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“Trees are the earth’s endless effort to speak to the listgtieaven”

— Rabindranath Tagore, Fireflies, 1928

Alice was walking beside the White Knight in Looking Glassd.a

"You are sad.” the Knight said in an anxious tone: "let me sipgu a song to comfort you.”
"Is it very long?” Alice asked, for she had heard a good deapoktry that day.

"It's long.” said the Knight, "but it's very, very beautifulEverybody that hears me sing it
- either it brings tears to their eyes, or else -”

"Or else what?” said Alice, for the Knight had made a suddeniga.

"Or else it doesn’t, you know. The name of the song is calleadétbcks’ Eyes.
"Oh, that’s the name of the song, is it?” Alice said, tryingfeel interested.
"No, you don’t understand,” the Knight said, looking a lgtvexed. "That’s what the name
is called. The name really is 'The Aged, Aged Man.”

"Then | ought to have said 'That’'s what the song is called’Aio& corrected herself.

"No you oughtn't: that's another thing. The song is calleddy¥$ and Means’ but that's
only what it's called, you know!”

"Well, what is the song then?” said Alice, who was by this ticeenpletely bewildered.

"I was coming to that,” the Knight said. "The song really is-gitting On a Gate’: and the
tune’s my own invention.”

So saying, he stopped his horse and let the reins fall on itk:rtben slowly beating time
with one hand, and with a faint smile lighting up his genttelish face, he began...

— Lewis Carroll, Alice Through the Looking Glass, 1865

Lecture Il
BALANCED SEARCH TREES

Anthropologists inform us that there is an unusually largemhber of Eskimo words for snow. The
Computer Science equivalent of ‘snow’ is the ‘tree’ woftd; b)-tree, AVL tree B-tree, binary search
tree, BSP tree, conjugation tree, dynamic weighted tregefitree, half-balanced tree, heaps, interval
tree, leftist tree kd-tree, quadtree, octtree, optimal binary search tree, ptyjosearch tree, R-trees,
randomized search tree, range tree, red-black tree, segtrem splay tree, suffix tree, treaps, tries,
weight-balanced tree, etc. | have restricted the above list to trees which are used aslseata
structures. If we include trees arising in specific appio# (e.g., Huffman tree, DFS/BFS tree, alpha-
beta tree), we obtain an even more diverse list. The list @artlarged to include variants of these
trees: thus there are subspecieBetrees called3 - and B*-trees, etc.

If there is a most important entry in the above list, it has éobiinary search tree. It is the first
non-trivial data structure that students encounter, #ftear structures such as arrays, lists, stacks and
gueues. Trees are useful for implementing a varietglastract data types We shall see that all the
common operations for search structures are easily impleadeising binary search trees. Algorithms
on binary search trees have a worst-case behavior thatpsgiianal to the height of the tree. The height
of a binary tree om nodes is at leagtig n|. We say that a family of binary treesh&lancedif every
tree in the family om nodes has heigl®(logn). The implicit constant in the big-Oh notation here balaness is a fam-
depends on the particular family. Such a family usually comguipped with algorithms for insertingily property
and deleting items from trees, while preserving membetishtipe family.

Many balanced families have been invented in computer seieihey come in two basic forms:
height-balancedandweight-balanced schemedn the former, we ensure that the height of siblings are
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“approximately the same”. In the latter, we ensure that thalmer of descendants of sibling nodes are
“approximately the same”. Height-balanced schemes requdrto maintain less information than the
weight-balanced schemes, but the latter has some extrhifigxinat are needed for some applications.
The first balanced family was invented by the Russians Adiel'¢el'skii and Landis in 1962, and are
calledAVL trees. We will describe several balanced families, including Avées and red-black trees.
The notion of balance can be applied to non-binary trees; iWetwdy the family of (a, b)-treesand
generalizations. Tarjan [9] gives a brief history of somkbeing schemes.

STUDY GUIDE: all our algorithms for search trees are desiin such a way that they can be
internalized, and we expect students to carry out handatinns on concrete examples. We do not
provide any computer code, but once these algorithms arerstwabd, it should be possible to imple-
menting them in your favorite programming language.

§1. Search Structures with Keys

Search structures store a set of objects subject to segr@héhmodification of these objects. Search
structures can be viewed as a collectiomotiesthat are interconnected by pointers. Abstractly, they
are just directed graphs with labels. Each node stores oesepts an object which we call #&am.

We will be informal about how we manipulate nodes — they waltiously look like ordinary variables
and pointersas in the programming languageé C++, or like references idava. Let us look at some
intuitive examples, relying on your prior knowledge abordggramming and variables.

"‘ keyl‘ datal ‘Q‘

N ‘ keyl‘ datal ‘0—‘—>‘ keyz‘ data2 M / \
M key2|  data M ‘ﬂ keyd| data3 ‘ ‘

v V‘ key4‘ datad ‘ A
ai | evd] cam3 @] ®

Legend:
E—)—> Non-null Pointe
(@) Z Null Pointer

Figure 1: Two Kinds of Nodes: () linked lists, (b) binarydse

Each item is associated withkey. The rest of the information in an item is simply callddta,
so that we may view an item as the péitey, Data). Besides an item, each node also stores one or
more pointers to other nodes. Since the definition of a nodeidies (pointers) to other nodes, this
is a recursive definition. Two simple types of nodes areftilated in Figure 1: nodes with only one
pointer (Figure 1(a)) are used to forming linked lists; nodeéth two pointers can be used to form a
binary trees (Figure 1(b)), or doubly-linked lists. Nodéagwthree pointers can be used in binary trees
that require parent pointers. First, suppdéas a node variable of the type in Figure 1(a). Thus
has thredields, and we may name these fieldslesy, dat a, next . Each field has some data type.
E.g. key is typically integerdat a can be string, but it can almost anything, Ingxt has to be a

1The concept ofocativesintroduced by Lewis and Denenberg [6] may also be used: diVeca is like a pointer variable
in programming languages, but it has properties like annargi variable. Informallyu will act like an ordinary variable in
situations where this is appropriate, and it will act likeairper variable if the situation demands it. This is achitbg suitable
automatic referencing and de-referencing semantics fdr sariables.
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pointer to nodes. This field information constitutes thep&y of the node. To access these fields, we

write N.key, N.dat a or N.next . The type of N.next is not that of a node, but pointer to a node.

In our figures, we indicate the values of pointers by a ditetgow. Node pointer variables act rather

like node variables: if variable is a pointer to a node, we can also writdkey, v.dat a andu.next

to access the fields in the node. There is a special pointae\allled thenull pointer, pointing to

nothing. In Figure 1, null pointers are denoted by a spetaahssymbol. There are at least
three players here: the
variablesu, N and

Programming semantics: the difference between a nodeblarié and a the node that both
node pointer variable is best seen using the assignment operation. Let us refer to. ~ Compare
assume that the node typeleey, dat a, next ), M is another node variable this with the song 'A-
andv another node pointer variable. In the assignm®nt— M, we copy| sitting On a Gate’ in
each of the three fields d¥/ into the corresponding fields df. But in the the story of Alice and
assignment, — v, we simply make. point to the same node as Referring the White Knight

to Figure 1(a), we see thatis initially pointing to N, andv pointing to M.

After the assignment « v, both pointers would now be pointing fd.

Examples of search structures:

(i) An employee databasehere each item is an employee record. The key of an emplepeed is
the social security number, with associated data such ass&ldame, salary history, etc.

(i) A dictionarywhere each item is a word entry. The key is the word itselpeissed with data such
as the pronunciation, part-of-speech, meaning, etc.

(iii) A scheduling queum a computer operating systems where each item in the qaeujb that is
waiting to be executed. The key is the priority of the job, ethis an integer.

Itis natural to refer such structureskasyed search structures From an algorithmic point of view,
the properties of the search structure are solely detedigethe keys in items, the associated data
playing no role. This is somewhat paradoxical since, forubkers of the search structure, it is the
data that is more important. With this caveat, we will nodymanore the data part of an item in our
illustrations, thusdentifying the item with the key only What is the point of
searching for keys

Binary search trees is an example of a keyed search structiseally, each node of the binarywith no associated
search trees stores an item. In this case, our terminolotyyoafes” for the location of items happily data?
coincides with the concept of “tree nodes”. However, theevarsions of binary search trees whose
items resides only in the leaves — the internal nodes ong &ieys for the purpose of searching.

Key values usually come from a totally ordered set. Typjcalle use the set of integers for our In examples, keys
ordered set. Another common choice for key values are cteratrings ordered by lexicographidntegers!
ordering. For simplicity in these notes, the default asgionps that items have unique keys. When we
speak of the “largest item”, or “comparison of two items” we &eferring to the item with the largest
key, or comparison of the keys in two items, etc. Keys aresddfly different names to suggest their
function in the structure. For example, a key may called a

e priority , if there is an operation to select the “largest item” in tbarsh structure (see example
(iii) above);

o identifier, if the keys are unique (distinct items have different keyrs) our operations use only
equality tests on the keys, but not its ordering properges €xamples (i) and (ii));
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e costorgain, depending on whether we have an operation to find the miniorurmaximum value;

e weight, if key values are non-negative.

More precisely, &earch structure S is a representation of a set of items that supports tk Up
query. The lookup query, on a given ké&yandS, returns a node in .S such that the item im has key
K. If no such node exists, it returms= nil. SinceS represents a set of items, two other basic operations
we might want to do are inserting an item and deleting an itén$. is subject to both insertions and
deletions, we callS a dynamic setsince its members are evolving over time. In case insertiouns
not deletions, are supported, we célh semi-dynamic set In case both insertion and deletion are not
allowed, we callS a static set The dictionary example (ii) above is a static set from thewgoint of
users, but it is a dynamic set from the viewpoint of the legiepher.

Two search structures that store exactly the same set of deersaid to bequivalent. An operation
that preserves the equivalence class of a search strustca#iéd arequivalence transformation

§2. Abstract Data Types

This section contains a general discussion on abstract tggas (ADT's). |
may be used as a reference; a light reading is recommendetédirst time

Students may be unfamiliar with the temstract data type (ADT) but it is intuitively the same
concept as aimterface in theJava language. Again using the terminology of modern objectrited Java fans: ADT = in-
language<C++ or Java, we view a search data structure is an instance odrgainer class Each terface
instance stores a set of items and have a well-defined satiwibers(i.e., variables) andchethods(i.e.,
operations). Thus, a binary tree is just an instance of tlatly tree class”. The “methods” of such
class support some subset of the following operationsdiisetow.

q1. ADT Operations. We will now list all the main operations found in all the ADTisat we will
study.We emphasize that each ADT will only require a proper subidiese operations. The full set of
ADT operations listed here is useful mainly as a referefe.will organize these operations into four

groups (1)-(1V):

(D) Initializer and Destroyers ~ nake()—Structure
kill()

(I1) Enumeration and Order i st() —Node
succ(Node—Node
pr ed(Nodeé—Node
m n()—Node
max()—Node

(1) Dictionary-like Operations | ook Up(Key)—Node
i nsert (Item—Node
del et e(Nodsg,
del et eM n()—ltem,

(IV) Set Operations spl it (Key)— Structure
nmer ge(Structurg.
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Most applications do not need the full suite of the these ajgars. Below, we will choose various
subsets of this list to describe some well-known ADT's. Theaming of these operations are fairly
intuitive. We will briefly explain them. Lef, S’ be search structures, viewed as instances of a suitable
class. LetK be a key and: a node. Each of the above operations are invoked from sentaus,
S.make() will initialize the structureS, andS.nmex () returns the maximum value ii.

When there is only one structufg we may suppress the referencestoE.g.,S.mer ge(S’) can be
simply written as frer ge(S’)".

Group (I): We need to initialize and dispose of search stmest. Thusrake (with no arguments)
returns a brand new empty instance of the structure. Thesewdnmake iski | | , to remove a structure.
These are constant time operations.

Group (II): This group of operations are based on some lioedering of the items stored in the
data structure. The operatibn st () returns a node that is an iterator. This iterator is the begmof
a list that contains all the items i$i in some arbitraryorder. The ordering of keys is not used by the
iterators. The remaining operations in this group depenihemrdering properties of keys. Then()
andmax () operations are obvious. The successocc (u) (resp., predecesspr ed(u)) of a nodeu
refers to the node it¥ whose key has the next larger (resp., smaller) value. Thiadfined ifu has
the largest (resp., smallest) valueSn

Note thatl i st () can be implemented using n() andsucc(u) or max() andpr ed(u). Such a
listing has the additional property of sorting the outpukiy value.

Group (IlI): The first three operations of this group,
| ookUp(K) — u, insert(K,D)— u, delete(u),

constitute the “dictionary operations”. In many ADT’s, $ieeare the central operations.

The nodeu returned byl ookUp(K) has the property thatkey = K. In conventional program-
ming languages such & nodes are usually represented by pointers. In this caeajiltipointer
is returned by thd ookUp function when there is no item i§ with key K. When we perform
S.1 ookUp(K), the structures itself may be modified to another equivalent structure.

In case no such item exists, or it is not unique, some convestiould be established. At this level,
we purposely leave this under-specified. Each applicationlsl further clarify this point. For instance,
in case the keys are not unique, we may requireltibatk Up (K') returns an iterator that represents the
entire set of items with key equal 6.

Bothi nsert anddel et e have the obvious basic meaning. In some applications, wepredgr
to have deletions that are based on key values. But such togetperation can be implemented as
‘del et e(I ookUp(K))'. In casel ookUp(K) returns an iterator, we would expect the deletion to be
performed over the iterator.

The fourth operatiory.del et eM n() in Group (Ill) is not considered a dictionary operation. The
operation returns the minimum itethin .S, and simultaneously deletes it froéh Hence, it could
be implemented adel et e(m n()). But because of its importancael et eM n() is often directly
implemented using special efficient techniques. In most siatictures, we can repladel et eM n by
del et eMax without trouble. However, this is not the same as being ab$eipport botldel et eM n
anddel et eMax simultaneously.
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Group (IV): The final group of operations,
Ssplit(K)— S, SMerge(S),

represent manipulation of entire search structusesnd S’. If S.split (K) — S’ then all the items
in S with keys greater thai” are moved into a new structuf®; the remaining items are retained$n
Conversely, the operatiafimer ge(.S’) moves all the items i’ into .S, andS’ itself becomes empty.
This operation assumes that all the key§'iare less than all the items 1. Thusspl i t andmer ge
are inverses of each other.

92. Implementation of ADTs using Linked Lists. The basic premise of ADTs is that we should
separate specification (given by the ADT) from implementat\We have just given the specifications,
so let us now discuss a concrete implementation.

Data structures such as arrays, linked list or binary sefiedts are calledoncrete data types
Hence ADTs are to be implemented by such concrete data tygesvill now discuss a simple imple-
mentation of all the ADT operations using linked lists. Thismble data structure comesSivarieties
according to Tarjan [9]. For concreteness, we use the vyattiett Tarjan callendogeneous doubly-
linked list. Endogeneous means the item is stored in the node itsefffithion a node:, we can directly
access:.key andu.dat a. Doubly-linked means has two pointers.next andu.pr ev. These two
pointers satisfies the invariantnext = v iff v.prev = u. We assume students understand linked You know this!
lists, so the following discussion is partly a review of latklists.

