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“Trees are the earth’s endless effort to speak to the listening heaven.”

– Rabindranath Tagore, Fireflies, 1928

Alice was walking beside the White Knight in Looking Glass Land.
”You are sad.” the Knight said in an anxious tone: ”let me singyou a song to comfort you.”
”Is it very long?” Alice asked, for she had heard a good deal ofpoetry that day.
”It’s long.” said the Knight, ”but it’s very, very beautiful. Everybody that hears me sing it
- either it brings tears to their eyes, or else -”
”Or else what?” said Alice, for the Knight had made a sudden pause.
”Or else it doesn’t, you know. The name of the song is called ’Haddocks’ Eyes.’”
”Oh, that’s the name of the song, is it?” Alice said, trying tofeel interested.
”No, you don’t understand,” the Knight said, looking a little vexed. ”That’s what the name
is called. The name really is ’The Aged, Aged Man.’”
”Then I ought to have said ’That’s what the song is called’?” Alice corrected herself.
”No you oughtn’t: that’s another thing. The song is called ’Ways and Means’ but that’s
only what it’s called, you know!”
”Well, what is the song then?” said Alice, who was by this timecompletely bewildered.
”I was coming to that,” the Knight said. ”The song really is ’A-sitting On a Gate’: and the
tune’s my own invention.”
So saying, he stopped his horse and let the reins fall on its neck: then slowly beating time
with one hand, and with a faint smile lighting up his gentle, foolish face, he began...

– Lewis Carroll, Alice Through the Looking Glass, 1865

Lecture III
BALANCED SEARCH TREES

Anthropologists inform us that there is an unusually large number of Eskimo words for snow. The
Computer Science equivalent of ‘snow’ is the ‘tree’ word:(a, b)-tree, AVL tree,B-tree, binary search
tree, BSP tree, conjugation tree, dynamic weighted tree, finger tree, half-balanced tree, heaps, interval
tree, leftist tree,kd-tree, quadtree, octtree, optimal binary search tree, priority search tree, R-trees,
randomized search tree, range tree, red-black tree, segment tree, splay tree, suffix tree, treaps, tries,
weight-balanced tree, etc. I have restricted the above list to trees which are used as search data
structures. If we include trees arising in specific applications (e.g., Huffman tree, DFS/BFS tree, alpha-
beta tree), we obtain an even more diverse list. The list can be enlarged to include variants of these
trees: thus there are subspecies ofB-trees calledB+- andB∗-trees, etc.

If there is a most important entry in the above list, it has to be binary search tree. It is the first
non-trivial data structure that students encounter, afterlinear structures such as arrays, lists, stacks and
queues. Trees are useful for implementing a variety ofabstract data types. We shall see that all the
common operations for search structures are easily implemented using binary search trees. Algorithms
on binary search trees have a worst-case behavior that is proportional to the height of the tree. The height
of a binary tree onn nodes is at least⌊lg n⌋. We say that a family of binary trees isbalancedif every
tree in the family onn nodes has heightO(log n). The implicit constant in the big-Oh notation here balance-ness is a fam-

ily propertydepends on the particular family. Such a family usually comes equipped with algorithms for inserting
and deleting items from trees, while preserving membershipin the family.

Many balanced families have been invented in computer science. They come in two basic forms:
height-balancedandweight-balanced schemes. In the former, we ensure that the height of siblings are
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“approximately the same”. In the latter, we ensure that the number of descendants of sibling nodes are
“approximately the same”. Height-balanced schemes require us to maintain less information than the
weight-balanced schemes, but the latter has some extra flexibility that are needed for some applications.
The first balanced family was invented by the Russians Adel’son-Vel’skii and Landis in 1962, and are
calledAVL trees. We will describe several balanced families, including AVLtrees and red-black trees.
The notion of balance can be applied to non-binary trees; we will study the family of(a, b)-treesand
generalizations. Tarjan [9] gives a brief history of some balancing schemes.

STUDY GUIDE: all our algorithms for search trees are described in such a way that they can be
internalized, and we expect students to carry out hand-simulations on concrete examples. We do not
provide any computer code, but once these algorithms are understood, it should be possible to imple-
menting them in your favorite programming language.

§1. Search Structures with Keys

Search structures store a set of objects subject to searching and modification of these objects. Search
structures can be viewed as a collection ofnodesthat are interconnected by pointers. Abstractly, they
are just directed graphs with labels. Each node stores or represents an object which we call anitem.
We will be informal about how we manipulate nodes — they will variously look like ordinary variables
and pointers1 as in the programming languageC/C++, or like references inJava. Let us look at some
intuitive examples, relying on your prior knowledge about programming and variables.

Legend:

data1key1 key2 data2

data2key2
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Null Pointer

Figure 1: Two Kinds of Nodes: (a) linked lists, (b) binary trees

Each item is associated with akey. The rest of the information in an item is simply calleddata,
so that we may view an item as the pair(Key, Data). Besides an item, each node also stores one or
more pointers to other nodes. Since the definition of a node includes (pointers) to other nodes, this
is a recursive definition. Two simple types of nodes are illustrated in Figure 1: nodes with only one
pointer (Figure 1(a)) are used to forming linked lists; nodes with two pointers can be used to form a
binary trees (Figure 1(b)), or doubly-linked lists. Nodes with three pointers can be used in binary trees
that require parent pointers. First, supposeN is a node variable of the type in Figure 1(a). ThusN
has threefields, and we may name these fields askey,data,next. Each field has some data type.
E.g. key is typically integer,data can be string, but it can almost anything, butnext has to be a

