counter example.
(d) Redo part(c) for full binary trees. Recall that in a fuilhary tree, each node either has no
children or 2 children. &

Exercise 4.3:
(a) Here is the set of keys from post-order traversal of arlgisaarch tree:

2,1,4,3,6,7,9,11,10,8,5,13, 16, 15, 14, 12

Draw this binary search tree.
(b) Describe the general algorithm to reconstruct a BST fitsrpost-order traversal. O

Exercise 4.4: Use shell programming to give an algorithm SIZE that returns the number of nodes
in the subtree rooted at Do not assume any additional fields in the nodes. &

Exercise 4.5: Let size(u) be the number of nodes in the tree rooted.atSay that node is size-
balancedif
1/2 < size(u.l eft)/size(u.ri ght) <2
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where a leaf node is size-balanced by definition.

(a) Use shell programming to compute the routig:) which returnssize(u) if each node in
the subtree at is balanced, an@(u) = —1 otherwise. Do not assume any additional fields in
the nodes or that the size information is available.

(b) Suppose you know that.| eft andu.ri ght are size-balanced. Give a routine called
REBALANCE(u) that uses rotations to makebalanced. Assume each nodéas an ex-
tra fieldu.SIZ FE whose value isize(u) (you must update this field as you rotate).

O

Exercise 4.6: Show how to use the pre-order shell to compute the depth &f eade in a binary tree.
Assume that each nodehas a depth fieldy.D. &

Exercise 4.7: Give a recursive routine calledheck BST (u) which checks whether the binary trég
rooted at a node is a binary search tree (BST). You must figure out the inforomed be returned
by CheckBST (u); this information should also tell you wheth&y;, is BST or not. Assume that
each non-nil node has the three fields,. key, u.l ef t ,u.ri ght. &

Exercise 4.8: A student proposed a different approach to the previoustipumed et minBST (u) and
mazBST (u) compute the minimum and maximum keysTip, respectively. These subroutines
are easily computed in the obvious way. For simplicity, assall keys are distinct and # nil
in these arguments. The recursive subroutine is given Esvisil

CheckBST(u)
> Returns largest key i, if T), is BST
> Returnstco if not BST
> Assume: is notnil
If (u.l eft # nil)
L — maxBST(u.l eft)
If (L > u.key or L = o0) returno)
If (u.ri ght # nil)
R «— minBST (u.ri ght)
If (R < u.key or R = o) returno)
Return(CheckBST (u.l eft) A (CheckBST (u.ri ght)

Is this program correct? Bound its complexity. HINT: Let theot path length” of a node be the
length of its path to the root. The “root path length” of a iintkeeT’, is the sum of the root path
lengths of all its nodes. The complexity is related to thimber. &

Exercise 4.9: Like the previous problem, we want to check if a binary tree BST. Write a recursive
algorithm calledSlowBST (u) which solves the problem, except that the running time ofryou
solution must be provably exponential-time. If you like uysolution may consist of mutually
recursive algorithms. Your overall algorithm must achiéhvis exponential complexity without
any trivial redundancies. E.g., we should not be able totdalatements from your code and still
achieve a correct program. Thus, we want to avoid a trivilitems of this kind:

SlowBST (u)
Compute the number of nodes inT,
Do for 2™ times:
FastBST (u)
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END EXERCISES

65. Variations on Binary Trees

This is an optional section, for those who wants a deeperrstateding of binary trees and their
applications. We will discuss extended binary trees, ad#teve ways to use binary trees in search
structures, and the notion of implicit binary search trees.

€28. Extended binary trees. There is an alternative view of binary trees; following Kim{:t, p. 399],
we call themextended binary trees For emphasis, the original version will be caltdndard binary
trees In the extended trees, every node asr 2 children; nodes with no children are caltexil
nodeswhile the other nodes are callesbn-nil nodes See figurelQ(a) for a standard binary tree
and figurelQ(b) for the corresponding extended version. In this figure,see a common convention
(following Knuth) of representing nil nodes by black squsare

@

Figure 10: Binary Trees: (a) standard, (b) extended.

The bijection between extended and standard binary tregeds as follows:

1. For any extended binary tree, if we delete all its nil nqdes obtain a standard binary
tree.

2. Conversely, for any standard binary tree, if we give eveaytwo nil nodes as children
and for every internal node with one child, we give it one witia as child, then we obtain
a corresponding extended binary tree.

In view of this correspondence, we could switch between wweuiewpoints depending on which is
more convenient. Generally, we avoid drawing the nil nodesesthey just double the number of
nodes without conveying new information. In fact, nil nodasinot store data or items. One reason
we explicitly introduce them is that it simplifies the degtion of some algorithms (e.g., red-black tree
algorithms). The “nil node” terminology may be better amiaged when we realize that in conventional
realization of binary trees, we allocate two pointers torgvede, regardless of whether the node has

Who cares about nil
nodes?

5 A binary tree in which every node has 2 or 0 children is saidet6fbll”. Knuth calls the nil nodes “external nodes”. A path
that ends in an external node is called an “external path”.
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two children or not. The lack of a child is indicated by makihg corresponding pointer take thi
value. We extend the notion of extended binary treextended binary search tree Here, the non-nil
nodes store keys in the usual nodes but the nil nodes do mbkbgé (obviously).

The concept of a “leaf” of an extended binary tree is apt tctseaaome confusion: we shall use
the “leaf” terminology so as to be consistent with standandty trees. A node of an extended binary
tree is called deaf if it is the leaf of the corresponding standard binary tretierhatively, a leaf in an
extended binary tree is a node with two nil nodes as childféns a nil node is never a leaf.

€29. Exogenous versus Endogenous Search StructureRecall that each key is associated with
some data, and such key-data pairs constitute the itemgdoctsing. There are two ways to organize
such items. One way is to directly store the data with the Keye other way is for the key to be
paired with a pointer to the data. Followih@arjan P], we call the latter organization aexogenous
search structure In contrast, if the data is directly stored with the key, itaisendogenous search
structure. What is the relative advantage of either form? The exogemase has an extra level of
indirection (the pointer) which uses extra space. But orother hand, it means that the actual data can
be freely re-organized more easily and independently of¢taech structure. In databases, this freedom
is important, and the exogenous search structure are Calldekes”. Database users can freely create
and destroy such indexes for the set of items. This allowdlaation of items can be searched using
different search criteria. The concept(ef b)-trees below illustrates such exogenous search structures

€30. Duplicate keys. We normally assume that the keys in a BST are distinct unlgsswise noted.
But let us now briefly consider BST whose keys are not necigsarique or distinct. One way to
handle duplicate keys is to require the followiright-path rule : all items with the same key must lie
on consecutive nodes of some right-pattie can view all the equal-key nodes on this right-path as a
super-node for the purposes of maintaining height-balkhtrees such as AVL trees. Before discussing
how to maintain this right-path rule, let us discuss Homok Up must be modified. When we look up
on a keyk, we can just return the first node that contains theikeklternatively, if there is a secondary
key besides the (primary) key which might distinguish amtireydifferent items with primary key,

we can search the right-path for this secondary key. Now wst modify all our algorithms to preserve
the right-path rule. In particular, insertion and rotat&rould be appropriately modified. What about
deletion? If the argument of deletion is the node to be déétés clearly easy to maintain this property.
If the argument of deletion is a kéy we can either delete all items whose ke isr rely on secondary
keys to distinguish among the items with kiey

Instead of the right-path rule, we could put all the equalikems in an auxiliary linked list attached
to a node. There are pros and cons in either approach. TH# fragh” organization of duplicate keys
do not need any auxiliary structures. If the expected nurobduplicated keys is small, it may be the
best solution.

931. Auxiliary Information. In many applications, additional information must be maiméd at
each node of the binary search tree. We already mentionguaiédecessor and successor links. Another
information is the the size of the subtree at a node. Someagifitformation is independent, while other
is dependent oderived. Maintaining the derived information under the variousragiens is usually
straightforward. In all our examples, the derived inforimatis local in the following sense thahe
derived information at a node can only depend on the information stored in the subtree &e will

say that derived information &rongly local if it depends only on the independent information at node
u, together with all the information at its children (whetlderived or independent).

6 He used this classification for linked lists data structure.
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€32. Parametric Binary Search Trees. Perhaps the most interesting variation of binary sear@stre
is when the keys used for comparisons are only implicit. Tiiermation stored at nodes allows us to
make a “comparison” and decide to go left or to go right at aenlauat this comparison may depend on
some external data beyond any explicitly stored infornmatidVe illustrate this concept in the lecture on
convex hulls in Lecture V.