Let L be a such a linked list. Conceptually, a linked list is set oflés organized in some linear
order. The linked list has two special nodéshead andL.t ai | , corresponding to the first and last
node in this linear order. We can visit all the nodesdlirusing the following routine with a simple
while-loop:

LISTTRAVERSAL(L)
u — L.head
while (u # nil)

u «— u.next
CLEANUP()

List traversal shell

Here, VISIT@) and CLEANUP() are subroutine or more accurately “macrbat tdepend on the appli- In programming,
cation. As a default, they do nothing (“no-op”). We calStTRAVERSAL a shell program; this thememacros are a mech-
will be taken up more fully when we discuss tree traversabwek4). Since the while-loop (by hy- anism  for textual
pothesis) visits every node ih, there is a unique node(assume. is non-empty) withu.next = nil. substitution into the
ThisnodeisL.t ai |l . code

It should be obvious how to implement most of the ADT operatiosing linked lists. We ask
the student to carry this out for the operations in Groupsutd (I1). Here we focus on the dictionary
operations:

e | 00kUp(K): We can use the above ListTraversal routine but replace '™Ml&)” by the follow-
ing code fragment:

= if (u.key = K) Return(u)
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Note that since VISIT is a macro, tli&eturn in VISIT is a not return from VISIT, but from the
| ookUp routine! The CLEANUP() statement is similarly replaced by

CLEANUP()| = Return(nil)

The correctness of this implementation should be obvious.

e i nsert (K, D): We use the ListTraversal shell, but define VIG4T as the following macro:

:if (ukey = K) Return(nil)

Thus, if the keyK is found inu, we returmil, indicating failure (duplicate key). The CLEANUP()
macro is:

CLEANUP()|

u «— new(Node)

u.key := K;u.data:= D
u.next := L.head
L.head :=u

Return(u)

wherenew(Node) returns a pointer to space on the heap for a node.

e del et e(u): Sinceu is a pointer to the node to be deleted, this amounts to theatdreletion
of a node from a doubly-linked list:

u.next .prev «— u.prev
u.prev.next «— u.next
del(u)

wheredel(u) is a standard routine to return a memory to the system heagtakes time)(1)

93. Complexity Analysis. Another simple way to implement our ADT operations is to usays
(Exercise). In subsequent sections, we will discuss hownf@ément the ADT operations using bal-
anced binary trees. In order to understand the tradeoffseiset alternative implementations, we now
provide a complexity analysis of each implementation. lsadia this for our linked list implementation.

We can provide a worst case time complexity analysis. Far, thé need to have a notion of input
size: this will ben, the number of nodes in the (current) linked list. Consistath our principles in
Lecture I, we will perform &-order analysis.

The complexity of ookUp(K) is ©(n) in the worst case because we have to traverse the entire list
in the worst case. Bothnsert (K, D) anddel et e(u) are preceded blyookUp’s, which we know
takesO(n) in the worst case. Theel et e operation isO(1). Note that such an efficient deletion is
possible because we use doubly-linked lists; with singlikdd lists, we nee®(n) time.

More generally, with linked list implementation, all the Aldperations can easily be shown to have
time complexity eithe© (1) or ©(n). The principal goal of this chapter is to show that &) can be
replaced by (logn). This represents an “exponential speedup” from the linlstdrhplementation.
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94. Some Abstract Data Types. The above operations are defined on typed domains (keystiates,
items) with associated semantics. Alstract data type (acronym “ADT") is specified by

one or more “typed” domains of objects (such as integerstisets, graphs);
a set of operations on these objects (such as lookup an iteertian item);

properties (axioms) satisfied by these operations.

These data types are “abstract” because we make no assaraptiat the actual implementation.

It is not practical or necessary to implement a single datecgire that has all the operations listed
above. Instead, we find that certain subset of these opesatiork together nicely to solve certain
problems. Computer science has discovered that followibges of operations to be widely applicable:

Dictionary ADT : | ookUp, [i nsert, [del et €e]].
Ordered Dictionary ADT : | ookUp, i nsert,del et e, succ, pr ed.
Priority queue ADT : del et eM n,i nsert, [+del et e, [+decr easeKey]].

Fully mergeable dictionary ADT: | ookUp, i nsert,del ete,nmerge,split.

In some stripped-down versions of these ADT, operationisiwjt - - | may be omitted. For instance,
a dictionary ADT withoutel et e is called asemi-dynamic dictionary, and if it also omits nsert,
it is called astatic dictionary. Note that the latter only has one operatibnpk Up.

Alternatively, some ADT’s can be enhanced by additionarapens. For instance, a priority queue
ADT traditionally supports onlydel et eM n andi nsert. But in some applications, it must be
enhanced with the operationdél et e and/ordecr easeKey. The latter operation can be defined as

decreaseKey (K, K') = [u < | ookUp(K);del et e(u);i nsert (K',u.dat a)]

with the extra condition thak” < K (assuming a min-queue). In other words, we change the fyriori
of the itemu in the queue fronk to K’. SinceK’ < K, this amounts to increasing its priority ofin
a min-queue.

If the deletion in dictionaries are based on keys (see conatmve) then we may think of a dictio-
nary as a kind oassociative memory If we omit thespl i t operation in fully mergeable dictionary,
then we obtain thenergeable dictionary ADT. The operationsreke andki I | (from group (1)) are
assumed to be present in every ADT.

NOTES:
1. Variant interpretations of all these operations areiptssFor instance, some versioniafiser t
may wish to return a boolean (to indicate success or failorejot to return any result (in case the
application will never have an insertion failure).
2. Other useful functions can be derived from the above., E.@s useful to be able to create a
structureS containing just a single iterh. This can be reduced t& make(); Si nsert (I)".
3. The concept of ADT was a major research topic in the 198@any of these ideas found their
way into structured programming languages such as Past#hein modern successors. An interface
in Java is a kind of ADT where we capture only the types of djp@na Our discussion of ADT is
informal, but one way to study them formally is to describ&ens that these operations satisfy. For
instance, ifS is a stack, then we can postulate the axiom that pushing amziten S followed by
poppingS should return the iteme. In our treatment, we relied on informal understanding esth
ADT'’s to avoid the axiomatic treatment.
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EXERCISES

Exercise 2.1: Consider the dictionary ADT.
(a) Describe algorithms to implement this ADT when the cetedata structures are arrays.

NOTE: An interesting difference from implementation uslimiked lists is to decide what to do
when the array is full. We want you to allocate space for adiggray (how would you choose
its size?). Furthermore, what is the analogue of the Lis@nsal Shell?

(b) Analyze the complexity of your algorithms in (a). Com@danis complexity with that of the
linked list implementation. O

Exercise 2.2: Repeat the previous question for the priority queue ADT. &

Exercise 2.3: SupposeD is a dictionary with the dictionary operations of lookupsént and delete.
List a complete set of axioms (properties) for these opanati &

END EXERCISES

§3. Binary Search Trees

We introduce binary search trees and show that such treesupgort all the operations described
in the previous section on ADT. Our approach will be somewimaionventional, because we want to
reduce all these operations to the single operation of timta the universal opera-
tion!
Recall the definition and basic properties of binary treethaéAppendix of Chapter I. Figure 2
shows two binary trees (small and big) which we will use in tlustrations. For each node of the
tree, we store a valuekey called its key. The keys in Figure 2 are integers, used siraplgentifiers
for the nodes.

@ (b)

Figure 2: Two binary (not search) trees: (a) small, (b) big

Briefly, a binary tre€l" is a setV > 0 of nodes that is either the empty set,/dhas a node called
the root. In Figure 2N = {1,2, 3,4, 5} for the small tree andv = {1,2,3,...,15} for the big tree.
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The remaining noded \ {u} are partitioned into two sets of nodes that recursively fomary trees,
Ty andTyg. If Ty, (resp.,Tr) is non-empty, then its root is called the left (resp., rjgttild of u. This

definition of binary trees is based structural induction. Thesizeof T is |N|, and is denotedl’|;

alsoTy,, T are theleft andright subtreesof T'.

@ (b)

Figure 3: (a) Binary Search Tree on kejils 2,3, 4, ...,14,15}. (b) Afterr ot at e(2).

The keys of the binary trees in Figure 2 are just used as fiknsti To turn binary trees into a binary
searchtree, we must organize the keys in a particular way. Such arpisearch tree is illustrated in
Figure 3(a). structurally, it is the big binary tree in Fig@, but now the keys are no longer just arbitrary
identifiers.

A binary treeT is calledbinary search tree (BST) the keyu.key at each node: satisfies the
binary search tree property:
ur.key < u.key < up.key. (1)

whereuy, andug are (resp.) anjeft descendantandright descendantof u. Please verify that the
binary search in of Figure 3 obeys (1) at each nade

The “standard mistake” is to replace (1) by ef t .key < u.key < w.ri ght key. By defi- good test question...
nition, a left (right) descendant ef is a node in the subtree rooted at the left (right) child.ofThe
left and right children of. are denoted by.l ef t andw.ri ght. The standard mistake focuses on a
necessary, but not sufficient, condition in the concept o$a.Eself-check: construct a counter example
to the standard mistake using a binary tree wittodes (actually nodes suffice).

Fundamental Rule about binary tre@sost properties about binary trees are
best proved by induction on the structure of the tree. Likeyalgorithms fof
binary trees are often best described using structural @tigun.

95. Lookup. The algorithm for key lookup in a binary search tree is alnmostediate from the binary
search tree property: to look for a kéy, we begin at the root (remember the good point above?). In
general, suppose we are looking figrin some subtree rooted at nodelf u.key = K, we are done.
Otherwise, eitheX < u.key or K > u.key. In the former case, we recursively search the left subtree
of u; otherwise, we recurse in the right subtree.ofn the presence of duplicate keys, what does lookup
return? There are two interpretations: (1) We can returriiteenodeu we find that has the given key
K. (2) We may insist that we continue to explicitly locate aktother keys.
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In any case, requirement (2) can be regarded as an exterigiby wamely, given a node, find all
the other nodes below with same same key askey. This can be solved separately. Hence we may
assume interpretation (1) in the following.

96. Insertion. To insert an item with key<', we proceed as in the Lookup algorithm. If we fiAdin

the tree, then the insertion fails (assuming distinct ke@¢herwise, we reach a leaf node Then the
item can be inserted as the left childwif u.key > K, and otherwise it can be inserted as the right
child of u. In any case, the inserted item is a new leaf of the tree.

€7. Rotation. This is not a listed operation §R. It is an equivalence operation, i.e., it transforms a
binary search tree into another one with exactly the samef $etys. By itself, rotation does not appear
to do anything useful. Remarkably, we shall show that rotatiarf form the basis for all other binary
tree operations.

The operatiom ot at e(u) is a null operation (“no-op” or identity transformation) @ is a root.
So assume is a non-root node in a binary search tféeThenr ot at e(«) amounts to the following
transformation off” (see figure 4).

rot at e(u)
(w) o)
rotat e(v)

Figure 4: Rotation at and its inverse.

Inr ot at e(u), we basically want to invert the parent-child relation bedémw. and its parent. The
other transformations are more or less automatic, giverthiearesult is to remain a binary search tree.
If the subtreesi, B, C' (any of these can be empty) are as shown in figure 4, then theynevattach as
shown. This is the only way to reattach as childrem @ndv, since we know that

A<u<B<uv<(C

in the sense that each key ihis less than: which is less than any key if, etc. Actually, only the
parent of the root oB has switched fromx to v. Notice that after ot at e(u), the former parent od
(not shown) will now have: instead ofv as a child. Clearly the inverse obt at e(u) isr ot at e(v).
The explicit pointer manipulations for a rotation are leftam exercise. After a rotation af the depth
of u is decreased by. Note thatr ot at e(u) followed byr ot at e(v) is the identity operation, as
illustrated in figure 4.

Recall that two search structures are equivalent if theyainithe same set of items. Clearly, rotation
is an equivalence transformation.

2Augmented by natural operations such as adding or removitigle.
3Also known as null operation or no-op
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98. Graphical convention: Figure 4 encodes two conventions: consider the figure orethsite of
the arrow (the same convention hold for the figure on the Sglg). First, the edge connectindo its
parent is directed vertically upwards. This indicates thaan be the left- or right-child of its parent.
Second, the two edges fromto its children are connected by a circular arc. This is tadat that
u and its sibling could exchange places (izegould be the right-child of even though we choose to
showw as the left-child). Thus Figure 4 is a compact way to reprefeem distinct situations.

99. Implementation of rotation. Let us discuss how to implement rotation. Until now, when we
draw binary trees, we only display child pointers. But we tmesv explicitly discuss parent pointers.

Let us classify a node into one of thredypes left, right or root. This is defined in the obvious
way. E.g.uis aleft typeiff itis not aroot and is a left child. The type:wfs easily testedu is type root
iff w.parent = nil, andu is type left iff u.par ent .| ef t = u. Clearly,r ot at e(u) is sensitive to
the type ofu. In particular, ifu is a root therr ot at e(u) is the null operation. 1T € {l eft ,ri ght }
denote left or right type, itsomplementary typeis denoted’, wherel eft =ri ght andri ght =
left.

rotate(u)

rotate(v)
T T
A% "/
A B B C
Figure 5: Links that must be fixed inot at e (u).
We are ready to discuss the functioot at e(u), which we assume will return the node Assume

u is not the root, and its type i& € {l eft,right}. Letv = u.parent, w = v.parent and
x = v.T. Note thatw andz might benil. Thus we have potentially three child-parent pairs:

(z,u), (u,v), (v,w). )
But after rotation, we will have the transformed child-paneairs:
(x,v), (v,u), (u,w). 3)

These pairs are illustrated in Figure 5 where we have exiglicidicated the parent pointers as well
as child pointers. Thus, to implement rotation, we need &3sign6 pointers § parent pointers ang
child pointers). We show that it is possible to achieve thimssignment using exactiyassignments.

_— . _— .
el o —=
~___-" ~_.__--" ~_.__--

Figure 6: Simplified view of ot at e(u) as fixing a doubly-linked listx, u, v, w).
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Such re-assignments must be done in the correct order.dsid®see what is needed by thinking of
(2) as a doubly-linked listz, u, v, w) which must be converted into the doubly-linked Iist v, u, w)
in (3). Thisis illustrated in Figure 6. For simplicity, weaithe terminology of doubly-linked list so that
u.next andu.pr ev are the forward and backward pointers of a doubly-linked Here i¢ the code:

ROTATE(u):
> Fix the forward pointers
1. w.prev.next < u.next
<4 x.next =v
2. wu.next < u.next.next
<4 u.next =w
3. wu.prev.next.next «— u
<4 v.next =u
> Fix the backward pointers
4. wu.next.prev.prev «— u.prev
< v.prev=c
5. w.next.prev «—u
<4 w.prev=u
6. w.prev « u.prev.next
< u.prev=w

We can now translate this sequencesadissignments into the corresponding assignments for binary
trees: theu.next pointer may be identified with.par ent pointer. Howevery.pr ev would beu.T'
whereT € {l eft right} is the type ofr. Moreover,v.prev isv.T. Also w.prev is w.T" for
another typel”. A further complication is that or/andw may not exist; so these conditions must be
tested for, and appropriate modifications taken.