1The concept oflocatives introduced by Lewis and Denenberg [6] may also be used: a locative u is like a pointer variable
in programming languages, but it has properties like an ordinary variable. Informally,u will act like an ordinary variable in
situations where this is appropriate, and it will act like a pointer variable if the situation demands it. This is achieved by suitable
automatic referencing and de-referencing semantics for such variables.
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pointer to nodes. This field information constitutes the “type” of the node. To access these fields, we
write N.key, N.data or N.next. The type ofN.next is not that of a node, but pointer to a node.
In our figures, we indicate the values of pointers by a directed arrow. Node pointer variables act rather
like node variables: if variableu is a pointer to a node, we can also writeu.key, u.data andu.next
to access the fields in the node. There is a special pointer value called thenull pointer , pointing to
nothing. In Figure 1, null pointers are denoted by a special slash symbol. There are at least

three players here: the
variables u, N and
the node that both
refer to. Compare
this with the song ’A-
sitting On a Gate’ in
the story of Alice and
the White Knight

Programming semantics: the difference between a node variable N and a
node pointer variableu is best seen using the assignment operation. Let us
assume that the node type is(key,data,next), M is another node variable
andv another node pointer variable. In the assignmentN ← M , we copy
each of the three fields ofM into the corresponding fields ofN . But in the
assignmentu← v, we simply makeu point to the same node asv. Referring
to Figure 1(a), we see thatu is initially pointing toN , andv pointing toM .
After the assignmentu← v, both pointers would now be pointing toM .

Examples of search structures:

(i) An employee databasewhere each item is an employee record. The key of an employee record is
the social security number, with associated data such as address, name, salary history, etc.

(ii) A dictionarywhere each item is a word entry. The key is the word itself, associated with data such
as the pronunciation, part-of-speech, meaning, etc.

(iii) A scheduling queuein a computer operating systems where each item in the queue is a job that is
waiting to be executed. The key is the priority of the job, which is an integer.

It is natural to refer such structures askeyed search structures. From an algorithmic point of view,
the properties of the search structure are solely determined by the keys in items, the associated data
playing no role. This is somewhat paradoxical since, for theusers of the search structure, it is the
data that is more important. With this caveat, we will normally ignore the data part of an item in our
illustrations, thusidentifying the item with the key only. What is the point of

searching for keys
with no associated
data?

Binary search trees is an example of a keyed search structure. Usually, each node of the binary
search trees stores an item. In this case, our terminology of“nodes” for the location of items happily
coincides with the concept of “tree nodes”. However, there are versions of binary search trees whose
items resides only in the leaves – the internal nodes only store keys for the purpose of searching.

Key values usually come from a totally ordered set. Typically, we use the set of integers for our In examples, keys≡
integers!ordered set. Another common choice for key values are character strings ordered by lexicographic

ordering. For simplicity in these notes, the default assumption is that items have unique keys. When we
speak of the “largest item”, or “comparison of two items” we are referring to the item with the largest
key, or comparison of the keys in two items, etc. Keys are called by different names to suggest their
function in the structure. For example, a key may called a

• priority , if there is an operation to select the “largest item” in the search structure (see example
(iii) above);

• identifier , if the keys are unique (distinct items have different keys)and our operations use only
equality tests on the keys, but not its ordering properties (see examples (i) and (ii));
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• costorgain, depending on whether we have an operation to find the minimumor maximum value;

• weight, if key values are non-negative.

More precisely, asearch structureS is a representation of a set of items that supports thelookUp
query. The lookup query, on a given keyK andS, returns a nodeu in S such that the item inu has key
K. If no such node exists, it returnsu = nil. SinceS represents a set of items, two other basic operations
we might want to do are inserting an item and deleting an item.If S is subject to both insertions and
deletions, we callS a dynamic setsince its members are evolving over time. In case insertions, but
not deletions, are supported, we callS a semi-dynamic set. In case both insertion and deletion are not
allowed, we callS a static set. The dictionary example (ii) above is a static set from the viewpoint of
users, but it is a dynamic set from the viewpoint of the lexicographer.

Two search structures that store exactly the same set of items are said to beequivalent. An operation
that preserves the equivalence class of a search structure is called anequivalence transformation.

§2. Abstract Data Types

This section contains a general discussion on abstract datatypes (ADT’s). It
may be used as a reference; a light reading is recommended forthe first time

Students may be unfamiliar with the termabstract data type (ADT) but it is intuitively the same
concept as aninterface in theJava language. Again using the terminology of modern object-oriented Java fans: ADT = in-

terfacelanguagesC++ or Java, we view a search data structure is an instance of acontainer class. Each
instance stores a set of items and have a well-defined set ofmembers(i.e., variables) andmethods(i.e.,
operations). Thus, a binary tree is just an instance of the “binary tree class”. The “methods” of such
class support some subset of the following operations listed below.

¶1. ADT Operations. We will now list all the main operations found in all the ADT’sthat we will
study.We emphasize that each ADT will only require a proper subset of these operations. The full set of
ADT operations listed here is useful mainly as a reference.We will organize these operations into four
groups (I)-(IV):

(I) Initializer and Destroyers make()→Structure,
kill()

(II) Enumeration and Order list()→Node,
succ(Node)→Node,
pred(Node)→Node,
min()→Node,
max()→Node,

(III) Dictionary-like Operations lookUp(Key)→Node,
insert(Item)→Node,
delete(Node),
deleteMin()→Item,

(IV) Set Operations split(Key)→ Structure,
merge(Structure).
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Most applications do not need the full suite of the these operations. Below, we will choose various
subsets of this list to describe some well-known ADT’s. The meaning of these operations are fairly
intuitive. We will briefly explain them. LetS, S′ be search structures, viewed as instances of a suitable
class. LetK be a key andu a node. Each of the above operations are invoked from someS: thus,
S.make() will initialize the structureS, andS.max() returns the maximum value inS.

When there is only one structureS, we may suppress the reference toS. E.g.,S.merge(S′) can be
simply written as “merge(S′)”.

Group (I): We need to initialize and dispose of search structures. Thusmake (with no arguments)
returns a brand new empty instance of the structure. The inverse ofmake iskill, to remove a structure.
These are constant time operations.