€33. Implicit Binary Trees. By an implicit tree, we mean one that does not have expliditteos
which determine the parent/child relationships of nodes. eXample is théneap structure: this is
defined to be binary tree whose nodes are indexed by integiéwsiing this rule: the root is indexed
1, and if a node has indeX then its left and right children are indexed dyand2i + 1, respectively.
Moreover, if the binary tree has nodes, then the set of its indices is the §&t2,...,n}. A heap
structure can therefore be represented naturally by awg aiffia.n|, whereA[i] represents the node of
index:. If, at theith node of the heap structure, we store a K&y and these keys satisfy ttheap
order property foreachi =1,...,n,

HOG): A[i] < min{A[2i], A[2i + 1]}. (4)

In (4), itis understood that i > n (resp.,2i + 1 > n) thenA[27] (4[2i + 1]) is taken to bex. Then
we call the binary tree beap. Here is an array that represents a heap:

A[1.9] = [1,4,2,5,6,3,8,7,9].

In the exercises we consider algorithms for insertion ardtide from a heap. This leads to a highly
efficient method for sorting elements in an array, in place.

In general, implicit data structures are represented byriay avith some rules for computing the
parent/child relations. By avoiding explicit pointersg¢histructures can be very efficient to navigate.

EXERCISES

Exercise 5.1: Describe what changes is needed in our binary search tregthlgs for the exogenous
case. &

Exercise 5.2: Suppose we insist that for exogenous binary search tregs oéshe keys in the internal
nodes really correspond to keys in stored items. Describaditessary changes to the deletion
algorithm that will ensure this property. &

Exercise 5.3: Consider the usual binary search trees in which we no longgrmae that keys in the
items are unique. State suitable conventions for what thewsoperations mean in this setting.
E.g.,l ookUp(K) means find any item whose keyis or find all items whose keys are equal to
K. Describe the corresponding algorithms. &

Exercise 5.4: Describe the various algorithms on binary search treesstioa¢ the size of subtree at
each node. &

Exercise 5.5: Recall the concept of heaps in the text. L&1..n] be an array of real numbers. We call
A analmost-heap ati there exists a number such thatiifi] is replaced by this number, theh
becomes a heap. Of course, a heap is automatically an alreastt any.
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(i) SupposeA is an almost-heap at Show how to convertl into a heap be pairwise-exchange
of array elements. Your algorithm should take no more tham exchanges. Call this the
Heapify(A,1i) subroutine.

(i) SupposeA[l..n] is a heap. Show how to delete the minimum element of the heapasthe
remaining keys ind[1..n — 1] form a heap of sizee — 1. Again, you must make no more than
lgn exchanges. Call this thRelete Min(A) subroutine.

(iii) Show how you can use the above subroutines to sort aayanrplace inO(nlogn) time.

&

Exercise 5.6: Normally, each node: in a binary search tree maintains two fields, a key value and
perhaps some balance information, denatd¢EY and«.BALANCE, respectively. Suppose we
now wish to “augment” our tre&' by maintaining two additional fields calledPRIORITY and
u.MAX. Here,u.PRIORITY is an integer which the user arbitrarily assasatith this node, but
u.MAX is a pointer to a node in the subtree at such that'.PRIORITY is maximum among
all the priorities in the subtree at (Note: it is possible that = v.) Show that rotation in such
augmented trees can still be performed in constant time.

&

END EXERCISES

§6. AVL Trees

AVL trees is the first known family of balanced trees. By defari, an AVL tree is a binary search
tree in which the left subtree and right subtree at each niff dy at mostl in height. They also have
relatively simple insertion/deletion algorithms.

More generally, define thiegalanceof any node of a binary tree to be the height of the left subtree
minus the height of the right subtree:

balance(u) = ht(u.l ef t) — ht(u.ri ght).

The node iperfectly balancedif the balance i9). It is AVL-balanced if the balance is eithdy or £1.
Our insertion and deletion algorithms will need to know thégance information at each node. Thus we
need to store at each AVL node a 3-valued variable. TheaiBti¢chis space requirement amounts to
lg 3 < 1.585 bits per node. Of course, in practice, AVL trees will rese2\mts per node for the balance
information (but see Exercise).

Let us first prove that the family of AVL trees is a balancedifgnit is best to introduce the function
wu(h), defined as the minimum number of nodes in any AVL tree witlghh. The first few values are

p(=1)=0, wO)=1, pl)=2  w?2)=4

It seems clear that(0) = 1 since there is a unique tree with heightThe other values are not entirely
obvious. To seéthatu(1) = 2, we must define the height of the empty tree te-beThis explains why
u(—1) = 0. We can verifyu(2) = 4 by case analysis.

Consider an AVL tred’, of heighth and of sizeu(h) (i.e., it hasu(h) nodes). Clearly, among all
AVL trees of heighth, T}, has the minimum size. For this reason, we call @alla min-size AVL tree

7 For instance, if we say the height of the empty tree-iso, thenyu (1) = 3. This definition of AVL trees could certainly be
supported. See Exercise for an exploration of this idea.
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(for heighth). Figurel1 shows the first few min-size AVL trees. Of course, we can ergbdhe roles
of any pair of siblings of such a tree to get another min-sizé &ee. Using this, we could compute
the number of non-isomorphic min-sized AVL trees of a giveight. But we can define th@nonical
min-size AVL treesto be the ones in which the balance of each non-leaf nogté idNote that we draw
such canonical trees in figuté.

o gl SR

To T T T T,

Figure 11: Canonical min-size AVL trees of heightd, 2, 3 and4.

In generalu(h) is seen to satisfy the recurrence
pth) =1+ ph=1)+p(h=2),  (h=1). (5)

This equation says that the min-size tree of heiglaving two subtrees which are min-size trees of
heightsh — 1 andh — 2, respectively. For instancg(2) =1+ u(1) + u(0) =1+2+1 =4, aswe
found by case analysis above. We similarly check that therrence §) holds forh = 1.

From (5), we haveu(h) > 2u(h —2) for h > 1. Itis then easy to see by induction that) > 2"/2
forall h > 1. Writing C' = /2 = 1.4142. . ., we have thus shown
ph) =" (h=1).

The next lemma improves this simple lower boundugh) and also provide a matching upper bound:

let p = 1*—2‘/3 > 1.6180. This is the golden ratio and it is easily seen to be the pesithot of the
quadratic equation® — x — 1 = 0. Hence$? = ¢ + 1 (in words: to square, you addl).

LEMMA 4. For h > 0, we have
¢" < p(h) < 29" (6)

Proof. First we proveu(h) > ¢": u(0) =1 > ¢% andu(1) = 2 > ¢*. Forh > 2, we have
p(h) > p(h = 1)+ p(h —2) > "1+ "2 = (9 +1)¢" % = ¢".

Next, to proveu(h) < 2¢", we will strengthen our hypothesis tgh) < 2¢" — 1. Clearly,u(0) = 1 <
2¢° —1andu(1) =2 < 2¢! — 1. Then forh > 2, we have

ph) =14+ puh —1)+puh—2) <1+ 20" 1 = 1)+ (20" 2 - 1) =2(¢p +1)p" 2 =1 = 2¢" — 1.
Q.E.D.

The bounds of this lemma are asymptotically tight; but arr@se below will further sharpen the
estimate. Actually, it is the lower bound that is more impatt this lower bound says that min-size
AVL

Let us derive a consequence of the lower boung.@n). If an AVL tree has: nodes and heighit
then
pu(h) <n
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by definition of.(h). The lower bound in&) then impliesp” < n. Taking logs, we obtain
h <logy(n) = (log, 2)lgn < 1.44041gn.

This constant ot .44 is clearly tight in view of lemma. Thus the height of AVL trees are at mast%
more than the absolute minimum. We have proved:

COROLLARY 5. The family of AVL trees is balanced.

€34. Insertion and Deletion Algorithms. These algorithms for AVL trees are relatively simple, as
far as balanced trees go. In either case there are two phases:

UPDATE PHASE: Insert or delete as we would in a binary search tree. REMARK:assume here
the standarddeletion algorithm, not its rotational variant. Furthemaahe node containing the
deleted key and the node \paysicallyremoved may be different.