If we use temporary variables in doing rotation, the codelmsimplified (Exercise).

€10. Variations on Rotation. The above rotation algorithm assumes that for any nadee can
access its parent. Thisis true if each node has a parenepoiptar ent . This is our default assumption
for binary trees.In case this assumption fails, we can replace rotation wipaiaof variants: called
left-rotation andright-rotation . These can be defined as follows:

left-rotate(u) =rotate(uleft), right-rotate(u)=rotate(uright).

It is not hard to modify all our rotation-based algorithmsause the left- and right-rotation formulation
if we do not have parent pointers. Of course, the correspgnetbde would be twice as fast since we
have halved the number of pointers to manipulate.

€11. Double Rotation. Suppose: has a parent and a grandparent. Then two successive rotations
onu will ensure thaty andw are descendants af We may denote this operation byt at e?(u).

Up to left-right symmetry, there are two distinct outcomes ot at e?(u): (i) eitherv, w are becomes
children ofu, or (ii) only w becomes a child of andv a grandchild of.. These depend on whether

is theouter or inner grandchildren ofv. These two cases are illustrated in Figure 7. [As an exercise
we ask the reader to draw the intermediate tree after thafiptcation ofr ot at e(w) in this figure.]

4In Lines 3 and 5, we used the nodeas a pointer on the right hand side of an assignment staterSantly speaking, we
ought to take the address ofbefore assignment. Alternatively, think afas a “locator variable” which is basically a pointer
variable with automatic ability to de-reference into a neden necessary.
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() (u)
Q A rot at e?(u) A Q
® L = o\
AN swamene /3

()
Q A r ot at e’(u)
(u)

/i

A A Zig-zag Case

Figure 7: Two outcomes afot at e (u)

It turns out that case (ii) is the more important case. Forynpamposes, we would like to view the
two rotations in this case as one indivisible operation:ceeme introduce the teraouble rotation to
refer to case (ii) only. For emphasis, we might call the oxddrotation asingle rotation.

These two cases are also known as the zig-zig (or zag-zagigwzég (or zag-zig) cases, respec-
tively. This terminology comes from viewing a left turn agzand a right turn as zag, as we move from
up a root path. The Exercise considers how we might implemeiouble rotation more efficiently than
by simply doing two single rotations.

912. Root path, Extremal paths and Spines. A path is a sequence of nodés, u1, . .., u,) where
u;+1 is a child ofu,;. The length of this path i&, andwu,, is also called theip of the path. E.g.,
(2,4,8,12) is a path in Figure 2(b), with tip2.

Relative to a node, we now introduce 5 paths that originates framThe first is the path from
to the root, called theoot path of «. In figures, the root path is displayed as an upward pathoviatig
parent pointers from the node E.g., ifu = 4 in Figure 2(b), then the root path (4, 2, 1). Next we
introduce 4 downward paths from Theleft-path of u is simply the path that starts fromand keeps
moving towards the left or right child until we cannot prodderther. Theight-path of « is similarly
defined. E.g., with. as before, the left-path (g, 7) and right-path ig4, 8). Collectively, we refer to the
left- and right-paths asxtremal paths Next, we define théeft-spine of a nodeu is defined to be the
path (u, rightpati{u.l eft)). In caseu.l ef t = nil, the left spine is just the trivial patfu) of length
0. Theright-spine is similarly defined. E.g., withu as before, the left-spine {4, 7) and right-spine is
(4,8,12). The tips of the left- and right-paths@torrespond to the minimum and maximum keys in the
subtree at.. The tips of the left- and right-spines, provided they aftedént fromu itself, correspond
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to the predecessor and successat.dElearly,u is a leaf iff all these four tips are identical and equal to
u.

O
UJ)
O a otate

£ 2 g

/

Figure 8: Reduction of the left-spine ofafterr ot at e(u.l eft ) =r ot at e(w).

After performing a left-rotation at, we reduce the left-spine length@by one (but the right-spine
of u is unchanged). See Figure 8. More generally:

LEMMA 1. Let(ug,uq,...,ux) be the left-spine af andk > 1. Also let(vy, . . ., v,,) be the root path
of u, whereuvy is the root of the tree and = v,,,. After performing ot at e(u.l ef t ),

(i) the left-spine of. becomesug, us, . . ., ux) of lengthk — 1,
(ii) the right-spine ofu is unchanged, and
(iii) the root path ofu becomesuy, . . ., v, u1) of lengthm + 1.

In other words, after a left-rotation af the left child ofu transfers from the left-spine af to the
root path ofu. Similar remarks apply to right-rotations. If we repeayedib left-rotations at:, we will
reduce the left-spine af to length0. We may also alternately perform left-rotates and righ&tes at
u until one of its 2 spines have lengih

€13. Deletion. Suppose we want to delete a nadeln caseu has at most one child, this is easy to
do — simply redirect the parent’s pointerdanto the unique child of: (or nil if « is a leaf). Call this
procedureC'ut(u). It is now easy to describe a general algorithm for deletingdeu:

DELETE(T, u):
Input:  w is node to be deleted froffi.
Output: T, the tree withu deleted.
while u.l ef t = nil do
rotate(uleft).
Cut(u)

If we maintain information about the left and right spinedigs of nodes (Exercise), and the right spine
of w is shorter than the left spine, we can also perform the whbibg-by going down the right spine
instead. The overall effect of this algorithm is schem@igdustrated in Figure 9.

We ask the reader to simulate the operationBefete(T, 10) whereT is the BST of Figure 3.

q14. Standard Deletion Algorithm. The preceding deletion algorithm is simple but is actuallite
non-standard. We now describe t#tandard deletion algorithm:
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delete(r)

Figure 9: Deletion based on rotation.

DELETE(T, u):
Input:  w is node to be deleted froffi.
Output: T, the tree with item in; deleted.
if u has at most one child, apply Cuj(and return.
else let v be the tip of the right spine af.
Move the item inv into u (effectively removing the item im)
Cut).

Note that in the else-case, the nades not physically removed: only the item represented:hy
removed. Again, the nodethat is physically removed (i.e., cut) has at most one chifldie have to
return a value, it is useful to return the parent of the notteat was cut — this will be used in rebalancing
tree (see AVL deletion below).

Again, the reader should simulate the operation®efete(T, 10), using this standard algorithm,
and compare the results to the rotation-based algorithm.

The rotation-based deletion is conceptually simpler, ailbb& useful for amortized algorithms
later. However, the rotation-based algorithm seems todweeslas it requires an unbounded number of
pointer assignments.

q15. Inorder listing of a binary tree.

LEMMA 2. LetT be a binary tree om nodes. There is a unique way to assign the Kayg, ..., n}
to the nodes of” such that the resulting tree is a binary search tree on thegs.k

We leave the simple proof to an Exercise. For exampl&,ig the binary tree in Figure 2(b), then
this lemma would assign the keys, . .., 15} to the nodes of” as in Figure 3(a).

Foreach = 1,...,n, we may refer to node € T as theith node if Lemma 2 assigns the keyto
u. In particular, we can speak of tliest andlast nodeof T'. The unique enumeration of the nodes of
T from first to last is called tha-order listing of T'.

916. Successor and Predecessorlf « is theith node of a binary tre@, thesuccessowof « refers to
the (i + 1)st node ofl". By definition,u is thepredecessoof v iff v is the successor af. Letsucc(u)

andpr ed(u) denotes the successor and predecessar df coursesucc(u) (resp.,pred(u)) is
undefined ifu is the last (resp., first) node in the in-order listing of theet
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We will define a closely related concept, but applied to any ke Let K be a key, not necessarily
occurring inT'. Define thesuccessoiof K in T to be the least ke’ in T such thatk’ < K’. We
similarly define thepredecessonf K in T to be the greatedt”’ in T such thatk’ < K.

In some applications of binary trees, we want to maintaim{gws to the successor and predecessor
of each node. In this case, these pointers may be denctéedtc andwu.pr ed. Note that the succes-
sor/predecessor pointers of nodes is unaffected by ratt@ur default version of binary trees do not
include such pointers.

Let us make some simple observations:

LEMMA 3. Letwu be a node in a binary tree, butis not the last node in the in-order traversal of the
tree.

(i) w.ri ght = niliff u is the tip of the left-spine of some nodeMoreover, such a nodeis uniquely
determined by:.

(i) If w.ri ght = nilandu is the tip of the left-spine af, thensucc (u) = v.

(iii) If w.ri ght # nil thensucc(u) is the tip of the right-spine af.

It is easy to derive an algorithm feucc (u) using the above observation.

Succ(u):
1. if wright #nil < return the tip of the right-spine af
1.1 v« u.ri ght;
1.2 while v.l ef t #nil, v — v.l eft;
1.3 Return(v).
2. else < returnv whereuw is the tip of the left-spine af

2.1 v «— u.parent;
2.2 while v # nilandu = v.ri ght,
2.3 (u,v) < (v,v.parent).

2.4 Return(v).

Note that ifsucc(u) = nil thenw is the last node in the in-order traversal of the tree«dwas no
successor). The algorithm fpr ed(u) is similar.

17. Min, Max, DeleteMin. This is trivial once we notice that the minimum (maximumités
in the first (last) node of the binary tree. Moreover, the fffast) node is at the tip of the left-path
(right-path) of the root.

918. Merge. To merge two tree§’, T’ where all the keys i are less than all the keys i, we
proceed as follows. Introduce a new nadand form the tree rooted at with left subtreel” and right
subtreel”. Then we repeatedly perform left rotationsiatintil w.l ef t = nil. At this point, we can
already delete: (even thoughu.r i ght may not benil).

However, if you like, you can perform right rotationsiatintil u.r i ght = nil. Noww is a leaf and

can be deleted. In either case, the result is the mergeanfd”.

€19. Split. Suppose we want to split a trdéat a keyK. Recall the semantics of split frofR:
T.split(K) — T'. This says that all the keys less than or equaktés retained irl’, and the rest are
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split off into a new tredl” that is returned.

First we do d ookUp of K in T'. This leads us to a nodethat either contain&” or elseu is the
successor or predecessorifin T. Now we can repeatedly rotate atuntil « becomes the root of
T. At this point, we can split off either the left-subtree aght-subtree of". This pair of trees is the
desired result.

€20. Complexity. Letus now discuss the worst case complexity of each of theeatyperations. They
are all©(h) whereh is the height of the tree. It is therefore desirable to be &blaintainO(log n)
bounds on the height of binary search trees.

We stress that our rotation-based algorithms for insedimhdeletion are slower than the “stan-
dard” algorithms which perform only a constant number ofnpai re-assignments. Therefore, it
seems that rotation-based algorithms may be impractideksmwe get other benefits. One possible
benefit of rotation will be explored in Chapter 6 on amori@atand splay trees.

EXERCISES

Exercise 3.1: Consider the BST of Figure 3(a). Please show all the interatetrees, not just the final
tree.
(a) Perform the deletion of the kay this tree using the rotation-based deletion algorithm.
(b) Repeat part (a), using the standard deletion algorithm. &

Exercise 3.2: The function \ERIFY(u) is supposed returtnue iff the binary tree rooted at is a binary
search tree with distinct keys:

VERIFY(Nodeu)
if (u = nil) Return(true)
if ((u.left #nil)and u.key < u.l eft .key)) Return(false)
if ((u.right #nil)and @.key > w.ri ght key)) Return(false)
Return(VERIFY(u.l ef t )AVERIFY(u.ri ght))

Either argue for it's correctness, or give a counter-exaspbwing it is wrong. &

Exercise 3.3: TRUE or FALSE: Recall that a rotation can be implemented Wighointer assignments.
Suppose a hinary search tree maintains successor and @ssdetinks (denoted.succ and
u.pr ed in the text). Now rotation requirel® pointer assignments. &

Exercise 3.4: (a) Implement the above binary search tree algorithmst{ootdookup, insert, deletion,
etc) in your favorite high level language. Assume the birieggs have parent pointers.
(b) Describe the necessary modifications to your algoritim@a) in case the binary trees do not
have parent pointers. &
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Exercise 3.5: Let T' be the binary search tree in figure 3. You should recall the ABmantics of
T «— split(T,K)andmerge(T,T’) in §2. HINT: although we only require that you show
the trees at the end of the operations, we recommend thatyuselected intermediate stages.
This way, we can give you partial credits in case you makeakést!

(a) Perform the operatidh’ < spl i t (7,5). DisplayT andT” after the split.

(b) Now performi nsert (T, 3.5) whereT is the tree after the operation in (a). Display the tree
after insertion.

(c) Finally, performner ge(7,7") whereT is the tree after the insert in (b) arfd is the tree
after the splitin (a). &

Exercise 3.6: Give the code for rotation which uses temporary variables. &

Exercise 3.7: Instead of minimizing the number of assignments, let usdryntnimize the time. To
count time, we count each reference to a pointer as takindioma. For instance, the assignment
u.next .prev.prev « wu.prev costss time units because in addition to the assignment, we
have to make accedsointers.

(a) What is the rotation time in odirassignment solution in the text?
(b) Give a faster rotation algorithm, by using temporaryafales. O

Exercise 3.8: We could implement a double rotation as two successiveioostand this would take
12 assignment steps.
(a) Give a simple proof that 10 assignments are necessary.
(b) Show that you could do this with 10 assignment steps. &

Exercise 3.9: Open-ended: The problem of implementingt at e(«) without using extra storage or
in minimum time (previous Exercise) can be generalized.d & a directed graph where each
edge (“pointer”) has a name (e.gext ,prev,| ef t ,ri ght) taken from a fixed set. Moreover,
there is at most one edge with a given name coming out of eadh. nBuppose we want to
transformG to another grapld’, just by reassignment of these pointers. Under what canmiti
can this transformation be achieved with only one variab(es inr ot at e(u))? Under what
conditions is the transformation achievable at all (usirgyenintermediate variables? We also
want to achieve minimum time. &

Exercise 3.10: The goal of this exercise is to show thafl/if and7; are two equivalent binary search
trees, then there exists a sequence of rotations that arans;, into 7. Assume the keys in
each tree are distinct. This shows that rotation is a “usa@requivalence transformation. We
explore two strategies.

(a) One strategy is to first make sure that the rootgpand7; have the same key. Then by
induction, we can transform the left- and right-subtree$p$o that they are identical to those
of T1. Let Ry (n) be the worst case number of rotations using this strategyeas withn keys.
Give a tight analysis oR; (n).