Group (II): This group of operations are based on some linearordering of the items stored in the
data structure. The operationlist() returns a node that is an iterator. This iterator is the beginning of
a list that contains all the items inS in some arbitraryorder. The ordering of keys is not used by the
iterators. The remaining operations in this group depend onthe ordering properties of keys. Themin()
andmax() operations are obvious. The successorsucc(u) (resp., predecessorpred(u)) of a nodeu
refers to the node inS whose key has the next larger (resp., smaller) value. This isundefined ifu has
the largest (resp., smallest) value inS.

Note thatlist() can be implemented usingmin() andsucc(u) or max() andpred(u). Such a
listing has the additional property of sorting the output bykey value.

Group (III): The first three operations of this group,

lookUp(K)→ u, insert(K, D)→ u, delete(u),

constitute the “dictionary operations”. In many ADT’s, these are the central operations.

The nodeu returned bylookUp(K) has the property thatu.key = K. In conventional program-
ming languages such asC, nodes are usually represented by pointers. In this case, the nil pointer
is returned by thelookUp function when there is no item inS with key K. When we perform
S.lookUp(K), the structureS itself may be modified to another equivalent structure.

In case no such item exists, or it is not unique, some convention should be established. At this level,
we purposely leave this under-specified. Each application should further clarify this point. For instance,
in case the keys are not unique, we may require thatlookUp(K) returns an iterator that represents the
entire set of items with key equal toK.

Bothinsert anddelete have the obvious basic meaning. In some applications, we mayprefer
to have deletions that are based on key values. But such a deletion operation can be implemented as
‘delete(lookUp(K))’. In caselookUp(K) returns an iterator, we would expect the deletion to be
performed over the iterator.

The fourth operationS.deleteMin() in Group (III) is not considered a dictionary operation. The
operation returns the minimum itemI in S, and simultaneously deletes it fromS. Hence, it could
be implemented asdelete(min()). But because of its importance,deleteMin() is often directly
implemented using special efficient techniques. In most data structures, we can replacedeleteMin by
deleteMaxwithout trouble. However, this is not the same as being able to support bothdeleteMin
anddeleteMax simultaneously.
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Group (IV): The final group of operations,

S.split(K)→ S′, S.Merge(S′),

represent manipulation of entire search structures,S andS′. If S.split(K) → S′ then all the items
in S with keys greater thanK are moved into a new structureS′; the remaining items are retained inS.
Conversely, the operationS.merge(S′) moves all the items inS′ into S, andS′ itself becomes empty.
This operation assumes that all the keys inS are less than all the items inS′. Thussplit andmerge
are inverses of each other.

¶2. Implementation of ADTs using Linked Lists. The basic premise of ADTs is that we should
separate specification (given by the ADT) from implementation. We have just given the specifications,
so let us now discuss a concrete implementation.

Data structures such as arrays, linked list or binary searchtrees are calledconcrete data types.
Hence ADTs are to be implemented by such concrete data types.We will now discuss a simple imple-
mentation of all the ADT operations using linked lists. Thishumble data structure comes in8 varieties
according to Tarjan [9]. For concreteness, we use the variety that Tarjan callsendogeneous doubly-
linked list . Endogeneous means the item is stored in the node itself: thus from a nodeu, we can directly
accessu.key andu.data. Doubly-linked meansu has two pointersu.next andu.prev. These two
pointers satisfies the invariantu.next = v iff v.prev = u. We assume students understand linked You know this!
lists, so the following discussion is partly a review of linked lists.

Let L be a such a linked list. Conceptually, a linked list is set of nodes organized in some linear
order. The linked list has two special nodes,L.head andL.tail, corresponding to the first and last
node in this linear order. We can visit all the nodes inL using the following routine with a simple
while-loop:

L ISTTRAVERSAL(L)
u← L.head
while (u 6= nil)

VISIT(u)
u← u.next

CLEANUP()

List traversal shell

Here, VISIT(u) and CLEANUP() are subroutine or more accurately “macros” that depend on the appli- In programming,
macros are a mech-
anism for textual
substitution into the
code

cation. As a default, they do nothing (“no-op”). We call LISTTRAVERSAL a shell program; this theme
will be taken up more fully when we discuss tree traversal below (§4). Since the while-loop (by hy-
pothesis) visits every node inL, there is a unique nodeu (assumeL is non-empty) withu.next = nil.
This node isL.tail.

It should be obvious how to implement most of the ADT operations using linked lists. We ask
the student to carry this out for the operations in Groups (I)and (II). Here we focus on the dictionary
operations:

• lookUp(K): We can use the above ListTraversal routine but replace “VISIT(u)” by the follow-
ing code fragment:

VISIT(u) ≡ if (u.key = K) Return(u)
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Note that since VISIT is a macro, theReturn in VISIT is a not return from VISIT, but from the
lookUp routine! The CLEANUP() statement is similarly replaced by

CLEANUP() ≡ Return(nil)

The correctness of this implementation should be obvious.

• insert(K, D): We use the ListTraversal shell, but define VISIT(u) as the following macro:

VISIT(u) : if (u.key = K) Return(nil)

Thus, if the keyK is found inu, we returnnil, indicating failure (duplicate key). The CLEANUP()
macro is:

CLEANUP() :
u← new(Node)
u.key := K; u.data := D
u.next := L.head
L.head := u
Return(u)

wherenew(Node) returns a pointer to space on the heap for a node.

• delete(u): Sinceu is a pointer to the node to be deleted, this amounts to the standard deletion
of a node from a doubly-linked list:

u.next.prev← u.prev
u.prev.next← u.next
del(u)

wheredel(u) is a standard routine to return a memory to the system heap. This takes timeO(1)

¶3. Complexity Analysis. Another simple way to implement our ADT operations is to use arrays
(Exercise). In subsequent sections, we will discuss how to implement the ADT operations using bal-
anced binary trees. In order to understand the tradeoffs in these alternative implementations, we now
provide a complexity analysis of each implementation. Let us do this for our linked list implementation.