REBALANCE PHASE: Letx be the parent of node that was just inserted, orphsfsicallydeleted,
in the UPDATE PHASE. We now retrace the path frantowards the root, rebalancing nodes
along this path as necessary. For reference, call thisethedance path

It remains to give details for the REBALANCE PHASE. If evergde along the rebalance path
is balanced, then there is nothing to do in the REBALANCE PHAStherwise, let: be the first
unbalanced node we encounter as we move upwardsfrtmnthe root. It is clear that has a balance
of £2. In general, we fix the balance at the “current” unbalanceteramd continue searching upwards
along the rebalance path for the next unbalanced node.u lbet the current unbalanced node. By
symmetry, we may suppose thahas balance. Suppose its left child is nodeand has heighti + 1.
Then its right childv’ has heighti — 1. This situation is illustrated in Figurk2.

expand left subtree

Figure 12: Node: is unbalanced after insertion or deletion.

By definition, all the proper descendantscdire balanced. The current heightois i + 2. In any
case, let the current heights of the childrenvdife b, andh g, respectively.

€35. Insertion Rebalancing. Suppose that this imbalance came about because of anamsafthat
was the heights ofi,v andv’ before the insertion? It is easy to see that the previoushieigre
(respectively)

h+1, h, h-1. )

The inserted node must be in the subtree rootedwatClearly, the heightéy, hr of the children ofv
satisfymax(hr, hr) = h. Sincev is currently balanced, we know thafin(hz, hr) = h orh — 1. But
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in fact, we claim thainin(hy,, hg) = h — 1. To see this, note thatifin(hy,, hr) = h then the height
of v beforethe insertion was alsb+ 1 and this contradicts the initial AVL property at Therefore, we
have to address the following two cases, as illustratedgnreil 3.

CASE (1.1)

Dy Dgr

CASE (1.2)

Figure 13: AVL Insertion: CASE (l.a) and CASE (1.b)

CASE (l.a):hr = handhr = h — 1. This means that the inserted node is in the left subtree of
In this case, if we rotate, the result would be balanced. Moreover, the height isfnowh + 1.

CASE (I.b):hy, = h — 1 andhr = h. This means the inserted node is in the right subtree dr
this case let us expand the subtieeand letw be its root. The two children af will have heights of
h—1andh—1-—0 (5 = 0,1). Itturns out that it does not matter which of these is thedbifid (despite
the apparent asymmetry of the situation). If we double eotati.e., r ot at e(w), r ot at e(w)), the
result is a balanced tree rootediabf heighth + 1.

In both cases (l.a) and (l.b), the resulting subtree hashhéig- 1. Since this was height before
the insertion (seerf), there are no unbalanced nodes further up the path to tteThus the insertion
algorithm terminates with at most two rotations.

For example, suppose we begin with the AVL tree in Figideand we insert the ke9.5. The
resulting transformations is shown in Figurg
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InsertQ.5)

Figure 15: Inserting.5 into an AVL tree

€36. Deletion Rebalancing. Suppose the imbalance in Figurdcomes from a deletion. The previous
heights ofu, v, v’ must have been
h+2,h+1,h

and the deleted nodemust be in the subtree rootedidt We now have three cases to consider:

CASE (D.a):h;, = handhg = h — 1. This is like case (l.a) and treated in the same way, hamely
by performing a single rotation at Now « is replaced by after this rotation, and the new heightof
ish+ 1. Noww is AVL balanced. However, since the original heightis- 2, there may be unbalanced
node further up the root path. Thus, this is a non-terminsé ¢ae., we have to continue checking for
balance further up the root path).

CASE (D.b): hy, = h — 1 andhg = h. This is like case (I.b) and treated the same way, by
performing a double rotation at. Again, this is a non-terminal case.

CASE (D.c):hy = hr = h. This case is new, and is illustrated in Figdi® We simply rotate ab.
We check thav is balanced and has height- 2. Sincew is in the place of: which has height + 2
originally, we can safely terminate the rebalancing preces

This completes the description the insertion and deletigariihms for AVL trees. In illustration,
suppose we delete kéy from Figureld. After deletingl 3, the nodel 4 is unbalanced. This is restored
by a single rotation at5. Now, the root containing?2 is unbalanced. Another single rotationsatvill
restore balance. The result is shown in Figlire

Both insertion and deletion tak@(logn) time. In case of deletion, we may have to @¢log n)
rotations but a single or double rotation suffices for ineart
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Delete(3)

rotate(15)

Figure 17: Deleting 3 from the AVL tree in Figurel4

€37. Maintaining Balance Information. In order to carry out the rebalancing algorithm, we need
to check the balance condition at each nadelf node « stores the height of in some field,u.H
then we can do this check. If the AVL tree hasiodesu.H may needd(lglgn) bits to represent the
height. However, it is possible to get away with jagiits: we just need to indicate three possible states
(00,01, 10) for each node:. Let 00 mean that.| ef t andu.ri ght have the same height, afd
mean that..| ef t has height one less thamr i ght , and similarly for10. In simple implementations,
we could just use an integer to represent this informatioa.l&sve it as an exercise to determine how
to use these bits during rebalancing.

Hey, | thought it is
O(lgn)!

€38. Relaxed Balancing. Larsen [] shows that we can decouple the rebalancing of AVL trees from
the updating of the maintained set. In the semi-dynamic,¢hsenumber of rebalancing operations is
constant in an amortized sense (amortization is treatethapter 5).

EXERCISES

Exercise 6.1: Let T' be the AVL tree in Figurg(a). This calls for hand-simulation of the insertion and
deletion algorithms. Show intermediate trees after eatdtiom, not just the final tree.
(a) Delete the key0 from T'.
(b) Insert the key.5 into T'. This question is independent of part (a).

Re-do parts (a) and (b), but using the AVL tree in Fig8(le) instead. &

Exercise 6.2: Give an algorithm to check if a binary search tiess really an AVL tree. Your algorithm
should take time(|T'|). HINT: Use shell programming. O
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Exercise 6.3: What is the minimum number of nodes in an AVL tree of height 10? &

Exercise 6.4: My pocket calculator tells me thaig,, 100 = 9.5699 - - - . What does this tell you about
the height of an AVL tree with 100 nodes? &

Exercise 6.5: Draw an AVL T with minimum number of nodes such that the following is trihere is
a noder in T such that if you delete this node, the AVL rebalancing wifjuee two rebalancing
acts. Note that a double-rotation counts as one, not twajaabing act. Draw" and the node..

O

Exercise 6.6: Consider the AVL tree in Figur&s.

5/8\1
AN

3/ 7 1
2/ \4 6/ l( k:|.5 18 9\20
/ / /

10 12 14 17
d

Figure 18: An AVL Tree for deletion

/

1

(a) Find all the keys that we can delete so that the rebalgrmtiase requires two rebalancing
acts.

(b) Among the keys in part (a), which deletion has a doublatimh among its rebalancing acts?
(c) Please delete one such key, and draw the AVL tree aftér@fdbe rebalancing acts.

Exercise 6.7: Consider the height range for AVL trees withhodes.
(a) What is the range for = 15? n = 20 nodes?
(b) Is it true that there are arbitrarily largesuch that AVL trees witih nodes has a unique height?

O

Exercise 6.8: Draw the AVL trees after you insert each of the following kéy® an initially empty
tree:1,2,3.4,5,6,7,8,9and thenl9, 18,17, 16, 15, 14, 13,12, 11. &

Exercise 6.9: Insertinto an initially empty AVL tree the following sequamof keys:1, 2,3, ..., 14, 15.
(a) Draw the trees at the end of each insertion as well as ediei rotation or double-rotation.
[View double-rotation as an indivisible operation].
(b) Prove the following: if we continue in this manner, wehkihve a complete binary tree at the
end of inserting kep™ — 1 foralln > 1. &

Exercise 6.10: Starting with an empty tree, insert the following keys in tlgiven order:
13,18,19,12,17,14,15,16. Now deletel8. Show the tree after each insertion and deletion.
If there are rotations, show the tree just after the rotation &

Exercise 6.11: Draw two AVL trees, withn keys each: the two trees must have different heights. Make
n as small as you can. O
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Exercise 6.12: TRUE or FALSE: In CASE (D.c) of AVL deletion, we performed angle rotation at
nodev. This is analogous to CASE (D.a). Could we have also havepedd a double rotation
atw, in analogy to CASE (D.b)? &

Exercise 6.13:Let M (h) be the number of non-isomorphic min-size AVL trees of heightGive a
recurrence fod\/ (h). How many non-isomorphic min-size AVL trees are there ogh&s3 and
47? Provide sharp upper and lower bounds\é(h). O