(b) Another strategy is to show that any tree can be reducacctmonical form. Let us choose
the canonical form where our binary search tree lefelist or aright-list. A left-list (resp.,
right-list) is a binary trees in which every node has no rghild (resp., left-child). LeRR2(n) be
defined for this strategy in analogy Ity (n). Give a tight analysis Ry (n). O

Exercise 3.11:Prove Lemma 2, that there is a unique way to order the nodebiobay treel that is
consistent with any binary search tree base@orlINT: remember the Fundamental Rule about
binary trees. &
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Exercise 3.12:Implement the Cut:) operation in a high-level informal programming language- A
sume that nodes have parent pointers, and your code shotditcewen ifu.par ent = nil. Your
code should explicitly “delet@)” after you physically remove a node If « has two children,
then Cutu) must be a no-op.

O

Exercise 3.13:Design an algorithm to find both the successor and predecessogiven keyK in
a binary search tree. It should be more efficient than justrfaqnthe successor and finding the
predecessor independently. &

Exercise 3.14:Show that if a binary search tree has heigland« is any node, then a sequence of
k > 1 repeated executions of the assignmert successor(u) takes timeO(h + k). O

Exercise 3.15: Show how to efficiently maintain the heights of the left arghtispines of each node.
(Use this in the rotation-based deletion algorithm.) &

Exercise 3.16: We refine the successor/predecessor relation. Supposé‘thiatobtained fronil” by
pruning all the proper descendantagfsow is a leaf inT™). Then the successor and predecessor
of u in T" are called (respectively) thexternal successoandpredecessornf « in T' Next, if
T, is the subtree at, then the successor and predecessariafT, are called (respectively) the
internal successorandpredecessoof v in T'

(a) Explain the concepts of internal and external successmt predecessors in terms of spines.
(b) What is the connection between successors and predesésshe internal or external ver-
sions of these concepts? &

Exercise 3.17: Give the rotation-based version of the successor algorithm O

Exercise 3.18: Suppose that we begin withpointing at the first node of a binary tree, and continue to
apply the rotation-based successor (see previous qugstitinu is at the last node. Bound the
number of rotations made as a functionnofthe size of the binary tree). &

Exercise 3.19: Suppose we allow allow duplicate keys. Under (1), we can fgaalir algorithms
suitably so that all the keys with the same value lie in contee nodes of some “right-path
chain”.

(a) Show how to modify lookup on kel so that we list all the items whose keyAs
(b) Discuss how this property can be preserved during mtainsertion, deletion.

(c) Discuss the effect of duplicate keys on the complexitsotédition, insertion, deletion. Suggest
ways to improve the complexity. &

Exercise 3.20: Consider the priority queue ADT. Describe algorithms to lienpent this ADT when
the concrete data structures are binary search trees.
(b) Analyze the complexity of your algorithms in (a). &

END EXERCISES
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54. Tree Traversals and Applications

In this section, we describe systematic methods to visthalhodes of a binary tree. Such methods
are calledree traversals Tree traversals provide “algorithmic skeletons” stiellsfor implementing  Unix fans — shell pro-

many useful algorithms. We had already seen this concefi2 jmvhen implemented ADT operationggramming is not what
using linked lists. you think it is

921. In-order Traversal. There are three systematic ways to visit all the nodes in arpitnee: they
are all defined recursively. Perhaps the most importaneigtiorder or symmetric traversal. Here Fundamental Rule of
is the recursive procedure to perform an in-order traverfaltree rooted at: binary trees!

IN-ORDER(u):
Input:  w is root of binary tredl” to be traversed.
Output: The in-order listing of the nodes if.

0. [BASE|w).

1. In-order (uleft).

[VISIT J(u).

2.
3. In-order (u.right).

This recursive program uses two subroutines, or more atyranacros called BASE and VISIT. For
traversals, the BASE mactean be expanded into the following single line of code:

[BASE](w)=

if (u=nil) Return.

The VISIT(u) macro is simply:

(VISIT J(w)=

Printukey.

To illustrate, consider the two binary trees in figure 2. Thenbers on the nodes are keys, but they
are not organized into a binary search tree. They simplyesasudentifiers.

An in-order traversal of the small tree in Figure 2 will preg4, 2, 1,5, 3). For a more substantial
example, consider the output of an in-order traversal obtgdree:

(7,4,12,15,8,2,9,5,10,1,3,13,11, 14,6)
Basic fact:if we list the keys of a BST using an inorder traversal, thenkiiys will be sorted.

For instance, the in-order traversal of the BST in Figure IBsimply produce the sequence

(1,2,3,4,5,...,12,13,14, 15).

5We regard BASE to be a macro call (or an “inline”) and not asl&eutine call. This is because tiReturn statement in
BASE is meant to return from the In-Order routine, and notiarrefrom the “BASE subroutine”.
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This yields an interesting conclusiosorting a setS of numbers can be reduced to constructing a
binary search tree on a set of nodes withas their keys.

q22. Pre-order Traversal. We can re-write the above In-Order routine succinctly as:

IN(u) = [ BASE|(w); IN(u.l ef t );[VISIT [(u); IN (u.ri ght )]

Changing the order of Steps 1, 2 and 3 in the In-Order proeeghut always doing Step 1 before
Step 3), we obtain two other methods of tree traversal. Tihug perform Step 2 before Steps 1 and 3,
the result is called thpre-order traversal of the tree:

PRE(u) = | BASE|(u);| VISIT |(u); PRE(u.l ef t ); PRE(u.ri ght )]

Applied to the small tree in figure 2, we obtdinh 2, 4, 3,5). The big tree produces

(1,2,4,7,8,12,15,5,9,10,3,6, 11, 13, 14).

923. Post-order Traversal. If we perform Step 2 after Steps 1 and 3, the result is callegpdst-
order traversal of the tree:

POST(u) = | BASE|(u); POST (u.l ef t ); POST (u.ri ght );| VISIT |(u)]
Using the trees of Figure 2, we obtain the output sequefices5s, 3, 1) and
(7,15,12,8,4,9,10,5,2,13,14,11,6, 3, 1).

924. Applications of Tree Traversal: Shell Programming Tree traversals may not appear interest-
ing on their own right. However, they serve as shells for isgmany interesting problems. That is,
many algorithms can be programmed by taking a tree travensdl, and replacing the named macros
by appropriate code: for tree traversals, we have two suangsacalled BASE and VISIT.

To illustrate shell programming, suppose we want to comfhaeheight of each node of a BST.
Assume that each nodehas a variable. H that is to store the height of node If we have recursive
computed the values afl ef t .H andu.ri ght .H, then we see that the heightettan be computed
as

w.H =1+ max{uleft.H+uright.H}.

This suggests the use of post-order shell to solve the hergiiilem: We keep the previous BASE computing height in
subroutine, but modify’ 7,517 (u) to the following task: post-order

[VISIT J(u)

if (u.l eft =nil)then L «— —1.
else L —uleft.H.

if (u.ri ght =nil)then R «— —1.
else R « w.ri ght .H.

u.H «— 1+ max{L, R}.

On the other hand, suppose we want to compute the depth ofnealgh Again, assume each nade
stores a variable.D to record its depth. Then, assuming thab has been computed, then we could computing depth in
pre-order
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easily compute the depths of the childrenuaising
uleft.D=wuright.D=1+u.D.

This suggests that we use the pre-order shell for compugpthd

925. Return Shells. For some applications, we want a version of the above tralreositines that
return some value. We call them “return shells” here. Letlustrate this by modifying the postorder
shell POSTY{) into a new version rPOST§ which returns a value of tyg€. For instance]” might be
the type integer or the type node. The returned value fromrsae calls are then passed to the VISIT
macro:

RPOST()

[18ASE|w),

L — rPOST(u.l eft).
R — rPOST (u.ri ght).

(VST . L. 1)

Note that bothr BASE(u) andrVISIT (u, L, R) returns some value of tygg.

As an application of this rPOST routine, consider our prasisolution for computing the height of
binary trees. There we assume that every notlas an extra field called. H that we used to store the
height ofu. Suppose we do not want to introduce this extra field for emede. Instead of POS#),
we can use rPOST] to return the height of. How can we do this? First, BASE) should be modified
to return the height afil nodes:

RBASE(u)=
if (u=nil) Return(—1).

Second, we must re-visit the VISIT routine, modifying (siifying!) it as follows: no pun intended

RVISIT(u, L, R)
Return(l 4+ max{L, R}).

The reader can readily check that rPOST solves the heightgroelegantly. As another application
of such “return shell”, suppose we want to check if a binagg fis a binary search tree. This is explored
in Exercises below.

The motif of using shell programs such as BASE and VISIT wlfarther elaborated when we
study graph traversals. Indeed, we can view graph traeasad generalization of tree traversal. Using
shells is a great unifying aspect in the study of traverggb@hms: we cannot over emphasize this Pay attention when
point. the professor says this

EXERCISES
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Exercise 4.1: Give the in-order, pre-order and post-order listing of tlee in Figure 14. &

Exercise 4.2: Tree traversals.
(a) Let the in-order and pre-order traversal of a binary tfEewith 10 nodes be
(a,b,c,d e, f,g,h,i,5)and(f,d,b,a,c e h,g,j,1), respectively. Draw the treE.
(b) Prove that if we have the pre-order and in-order listihthe nodes in a binary tree, we can
reconstruct the tree.
(c) Consider the other two possibilities: (c.1) pre-orded g@ost-order, and (c.2) in-order and
post-order. State in each case whether or not they haverterggonstruction property as in (b).
If so, prove it. If not, show a counter example.
(d) Redo part(c) for full binary trees. Recall that in a fuilhary tree, each node either has no
children or 2 children. O

Exercise 4.3:
(a) Here is the set of keys from post-order traversal of arigina@arch tree:

2,1,4,3,6,7,9,11,10,8,5,13, 16, 15, 14, 12

Draw this binary search tree.
(b) Describe the general algorithm to reconstruct a BST fitsmost-order traversal. &

Exercise 4.4: Use shell programming to give an algorithm SIZE that returns the number of nodes
in the subtree rooted at Do not assume any additional fields in the nodes. &

Exercise 4.5: Let size(u) be the number of nodes in the tree rooted:atSay that node: is size-
balancedif
1/2 < size(u.l ef t)/size(u.ri ght) <2

where a leaf node is size-balanced by definition.

(a) Use shell programming to compute the routig:) which returnssize(u) if each node in
the subtree at is balanced, an@(u) = —1 otherwise. Do not assume any additional fields in
the nodes or that the size information is available.

(b) Suppose you know that.l eft andu.ri ght are size-balanced. Give a routine called
REBALANCE(u) that uses rotations to makebalanced. Assume each nodéas an ex-
tra fieldu.SIZ FE whose value isize(u) (you must update this field as you rotate).

O

Exercise 4.6: Show how to use the pre-order shell to compute the depth &f eade in a binary tree.
Assume that each nodehas a depth fieldy.D. &

Exercise 4.7: Give a recursive routine calledheck BST (u) which checks whether the binary trég
rooted at a node is a binary search tree (BST). You must figure out the inforomed be returned
by CheckBST (u); this information should also tell you wheth&y; is BST or not. Assume that
each non-nil node has the three fields,.key, .l ef t ,u.ri ght. &

Exercise 4.8: A student proposed a different approach to the previoustipumed et minBST (u) and
maxBST (u) compute the minimum and maximum keysTip, respectively. These subroutines
are easily computed in the obvious way. For simplicity, assall keys are distinct and # nil
in these arguments. The recursive subroutine is given kvl
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CheckBST(u)
> Returns largest key i, if T}, is BST
> Returns+oc if not BST
> Assume: is notnil
If (u.l eft #nil)
L — maxBST(u.l ef t)
If (L > u.key or L = o0) returno)
If (u.ri ght # nil)
R — minBST (u.ri ght)
If (R < u.key or R = o0) returno)
Return(CheckBST (u.l ef t ) A (CheckBST (u.ri ght)

Is this program correct? Bound its complexity. HINT: Let theot path length” of a node be the
length of its path to the root. The “root path length” of a iinkee T, is the sum of the root path
lengths of all its nodes. The complexity is related to thimber. &

Exercise 4.9: Like the previous problem, we want to check if a binary tree BST. Write a recursive
algorithm calledSlowBST (u) which solves the problem, except that the running time ofryou
solution must be provably exponential-time. If you likeuysolution may consist of mutually
recursive algorithms. Your overall algorithm must achiéivie exponential complexity without
any trivial redundancies. E.g., we should not be able totdskatements from your code and still
achieve a correct program. Thus, we want to avoid a trivilitemns of this kind:

SlowBST (u)
Compute the number of nodes inT;,
Do for 2™ times:
FastBST (u)

END EXERCISES

65. Variations on Binary Trees

This is an optional section, for those who wants a deeperrstateding of binary trees and their
applications. We will discuss extended binary trees, adteve ways to use binary trees in search
structures, and the notion of implicit binary search trees.

€26. Extended binary trees. There is an alternative view of binary trees; following Kin{#, p. 399],
we call themextended binary trees For emphasis, the original version will be caldndard binary
trees In the extended trees, every node basr 2 children; nodes with no children are calfexil
nodeswhile the other nodes are callethn-nil nodes See figure 10(a) for a standard binary tree
and figure 10(b) for the corresponding extended versionhimfigure, we see a common convention
(following Knuth) of representing nil nodes by black squsare

The bijection between extended and standard binary treggdn as follows:

A binary tree in which every node has 2 or 0 children is saidetsfbll”. Knuth calls the nil nodes “external nodes”. A path
that ends in an external node is called an “external path”.
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@

Figure 10: Binary Trees: (a) standard, (b) extended.

1. For any extended binary tree, if we delete all its nil nqdes obtain a standard binary
tree.

2. Conversely, for any standard binary tree, if we give eVeay two nil nodes as children
and for every internal node with one child, we give it one witia as child, then we obtain
a corresponding extended binary tree.

In view of this correspondence, we could switch between wWeeuiewpoints depending on which is

more convenient. Generally, we avoid drawing the nil nodesesthey just double the number of

nodes without conveying new information. In fact, nil nodasnot store data or items. One reason Who cares about nil
we explicitly introduce them is that it simplifies the degtion of some algorithms (e.g., red-black treaodes?

algorithms). The “nil node” terminology may be better amaged when we realize that in conventional

realization of binary trees, we allocate two pointers torgvede, regardless of whether the node has

two children or not. The lack of a child is indicated by makihg corresponding pointer take thi

value. We extend the notion of extended binary treext®@nded binary search tree Here, the non-nil

nodes store keys in the usual nodes but the nil nodes do mbkbgé (obviously).

The concept of a “leaf” of an extended binary tree is apt tctseaaome confusion: we shall use
the “leaf” terminology so as to be consistent with standanaty trees. A node of an extended binary
tree is called deaf if it is the leaf of the corresponding standard binary tretierhatively, a leaf in an
extended binary tree is a node with two nil nodes as childféns a nil node is never a leaf.