We can provide a worst case time complexity analysis. For this, we need to have a notion of input
size: this will ben, the number of nodes in the (current) linked list. Consistent with our principles in
Lecture I, we will perform aΘ-order analysis.

The complexity oflookUp(K) is Θ(n) in the worst case because we have to traverse the entire list
in the worst case. Bothinsert(K, D) anddelete(u) are preceded bylookUp’s, which we know
takesΘ(n) in the worst case. Thedelete operation isΘ(1). Note that such an efficient deletion is
possible because we use doubly-linked lists; with singly-linked lists, we needΘ(n) time.

More generally, with linked list implementation, all the ADT operations can easily be shown to have
time complexity eitherΘ(1) or Θ(n). The principal goal of this chapter is to show that theΘ(n) can be
replaced byΘ(log n). This represents an “exponential speedup” from the linked list implementation.
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¶4. Some Abstract Data Types. The above operations are defined on typed domains (keys, structures,
items) with associated semantics. Anabstract data type(acronym “ADT”) is specified by

• one or more “typed” domains of objects (such as integers, multisets, graphs);

• a set of operations on these objects (such as lookup an item, insert an item);

• properties (axioms) satisfied by these operations.

These data types are “abstract” because we make no assumption about the actual implementation.

It is not practical or necessary to implement a single data structure that has all the operations listed
above. Instead, we find that certain subset of these operations work together nicely to solve certain
problems. Computer science has discovered that following subset of operations to be widely applicable:

• Dictionary ADT : lookUp, [insert, [delete]].

• Ordered Dictionary ADT : lookUp, insert, delete, succ, pred.

• Priority queue ADT : deleteMin, insert, [+delete, [+decreaseKey]].

• Fully mergeable dictionary ADT: lookUp, insert, delete, merge, split.

In some stripped-down versions of these ADT, operations within [· · · ] may be omitted. For instance,
a dictionary ADT withoutdelete is called asemi-dynamic dictionary, and if it also omitsinsert,
it is called astatic dictionary. Note that the latter only has one operation,lookUp.

Alternatively, some ADT’s can be enhanced by additional operations. For instance, a priority queue
ADT traditionally supports onlydeleteMin andinsert. But in some applications, it must be
enhanced with the operation ofdelete and/ordecreaseKey. The latter operation can be defined as

decreaseKey(K, K ′) ≡ [u← lookUp(K);delete(u);insert(K ′, u.data)]

with the extra condition thatK ′ < K (assuming a min-queue). In other words, we change the priority
of the itemu in the queue fromK to K ′. SinceK ′ < K, this amounts to increasing its priority ofu in
a min-queue.

If the deletion in dictionaries are based on keys (see comment above) then we may think of a dictio-
nary as a kind ofassociative memory. If we omit thesplit operation in fully mergeable dictionary,
then we obtain themergeable dictionaryADT. The operationsmake andkill (from group (I)) are
assumed to be present in every ADT.

NOTES:
1. Variant interpretations of all these operations are possible. For instance, some version ofinsert
may wish to return a boolean (to indicate success or failure)or not to return any result (in case the
application will never have an insertion failure).
2. Other useful functions can be derived from the above. E.g., it is useful to be able to create a
structureS containing just a single itemI . This can be reduced to ‘S.make(); S.insert(I)’.
3. The concept of ADT was a major research topic in the 1980’s.Many of these ideas found their
way into structured programming languages such as Pascal and their modern successors. An interface
in Java is a kind of ADT where we capture only the types of operation. Our discussion of ADT is
informal, but one way to study them formally is to describe axioms that these operations satisfy. For
instance, ifS is a stack, then we can postulate the axiom that pushing an item x on S followed by
poppingS should return the itemx. In our treatment, we relied on informal understanding of these
ADT’s to avoid the axiomatic treatment.
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EXERCISES

Exercise 2.1: Consider the dictionary ADT.
(a) Describe algorithms to implement this ADT when the concrete data structures are arrays.

NOTE: An interesting difference from implementation usinglinked lists is to decide what to do
when the array is full. We want you to allocate space for a bigger array (how would you choose
its size?). Furthermore, what is the analogue of the ListTraversal Shell?
(b) Analyze the complexity of your algorithms in (a). Compare this complexity with that of the
linked list implementation. ♦

Exercise 2.2: Repeat the previous question for the priority queue ADT. ♦

Exercise 2.3: SupposeD is a dictionary with the dictionary operations of lookup, insert and delete.
List a complete set of axioms (properties) for these operations. ♦

END EXERCISES

§3. Binary Search Trees

We introduce binary search trees and show that such trees cansupport all the operations described
in the previous section on ADT. Our approach will be somewhatunconventional, because we want to
reduce all these operations to the single operation of “rotation”. the universal opera-

tion!

Recall the definition and basic properties of binary trees inthe Appendix of Chapter I. Figure 2
shows two binary trees (small and big) which we will use in ourillustrations. For each nodeu of the
tree, we store a valueu.key called its key. The keys in Figure 2 are integers, used simplyas identifiers
for the nodes.

(b)(a)

7 8 9 10 11

12 13 14

15

1

2 3

4 5 6
1

2 3

54

Figure 2: Two binary (not search) trees: (a) small, (b) big

Briefly, a binary treeT is a setN ≥ 0 of nodes that is either the empty set, orN has a nodeu called
the root. In Figure 2,N = {1, 2, 3, 4, 5} for the small tree andN = {1, 2, 3, . . . , 15} for the big tree.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 16, 2011



§3. BINARY SEARCH TREES Lecture III Page 10

The remaining nodesN \ {u} are partitioned into two sets of nodes that recursively formbinary trees,
TL andTR. If TL (resp.,TR) is non-empty, then its root is called the left (resp., right) child of u. This
definition of binary trees is based onstructural induction . Thesizeof T is |N |, and is denoted|T |;
alsoTL, TR are theleft andright subtreesof T .