Exercise 6.14:Improve the lower boungi(h) > ¢" by taking into consideration the effects of t”
in the recurrenc@(h) =1+ p(h — 1) + p(h — 2).
(@) Show thatu(h) > F(h — 1) + ¢" where F(h) is the h-th Fibonacci number. Recall that
F(h)=hforh=0,1andF(h) = F(h— 1)+ F(h —2) forh > 2.
(b) Further improve (a). &

Exercise 6.15: Prove the following connection betweeén(golden ratio) and,, (the Fibonacci num-
bers):
o" = oF, + F,_1, (n>1)

Note that we ignore the case= 0. &

Exercise 6.16:Recall that at each nodeof the AVL tree, we can represent its balance state using a
2-bit field calledu. BAL whereu.BAL € {00,01, 10}.
(a) Show how to maintain these fields during an insertion.
(b) Show how to maintain these fields during a deletion. &

Exercise 6.17: Allocating one bit per AVL node is sufficient if we exploit tHact that leaf nodes are
always balanced allow their bits to be used by the interndesoWork out the details for how to
do this. &

Exercise 6.18:1t is even possible to allocate no bits to the nodes of a bisaaych tree. The idea is to
exploit the fact that in implementations of AVL trees, thasp allocated to each node is constant.
In particular, the leaves have two null pointers which argidadly unused space. We can use this
space to store balance information for the internal nodigstr& out an AVL-like balance scheme
that uses no extra storage bits. &

Exercise 6.19: Relaxed AVL Trees
Let us defineAVL(2) balance condition to mean that at each node in the binary tree,
|balance(u)| < 2.
(a) Derive an upper bound on the height of a AVL(2) treenamdes.
(b) Give an insertion algorithm that preserves AVL(2) treby to follow the original AVL inser-
tion as much as possible; but point out differences from tiggral insertion.
(c) Give the deletion algorithm for AVL(2) trees. &

Exercise 6.20: To implement we reserve 2 bits of storage per node to représehalance information.
This is a slight waste because we only use 3 of the four p@sgihlies that the 2 bits can represent.
Consider the family of “biased-AVL trees” in which the bat@of each node is one of the values
b=-1,0,1,2.
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(@) In analogy to AVL trees, defing(h) for biased-AVL trees. Give the general recurrence
formula and conclude that such trees form a balanced family.

(b) Is it possible to give an)(log n) time insertion algorithm for biased-AVL trees? What can be
achieved? O

Exercise 6.21:We introduce a new notion of “height” of an AVL tree based oafthilowing base case:
if w has no childrenh’(u) := 0 (as before), and if node is null, 2’ (u) := —2 (this is new!).
Recursively,h/'(u) := 1 + max {h/(ur), ' (ur)} as before. Let ’AVL’ (AVL in quotes) trees
refer be those trees that are AVL-balanced ugihgs our new notion of height. We compare the
original AVL trees with 'AVL' trees.

(a) TRUE or FALSE: every 'AVL tree is an AVL tree.

(b) Lety/ (k) be defined (similar ta(h) in the text) as the minimum number of nodes in an ’AVL’
tree of height:. Determiney’(h) for all h < 5.

(c) Prove the relationshig/ (h) = p(h) + F(h) whereF (h) is the standard Fibonacci numbers.
(d) Give a good upper bound qri(h).

(e) What is one conceptual difficulty of trying to use the fanoif 'AVL trees as a general search
structure? &

Exercise 6.22: A node in a binary tree is said to lfell if it has exactly two children. Aull binary
treeis one where all internal nodes are full.
(a) Prove full binary tree have an odd number of nodes.
(b) Show that 'AVL trees as defined in the previous questignfall binary trees. &

Exercise 6.23: The AVL insertion algorithm makes two passes over its sepath: the first pass is
from the root down to a leaf, the second pass goes in the edeestion. Consider the following
idea for a “one-pass algorithm” for AVL insertion: duringgtfiirst pass, before we visit a node
u, we would like to ensure that (1) its height is less than ora¢do the height of its sibling.
Moreover, (2) if the height of: is equal to the height of its sibling, then we want to make sure
that if the height ofu is increased by, the tree remains AVL.

The following example illustrates the difficulty of desiggisuch an algorithm:

Imagine an AVL tree with a pattu, u1, . . ., ux) whereuy is the root and.; is a child ofu;_;.
We have 3 conditions:

(a) Let: > 1. Thenu, is a left child iff i is odd, and otherwise; is a right child. Thus, the path
is a pure zigzag path.

(b) The height ofu; isk — i (fori =0, ..., k). Thusuy is a leaf.

(c) Finally, the height of the sibling af; ish — i — 1.

Suppose we are trying to insert a key whose search path inthér@e is precisely(uo, . . . , ug).
Can we preemptively balance the AVL tree in this case?

END EXERCISES

§7. (a,b)-Search Trees

We consider another class of trees that is important in jpegaspecially in database applications.
These are no longer binary trees, but are parametrized byieschf two integers,

2<a<hb. (8)

An (a,b)-tree is a rooted, ordered tree with the following requirements:
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e DEPTH BOUND: All leaves are at the same depth.

e BRANCHING BOUND: Letm be the number of children of an internal nodeln general, we
have the bounds
a<m<hb. (9)

The root is an exception, with the boudd m < b.

Figure 19: A(2, 3)-tree.

To see the intuition behind these conditions, compare withry trees. In binary trees, the leaves do
not have to be at the same depth. To re-introduce some fligxibiio trees where leaves have the same
depth, we allow the number of children of an internal nodesywver a larger rangle, b]. Moreover,
in order to ensure logarithmic height, we require- 2. This means that if there leaves, the height is
at mostlog, (n) + O(1). Therefore(a, b)-trees forms a balanced family of trees.

The definition of(a, b)-trees imposes purely structural requirements. Fig@rdustrates ana, b)-
tree for(a,b) = (2,3). But to use(a, b)-trees as a search structure, we need to store keys and items i
the nodes of the trees. These keys and items must be suitajapined. Before giving these details,
we can build some intuition by studying an example of suchaactetree in Figur@0. The 14 items
stored in this tree are all at the leaves, with the Keys 6, . .., 23,25, 27. As usual, we do not display
the associated data in items. The keys in the internal naolestcorrespond to items.

sl o lof12]e]20le

/

ol2lol ool ol fol0le] loliila1slelislel o2 le]2s]e] 25

L

2 4 6 8 10 12 13
Figure 20: A (3,4)-search tree ad items

5 17 19 21 23 25 27

Recall that an item is gkey, dat a) pair. We define afa, b)-search treeto be an(a, b)-tree whose
nodes are organized as follows:
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e LEAF: Each leaf stores a sequence of items, sorted by thgs. kKdence we represent a leaf
with m items as the sequence,

U:(kl,dl,kQ,dQ,..-,km,dm) (10)

where(k;, d;) is theith smallest item. See Figugd(i). In practice d; might only be a pointer to
the actual location of the data. We must consider two cd¢@N-ROOT CASE: suppose leat
is not the root. In this case, we require

a <m<Ub (11)

for somel < o/ < V. Here,(d/,t’) is an additional pair of parameters that are independent of
(a,b). For simplicity, we will usea’ = ' = 1 in our illustrations. ROOT CASE: supposeu

is the root. Our requirements are relaxed somewha tg: m < 2b" — 1. The reason for this
condition will become clear when we discuss the insertielefion algorithms.

e INTERNAL NODE: Each internal node witm children stores an alternating sequence of keys
and pointers (node references), in the form:

u:(p17k11p21k21p31'"7pm—lakm—lapm) (12)

wherep; is a pointer (or reference) to theh child of the current node. Note that the number of
keys in this sequence is one less than the numbef children. See Figur2i(ii). The keys are
sorted so that

ki <k <- - <kpn_1.