€27. Exogenous versus Endogenous Search StructurefRecall that each key is associated with
some data, and such key-data pairs constitute the itemgdoclsing. There are two ways to organize
such items. One way is to directly store the data with the Keye other way is for the key to be
paired with a pointer to the data. Followihgarjan [9], we call the latter organization @xogenous
search structure In contrast, if the data is directly stored with the key, isisendogenous search
structure. What is the relative advantage of either form? The exogemase has an extra level of
indirection (the pointer) which uses extra space. But orother hand, it means that the actual data can
be freely re-organized more easily and independently ofd¢faech structure. In databases, this freedom
is important, and the exogenous search structure are ¢allbekes”. Database users can freely create
and destroy such indexes for the set of items. This allowdlaatimn of items can be searched using
different search criteria. The concept(ef b)-trees below illustrates such exogenous search structures

€28. Duplicate keys. We normally assume that the keys in a BST are distinct unlg®eswise noted.
But let us now briefly consider BST whose keys are not necigsarique or distinct. One way to

"He used this classification for linked lists data structure.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic &fsion February 16, 2011



§5. VARIATIONS ON BINARY TREES Lecture lll Page 27

handle duplicate keys is to require the followiright-path rule : all items with the same key must lie
on consecutive nodes of some right-patte can view all the equal-key nodes on this right-path as a
super-node for the purposes of maintaining height-balhtrees such as AVL trees. Before discussing
how to maintain this right-path rule, let us discuss Homok Up must be modified. When we look up
on a keyk, we can just return the first node that contains theke&lternatively, if there is a secondary
key besides the (primary) key which might distinguish amtirgydifferent items with primary key,

we can search the right-path for this secondary key. Now wst modify all our algorithms to preserve
the right-path rule. In particular, insertion and rotat&irould be appropriately modified. What about
deletion? If the argument of deletion is the node to be déétés clearly easy to maintain this property.
If the argument of deletion is a kéy we can either delete all items whose ke isr rely on secondary
keys to distinguish among the items with kiey

Instead of the right-path rule, we could put all the equalikems in an auxiliary linked list attached
to a node. There are pros and cons in either approach. TH# fragh” organization of duplicate keys
do not need any auxiliary structures. If the expected nurobduplicated keys is small, it may be the
best solution.

929. Auxiliary Information. In many applications, additional information must be maiméd at
each node of the binary search tree. We already mentiongui¢decessor and successor links. Another
information is the the size of the subtree at a node. Someagifitformation is independent, while other
is dependent oderived. Maintaining the derived information under the variousragiens is usually
straightforward. In all our examples, the derived inforimiatis local in the following sense thahe
derived information at a node can only depend on the information stored in the subtree &ve will

say that derived information &rongly local if it depends only on the independent information at node
u, together with all the information at its children (whetlderived or independent).

€30. Parametric Binary Search Trees. Perhaps the most interesting variation of binary searastre
is when the keys used for comparisons are only implicit. Tifiermation stored at nodes allows us to
make a “comparison” and decide to go left or to go right at aenmat this comparison may depend on
some external data beyond any explicitly stored infornmatitve illustrate this concept in the lecture on
convex hulls in Lecture V.

€31. Implicit Binary Trees. By an implicit tree, we mean one that does not have expliditteos
which determine the parent/child relationships of nodes. eXample is théneap structure: this is
defined to be binary tree whose nodes are indexed by integiéws/iing this rule: the root is indexed
1, and if a node has indeX then its left and right children are indexed dyand2i + 1, respectively.
Moreover, if the binary tree has nodes, then the set of its indices is the §&t2,...,n}. A heap
structure can therefore be represented naturally by awg aifia.n], whereA[i] represents the node of
index:. If, at theith node of the heap structure, we store a Kgij and these keys satisfy theap
order property foreachi =1,...,n,

HOG): A[i] < min{A[2i], A[2i + 1]}. (4)

In (4), itis understood that #i > n (resp.,2i + 1 > n) then A[27] (4[2i + 1]) is taken to bex. Then
we call the binary tree beap. Here is an array that represents a heap:

A[1.9] = [1,4,2,5,6,3,8,7,9].

In the exercises we consider algorithms for insertion ardtide from a heap. This leads to a highly
efficient method for sorting elements in an array, in place.
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In general, implicit data structures are represented byriay avith some rules for computing the
parent/child relations. By avoiding explicit pointersg¢histructures can be very efficient to navigate.

EXERCISES

Exercise 5.1: Describe what changes is needed in our binary search tredthlgs for the exogenous
case. &

Exercise 5.2: Suppose we insist that for exogenous binary search tregsoéshe keys in the internal
nodes really correspond to keys in stored items. Describ@éitessary changes to the deletion
algorithm that will ensure this property. &

Exercise 5.3: Consider the usual binary search trees in which we no longgrmae that keys in the
items are unique. State suitable conventions for what tHewsoperations mean in this setting.
E.g.,l ookUp(K) means find any item whose keyis or find all items whose keys are equal to
K. Describe the corresponding algorithms. &

Exercise 5.4: Describe the various algorithms on binary search treesstoa¢ the size of subtree at
each node. &

Exercise 5.5: Recall the concept of heaps in the text. L&E1..n] be an array of real numbers. We call
A analmost-heap ati there exists a number such thatdfi] is replaced by this number, theh
becomes a heap. Of course, a heap is automatically an alreastt any.

(i) SupposeA is an almost-heap at Show how to convertl into a heap be pairwise-exchange
of array elements. Your algorithm should take no more tham exchanges. Call this the
Heapify(A,1i) subroutine.

(i) SupposeA[l..n] is a heap. Show how to delete the minimum element of the heapasthe
remaining keys in[1..n — 1] form a heap of size. — 1. Again, you must make no more than
lgn exchanges. Call this thBelete Min(A) subroutine.

(iii) Show how you can use the above subroutines to sort ayan-place inO(nlogn) time.

%

Exercise 5.6: Normally, each node: in a binary search tree maintains two fields, a key value and
perhaps some balance information, denatd¢EY and«.BALANCE, respectively. Suppose we
now wish to “augment” our tre@' by maintaining two additional fields calledPRIORITY and
u.MAX. Here,u.PRIORITY is an integer which the user arbitrarily assagsatith this node, but
u.MAX is a pointer to a node in the subtree at such that.PRIORITY is maximum among
all the priorities in the subtree at (Note: it is possible that = v.) Show that rotation in such
augmented trees can still be performed in constant time.

O

END EXERCISES

66. AVL Trees
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AVL trees is the first known family of balanced trees. By defari, an AVL tree is a binary search
tree in which the left subtree and right subtree at each nifde dy at mostl in height. They also have
relatively simple insertion/deletion algorithms.

More generally, define thiegalanceof any node of a binary tree to be the height of the left subtree
minus the height of the right subtree:

balance(u) = ht(u.l ef t) — ht(u.ri ght).

The node igerfectly balancedif the balance i9. It is AVL-balanced if the balance is eithey or +1.
Our insertion and deletion algorithms will need to know thédance information at each node. Thus we
need to store at each AVL node a 3-valued variable. TheaiBti¢chis space requirement amounts to
lg 3 < 1.585 bits per node. Of course, in practice, AVL trees will rese2\mts per node for the balance
information (but see Exercise).

Let us first prove that the family of AVL trees is a balancedifgnit is best to introduce the function
wu(h), defined as the minimum number of nodes in any AVL tree witlghih. The first few values are

:u(_l) =0, /L(O) =1, M(l) =2, /1(2) =4.

It seems clear that(0) = 1 since there is a unique tree with heightThe other values are not entirely
obvious. To sé&that(1) = 2, we must define the height of the empty tree te-beThis explains why
u(—1) = 0. We can verifyu(2) = 4 by case analysis.

Consider an AVL tred, of heighth and of sizeu(h) (i.e., it hasu(h) nodes). Clearly, among all
AVL trees of heighth, T}, has the minimum size. For this reason, we call ¢alla min-size AVL tree
(for heighth). Figure 11 shows the first few min-size AVL trees. Of course,can exchange the roles
of any pair of siblings of such a tree to get another min-sizé &ee. Using this, we could compute
the number of non-isomorphic min-sized AVL trees of a giveight. But we can define th@nonical
min-size AVL treesto be the ones in which the balance of each non-leaf nodé .idNote that we draw
such canonical trees in figure 11.

o gl SR

Ty T T T T

Figure 11: Canonical min-size AVL trees of heightd, 2, 3 and4.

In generalu(h) is seen to satisfy the recurrence
p(h) =1+ ph=1)+puh—-2),  (h=1). (5)

This equation says that the min-size tree of heiglaving two subtrees which are min-size trees of
heightsh — 1 andh — 2, respectively. For instancg(2) =1+ p(1) + u(0) =1+2+4+1 =4, aswe
found by case analysis above. We similarly check that therrence (5) holds foh = 1.

From (5), we haveu(h) > 2u(h —2) for h > 1. Itis then easy to see by induction that) > 2"/2
forall h > 1. Writing C' = /2 = 1.4142. . ., we have thus shown

p(h) >C" (b >1).

8For instance, if we say the height of the empty tree-io, thenp(1) = 3. This definition of AVL trees could certainly be
supported. See Exercise for an exploration of this idea.
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The next lemma improves this simple lower boundugh) and also provide a matching upper bound:
let p = 1*—2‘/3 > 1.6180. This is the golden ratio and it is easily seen to be the pesitot of the
quadratic equation? — x — 1 = 0. Hence$? = ¢ + 1 (in words: to square, you addl).

LEMMA 4. For h > 0, we have
¢" < p(h) < 26" (6)

Proof. First we proveu(h) > ¢": u(0) =1 > ¢% andu(1) = 2 > ¢*. Forh > 2, we have
p(h) > p(h = 1)+ p(h —2) > ¢" '+ "2 = (9 +1)¢" % = ¢".

Next, to proveu(h) < 2¢", we will strengthen our hypothesis igh) < 2¢" — 1. Clearly,u(0) = 1 <
2¢° —1andu(1) =2 < 2¢! — 1. Then forh > 2, we have

ph) =14+ph =1 +ph—2) <1+ (" =1+ (¢" 2 —1) =(p+1)¢" > —1=¢" - 1.
Q.E.D.

The bounds of this lemma are asymptotically tight; but arr@ge below will further sharpen the
estimate. Actually, it is the lower bound that is more impatt this lower bound says that min-size
AVL

Let us derive a consequence of the lower boung.@n). If an AVL tree has, nodes and heigtit
then
p(h) <n
by definition of.(h). The lower bound in (6) then implieg* < n. Taking logs, we obtain
h <logy(n) = (log, 2)lgn < 1.44041gn.

This constant of .44 is clearly tight in view of lemma 4. Thus the height of AVL tseare at most4%
more than the absolute minimum. We have proved:

COROLLARY 5. The family of AVL trees is balanced.

€32. Insertion and Deletion Algorithms. These algorithms for AVL trees are relatively simple, as
far as balanced trees go. In either case there are two phases:

UPDATE PHASE: Insert or delete as we would in a binary search tree. REMARK:assume here
the standarddeletion algorithm, not its rotational variant. Furthemaahe node containing the
deleted key and the node \paysicallyremoved may be different.

REBALANCE PHASE: Letx be the parent of node that was just inserted, orghsfsicallydeleted,
in the UPDATE PHASE. We now retrace the path frantowards the root, rebalancing nodes
along this path as necessary. For reference, call thisethedance path

It remains to give details for the REBALANCE PHASE. If evergde along the rebalance path
is balanced, then there is nothing to do in the REBALANCE PHAStherwise, let: be the first
unbalanced node we encounter as we move upwards:frtmthe root. It is clear that has a balance
of +2. In general, we fix the balance at the “current” unbalanceatéremd continue searching upwards
along the rebalance path for the next unbalanced node.u lb&t the current unbalanced node. By
symmetry, we may suppose thahas balanc@. Suppose its left child is nodeand has height + 1.
Then its right childv’ has heighti — 1. This situation is illustrated in Figure 12.

By definition, all the proper descendantsucdre balanced. The current heightois i + 2. In any
case, let the current heights of the childrenvdife 4, andh g, respectively.
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Figure 12: Node: is unbalanced after insertion or deletion.

€33. Insertion Rebalancing. Suppose that this imbalance came about because of anamsafthat
was the heights ofi,v and v’ before the insertion? It is easy to see that the previoushteigre
(respectively)

h+1,h,h—1.

The inserted node must be in the subtree rooted:atClearly, the heighté,, hr of the children ofv
satisfymax(hy, hr) = h. Sincev is currently balanced, we know thatin(hy,, hg) = horh — 1. But
in fact, we claim thatnin(hr,hr) = h — 1. To see this, note thatihin(hy, hg) = h then the height
of v beforethe insertion was alsb+ 1 and this contradicts the initial AVL property at Therefore, we
have to address the following two cases.

CASE (1.1):hy, = handhr = h — 1. This means that the inserted node is in the left subtree of
In this case, if we rotate, the result would be balanced. Moreover, the height isfh + 1.

CASE (1.2): h, = h — 1 andhgr = h. This means the inserted node is in the right subtree
this case let us expand the subtieeand letw be its root. The two children af will have heights of
h—1andh—1-—0 (5 = 0,1). Itturns out that it does not matter which of these is thedbifid (despite
the apparent asymmetry of the situation). If we double eotafi.e., r ot at e(w), r ot at e(w)), the
result is a balanced tree rootediabf heighth + 1.

In both cases (I.1) and (1.2), the resulting subtree hashhéig- 1. Since this was height before the
insertion, there are no unbalanced nodes further up thetpdtte root. Thus the insertion algorithm
terminates with at most two rotations.

For example, suppose we begin with the AVL tree in Figure Id we insert the keg.5. The
resulting transformations is shown in Figure 15.

€34. Deletion Rebalancing. Suppose the imbalance in Figure 12 comes from a deletionprEwv&ous
heights ofu, v, v’ must have been
h+2,h+1,h

and the deleted nodemust be in the subtree rootediat We now have three cases to consider:

CASE (D.1):hy = handhr = h — 1. This is like case (I.1) and treated in the same way, namely
by performing a single rotation at Now « is replaced by after this rotation, and the new heightof
ish + 1. Nowwu is AVL balanced. However, since the original heighkisg- 2, there may be unbalanced
node further up the root path. Thus, this is a non-terminsé¢ ¢ae., we have to continue checking for
balance further up the root path).
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rot at e(v) Q

D B
CASE (1.1)
r ot at e2(w) E\
C Dy Dgr é

CASE (1.2)

Figure 13: CASE (I.1)r ot at e(v), CASE (1.2):r ot at e2(w).

CASE (D.2): hy, = h — 1 andhg = h. This is like case (I.2) and treated the same way, by
performing a double rotation at. Again, this is a non-terminal case.

CASE (D.3):hy, = hr = h. This case is new, and is illustrated in Figure 16. We simptgte at.
We check thav is balanced and has height- 2. Sincew is in the place of: which has height + 2
originally, we can safely terminate the rebalancing preces

This completes the description the insertion and deletigariihms for AVL trees. In illustration,
suppose we delete kéy from Figure 14. After deleting3, the nodel 4 is unbalanced. This is restored
by a single rotation at5. Now, the root containing?2 is unbalanced. Another single rotationsatvill
restore balance. The result is shown in Figure 17.