(a) (b)

rotate(2)
2

10

11

15

13

12 143

4

5

10

6 11

2 8 15

1 5 7 9 13

3 12 14

4

1 6

9

8

7

Figure 3: (a) Binary Search Tree on keys{1, 2, 3, 4, . . . , 14, 15}. (b) Afterrotate(2).

The keys of the binary trees in Figure 2 are just used as identifiers. To turn binary trees into a binary
searchtree, we must organize the keys in a particular way. Such a binary search tree is illustrated in
Figure 3(a). structurally, it is the big binary tree in Figure 2, but now the keys are no longer just arbitrary
identifiers.

A binary treeT is calledbinary search tree (BST) the keyu.key at each nodeu satisfies the
binary search tree property:

uL.key < u.key ≤ uR.key. (1)

whereuL anduR are (resp.) anyleft descendantandright descendantof u. Please verify that the
binary search in of Figure 3 obeys (1) at each nodeu.

The “standard mistake” is to replace (1) byu.left.key < u.key ≤ u.right.key. By defi- good test question...
nition, a left (right) descendant ofu is a node in the subtree rooted at the left (right) child ofu. The
left and right children ofu are denoted byu.left andu.right. The standard mistake focuses on a
necessary, but not sufficient, condition in the concept of a BST. Self-check: construct a counter example
to the standard mistake using a binary tree with4 nodes (actually3 nodes suffice).

Fundamental Rule about binary trees:most properties about binary trees are
best proved by induction on the structure of the tree. Likewise, algorithms for
binary trees are often best described using structural induction.

¶5. Lookup. The algorithm for key lookup in a binary search tree is almostimmediate from the binary
search tree property: to look for a keyK, we begin at the root (remember the good point above?). In
general, suppose we are looking forK in some subtree rooted at nodeu. If u.key = K, we are done.
Otherwise, eitherK < u.key or K > u.key. In the former case, we recursively search the left subtree
of u; otherwise, we recurse in the right subtree ofu. In the presence of duplicate keys, what does lookup
return? There are two interpretations: (1) We can return thefirst nodeu we find that has the given key
K. (2) We may insist that we continue to explicitly locate all the other keys.
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In any case, requirement (2) can be regarded as an extension of (1), namely, given a nodeu, find all
the other nodes belowu with same same key asu.key. This can be solved separately. Hence we may
assume interpretation (1) in the following.

¶6. Insertion. To insert an item with keyK, we proceed as in the Lookup algorithm. If we findK in
the tree, then the insertion fails (assuming distinct keys). Otherwise, we reach a leaf nodeu. Then the
item can be inserted as the left child ofu if u.key > K, and otherwise it can be inserted as the right
child of u. In any case, the inserted item is a new leaf of the tree.

¶7. Rotation. This is not a listed operation in§2. It is an equivalence operation, i.e., it transforms a
binary search tree into another one with exactly the same setof keys. By itself, rotation does not appear
to do anything useful. Remarkably, we shall show that rotation can2 form the basis for all other binary
tree operations.

The operationrotate(u) is a null operation (“no-op” or identity transformation) whenu is a root.
So assumeu is a non-root node in a binary search treeT . Thenrotate(u) amounts to the following
transformation ofT (see figure 4).

u

v

A

B C

rotate(v)

rotate(u)

v

u

A B

C

Figure 4: Rotation atu and its inverse.

In rotate(u), we basically want to invert the parent-child relation betweenu and its parentv. The
other transformations are more or less automatic, given that the result is to remain a binary search tree.
If the subtreesA, B, C (any of these can be empty) are as shown in figure 4, then they must re-attach as
shown. This is the only way to reattach as children ofu andv, since we know that

A < u < B < v < C

in the sense that each key inA is less thanu which is less than any key inB, etc. Actually, only the
parent of the root ofB has switched fromu to v. Notice that afterrotate(u), the former parent ofv
(not shown) will now haveu instead ofv as a child. Clearly the inverse ofrotate(u) is rotate(v).
The explicit pointer manipulations for a rotation are left as an exercise. After a rotation atu, the depth
of u is decreased by1. Note thatrotate(u) followed byrotate(v) is the identity3 operation, as
illustrated in figure 4.

Recall that two search structures are equivalent if they contain the same set of items. Clearly, rotation
is an equivalence transformation.

2Augmented by natural operations such as adding or removing anode.
3Also known as null operation or no-op
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¶8. Graphical convention: Figure 4 encodes two conventions: consider the figure on the left side of
the arrow (the same convention hold for the figure on the rightside). First, the edge connectingv to its
parent is directed vertically upwards. This indicates thatv can be the left- or right-child of its parent.
Second, the two edges fromv to its children are connected by a circular arc. This is to indicate that
u and its sibling could exchange places (i.e.,u could be the right-child ofv even though we choose to
showu as the left-child). Thus Figure 4 is a compact way to represent four distinct situations.

¶9. Implementation of rotation. Let us discuss how to implement rotation. Until now, when we
draw binary trees, we only display child pointers. But we must now explicitly discuss parent pointers.

Let us classify a nodeu into one of threetypes: left, right or root. This is defined in the obvious
way. E.g.,u is a left type iff it is not a root and is a left child. The type ofu is easily tested:u is type root
iff u.parent = nil, andu is type left iff u.parent.left = u. Clearly,rotate(u) is sensitive to
the type ofu. In particular, ifu is a root thenrotate(u) is the null operation. IfT ∈ {left,right}
denote left or right type, itscomplementary typeis denotedT , whereleft = right andright =
left.

w w

x x

u

v

A

B C

rotate(v)

rotate(u)

v

u

A B

C

Figure 5: Links that must be fixed inrotate(u).