Fori =1,...,m, each key in thei-th subtree of, satisfies
kicy <k <k, (13)
with the convention thaty, = —oco < k; < k,, = +oo. Note that this is just a generalization of

the binary search tree property i) (

[ ) I T RGN I Y
e
o A
1<d <m<V¥V 2<a<m<b
(i) Leaf Node Organization (if) Internal Node Organization

Figure 21: Organization of nodes (n, b)-search trees

939. Choice of the(d’, V') parameters. Since thed/, b’ parameters are independentab, it is

convenient to choose some default value for our discusdidn,®) trees. This decision is justified  $a’,b) is implicit!
because the the dependence of our algorithms oa’tlheéparameters are not significant (and they play

roles analogous ta, b). There are two canonical choices: the simplest'is= ¥’ = 1. This means

each leaf stores exactly one item. All our examples (e.gurei20) use this default choice. Another

canonical and perhaps more realistic choice is

ad=a, b=h (14)

As usual, we assume that the set of items in@r)-search tree has unique keys. But as seen in
Figure20, the keys in internal nodes may be the same as keys in thesleave

Another(a, b)-search tree is shown in Figu2g, for the caséa, b) = (2, 3). In contrast to Figur&o,
here we use a slightly more standard convention of reprieggthie pointers as tree edges.
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[[e[[s]] LLol]  [[sl] [[=[] [[=]]

|

2 5 6 8 10 13 18 21 23 29 33

Figure 22: A(2, 3)-search tree.

940. Special Cases dfa, b)-Search Trees. The earliest and simpleét, b)-search trees correspond
to the casda,b) = (2,3). These are calle@-3 treesand were introduced by Hopcroft (1970). By
choosing

b=2a-1 (15)

(for anya > 2), we obtain the generalization ¢2, 3)-trees calledB-trees These were introduced
by McCreight and BayerZ]. When (a,b) = (2,4), the trees have been studied by Bayer (1972) as
symmetric binary B-treesand by Guibas and Sedgewickz$8-4 trees Another variant of 2-3-4 trees
isred-black trees The latter can be viewed as an efficient way to implement2+ges, by embedding
them in binary search trees. But the price of this efficiesoyamplicated algorithms for insertion and
deletion. Thus it is clear that the concept{afb)-search trees serves to unify a variety of search trees.
The terminology of a, b)-trees was used by Mehlhorr|[

The B-tree relationshipA(5) is optimal in a certaifisense. Nevertheless, there are other benefits in
allowing more general relationships betweeandb. E.qg., if we replacel5) by b = 2a, the amortized
complexity of sucHa, b)-search trees algorithms can impro@g |

941. Searching. The organization of afu, b)-search tree supports an obvious lookup algorithm that
is a generalization of binary search. Namely, toldmkUp(key k), we begin with the root as the
current node. In general, if is the current node, we process it as follows, depending @thven it is a
leaf or not:

e Base Case: suppoasas a leaf node given byl(). If & occurs inu ask; (for somei = 1,...,m),
then we return the associated ddta Otherwise, we return the null value, signifying search
failure.

e Inductive Case: supposeis an internal node given byl®). Then we find thep; such that
kic1 < k < k; (with kg = —o0, k,,, = o0). Setp; as the new current node, and continue by
processing the new current node.

The running time of thé ook Up algorithm isO(hb) whereh is the height of théa, b)-tree, and we
spendO(b) time at each node. The following bounds the heightaob)-trees:

8 |.e., assuming a certain type of split-merge inequalityicwlwe will discuss below.
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LEMMA 6. An(a,b)-tree withn leaves has height satisfying

[logy [n/V']] < h <1+ [log, [n/(2a")]]. (16)

Proof. The number of leaves clearly lies in the randén/b’|, [n/a’]]. However, with a little
thought, we can improve it to:
L€ [[n/V], [n/d']].

(Why?) With height:, we must have at leagt.”~! leaves. Hencen/a'| > ¢ > 2a"~tor|n/d’| /2 >
a"~1. Sincea" 1! is integer, we obtain|n/a’| /2] = |n/(2a’)] > a""torh <1 +1log,(|n/(2a")]).
Again, sinceh is integer, this yieldé < 1 + [log,(|n/(2a’)])]. For the lower bound oh, a similar
(but simpler) argument holds. Q.E.D.

This lemma implies
[log,, [n/b']] < 1+ |log, [n/(2a")]] . a7

For instance, witm = 10° (a billion), (a,b) = (34,51) anda’ = b’ = 1, this inequality is actually an
equality (both sides are equal @. It become a strict inequality far sufficiently large. For smalk,
the inequality may even fail. Hence it is clear that we neatitamhal inequalities on our parameters.

This lemma shows thdt ' determine the lower bound anda’ determine the upper bound on
h. Our design goal is to maximize b, o', b’ for speed, and to minimizk/a for space efficiency (see
below). Typicallyb/a is bounded by a small constant closet@s inB-trees.

942. Organization within a node. The keys in a node of afa, b)-tree must be ordered for searching,
and manipulation such as merging or splitting two list ofke@onceptually, we display them as P}

and (0). Since the number of keys is not necessarily a small copdtamorganization of these keys
is an issue. In practicé,is a medium size constant (sdy< 1000) anda is a constant fraction af.
These ordered list of keys can be stored as an array, a sorghpubly-linked list, or even as a balanced
search tree. These have their usual trade-offs. With ay arrbalanced search tree at each node, the
time spent at a node improves frati{(b) to O(log b). But a balanced search tree takes up more space
than using a plain array organization; this will reduce thkig ofb. Hence, a practical compromise is
to simply store the list as an array in each node. This achi@yk; b) search time but each insertion and
deletion in that node requir€3(b) time. When we take into account the effects of secondary mgmo
the time for searching within a node is negligible compacdtié time accessing each node. This argues

that the overriding goal in the design @f, b)-search trees should be to maximizanda. The central tenet of

(a, b)-trees!

943. The Standard Split and Merge Inequalities for(a, b)-trees. To support efficient insertion and
deletion algorithms, the parametersh must satisfy an additional inequality in addition #).( This
inequality, which we now derive, comes from two low-leveleogtions on(a, b)-search tree. These
split andmerge operations are called as subroutines by the insertion aletiatealgorithms (respec-
tively). There is actually a family of such inequalitiest ke first derive the simplest one (“the standard
inequality”).

During insertion, a node with children may acquire a new child. Such a node violates the re-
quirements of arja, b)-tree, so an obvious response issgit it into two nodes with[ (b + 1)/2] and
[(b+ 1)/2] children, respectively. In order that the result is(anb)-tree, we require the following

split inequality:
a< V)JFTlJ . (18)
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Similarly, during deletion, we may remove a child from a ndbat hasa children. The resulting
node witha — 1 children violates the requirements of &n b)-tree. So we may consider borrowing a
child from one of itssiblings (there may be one or two siblings), provided the sibling hasenthan

a children. If this proves impossible, we are forcechterge a node witha — 1 children with a node
with a children. The resulting node has — 1 children, and to satisfy the branching factor bound of
(a,b)-trees, we havéa — 1 < b. Thus we require the following merge inequality:

a < b+—1 (29)
2
Clearly (18) implies (19). However, since. andb are integers, the reverse implication also holds! Thus
(18) and (L9) are equivalent. The smallest choices of these parameteier the inequalities and also
(8) is (a,b) = (2,3), which has been mentioned above. The case of equaliti@nand (L9) gives us
b = 2a — 1, which leads to precisely thB-trees. Sometimes, the conditibn= 2a is used to define
B-trees; this behaves better in an amortized sense (s&hap. 111.5.3.1]).

944. How to Split, Borrow, and Merge. First, we discuss thgeneral casef internal nodes that are
non-root. The special case of leaves and root will be diszliker.

Suppose we need to split because an insertion into causateanm haveb + 1 children. This is
illustrated in Figure23. We split NV into two new nodesVy, N2, one node with (b + 1)/2] pointers
and the other with (b + 1) /2] pointers. The parent af will replace its pointer taV with two pointers
to V; and N,. But what is the key to separate the pointers\toand No? The solution is to use a key
from N: there are keys in the original node, but only— 1 will be needed by the two new nodes. The
extra key can be moved in the parent node as indicated.

| [ofol7] ] | [ofe[=fe7] |

split \\
—_—
N: [e[1]e/ 2]/ 3le] 46 50 ole Noolzlel 2oy, je[4]e[s e ol

b =t(b+1)/2> —f+1)/2F—

Figure 23: Splitting:N splits intoNy, N1, (a,b) = (3, 6) illustrated

Next, suppose a deletion caused’anode to haver — 1 children. First we try to borrow from a Do not borrow from a
sibling if possible. This is because after borrowing, theatancing process can stop. To borrow, we cousin or distant
look to a sibling (left or right), provided the sibling has mahana children. This is illustrated in cousins. Why?
Figure24. SupposéV borrows a new from its sibling/. After borrowing,N will have a children, but
it will need a key to separate the new pointer from its adjapeinter. This key is taken from its parent
node. SincéV/ lost a child, it will have an extra key to spare — this can bd seits parent node.