Both insertion and deletion tak@(logn) time. In case of deletion, we may have to @¢log n)
rotations but a single or double rotation suffices for irieart

€35. Maintaining Balance Information. In order to carry out the rebalancing algorithm, we need

to check the balance condition at each nadelf node v stores the height of in some field,u.H

then we can do this check. If the AVL tree hasiodesu.H may needd(lglgn) bits to represent the

height. However, it is possible to get away with jadiits: we just need to indicate three possible states Hey,ought it is
(00,01, 10) for each node:. Let 00 mean that:..| eft andu.ri ght have the same height, and ©(lgn)!
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InsertQ.5)

Figure 15: Inserting.5 into an AVL tree

mean that..| ef t has height one less tharr i ght , and similarly for10. In simple implementations,
we could just use an integer to represent this informatioa.l&&ve it as an exercise to determine how
to use these bits during rebalancing.

€36. Relaxed Balancing. Larsen [5] shows that we can decouple the rebalancing of A®és from
the updating of the maintained set. In the semi-dynamic,dasenumber of rebalancing operations is
constant in an amortized sense (amortization is treatethapter 5).

EXERCISES

0 A r ot at e(v)

B

Figure 16: CASE (D.3)r ot at e(v)
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Delete(3)

rotate(15)

Figure 17: Deletind 3 from the AVL tree in Figure 14

Exercise 6.1: Let T be the AVL tree in Figure 3(a). As usual, show intermediated not just the final
one.
(a) Delete the key0 from T'.
(b) Insert the key.5 into T'. This question is independent of part (a).

Re-do parts (a) and (b), but using the AVL tree in Figure 3fisjéad. &

Exercise 6.2: Give an algorithm to check if a binary search tiees really an AVL tree. Your algorithm
should take time)(|T'|). HINT: Use shell programming.

&

Exercise 6.3: What is the minimum number of nodes in an AVL tree of height 10? &

Exercise 6.4: My pocket calculator tells me thaig,, 100 = 9.5699 - - -. What does this tell you about
the height of an AVL tree with 100 nodes? &

Exercise 6.5: Draw an AVL 7" with minimum number of nodes such that the following is trihere is
a noder in T such that if you delete this node, the AVL rebalancing wifjuee two rebalancing
acts. Note that a double-rotation counts as one, not twajaabing act. Draw" and the node..

&

Exercise 6.6: Consider the AVL tree in Figure 18.

8
S
/( VAN 6\/\9¥
2 4 6 /l% /15 /18 0

10 12 14 17
d

Figure 18: An AVL Tree for deletion

/

1

(a) Find all the keys that we can delete so that the rebalgrtiase requires two rebalancing
acts.

(b) Among the keys in part (a), which deletion has a doublatimh among its rebalancing acts?
(c) Please delete one such key, and draw the AVL tree aftér@dbe rebalancing acts. <
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Exercise 6.7: Consider the height range for AVL trees withhodes.
(a) What is the range for = 15? n = 20 nodes?
(b) Is it true that there are arbitrarily largesuch that AVL trees witih nodes has a unique height?

&

Exercise 6.8: Draw the AVL trees after you insert each of the following kéy® an initially empty
tree:1,2,3,4,5,6,7,8,9and thenl9, 18,17, 16, 15,14, 13,12, 11. &

Exercise 6.9: Insertinto an initially empty AVL tree the following sequamof keys:1,2, 3, ..., 14, 15.
(a) Draw the trees at the end of each insertion as well as @diein rotation or double-rotation.
[View double-rotation as an indivisible operation].
(b) Prove the following: if we continue in this manner, welkihve a complete binary tree at the
end of inserting kep™ — 1 foralln > 1. &

Exercise 6.10: Starting with an empty tree, insert the following keys in tlgiven order:
13,18,19,12,17,14,15,16. Now deletel8. Show the tree after each insertion and deletion.
If there are rotations, show the tree just after the rotation &

Exercise 6.11: Draw two AVL trees, withn keys each: the two trees must have different heights. Make
n as small as you can. O

Exercise 6.12: TRUE or FALSE: In CASE (D.3) of AVL deletion, we performed angle rotation at
nodev. This is analogous to CASE (D.1). Could we have also haveopmed a double rotation
atw, in analogy to CASE (D.2)? &

Exercise 6.13:Let M (h) be the number of non-isomorphic min-size AVL trees of heightGive a
recurrence fo/ (k). How many non-isomorphic min-size AVL trees are there ofh&3 and
4? Provide sharp upper and lower bounds\é(h). &

Exercise 6.14: Improve the lower boungi(h) > ¢" by taking into consideration the effects of 1”
in the recurrenc@(h) =1+ p(h — 1) + p(h — 2).
(@) Show thatu(h) > F(h — 1) + ¢" where F(h) is the h-th Fibonacci number. Recall that
F(h)=hforh=0,1andF(h) = F(h—1)+ F(h —2)forh > 2.
(b) Further improve (a). &

Exercise 6.15: Prove the following connection betweén(golden ratio) and,, (the Fibonacci num-
bers):
(bn:d)Fn‘i‘anla (7121)

Note that we ignore the case= 0. O

Exercise 6.16: Recall that at each nodeof the AVL tree, we can represent its balance state using a
2-bit field calledu. BAL whereu.BAL € {00,01,10}.
(a) Show how to maintain these fields during an insertion.
(b) Show how to maintain these fields during a deletion. &
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Exercise 6.17: Allocating one bit per AVL node is sufficient if we exploit tHact that leaf nodes are
always balanced allow their bits to be used by the interndesoWork out the details for how to
do this. O

Exercise 6.18:1t is even possible to allocate no bits to the nodes of a bisagych tree. The idea is to
exploit the fact that in implementations of AVL trees, thasp allocated to each node is constant.
In particular, the leaves have two null pointers which argdsdly unused space. We can use this
space to store balance information for the internal nodigsir& out an AVL-like balance scheme
that uses no extra storage bits. &

Exercise 6.19:Relaxed AVL Trees
Let us defineAVL(2) balance condition to mean that at each node in the binary tree,
|balance(u)| < 2.
(a) Derive an upper bound on the height of a AVL(2) treenamdes.
(b) Give an insertion algorithm that preserves AVL(2) treby to follow the original AVL inser-
tion as much as possible; but point out differences from tiggral insertion.
(c) Give the deletion algorithm for AVL(2) trees. &

Exercise 6.20: To implement we reserve 2 bits of storage per node to représehalance information.
This is a slight waste because we only use 3 of the four p@sgihlies that the 2 bits can represent.
Consider the family of “biased-AVL trees” in which the bataof each node is one of the values
b=-1,0,1,2.

(@) In analogy to AVL trees, defing(h) for biased-AVL trees. Give the general recurrence
formula and conclude that such trees form a balanced family.

(b) Is it possible to give a(log n) time insertion algorithm for biased-AVL trees? What can be
achieved? &

Exercise 6.21:We introduce a new notion of 'height’ of an AVL tree: If nodeis null, h/(u) =
—2 (this is new!), and ifu has no childreni’(u) = 0 (as usual). Recursivelyy’(u) = 1 +
max {h'(ur),h'(ur)} as before. Let '’AVL (AVL in quotes) trees refer be those sebat are
AVL-balanced using:’ as our new notion of height. We compare the original AVL tresth
"AVL trees.

(a) TRUE or FALSE: every 'AVL tree is an AVL tree.

(b) Lety/(h) be defined (similar ta(2) in the text) as the minimum number of nodes in an ’AVL’
tree of height:. Determiney’(h) for all h < 5.

(c) Prove the relationshig/ (h) = p(h) + F(h) whereF'(h) is the standard Fibonacci numbers.
(d) Give a good upper bound qri(h).

(e) What is one conceptual difficulty of trying to use the fanoif 'AVL trees as a general search
structure? &

Exercise 6.22: A node in a binary tree is said to ibell if it has exactly two children. Aull binary
tree is one where all internal nodes are full.
(a) Prove full binary tree have an odd number of nodes.
(b) Show that 'AVL' trees as defined in the previous questianfall binary trees. &

Exercise 6.23: The AVL insertion algorithm makes two passes over its sepath: the first pass is
from the root down to a leaf, the second pass goes in the eedeestion. Consider the following
idea for a “one-pass algorithm” for AVL insertion: duringetfiirst pass, before we visit a node
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u, we would like to ensure that (1) its height is less than ora¢do the height of its sibling.
Moreover, (2) if the height of: is equal to the height of its sibling, then we want to make sure
that if the height ofu is increased by, the tree remains AVL.

The following example illustrates the difficulty of desiggisuch an algorithm:

Imagine an AVL tree with a pattu, u1, . . ., ux) whereuy is the root ands; is a child ofu;_;.
We have 3 conditions:

(a) Let: > 1. Thenu, is a left child iff i is odd, and otherwise; is a right child. Thus, the path
is a pure zigzag path.

(b) The height ofu; isk — i (fori = 0,..., k). Thusuy is a leaf.

(c) Finally, the height of the sibling af; ish — i — 1.

Suppose we are trying to insert a key whose search path inthér@e is precisely(uo, . . . , ug).
Can we preemptively balance the AVL tree in this case?

END EXERCISES

§7. (a,b)-Search Trees

We consider another class of trees that is important in jpe@atspecially in database applications.
These are no longer binary trees, but are parametrized bgieschf two integers,

2<a<hb. (7)

An (a, b)-tree is a rooted, ordered tree with the following requirements:

e DEPTH BOUND: All leaves are at the same depth.

e BRANCHING BOUND: Letm be the number of children of an internal nodeln general, we
have the bounds
a<m<hb. (8)

The root is an exception, with the boudd m < b.

Figure 19: A(2, 3)-tree.
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To see the intuition behind these conditions, compare withry trees. In binary trees, the leaves do

not have to be at the same depth. To re-introduce some fligxibiio trees where leaves have the same

depth, we allow the number of children of an internal nodesigyover a larger rangle, b]. Moreover,
in order to ensure logarithmic height, we require 2. This means that if there leaves, the height is
at mostlog, (n) + O(1). Therefore(a, b)-trees forms a balanced family of trees.

The definition of(a, b)-trees imposes purely structural requirements. Figurdd$riates ar{a, b)-

tree for(a,b) = (2,3). But to use(a, b)-trees as a search structure, we need to store keys and items i

the nodes of the trees. These keys and items must be suitaayiped. Before giving these details,
we can build some intuition by studying an example of suchaacetree in Figure 20. Thit items
stored in this tree are all at the leaves, with the KBys 6, . .., 23,25, 27. As usual, we do not display
the associated data in items. The keys in the internal naglestdcorrespond to items.

sl o lof12]o]20le

/

ol2lelsle ol ol 1iloliclolisle] lo]22]0]2se] 25o

2 4 6 8 10 12 13

5 17 19 21 23 25 27

Figure 20: A (3,4)-search tree ad items

Recall thatan itemis gkey, dat a) pair. We define afa, b)-search treeto be an(a, b)-tree whose
nodes are organized as follows:

e LEAF: Each leaf stores a sequence of items, sorted by thgs. kdence we represent a leaf
with m items as the sequence,

u:(kl,dl,kg,dg,...,km,dm) (9)

where(k;, d;) is theith smallest item. See Figure 21(i). In practidemight only be a pointer to
the actual location of the data. We must consider two cd¢@N-ROOT CASE: suppose leat
is not the root. In this case, we require

a <m<¥b (20)

for somel < o/ < V. Here,(d/,t’) is an additional pair of parameters that are independent of

(a,b). For simplicity, we will usea’ = & = 1 in our illustrations. ROOT CASE: suppose:
is the root. Our requirements are relaxed somewha tg: m < 2b’" — 1. The reason for this
condition will become clear when we discuss the insertielefion algorithms.

e INTERNAL NODE: Each internal node witm children stores an alternating sequence of keys

and pointers (node references), in the form:

u:(p17k13p23k23p3a---7pmflakmflapm) (11)

wherep; is a pointer (or reference) to theh child of the current node. Note that the number of

keys in this sequence is one less than the numbef children. See Figure 21(ii). The keys are
sorted so that
ki <k < - <kpm_1.

Fori =1,...,m, each key in thei-th subtree of, satisfies

kicy <k <k, (12)
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with the convention thaty = —oo < k; < k,,, = +o0. Note that this is just a generalization of
the binary search tree property in (1).

[ (i) [ (b, o) | (s ) oo fol w ol o fefmle
T
AR
1<d <m<V 2<a<m<b
(i) Leaf Node Organization (ii) Internal Node Organization

Figure 21: Organization of nodes (n, b)-search trees

937. Choice of the(d’,b') parameters. Since thed', b’ parameters are independentab, it is

convenient to choose some default value for our discusdidn,®) trees. This decision is justified o', ') is implicit!
because the the dependence of our algorithms on’théparameters are not significant (and they play

roles analogous ta, b). There are two canonical choices: the simplest'is= ¥’ = 1. This means

each leaf stores exactly one item. All our examples (e.gurei 20) use this default choice. Another

canonical and perhaps more realistic choice is

ad=a, b =0 (13)

As usual, we assume that the set of items in@r)-search tree has unique keys. But as seen in
Figure 20, the keys in internal nodes may be the same as kéys iaaves.

[[el[s1] LLol]  [[sl] [[=[] [[e]]

|

2 5 6 8 10 13 18 21 23 29 33

Figure 22: A(2, 3)-search tree.

Another(a, b)-search tree is shown in Figure 22, for the casé) = (2, 3). In contrastto Figure 20,
here we use a slightly more standard convention of reprieggthie pointers as tree edges.

938. Special Cases dfa, b)-Search Trees. The earliest and simpleét, b)-search trees correspond
to the casda,b) = (2,3). These are calle@-3 treesand were introduced by Hopcroft (1970). By
choosing

b=2a—-1 (14)
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(for anya > 2), we obtain the generalization ¢2, 3)-trees calledB-trees These were introduced
by McCreight and Bayer [2]. Whefu,b) = (2,4), the trees have been studied by Bayer (1972) as
symmetric binary B-treesand by Guibas and Sedgewickz8-4 trees Another variant of 2-3-4 trees
isred-black trees The latter can be viewed as an efficient way to implement2+ges, by embedding
them in binary search trees. But the price of this efficiesoyamplicated algorithms for insertion and
deletion. Thus it is clear that the concept{afb)-search trees serves to unify a variety of search trees.
The terminology of a, b)-trees was used by Mehlhorn [7].

The B-tree relationship (14) is optimal in a certiisense. Nevertheless, there are other benefits in
allowing more general relationships betweeandb. E.qg., if we replace (14) by = 2a, the amortized
complexity of sucHa, b)-search trees algorithms can improve [3].

939. Searching. The organization of afu, b)-search tree supports an obvious lookup algorithm that
is a generalization of binary search. Namely, toldmkUp(key k), we begin with the root as the
current node. In general, if is the current node, we process it as follows, depending @thvehn it is a
leaf or not:

e Base Case: supposas a leaf node given by (9). K occurs inu ask; (for somei = 1,...,m),
then we return the associated ddta Otherwise, we return the null value, signifying search
failure.

e Inductive Case: supposeis an internal node given by (11). Then we find thiesuch that
ki1 < k < k; (with kg = —o0, k,,, = o0). Setp, as the new current node, and continue by
processing the new current node.