We are ready to discuss the functionrotate(u), which we assume will return the nodeu. Assume
u is not the root, and its type isT ∈ {left,right}. Let v = u.parent, w = v.parent and
x = v.T . Note thatw andx might benil. Thus we have potentially three child-parent pairs:

(x, u), (u, v), (v, w). (2)

But after rotation, we will have the transformed child-parent pairs:

(x, v), (v, u), (u, w). (3)

These pairs are illustrated in Figure 5 where we have explicitly indicated the parent pointers as well
as child pointers. Thus, to implement rotation, we need to reassign6 pointers (3 parent pointers and3
child pointers). We show that it is possible to achieve this re-assignment using exactly6 assignments.

x u v wu v w x

Figure 6: Simplified view ofrotate(u) as fixing a doubly-linked list(x, u, v, w).
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Such re-assignments must be done in the correct order. It is best to see what is needed by thinking of
(2) as a doubly-linked list(x, u, v, w) which must be converted into the doubly-linked list(x, v, u, w)
in (3). This is illustrated in Figure 6. For simplicity, we use the terminology of doubly-linked list so that
u.next andu.prev are the forward and backward pointers of a doubly-linked list. Here is4 the code:

ROTATE(u):
⊲ Fix the forward pointers

1. u.prev.next← u.next
⊳ x.next = v

2. u.next← u.next.next
⊳ u.next = w

3. u.prev.next.next← u
⊳ v.next = u

⊲ Fix the backward pointers
4. u.next.prev.prev← u.prev

⊳ v.prev = x
5. u.next.prev← u

⊳ w.prev = u
6. u.prev← u.prev.next

⊳ u.prev = v

We can now translate this sequence of6 assignments into the corresponding assignments for binary
trees: theu.next pointer may be identified withu.parent pointer. However,u.prev would beu.T
whereT ∈ {left,right} is the type ofx. Moreover,v.prev is v.T . Also w.prev is w.T ′ for
another typeT ′. A further complication is thatx or/andw may not exist; so these conditions must be
tested for, and appropriate modifications taken.

If we use temporary variables in doing rotation, the code canbe simplified (Exercise).

¶10. Variations on Rotation. The above rotation algorithm assumes that for any nodeu, we can
access its parent. This is true if each node has a parent pointeru.parent. This is our default assumption
for binary trees. In case this assumption fails, we can replace rotation with apair of variants: called
left-rotation andright-rotation . These can be defined as follows:

left-rotate(u) ≡ rotate(u.left), right-rotate(u) ≡ rotate(u.right).

It is not hard to modify all our rotation-based algorithms touse the left- and right-rotation formulation
if we do not have parent pointers. Of course, the corresponding code would be twice as fast since we
have halved the number of pointers to manipulate.

¶11. Double Rotation. Supposeu has a parentv and a grandparentw. Then two successive rotations
on u will ensure thatv andw are descendants ofu. We may denote this operation byrotate2(u).
Up to left-right symmetry, there are two distinct outcomes in rotate2(u): (i) eitherv, w are becomes
children ofu, or (ii) only w becomes a child ofu andv a grandchild ofu. These depend on whetheru
is theouter or inner grandchildren ofw. These two cases are illustrated in Figure 7. [As an exercise,
we ask the reader to draw the intermediate tree after the firstapplication ofrotate(u) in this figure.]

4In Lines 3 and 5, we used the nodeu as a pointer on the right hand side of an assignment statement. Strictly speaking, we
ought to take the address ofu before assignment. Alternatively, think ofu as a “locator variable” which is basically a pointer
variable with automatic ability to de-reference into a nodewhen necessary.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 16, 2011



§3. BINARY SEARCH TREES Lecture III Page 14

rotate2(u)

rotate2(u)

w

v

A B

C

D

w

v

A

B

D

C

v w

B CA D

u

A

Zig-zag Case

Zag-zag Case

v

w

CB

D
u

u

u

Figure 7: Two outcomes ofrotate2(u)

It turns out that case (ii) is the more important case. For many purposes, we would like to view the
two rotations in this case as one indivisible operation: hence we introduce the termdouble rotation to
refer to case (ii) only. For emphasis, we might call the original rotation asingle rotation.

These two cases are also known as the zig-zig (or zag-zag) andzig-zag (or zag-zig) cases, respec-
tively. This terminology comes from viewing a left turn as zig, and a right turn as zag, as we move from
up a root path. The Exercise considers how we might implementa double rotation more efficiently than
by simply doing two single rotations.

¶12. Root path, Extremal paths and Spines. A path is a sequence of nodes(u0, u1, . . . , un) where
ui+1 is a child ofui. The length of this path isn, andun is also called thetip of the path. E.g.,
(2, 4, 8, 12) is a path in Figure 2(b), with tip12.

Relative to a nodeu, we now introduce 5 paths that originates fromu. The first is the path fromu
to the root, called theroot path of u. In figures, the root path is displayed as an upward path, following
parent pointers from the nodeu. E.g., if u = 4 in Figure 2(b), then the root path is(4, 2, 1). Next we
introduce 4 downward paths fromu. Theleft-path of u is simply the path that starts fromu and keeps
moving towards the left or right child until we cannot proceed further. Theright-path of u is similarly
defined. E.g., withu as before, the left-path is(4, 7) and right-path is(4, 8). Collectively, we refer to the
left- and right-paths asextremal paths. Next, we define theleft-spine of a nodeu is defined to be the
path(u, rightpath(u.left)). In caseu.left = nil, the left spine is just the trivial path(u) of length
0. Theright-spine is similarly defined. E.g., withu as before, the left-spine is(4, 7) and right-spine is
(4, 8, 12). The tips of the left- and right-paths atu correspond to the minimum and maximum keys in the
subtree atu. The tips of the left- and right-spines, provided they are different fromu itself, correspond
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to the predecessor and successor ofu. Clearly,u is a leaf iff all these four tips are identical and equal to
u.

u

v

v

w x

u

x

wrotate(w)

Figure 8: Reduction of the left-spine ofu afterrotate(u.left) = rotate(w).