If NV is unable to borrow, we resort to merging: gt be a sibling of V. Clearly M hasa children,
and so we can merge/ andN into a new nodéV’ with 2a — 1 children. Note thafV’ needs an extra
key to separate the pointers &f from those ofM. This key can be taken from the parent node; the
parent node will not miss the loss because it has lost ond phihter in the merge. This is illustrated
in Figure25.

Once the above three basic operations are understood, wacarm general algorithm for insertion
and deletion. This will be explained after we take care ofmioee detail — the case of roots and leaves.
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[«2]

| [ole[2p]s] | | [olef =18 s]

borrow
donate \\
N [o[1le] arfefse[4]e[s]e N:jo[1]e[2]e M:

- g —> -~ >q —

-
- >a

Figure 24: Borrowing:N borrows fromM, (a,b) = (3, 6) illustrated

| [ole[2/8]s] | | [ofef5] |

o 2of 2fe3]of o

nojo[tle]  arife[afe[2]e) N

- - g ——> 2a—1

a—1

Figure 25: MergingN and M merges intaV’, (a,b) = (3, 6) illustrated

The careful reader will notice an asymmetry in the abovedip@cesses. We have the concept of
borrowing, but it as much sense to talk about its inverseatfmer, donation. Indeed, if we simply reverse
the direction of transformation in Figu&l, we have the donation operation (nafedonates a key to
nodel). Just as the operation of merging can sometimes be predibpteorrowing, the operation of
splitting can sometimes be preempted by donation! This isusoally discussed in algorithms in the
literature. Below we will see the benefits of this.

945. Treatment of Leaves and Root. Consider splits at the root, and merges of children of th& roo

(i) Normally, when we split a node, its parent gets one extra child. But wherns the root, we
create a new root with two children. This explains the exioepive allow for roots to have betweén
andb children.

(i) Normally, when we merge two siblingsandwv, the parent loses a child. But when the parent is
the root, the root may now have only one child. In this casegelete the root and its sole child is now
the root.

Note that (i) and (ii) are thenly means for increasing and decreasing the height ofdhig-tree.

Now consider leaves: in order for the splits and merges aflg#o proceed as above, we need the

analogue of the split-merge inequality,
/
1
o < ;F . (20)

Finally, consider the case where the root is also a leaf. \Wadaizreat it like an ordinary leaf having
betweer:’ to &’ items. Suppose the parametefsd;, control the minimum and maximum number of
items in a leaf. Let us determine constraintsipfandd;, (relative toa’, b'). Initially, there may be no
items in the root, so we must lef, = 0. Also, when the number of items excelgd we must split into
two or more children with at least items. The standard literature allows the root to have o
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and this require8a’ < b(,+ 1 (like the standard split-merge inequality). Hence we regjfi < 2a’— 1.
notb(, < 2af — 1

In practice, it seems better to allow the root to have a laggree than a small degree. Thus, we
might even want distinguish between leaves that are nots-eoal the very special case of a root that is
simultaneously a leaf. Such alternative designs are es@lorExercises.

946. Mechanics of Insertion and Deletion. Both insertion and deletion can be described as a re-
peated application of the following while-loop:

> INITIALIZATION

To insert an iterk, d) or delete a key:, we first do a lookup off.

Letu be the leaf wheré is found.

Bring » into main memory and perform the indicated operation.

Call u thecurrent node.

> MAIN LOOP

while « is overfull or underfull, do:

1. Ifuisroot, handle as a special case and terminate.

2. Bring the parent of » into main memory. < No need if caching is used

3. Depending on the case, some siblingsu,, etc, ofu may be brought into main memory.

4. Do the necessary transformationsiaind its siblings and in the main memory.
< While in main memory, a node is allowed to to have more thanless thar children
< We may have created a new node or deleted a node

5.  Write back into secondary memory all the children of

6. Makewv our new current node (rename it@sand repeat this loop.

Write the current node to secondary memory and terminate.

Insert(14)

sl o lali2lelle sl o lplizlelole
ol 2 ol 5 lo| [ols lofso o] lelsslolrclol17le] lo]22o]slel o w W wHﬂszW WBTMWWWHW w w w W
2 4 6 8 10 12 13 15 17 19 21 23 25 27 § 10 12 13 14 15 17 19
Donaiets_ ol o lol1s ol

o lo| lo] folo foluololizlol lelsslel1clel17]e] lo| lo[ lo| o

8 10 12 13 14 15 17 19

Figure 26: Inserting4 into (3, 4, 2)-tree.

Insertion Example: Consider inserting the item (represg:by its key)l 4 into the tree in Figur@0.
This is illustrated by Figur@6. Note thata’ = o/ = 1. After insertingl 4, we get an overfull node with
5 children. Suppose we first try to donates to our left sibliimgthis case, this is possible since the left
sibling has less tha#i children.
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But imagine that a slightly different algorithm which trigsfirst donate to the right sibling. In this
case, the donation fails. Then our algorithm requires useémgmwith the right sibling and then split
into 3 nodes. Of course, it is also possible to imagine a mavidnere we try to donate to the left sibling
if the right sibling is full. This variant may be slower siniténvolves bringing an additional disk 1/0.
The tradeoff is that it leads to better space utilization.

Delete(4)

oo o[zl — Lo lo[zlelz s

L o I o T o ) ol o Tl G [ T L bl B T
6 8 10 12 13 15 17 19 21 23 25 27 2 6

3to 1 merge HH 1to 3 split

- ) - PLols il ]y
L2 TeL s I3 IeTuo [ 52 ol se ool iz ls] (s Tol Tol o Wahlols [ollulel bkl b Tl k19

l

2 6 8 10 12 13 15 17 19 2 6 8 10 12 13 15 17

Figure 27: Deletingl from (3, 4, 2)-tree.

Deletion Example: Consider deleting the item (represehyeits key)4 from the tree in Figur&O0.
The is illustrated in Figur@7. After deleting4, the current node is underfull. We try to borrow from
the right sibling, but failed. But the right sibling of theyhit sibling could give up one child.

One way to break down this process is to imagine that we mengigh the 2 siblings to its right
(a 3-to-1 merge) to create supernode. This requires bigngpme keysq and12) from the parent of
u into the supernode. The supernode has 9 children, which wesgiét evenly into 3 nodes (a 1-3
split). These nodes are inserted into the parent. Note thetkand14 are pushed into the parent. An
implementation should be able combine this merge-theihsipps into one more efficient process.

947. Achieving2/3 Space Utility Ratio. A node withm children is said to bé&ull whenm = b; for

in general, a node with: children is said to bém /b)-full. Hence, nodes can be as small@gb)-full.
Call the ratioa : b thespace utilization ratio. The standard inequalityL§) on (a, b)-trees implies that
the space utilization in such trees can néwe better than (b + 1)/2] /b, and this can be achieved by
B-trees. This ratio is as large as 3 (achieved whem = 3), but asb — oo, it is asymptotically only
slightly larger tharl : 2. We now address the issue of achieving ratios that are aribjtclose tol, for
any choice of, b. First, we show how to achiex&'3 asymptotically.

Consider the following modified insertion: to removearerfull nodeu with b + 1 children, we
first look at a sibling to see if we camlonatea child to the sibling. Ifv is not full, we may donate to
v. Otherwisey is full and we can take th2b + 1 children inu andv, and divide them into 3 groups as

evenly as possible. So each group has betwéei+ 1)/3| and[(2b+ 1)/3] keys. More precisely,
the size of the three groups are

[(20+1)/3], [(264+1)/3], T[(20+1)/3]

9 The ratioa : b is only an approximate measure of space utility for varimasons. First of all, it is an asymptotic limit as
b grows. Furthermore, the relative sizes for keys and paraéso affect the space utilization. The radia b is a reasonable
estimate only in case the keys and pointers have about the siam
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where|(2b + 1)/3] denotesounding to the nearest integer. Nodesandwv will (respectively) have
one of these groups as their children, but the third groupbaichildren of a new node. See Figa@

w/,u\\ . wl lol¥lelel |
. JL | I I
o ‘ T e

Figure 28: Generalized (2-to-3) split

We want these groups to have betweesndb children. The largest of these groups has at most
children (assuming > 2). However, for the smallest of these groups to have at leas$ildren, we

require
agl%gif 21)

This process of merging two nodes and splitting into thregesas calledyeneralized splitbecause it
involves merging as well as splitting. Letbe the parent of, andv. Thus,w will have an extra child
v’ after the generalized split. 16 is now overfull, we have to repeat this processat

Next consider a modified deletion: to removelarderfull nodeu with a — 1 nodes, we again look
at an adjacent sibling to borrow a child. If v hasa children, then we look at another sibling to
borrow. If both attempts at borrowing fails, we merge $ae— 1 childrert® the nodes:, v, v’ and then
split the result into two groups, as evenly as possible. Adais is ageneralized mergethat involves
a split as well. The sizes of the two groups &(8a — 1)/2] and[(3a — 1)/2] children, respectively.
Assuming

a > 3, (22)
v andv’ exists (unless is a child of the root). This means
3a—1
{“2 w§b (23)

Because of integrality constraints, the floor and ceilingkgls could be removed in botB1) and @3),
without changing the relationship. And thus both ineqyalite seen to be equivalent to

2b+1

<
“=73

(24)

As in the standarda, b)-trees, we need to make exceptions for the root. Here, thebaum of
children of the root satisfies the boudd< m < b. So during deletion, the second siblingmay not
exist if u is a child of the root. In this case, we can simply merge thellewodesyu andwv. This merger
is now the root, and it ha&: — 1 children. This suggests that we allow the root to have betwesnd
max{2a — 1, b} children.