The running time of thé ook Up algorithm isO(hb) whereh is the height of th€a, b)-tree, and we
spendO(b) time at each node. The following bounds the heightaob)-trees:

LEMMA 6. An(a,b)-tree withn leaves has height satisfying

[log,, [n/b']] < h <1+ [log, [n/(2d")]]. (15)

Proof. The number’ of leaves clearly lies in the randén /b’ |, [n/a’]]. However, with a little
thought, we can improve it to:
L€ [[n/V], [n/d']].

(Why?) With height:, we must have at leagt"~! leaves. Hencén/a'| > ¢ > 2a"~'or|n/d’| /2 >
a"='. Sincea"~! is integer, we obtain|n/a’| /2| = [n/(2a')| > a""torh < 1 +log,(|n/(2a")]).
Again, sinceh is integer, this yieldd < 1 + |log,(|n/(2a")])]. For the lower bound oh, a similar
(but simpler) argument holds. Q.E.D.

This lemma implies
[logy, [n/b']] < 1 + |log, [n/(2a")]] . (16)
For instance, witm = 10° (a billion), (a,b) = (34,51) anda’ = ¥' = 1, this inequality is actually an
equality (both sides are equal@. It become a strict inequality for sufficiently large. For smalt,
the inequality may even fail. Hence it is clear that we neatitamhal inequalities on our parameters.

This lemma shows thdt, ' determine the lower bound anda’ determine the upper bound on
h. Our design goal is to maximize b, a’, b’ for speed, and to minimiz&/a for space efficiency (see
below). Typicallyb/a is bounded by a small constant close@s inB-trees.

9].e., assuming a certain type of split-merge inequalityicvlwe will discuss below.
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940. Organization within anode. The keys in a node of af, b)-tree must be ordered for searching,

and manipulation such as merging or splitting two list ofke@onceptually, we display them as in (11)

and (9). Since the number of keys is not necessarily a sma#itaat, the organization of these keys

is an issue. In practicé,is a medium size constant (sdy< 1000) anda is a constant fraction af.

These ordered list of keys can be stored as an array, a sorghpubly-linked list, or even as a balanced

search tree. These have their usual trade-offs. With ai arrbalanced search tree at each node, the

time spent at a node improves frat{(b) to O(log b). But a balanced search tree takes up more space

than using a plain array organization; this will reduce thlig ofb. Hence, a practical compromise is

to simply store the list as an array in each node. This achi@yk; b) search time but each insertion and

deletion in that node requir€3(b) time. When we take into account the effects of secondary mgmo

the time for searching within a node is negligible compaodatié time accessing each node. This argues

that the overriding goal in the design @f, b)-search trees should be to maximizanda. The central tenet of
(a,b)-trees!

941. The Standard Split and Merge Inequalities for(a, b)-trees. To support efficient insertion and
deletion algorithms, the parametersh must satisfy an additional inequality in addition to (7).i§h
inequality, which we now derive, comes from two low-leveleogtions on(a, b)-search tree. These
split andmerge operations are called as subroutines by the insertion aletiatealgorithms (respec-
tively). There is actually a family of such inequalitiest ke first derive the simplest one (“the standard
inequality™).

During insertion, a node with children may acquire a new child. Such a node violates the re-
quirements of arja, b)-tree, so an obvious response issgit it into two nodes with[ (b + 1)/2] and
[(b+ 1)/2] children, respectively. In order that the result is(anb)-tree, we require the following

split inequality:
a< LHTlJ . (17)

Similarly, during deletion, we may remove a child from a ndbat hasa children. The resulting
node witha — 1 children violates the requirements of &n b)-tree. So we may consider borrowing a
child from one of itssiblings (there may be one or two siblings), provided the sibling hasenthan

a children. If this proves impossible, we are forcechterge a node witha — 1 children with a node
with a children. The resulting node has — 1 children, and to satisfy the branching factor bound of
(a,b)-trees, we havéa — 1 < b. Thus we require the following merge inequality:

bt1
a< % (18)

Clearly (17) implies (18). However, sineeandb are integers, the reverse implication also holds! Thus
(17) and (18) are equivalent. The smallest choices of thasenpeters under the inequalities and also
(7)is (a,b) = (2,3), which has been mentioned above. The case of equality inafid)18) gives us

b = 2a — 1, which leads to precisely thB-trees. Sometimes, the conditibn= 2a is used to define
B-trees; this behaves better in an amortized sense (seedp, Ch5.3.1]).

942. How to Split, Borrow, and Merge. First, we discuss thgeneral casef internal nodes that are
non-root. The special case of leaves and root will be diszliker.

Suppose we need to split because an insertion into causateanm haveb + 1 children. This is
illustrated in Figure 23. We spliv into two new nodesV, N2, one node with (b + 1)/2] pointers
and the other with (b + 1) /2] pointers. The parent af will replace its pointer taV with two pointers
to V; and N,. But what is the key to separate the pointers\toand No? The solution is to use a key
from N: there are keys in the original node, but only— 1 will be needed by the two new nodes. The
extra key can be moved in the parent node as indicated.
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| fofe[7] ] [ofe]a o] ]
split
—_—
ol 1]e2]e 3jo] 4o Sle] cle N 1le2le] . le[4le[sle e
b =t+1)/2= —Ff(b+1)/2—

Figure 23: Splitting:N splits intoNy, N1, (a,b) = (3, 6) illustrated

Next, suppose a deletion caused’anode to haver — 1 children. First we try to borrow from a
sibling if possible. This is because after borrowing, theatancing process can stop. To borrow, we Do not borrow from
look to a sibling (left or right), provided the sibling has mahana children. This is illustrated in a cousin or distant
Figure 24. Suppos#® borrows a new from its sibling/. After borrowing,N will have a children, but cousins. Why?
it will need a key to separate the new pointer from its adjapeinter. This key is taken from its parent
node. SincéV/ lost a child, it will have an extra key to spare — this can bd seits parent node.

| [ole[2p]s] | | [olef 18] s]

borrow
\ donate / \\
N:lo[1le] a.lef3e[4le[s]e N:jo 1o 20 Mo 4 o] 5o

= >a

-~ >a

l

Figure 24: Borrowing:N borrows fromM, (a,b) = (3, 6) illustrated

If NV is unable to borrow, we resort to merging: gt be a sibling ofN. Clearly M hasa children,
and so we can merge/ andN into a new nodéV’ with 2a — 1 children. Note thafV’ needs an extra
key to separate the pointers &f from those ofM. This key can be taken from the parent node; the

parent node will not miss the loss because it has lost ond phihter in the merge. This is illustrated
in Figure 25.

[ole[2/8]s] | | [ofof5] |

merge
_—

N: M :
Ta-1

=
(@]
|
| @ |
=]
(@]

o 2o 2o 4o

_ o — 2a—1

Figure 25: MergingN and M merges intaV’, (a,b) = (3, 6) illustrated

Once the above three basic operations are understood, wacar general algorithm for insertion
and deletion. This will be explained after we take care ofmioee detail — the case of roots and leaves.

The careful reader will notice an asymmetry in the abovedipm®cesses. We have the concept of
borrowing, but it as much sense to talk about its inverseatfmer, donation. Indeed, if we simply reverse
the direction of transformation in Figure 24, we have theatimm operation (nod& donates a key to
nodeM). Just as the operation of merging can sometimes be predioptsorrowing, the operation of
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splitting can sometimes be preempted by donation! This isusoally discussed in algorithms in the
literature. Below we will see the benefits of this.

943. Treatment of Leaves and Root. Consider splits at the root, and merges of children of th& roo

(i) Normally, when we split a node, its parent gets one extra child. But wherns the root, we
create a new root with two children. This explains the exicepive allow for roots to have betweén
andb children.

(i) Normally, when we merge two siblingsandwv, the parent loses a child. But when the parent is
the root, the root may now have only one child. In this cased@lete the root and its sole child is now
the root.

Note that (i) and (ii) are thenly means for increasing and decreasing the height ofdhig-tree.

Now consider leaves: in order for the splits and merges afleto proceed as above, we need the
analogue of the split-merge inequality,
b +1
< ;r . (19)

Finally, consider the case where the root is also a leaf. \Waaizreat it like an ordinary leaf having
betweer:’ to o’ items. Suppose the parametefsd;, control the minimum and maximum number of
items in a leaf. Let us determine constraintsipfandd; (relative toa’, b’). Initially, there may be no
items in the root, so we must lef, = 0. Also, when the number of items excelgd we must split into
two or more children with at least items. The standard literature allows the root to have 2o
and this require8a’ < b(,+1 (like the standard split-merge inequality). Hence we regffj < 2a’—1.
notb, < 2af — 1

In practice, it seems better to allow the root to have a laggree than a small degree. Thus, we
might even want distinguish between leaves that are nots-eoal the very special case of a root that is
simultaneously a leaf. Such alternative designs are es@lorExercises.

944. Mechanics of Insertion and Deletion. Both insertion and deletion can be described as a re-
peated application of the following while-loop:
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> INITIALIZATION

To insert an iterk, d) or delete a key:, we first do a lookup off.

Let u be the leaf wheré is found.

Bring u into main memory and perform the indicated operation.

Call u thecurrent node.

> MAIN LOOP

while « is overfull or underfull, do:

1. Ifuisroot, handle as a special case and terminate.

2. Bring the parent of u into main memory. < No need if caching is used

3. Depending on the case, some siblingsu,, etc, ofu may be brought into main memory.

4. Do the necessary transformationsiand its siblings and in the main memory.
< While in main memory, a node is allowed to to have more thamnless tharu children
< We may have created a new node or deleted a node

5.  Write back into secondary memory all the children of

6. Makewv our new current node (rename it@sand repeat this loop.

Write the current node to secondary memory and terminate.

Insert(14)

sl o lol 12 ol 20 ] ol o [l 12fel20 )
ol 2 lols lo] lolo lolole] [o[1felclo[ 7] lo]22]a]2s]o] 5[] ol Lol lof [olo loluolel lolsslel 1slel 1o lurlo] w W W W
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Donate 13 uuuu
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bl

8 10 12 13 14 15 17 19

Figure 26: Inserting4 into (3, 4, 2)-tree.

Insertion Example: Consider inserting the item (represgby its key)l 4 into the tree in Figure 20.
This is illustrated by Figure 26. Note that= 0’ = 1. After insertingl4, we get an overfull node with
5 children. Suppose we first try to donates to our left sibliimgthis case, this is possible since the left
sibling has less tha# children.

But imagine that a slightly different algorithm which trigsfirst donate to the right sibling. In this
case, the donation fails. Then our algorithm requires useémgmwith the right sibling and then split
into 3 nodes. Of course, it is also possible to imagine a mavidere we try to donate to the left sibling
if the right sibling is full. This variant may be slower siniténvolves bringing an additional disk 1/0.
The tradeoff is that it leads to better space utilization.

Deletion Example: Consider deleting the item (represehyeits key)4 from the tree in Figure 20.
The is illustrated in Figure 27. After deleting the current node is underfull. We try to borrow from
the right sibling, but failed. But the right sibling of theyfit sibling could give up one child.

One way to break down this process is to imagine that we mengigh the 2 siblings to its right
(a 3-to-1 merge) to create supernode. This requires bigngpme keysq and12) from the parent of
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Delete(4)
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Figure 27: Deletingl from (3, 4, 2)-tree.

u into the supernode. The supernode has 9 children, which wesgiét evenly into 3 nodes (a 1-3
split). These nodes are inserted into the parent. Note thatkand14 are pushed into the parent. An
implementation should be able combine this merge-theihsipps into one more efficient process.

945. Achieving2/3 Space Utility Ratio. A node withm children is said to bé&ull whenm = b; for

in general, a node with: children is said to bém /b)-full. Hence, nodes can be as smallagb)-full.
Call the ratioa : b thespace utilization ratio. The standard inequality (18) dn, b)-trees implies that
the space utilization in such trees can né¥be better than(b + 1)/2] /b, and this can be achieved by
B-trees. This ratio is as large s 3 (achieved whem = 3), but asb — oo, it is asymptotically only
slightly larger tharl : 2. We now address the issue of achieving ratios that are aribjtclose tol, for
any choice ofz, b. First, we show how to achiex&'3 asymptotically.

Consider the following modified insertion: to removearerfull nodeu with b + 1 children, we
first look at a sibling to see if we camlonatea child to the sibling. Ifv is not full, we may donate to
v. Otherwisey is full and we can take th2b + 1 children inu andv, and divide them into 3 groups as
evenly as possible. So each group has betwéei+ 1)/3| and[(2b+ 1)/3] keys. More precisely,
the size of the three groups are

[(2b+1)/3], [(2b+1)/3], [(2b+1)/3]

where|(2b + 1)/3] denotegounding to the nearest integer. Nodesandwv will (respectively) have
one of these groups as their children, but the third groupb&ikchildren of a new node. See Figure 28.

We want these groups to have betweeandb children. The largest of these groups has at most
children (assuming > 2). However, for the smallest of these groups to have at leas$ildren, we

require
a< FZ’T“J . (20)

This process of merging two nodes and splitting into thredesas calledyeneralized splitbecause it
involves merging as well as splitting. Letbe the parent ofi andv. Thus,w will have an extra child
v after the generalized split. i is now overfull, we have to repeat this proceswat

10The ratioa : b is only an approximate measure of space utility for varieesons. First of all, it is an asymptotic limit as
b grows. Furthermore, the relative sizes for keys and paraéso affect the space utilization. The radia b is a reasonable
estimate only in case the keys and pointers have about the siam
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Figure 28: Generalized (2-to-3) split

Next consider a modified deletion: to removelwarderfull nodeu with a — 1 nodes, we again look
at an adjacent sibling to borrow a child. If v hasa children, then we look at another sibling to
borrow. If both attempts at borrowing fails, we merge $ae— 1 childrert! the nodes:, v, v’ and then
split the result into two groups, as evenly as possible. Aghis is ageneralized mergethat involves
a split as well. The sizes of the two groups &(8a — 1)/2] and[(3a — 1)/2] children, respectively.
Assuming

a >3, (22)
v andv’ exists (unless is a child of the root). This means

Because of integrality constraints, the floor and ceilingisgls could be removed in both (20) and (22),
without changing the relationship. And thus both ineqyalite seen to be equivalent to

2b+1

<
“="3

(23)

As in the standarda, b)-trees, we need to make exceptions for the root. Here, thebaum of
children of the root satisfies the boudd< m < b. So during deletion, the second siblingmay not
exist if u is a child of the root. In this case, we can simply merge thellewodesyu andwv. This merger
is now the root, and it ha&z: — 1 children. This suggests that we allow the root to have batwesnd
max{2a — 1, b} children.