After performing a left-rotation atu, we reduce the left-spine length ofu by one (but the right-spine
of u is unchanged). See Figure 8. More generally:

LEMMA 1. Let(u0, u1, . . . , uk) be the left-spine ofu andk ≥ 1. Also let(v0, . . . , vm) be the root path
of u, wherev0 is the root of the tree andu = vm. After performingrotate(u.left),
(i) the left-spine ofu becomes(u0, u2, . . . , uk) of lengthk − 1,
(ii) the right-spine ofu is unchanged, and
(iii) the root path ofu becomes(v0, . . . , vm, u1) of lengthm + 1.

In other words, after a left-rotation atu, the left child ofu transfers from the left-spine ofu to the
root path ofu. Similar remarks apply to right-rotations. If we repeatedly do left-rotations atu, we will
reduce the left-spine ofu to length0. We may also alternately perform left-rotates and right-rotates at
u until one of its 2 spines have length0.

¶13. Deletion. Suppose we want to delete a nodeu. In caseu has at most one child, this is easy to
do – simply redirect the parent’s pointer tou into the unique child ofu (or nil if u is a leaf). Call this
procedureCut(u). It is now easy to describe a general algorithm for deleting anodeu:

DELETE(T, u):
Input: u is node to be deleted fromT .
Output: T , the tree withu deleted.

while u.left 6= nil do
rotate(u.left).

Cut(u)

If we maintain information about the left and right spine heights of nodes (Exercise), and the right spine
of u is shorter than the left spine, we can also perform the while-loop by going down the right spine
instead. The overall effect of this algorithm is schematically illustrated in Figure 9.

We ask the reader to simulate the operations ofDelete(T, 10) whereT is the BST of Figure 3.

¶14. Standard Deletion Algorithm. The preceding deletion algorithm is simple but is actually quite
non-standard. We now describe thestandard deletion algorithm:
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delete(r)

Figure 9: Deletion based on rotation.

DELETE(T, u):
Input: u is node to be deleted fromT .
Output: T , the tree with item inu deleted.

if u has at most one child, apply Cut(u) and return.
else let v be the tip of the right spine ofu.

Move the item inv into u (effectively removing the item inu)
Cut(v).

Note that in the else-case, the nodeu is not physically removed: only the item represented byu is
removed. Again, the nodev that is physically removed (i.e., cut) has at most one child.If we have to
return a value, it is useful to return the parent of the nodev that was cut – this will be used in rebalancing
tree (see AVL deletion below).

Again, the reader should simulate the operations ofDelete(T, 10), using this standard algorithm,
and compare the results to the rotation-based algorithm.

The rotation-based deletion is conceptually simpler, and will be useful for amortized algorithms
later. However, the rotation-based algorithm seems to be slower as it requires an unbounded number of
pointer assignments.

¶15. Inorder listing of a binary tree.

LEMMA 2. Let T be a binary tree onn nodes. There is a unique way to assign the keys{1, 2, . . . , n}
to the nodes ofT such that the resulting tree is a binary search tree on these keys.

We leave the simple proof to an Exercise. For example, ifT is the binary tree in Figure 2(b), then
this lemma would assign the keys{1, . . . , 15} to the nodes ofT as in Figure 3(a).

For eachi = 1, . . . , n, we may refer to nodeu ∈ T as theith node if Lemma 2 assigns the keyi to
u. In particular, we can speak of thefirst andlast nodeof T . The unique enumeration of the nodes of
T from first to last is called thein-order listing of T .

¶16. Successor and Predecessor.If u is theith node of a binary treeT , thesuccessorof u refers to
the(i+1)st node ofT . By definition,u is thepredecessorof v iff v is the successor ofu. Letsucc(u)
andpred(u) denotes the successor and predecessor ofu. Of course,succ(u) (resp.,pred(u)) is
undefined ifu is the last (resp., first) node in the in-order listing of the tree.
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We will define a closely related concept, but applied to any key K. Let K be a key, not necessarily
occurring inT . Define thesuccessorof K in T to be the least keyK ′ in T such thatK < K ′. We
similarly define thepredecessorof K in T to be the greatestK ′ in T such thatK ′ < K.

In some applications of binary trees, we want to maintain pointers to the successor and predecessor
of each node. In this case, these pointers may be denotedu.succ andu.pred. Note that the succes-
sor/predecessor pointers of nodes is unaffected by rotations. Our default version of binary trees do not
include such pointers.

Let us make some simple observations:

LEMMA 3. Let u be a node in a binary tree, butu is not the last node in the in-order traversal of the
tree.
(i) u.right = nil iff u is the tip of the left-spine of some nodev. Moreover, such a nodev is uniquely
determined byu.
(ii) If u.right = nil andu is the tip of the left-spine ofv, thensucc(u) = v.
(iii) If u.right 6= nil thensucc(u) is the tip of the right-spine ofu.

It is easy to derive an algorithm forsucc(u) using the above observation.

SUCC(u):
1. if u.right 6= nil ⊳ return the tip of the right-spine ofu
1.1 v ← u.right;
1.2 while v.left 6= nil, v ← v.left;
1.3 Return(v).
2. else ⊳ returnv whereu is the tip of the left-spine ofv
2.1 v ← u.parent;
2.2 while v 6= nil andu = v.right,
2.3 (u, v)← (v, v.parent).
2.4 Return(v).

Note that ifsucc(u) = nil thenu is the last node in the in-order traversal of the tree (sou has no
successor). The algorithm forpred(u) is similar.