Sharing with cousins?In the above attempt to fix an overfull nodevith b+ 1 children, we first
try see to donate a child to a sibling Likewise, to fix an underfull node with ¢ — 1 children, we
first try to borrow a child from a sibling. By definition, two nodes:, v are siblings of each other if
v andu share a common pareat Now, the children otv are linearly ordered; < uz < -+ < um

10 Normally, we expect, v’ to be immediate siblings af (to the left and right of.). But if « is the eldest or youngest sibling,
then we may have to look slightly farther for the second sili
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in a natural way, based on their keys. We sayu;;:1 aredirect siblings for: = 1,...,m — 1.
So each node; (1 < ¢ < m) has 2 direct siblings; but; andu.,, has only 1 direct sibling. Itis
important to realize thad node carshare (i.e., borrow or donate) with a direct sibling onlyn an
Exercise, we consider a relaxed sharing condition, whesblaying can be done betweerandw if
they aredirect cousins

If we view b as a hard constraint on the maximum number of children, therohly way to allow
the root to havenax{2a — 1,b} children is to insist thaa — 1 < b. Of course, this constraint is
just the standard split-merge inequalifyg); so we are back to square one. This says we must treat the
root as an exception to the upper bound.ofndeed, one can make a strong case for treating the root
differently:
(1) Itis desirable to keep the root resident in memory afmés, unlike the other nodes.
(2) Allow the root to be larger thalhcan speed up the general search.

The smallest example of@/3)-full tree is where(a, b) = (3,4). We have already seen(3, 4)-
tree in Figure20. The nodes of such trees are actualfyt-full, not 2/3-full. But for largeb, the “2/3”
estimate is more reasonable.

€48. Exogenous and Endogenous Search StructuresSearch trees store items. But where these
items are stored constitute a major difference betw@eh)-search trees and the binary search trees
which we have presented. Itemg(in b)-search trees are stored in the leaves only, while in bireaych
trees, items are stored in internal nodes as well. Tafjap.[9] calls a search structuexogenousf it
stores items in leaves only; otherwise ieisdogenous

The keys in the internal nodes 6d, b)-search trees are used purely for searching: they are not
associated with any data. In our description of binary detrees (or their balanced versions such as
AVL trees), we never explicitly discuss the data that areeissed with keys. So how do we know that
these data structures are endogenous? We deduce it frorhgbevation that, in looking up a keyin
a binary search tree, i is found in an internal node, we stop the search and returnImplicitly, it
means we have found the item with kiyeffectively, the item is stored in). For (a, b)-search tree,
we cannot stop at any internal node, but must proceed untiaeh a leaf before we can conclude that
an item with keyk is, or is not, stored in the search tree. It is possible to fgdidhary search trees so
that they become exogenous (Exercise).

Can’t we require the
keys in internal nodes
to correspond to keys

of stored items?

There is another important consequence of this dual roleys kn(a, b)-search trees. The keys in
the internal nodeseed not be the keys of items that are stored in the leaVéss is seen in Figurg2
where the keyd in an internal node does not correspond to any actual iterhertree. On the other
hand, the key 3 appears in the leaves (as an item) as well as in an internal nod

949. Database Application. One reason for treatinga, b)-trees as exogenous search structures
comes from its applications in databases. In databasertelogly,(a, b)-search tree constitute amdex

over the set of items in its leaves. A given set of items carelmgre than one index built over it. If
that is the case, at most one of the index can actually stereriginal data in the leaves. All the other
indices must be contented to point to the original data, the.d; in (10) associated with key; is not

the data itself, but a reference/pointer to the data stdssdvbere. Imagine a employee database where
items are employee records. We may wish to create one indedhan social security numbers, and
another index based on last names, and yet another basedm@ssid/Ve chose these values (social se-
curity number, last name, address) for indexing becausésrasches in such a data base is presumably
based on these values. It seems to make less sense to builtkarbased on age or salary, although we
could.
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€50. Disk I/O Considerations: How to choose the parameteb. There is another reason for pre-
ferring exogenous structures. In databases, the numbé&so§iis very large and these are stored in
disk memory. If there are items, then we need at leastd’ internal nodes. This many internal nodes
implies that the nodes of the:, b)-trees is also stored in disk memory. Therefore, while $eagc
through the(a, b)-tree, each node we visit must be brought into the main merimory disk. The 1/0O
speed for transferring data between main memory and dighasvely slow, compared to CPU speeds.
Moreover, disk transfer at the lowest level of a computeraigation takes place in fixed sibéocks

(or pages). E.g., in UNIX, block sizes are traditionally #2es but can be as large as 16 Kbytes. To

minimize the number of disk accesses, we want to pack as neysyikto each node as possible. So the Parameteb is
ideal size for a node is the block size. Thus the parantedéra, b)-trees is chosen to be the largest determined by block
value so that a node has thisck size. Below, we discuss constraints on how the paramésechosen. size

If the number of items stored in the, b)-tree is too many to be stored in main memory, the same
would be true of the internal nodes of the b)-tree. Hence each of these internal nodes are also stored
on disk, and they are read into main memory as needed. ThakUp, i nsertanddel et e are
known assecondary memory algorithmsbecause data movement between disk and main memory
must be explicitly invoked. Typically, it amounts to bringi a specific disk block into memory, or
writing such a block back to disk.

951. On (a,b, c)-trees: Generalized Split-Merge for (a, b)-trees. Thus insertion and deletion al-
gorithms uses the strategy of “share a key if you can” in otdeavoid splitting or merging. Here,
“sharing” encompasses borrowing as well as donation. ZFBespace utility method will now be gen-
eralized by the introduction of a new parameter 1. Call thes€a, b, ¢)-trees We use the parameter
c as follows.

e Generalized Splitof u: When node is overfull, we will examine up te— 1 siblings to see if we
can donate a child to these siblings. If so, we are done. @tbeywe merge nodes (node plus
c¢— 1 siblings), and split the merger inter 1 nodes. We viewe of these nodes as re-organizations
of the original nodes, but one of them is regarded as new. W& imsert this new node into the
parent ofu. The parent will be transformed appropriately.

e Generalized Mergeof u: When nodeu is underfull, we will examine up te siblings to see if
we can borrow a child of these siblings. If so, we are done.e@ilse, we merge + 1 nodes
(nodeu plus e siblings), and split the merger intonodes. We view: of the original nodes as
being re-organized, but one of them being deleted. We mustdklete a node from the parent of
u. The parent will be transformed appropriately.

In summary, the generalized merge-split(afb, ¢)-trees transforms nodes intoc + 1 nodes, or
vice-versa. Whemr = 1, we have theB-trees; where = 2, we achieve th@/3-space utilization ratio
above. In general, they achieve a space utilization ratia @f+ 1 which can be arbitrarily close to(we
also need — o0). Our(a, b, c)-trees must satisfy the followingeneralized split-merge inequality

ch+1
1<a< . 25
c+1<a< T 25)

The lower bound on ensures that generalized merge or split of a node will always enough siblings.
In case of merging, the current node has 1 keys. When we fail to borrow, it means thasiblings
havea keys each. We can combine all thege + 1) — 1 keys and split them inte new nodes. This
merging is valid because of the upper boufi8) (on a. In case of splitting, the current node Has 1
keys. If we fail to donate, it means that- 1 siblings have) keys each. We combine all thegle+ 1
keys, and split them inte+ 1 new nodes. Again, the upper bound®(R5) guarantees success.
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We are interested in the maximum valueaah (25). Using the fact that is integer, this amounts
b+ 1
- { - J | (26)
c+1

The corresponding, b, ¢)-tree will be called @yeneralized B-tree Thus generalized B-trees are spec-
ified by two parameter$,andc.

to

Example: What is the simplest generalized B-tree whete3? Thenb > a > ¢+ 1 = 4. So the
smallest choices for these parameters(aré, c) = (4,5, 3).