Sharing with cousins?In the above attempt to fix an overfull nodevith b+ 1 children, we first
try see to donate a child to a sibling Likewise, to fix an underfull node with ¢ — 1 children, we
first try to borrow a child from a sibling. By definition, two nodes., v are siblings of each other if
v andu share a common pareat Now, the children ofv are linearly ordered; < us < -+ < um,
in a natural way, based on their keys. We sayu;;: aredirect siblingsfor: = 1,...,m — 1.
So each node; (1 < ¢ < m) has 2 direct siblings; but; andu., has only 1 direct sibling. Itis
important to realize thad node carshare (i.e., borrow or donate) with a direct sibling onlyn an
Exercise, we consider a relaxed sharing condition, whesblaying can be done betweerandw if
they aredirect cousins

If we view b as a hard constraint on the maximum number of children, therohly way to allow
the root to havenax{2a — 1,b} children is to insist thaa — 1 < b. Of course, this constraint is
just the standard split-merge inequality (18); so we ar&basquare one. This says we must treat the
root as an exception to the upper bound.ofndeed, one can make a strong case for treating the root
differently:

1INormally, we expect, v’ to be immediate siblings af (to the left and right of.). But if « is the eldest or youngest sibling,
then we may have to look slightly farther for the second sibli
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(1) Itis desirable to keep the root resident in memory afmés, unlike the other nodes.
(2) Allow the root to be larger thalhcan speed up the general search.

The smallest example of @/3)-full tree is where(a, b) = (3,4). We have already seen(3, 4)-
tree in Figure 20. The nodes of such trees are actdalyfull, not 2/3-full. But for largeb, the “2/3”
estimate is more reasonable.

946. Exogenous and Endogenous Search StructuresSearch trees store items. But where these
items are stored constitute a major difference betw@eh)-search trees and the binary search trees
which we have presented. Itemg(in b)-search trees are stored in the leaves only, while in bireaych
trees, items are stored in internal nodes as well. Tarjap.[9] calls a search structuexogenousf it
stores items in leaves only; otherwise ieisdogenous

The keys in the internal nodes 6d, b)-search trees are used purely for searching: they are not
associated with any data. In our description of binary de&rees (or their balanced versions such as
AVL trees), we never explicitly discuss the data that areeissed with keys. So how do we know that
these data structures are endogenous? We deduce it frorhgbevation that, in looking up a keyin
a binary search tree, i is found in an internal node, we stop the search and returnImplicitly, it
means we have found the item with kiyeffectively, the item is stored in). For (a, b)-search tree,
we cannot stop at any internal node, but must proceed untiéaeh a leaf before we can conclude that
an item with keyk is, or is not, stored in the search tree. Itis possible to fgdadnary search trees so
that they become exogenous (Exercise).

There is another important consequence of this dual roleys kn(a, b)-search trees. The keys in
the internal noderseed not be the keys of items that are stored in the leaV¥éss is seen in Figure 22 Can’t we require the
where the keyd in an internal node does not correspond to any actual iterhertree. On the other keys in internal nodes
hand, the key 3 appears in the leaves (as an item) as well as in an internal nod to correspond to keys
of stored items?

947. Database Application. One reason for treatinga, b)-trees as exogenous search structures
comes from its applications in databases. In databasertelogiy,(a, b)-search tree constitute amdex

over the set of items in its leaves. A given set of items carelmugre than one index built over it. If
that is the case, at most one of the index can actually stereriginal data in the leaves. All the other
indices must be contented to point to the original data, the.d; in (9) associated with key; is not

the data itself, but a reference/pointer to the data stdssdvbere. Imagine a employee database where
items are employee records. We may wish to create one indedhan social security numbers, and
another index based on last names, and yet another basedm@ssid/Ve chose these values (social se-
curity number, last name, address) for indexing becausésrasches in such a data base is presumably
based on these values. It seems to make less sense to builtkarbased on age or salary, although we
could.

€48. Disk I/O Considerations: How to choose the parameteb. There is another reason for pre-
ferring exogenous structures. In databases, the numbé&so§iis very large and these are stored in
disk memory. If there are items, then we need at leastd’ internal nodes. This many internal nodes
implies that the nodes of the:, b)-trees is also stored in disk memory. Therefore, while $eagc
through the(a, b)-tree, each node we visit must be brought into the main merimory disk. The 1/0O
speed for transferring data between main memory and dighasvely slow, compared to CPU speeds.
Moreover, disk transfer at the lowest level of a computeraigation takes place in fixed sibéocks

(or pages). E.g., in UNIX, block sizes are traditionally 3#%2es but can be as large as 16 Kbytes. To
minimize the number of disk accesses, we want to pack as meysyikto each node as possible. So the
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ideal size for a node is the block size. Thus the parantedéra, b)-trees is chosen to be the largest Paraméter deter-
value so that a node has thisck size. Below, we discuss constraints on how the paramésechosen. mined by block size

If the number of items stored in tHe, b)-tree is too many to be stored in main memory, the same
would be true of the internal nodes of the b)-tree. Hence each of these internal nodes are also stored
on disk, and they are read into main memory as needed. ThakUp, i nsertanddel et e are
known assecondary memory algorithmsbecause data movement between disk and main memory

must be explicitly invoked. Typically, it amounts to bringi a specific disk block into memory, or
writing such a block back to disk.

949. On (a,b, c)-trees: Generalized Split-Merge for (a, b)-trees. Thus insertion and deletion al-
gorithms uses the strategy of “share a key if you can” in otdeavoid splitting or merging. Here,
“sharing” encompasses borrowing as well as donation. ZFBespace utility method will now be gen-

eralized by the introduction of a new parameter 1. Call thes€a, b, ¢)-trees We use the parameter
c as follows.

e Generalized Splitof u: When node. is overfull, we will examine up te — 1 siblings to see if we
can donate a child to these siblings. If so, we are done. @therwe merge nodes (node plus
c— 1 siblings), and split the merger inte+ 1 nodes. We viewe of these nodes as re-organizations
of the original nodes, but one of them is regarded as new. W& imsert this new node into the
parent ofu. The parent will be transformed appropriately.

e Generalized Mergeof u: When nodeu is underfull, we will examine up te siblings to see if
we can borrow a child of these siblings. If so, we are done.eflse, we merge + 1 nodes
(nodeu plus ¢ siblings), and split the merger intonodes. We view: of the original nodes as
being re-organized, but one of them being deleted. We mustdklete a node from the parent of
u. The parent will be transformed appropriately.

In summary, the generalized merge-split(af b, c)-trees transforms nodes intoc + 1 nodes, or
vice-versa. Whemr = 1, we have theB-trees; where = 2, we achieve th@/3-space utilization ratio
above. In general, they achieve a space utilization ratic @f+ 1 which can be arbitrarily close to(we
also need — o0). Our(a, b, ¢)-trees must satisfy the followingeneralized split-merge inequality

chb+1
c+1°

The lower bound on ensures that generalized merge or split of a node will always enough siblings.
In case of merging, the current node has 1 keys. When we fail to borrow, it means thasiblings
havea keys each. We can combine all thege + 1) — 1 keys and split them inte new nodes. This
merging is valid because of the upper bound (24)0im case of splitting, the current node Has 1
keys. If we fail to donate, it means that- 1 siblings have) keys each. We combine all thegle+ 1
keys, and split them inte+ 1 new nodes. Again, the upper bound®(R24) guarantees success.

c+1<a< (24)

We are interested in the maximum valueaah (24). Using the fact that is integer, this amounts
b+ 1
a-{c+ J. (25)
c+1

The correspondingy, b, ¢)-tree will be called yeneralized B-tree Thus generalized B-trees are spec-
ified by two parameter$,andc.

to

Example: What is the simplest generalized B-tree whete3? Thenb > a > ¢+ 1 = 4. So the
smallest choices for these parameters(aré, c) = (4, 5, 3).
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950. Using thec parameter. An (a, b, ¢)-trees is structurally indistinguishable from @n b)-tree. In
other words, the set of all, b, ¢) trees and the set of ali, b) trees are the same (“co-extensive”). For
any(a, b) parameter, we can compute the smaltestich that this could be @, b, c)-tree.

Therefore, we can freely modify theas we wish. The-parameter is only used during algorithm
insertion/deletion, and this can be stored as a global bi&riakE.g.,c can be a static member of the
(a, b, ¢) class, if we implement this usir@t++). Why would we want to modify? Increasing improves
space utilization but slows down the insertion/deletioocess. Therefore, we can begin with= 1,
and as space becomes tight, we slowly increagend conversely we can decreasas space becomes
more available. This flexibility a great advantage of thmarameter.

951. A Numerical Example. Let us see how to choose the b, ¢c) parameters in a concrete setting.
The nodes of the search tree are stored on the disk. The rassisned to be always in main memory.
To transfer data between disk and main memory, we assume &-liké¢l environment where memory
blocks have size 0512 bytes. So that is the maximum size of each node. The readingiting

of one memory block constitute one disk access. Assume #udt pointer ist bytes and each key
6 bytes. So each (key,pointer) pair usésbytes. The value ob must satisfyl0b < 512. Hence
we choosé = |512/10] = 51. Suppose we want = 2. In this case, the optimum choice ofis

a= {chillJ = 34.

To understand the speed of using s@h 51, 2)-trees, assume that we store a billion items in such
a tree. How many disk accesses in the worst is needed to leokitpm? The worst case is when the
root has2 children, and other internal nodes tsaischildren (if possible). A calculation shows that the
height is6. Assume the root is in memory, we need ofilplock 1/0s in the worst case. How many
block accesses for insertion? We need to readdes and write out+ 1 nodes. For deletion, we need
to readc + 1 nodes and write nodes. In either case, we hae+ 1 nodes per level. Witk = 2 and
h = 6, we have a bound of 30 block accesses.

For storage requirement, let us bound the number of bloakdetbto store the internal nodes of this
tree. Let us assume each data iter iy/tes (it is probably only a pointer). This allows us to corgu

the optimum value of’, b’. Thusd’ = [512/8] = 64. Also,a’ = B:?J = 43. Using this, we can

now calculate the maximum and number of blocks needed byatarsdructure (use Lemma 6).

952. Preemptive or 1-Pass Algorithms. The above algorithm uses 2-passes through nodes from the
root to the leaf: one pass to go down the tree and another pags tip the tree. There is a 1-pass
versions of these algorithms. Such algorithms could p@tynbe twice as fast as the corresponding
2-pass algorithms since they could reduce the bottlenesdkIdD. The basic idea is to preemptively
split (in case of insertion) or preemptively merge (in cakdedetion).

More precisely, during insertion, if we find that the currante is already full (i.e., haschildren)
then it might be advisable to splitat this point. Splitting: will introduce a new child to its parent,
We may assume thatis already in core, and by induction,is not full. Sov can accept a new child
without splitting. In case of standai@-trees ¢ = 1), this involves no extra disk 1/0. Such preemptive
splits might turn out to be unnecessary, but this extra sosegligible when the work is done in-core.
Unfortunately, this is not true of generalizétttrees since a split requires looking at siblings which
must be broughtin from the disk. Further studies would belade

For deletion, we can again do a preemptive merge when therdurode. hasa children. Unfortu-
nately, even for standarBi-trees, this may involve extra disk I/O because we need ttotdonate to a
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sibling first.

But there is another intermediate solution: instead of p@e&/e merge/split, we simplgachethe
set of nodes from the root to the leaf. In this way, the seca@sd ploes not involve any disk I/O, unless
absolutely necessary (when we need to split and/or mergejnodern computers, main memory is
large and storing the entire path of nodes in the 2-passitigoseems to impose no burden. In this
situation, the preemptive algorithms may actually be skdiven a 2-pass algorithm with caching.

€53. Background on Space Utilization. Using thea : b measure, we see that standardrees have
about50% space utilization. Yao showed that in a random insertion ehatthe utilization is about
lg2 ~ 0.69%. (see [7]). This was the beginning of a technique calledfe analysis” which Yao [10]
introduced in 1974. Nakamura and Mizoguchi [8] indepenigettiscovered the analysis, and Knuth
used similar ideas in 1973 (see the survey of [1]).

Now consider the space utilization ratio of generalizedrees. Under (25), we see that the ratio
a:bis (‘ibjll) : b, and is greater tham: ¢ + 1. In casec = 2, our space utilization that is close 2.
Unlike fringe analysis, we guarantee this utilization ie thorst case. It seems that most of the benefits

of (a,b, c)-trees are achieved with= 2 or ¢ = 3.

EXERCISES

Exercise 7.1: What is the the best ratio achievable under (18)? Under (23)? &

Exercise 7.2: Give a more detailed analysis of space utilization basedarameters for (A) a key
value, (B) a pointer to a node, (C) either a pointer to an itenthe exogenous case) or the data
itself (in the endogenous case). Suppose we kdndes to store a key valug pytes for a pointer
to a node, and bytes for a pointer to an item or for the data itself. Exprégsdpace utilization
ratio in terms of the parameters

a,b,k,p,d

assuming the inequality (18). &

Exercise 7.3: Describe the exogenous version of binary search trees. tBévisertion and deletion
algorithms. NOTE: the keys in the leaves are now viewed asgates for the items. Moreover,
we allow the keys in the internal nodes to duplicate keys énlélaves, and it is also possible that
some keys in the internal nodes correspond to no stored item. &

Exercise 7.4: Consider the tree shown in Figure 20. Although we previouswed it as &3, 4)-tree,
we now want to view it as €2, 4)-tree. For insertion/deletion we further treat it a2a4, 1)-tree.
(a) Insert an item (whose key i$)} into this tree. Draw intermediate results.
(b) Delete the item (whose key ig)from this tree. Draw intermediate results. &

Exercise 7.5: To understand the details of insertion and deletion algoritin (a, b, ¢)-trees, we ask
you to implement in your favorite language (we like Java)ftilowing two (2, 3, 1)-trees and
(3,4, 2)-trees. O

Exercise 7.6: Is it possible to desigfu, b, ¢) trees so that the root is not treated as an exception®
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Exercise 7.7: Suppose we want the root, if non-leaf, to have at leadtildren. But we now allow it to
have more than children. This is reasonably, considering that the rootuhprobably be kept
in memory all the time and so do not have to obeyititenstraint. Here is the idea: we allow the
root, when it is a leaf, to have up tda — 1 items. Here(a', V') is the usual bound on the number
of items in non-root leaves. Similarly, when it is a non-|egifias between andmax{a® — 1, b}
children. Show how to consistently carry out this policy. &

Exercise 7.8: Our insertion and deletion algorithms tries to share (@lenate or borrow) children from
siblings only. Suppose we now relax this condition to alltvarsng among “cousins”. Consider
all the nodes in a given level: two nodes nodes arecousinsof each other if they belong to
the same level but they are not siblings. All the node§ = 1,..., M) in a given level can be
sorted based on their keys, < v < --- < vys. If v;,v,41 are not siblings, then we call them
direct cousins Modify our insert/delete algorithms so that we try to shaith direct siblings or
cousins before doing the generalized split/merge. &

Exercise 7.9: We want to explore the weight balanced versioab)-trees.
(a) Define such trees. Bound the heights of your weight-lc&ldfu, b-trees.
(b) Describe an insertion algorithm for your definition.
(c) Describe a deletion algorithm. &

Exercise 7.10:How can we choose theparameter (see (25)) in generalizBerees in a more relaxed
manner so that the repeated splits/merges during insextideletions are minimized?

END EXERCISES
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