952. Using thec parameter. An (a, b, ¢)-trees is structurally indistinguishable from @n b)-tree. In
other words, the set of all, b, ¢) trees and the set of &, b) trees are the same (“co-extensive”). For
any(a, b) parameter, we can compute the smaltestich that this could be @, b, ¢)-tree.

Therefore, we can freely modify theas we wish. The-parameter is only used during algorithm
insertion/deletion, and this can be stored as a global bi&riakE.g.,c can be a static member of the
(a, b, ¢) class, if we implement this usir@t++). Why would we want to modify? Increasing improves
space utilization but slows down the insertion/deletioocgiss. Therefore, we can begin with= 1,
and as space becomes tight, we slowly increagend conversely we can decreasas space becomes
more available. This flexibility a great advantage of ¢hgarameter.

953. A Numerical Example. Let us see how to choose tlie, b, c) parameters in a concrete setting.
The nodes of the search tree are stored on the disk. The ras$uisned to be always in main memory.
To transfer data between disk and main memory, we assume &-liké¢l environment where memory
blocks have size 0512 bytes. So that is the maximum size of each node. The readingiting

of one memory block constitute one disk access. Assume #udit pointer ist bytes and each key
6 bytes. So each (key,pointer) pair usésbytes. The value ob must satisfyl0b < 512. Hence
we choosé = |512/10] = 51. Suppose we want = 2. In this case, the optimum choice afis

a= {%J = 34.

To understand the speed of using s@@h 51, 2)-trees, assume that we store a billion items in such
a tree. How many disk accesses in the worst is needed to lakitpm? The worst case is when the
root has2 children, and other internal nodes tsaischildren (if possible). A calculation shows that the
height is6. Assume the root is in memory, we need ofilplock 1/Os in the worst case. How many
block accesses for insertion? We need to readdes and write out+ 1 nodes. For deletion, we need
to reade + 1 nodes and write nodes. In either case, we ha&e+ 1 nodes per level. Witlh = 2 and
h = 6, we have a bound of 30 block accesses.

For storage requirement, let us bound the number of bloakdetbto store the internal nodes of this
tree. Let us assume each data iter® y/tes (it is probably only a pointer). This allows us to corgu

the optimum value of/’, b’. Thusd' = [512/8] = 64. Also,a’ = {Ci’ﬁL—ﬁlJ = 43. Using this, we can

now calculate the maximum and number of blocks needed byatarsiructure (use Lemn@i.

954. Preemptive or 1-Pass Algorithms. The above algorithm uses 2-passes through nodes from the
root to the leaf: one pass to go down the tree and another pags tip the tree. There is a 1-pass
versions of these algorithms. Such algorithms could p@inbe twice as fast as the corresponding
2-pass algorithms since they could reduce the bottlenestkIdfD. The basic idea is to preemptively
split (in case of insertion) or preemptively merge (in cakdedetion).
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More precisely, during insertion, if we find that the currante is already full (i.e., haschildren)
then it might be advisable to splitat this point. Splitting: will introduce a new child to its parent,
We may assume thatis already in core, and by induction,is not full. Sov can accept a new child
without splitting. In case of standar@-trees ¢ = 1), this involves no extra disk 1/0. Such preemptive
splits might turn out to be unnecessary, but this extra sosegligible when the work is done in-core.
Unfortunately, this is not true of generalizétttrees since a split requires looking at siblings which
must be broughtin from the disk. Further studies would belade

For deletion, we can again do a preemptive merge when therdurode. hasa children. Unfortu-
nately, even for standarBi-trees, this may involve extra disk I/O because we need ttotdonate to a
sibling first.

But there is another intermediate solution: instead of p@e&/e merge/split, we simplgachethe
set of nodes from the root to the leaf. In this way, the sec@ss ploes not involve any disk I/O, unless
absolutely necessary (when we need to split and/or mergejnodern computers, main memory is
large and storing the entire path of nodes in the 2-passitigoseems to impose no burden. In this
situation, the preemptive algorithms may actually be skdiven a 2-pass algorithm with caching.

€55. Background on Space Utilization. Using thea : b measure, we see that standardrees have
about50% space utilization. Yao showed that in a random insertion ehatthe utilization is about
lg2 ~ 0.69%. (see []). This was the beginning of a technique called “fringe e’ which Yao [L0]
introduced in 1974. Nakamura and Mizoguc#j] [ndependently discovered the analysis, and Knuth
used similar ideas in 1973 (see the surveyldf.[

Now consider the space utilization ratio of generalizetrees. UnderZ6), we see that the ratio
a:bis (ffjll) : b, and is greater than: ¢ + 1. In casec = 2, our space utilization that is close li©2.
Unlike fringe analysis, we guarantee this utilization ie thorst case. It seems that most of the benefits

of (a, b, c)-trees are achieved with= 2 orc = 3.

EXERCISES

Exercise 7.1: What is the the best ratio achievable unde®)? Under 24)? &

Exercise 7.2: Give a more detailed analysis of space utilization basedavarpeters for (A) a key
value, (B) a pointer to a node, (C) either a pointer to an itenthe exogenous case) or the data
itself (in the endogenous case). Suppose we kdndes to store a key valug pytes for a pointer
to a node, and bytes for a pointer to an item or for the data itself. Exprégsdpace utilization
ratio in terms of the parameters

a,b,k,p,d

assuming the inequalityL §). &

Exercise 7.3: Describe the exogenous version of binary search trees. tBévimsertion and deletion
algorithms. NOTE: the keys in the leaves are now viewed awgates for the items. Moreover,
we allow the keys in the internal nodes to duplicate keys énléaves, and it is also possible that
some keys in the internal nodes correspond to no stored item. &

Exercise 7.4: Consider the tree shown in Figu2é. Although we previously viewed it as(8, 4)-tree,
we now want to view it as €2, 4)-tree. For insertion/deletion we further treat it a2ad, 1)-tree.
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(a) Insert an item (whose key i$)} into this tree. Draw intermediate results.
(b) Delete the item (whose key ig)from this tree. Draw intermediate results. &

Exercise 7.5: To understand the details of insertion and deletion algoritin (a, b, ¢)-trees, we ask
you to implement in your favorite language (we like Java)ftilowing two (2, 3, 1)-trees and
(3,4,2)-trees. O

Exercise 7.6: Is it possible to desigfu, b, ¢) trees so that the root is not treated as an exception®?

Exercise 7.7: Suppose we want the root, if non-leaf, to have at leadtildren. But we now allow it to
have more than children. This is reasonably, considering that the rootshprobably be kept
in memory all the time and so do not have to obeyititenstraint. Here is the idea: we allow the
root, when it is a leaf, to have up e — 1 items. Here(d’, ') is the usual bound on the number
of items in non-root leaves. Similarly, when it is a non-|eglfias between andmax{a® — 1, b}
children. Show how to consistently carry out this policy. &

Exercise 7.8: Our insertion and deletion algorithms tries to share (@enate or borrow) children from
siblings only. Suppose we now relax this condition to alltwarsng among “cousins”. Consider
all the nodes in a given level: two nodes nodes arecousinsof each other if they belong to
the same level but they are not siblings. All the node§ = 1,..., M) in a given level can be
sorted based on their keys, < v < --- < vps. If v;,v;41 @re not siblings, then we call them
direct cousins Modify our insert/delete algorithms so that we try to shaith direct siblings or
cousins before doing the generalized split/merge. &

Exercise 7.9: We want to explore the weight balanced versiofab)-trees.
(a) Define such trees. Bound the heights of your weight-lc&ldfu, b-trees.
(b) Describe an insertion algorithm for your definition.
(c) Describe a deletion algorithm. &

Exercise 7.10: How can we choose theparameter (se€()) in generalized3-trees in a more relaxed
manner so that the repeated splits/merges during insextideletions are minimized?

END EXERCISES
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