¶17. Min, Max, DeleteMin. This is trivial once we notice that the minimum (maximum) item is
in the first (last) node of the binary tree. Moreover, the first(last) node is at the tip of the left-path
(right-path) of the root.

¶18. Merge. To merge two treesT, T ′ where all the keys inT are less than all the keys inT ′, we
proceed as follows. Introduce a new nodeu and form the tree rooted atu, with left subtreeT and right
subtreeT ′. Then we repeatedly perform left rotations atu until u.left = nil. At this point, we can
already deleteu (even thoughu.right may not benil).

However, if you like, you can perform right rotations atu until u.right = nil. Nowu is a leaf and
can be deleted. In either case, the result is the merge ofT andT ′.

¶19. Split. Suppose we want to split a treeT at a keyK. Recall the semantics of split from§2:
T.split(K) → T ′. This says that all the keys less than or equal toK is retained inT , and the rest are
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split off into a new treeT ′ that is returned.

First we do alookUp of K in T . This leads us to a nodeu that either containsK or elseu is the
successor or predecessor ofK in T . Now we can repeatedly rotate atu until u becomes the root of
T . At this point, we can split off either the left-subtree or right-subtree ofT . This pair of trees is the
desired result.

¶20. Complexity. Let us now discuss the worst case complexity of each of the above operations. They
are allΘ(h) whereh is the height of the tree. It is therefore desirable to be ableto maintainO(log n)
bounds on the height of binary search trees.

We stress that our rotation-based algorithms for insertionand deletion are slower than the “stan-
dard” algorithms which perform only a constant number of pointer re-assignments. Therefore, it
seems that rotation-based algorithms may be impractical unless we get other benefits. One possible
benefit of rotation will be explored in Chapter 6 on amortization and splay trees.

EXERCISES

Exercise 3.1: Consider the BST of Figure 3(a). Please show all the intermediate trees, not just the final
tree.
(a) Perform the deletion of the key10 this tree using the rotation-based deletion algorithm.
(b) Repeat part (a), using the standard deletion algorithm. ♦

Exercise 3.2: The function VERIFY(u) is supposed returntrue iff the binary tree rooted atu is a binary
search tree with distinct keys:

VERIFY(Nodeu)
if (u = nil) Return(true)
if ((u.left 6= nil) and (u.key < u.left.key)) Return(false)
if ((u.right 6= nil) and (u.key > u.right.key)) Return(false)
Return(VERIFY(u.left)∧VERIFY(u.right))

Either argue for it’s correctness, or give a counter-example showing it is wrong. ♦

Exercise 3.3: TRUE or FALSE: Recall that a rotation can be implemented with6 pointer assignments.
Suppose a binary search tree maintains successor and predecessor links (denotedu.succ and
u.pred in the text). Now rotation requires12 pointer assignments. ♦

Exercise 3.4: (a) Implement the above binary search tree algorithms (rotation, lookup, insert, deletion,
etc) in your favorite high level language. Assume the binarytrees have parent pointers.
(b) Describe the necessary modifications to your algorithmsin (a) in case the binary trees do not
have parent pointers. ♦
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Exercise 3.5: Let T be the binary search tree in figure 3. You should recall the ADTsemantics of
T ′ ← split(T, K) andmerge(T, T ′) in §2. HINT: although we only require that you show
the trees at the end of the operations, we recommend that you show selected intermediate stages.
This way, we can give you partial credits in case you make mistakes!

(a) Perform the operationT ′ ← split(T, 5). DisplayT andT ′ after the split.
(b) Now performinsert(T, 3.5) whereT is the tree after the operation in (a). Display the tree
after insertion.
(c) Finally, performmerge(T, T ′) whereT is the tree after the insert in (b) andT ′ is the tree
after the split in (a). ♦

Exercise 3.6: Give the code for rotation which uses temporary variables. ♦

Exercise 3.7: Instead of minimizing the number of assignments, let us try to minimize the time. To
count time, we count each reference to a pointer as taking unit time. For instance, the assignment
u.next.prev.prev ← u.prev costs5 time units because in addition to the assignment, we
have to make access4 pointers.
(a) What is the rotation time in our6 assignment solution in the text?
(b) Give a faster rotation algorithm, by using temporary variables. ♦

Exercise 3.8: We could implement a double rotation as two successive rotations, and this would take
12 assignment steps.
(a) Give a simple proof that 10 assignments are necessary.
(b) Show that you could do this with 10 assignment steps. ♦

Exercise 3.9: Open-ended: The problem of implementingrotate(u) without using extra storage or
in minimum time (previous Exercise) can be generalized. LetG be a directed graph where each
edge (“pointer”) has a name (e.g.,next,prev,left,right) taken from a fixed set. Moreover,
there is at most one edge with a given name coming out of each node. Suppose we want to
transformG to another graphG′, just by reassignment of these pointers. Under what conditions
can this transformation be achieved with only one variableu (as inrotate(u))? Under what
conditions is the transformation achievable at all (using more intermediate variables? We also
want to achieve minimum time. ♦

Exercise 3.10:The goal of this exercise is to show that ifT0 andT1 are two equivalent binary search
trees, then there exists a sequence of rotations that transformsT0 into T1. Assume the keys in
each tree are distinct. This shows that rotation is a “universal” equivalence transformation. We
explore two strategies.
(a) One strategy is to first make sure that the roots ofT0 andT1 have the same key. Then by
induction, we can transform the left- and right-subtrees ofT0 so that they are identical to those
of T1. Let R1(n) be the worst case number of rotations using this strategy on trees withn keys.
Give a tight analysis ofR1(n).
(b) Another strategy is to show that any tree can be reduced toa canonical form. Let us choose
the canonical form where our binary search tree is aleft-list or a right-list . A left-list (resp.,
right-list) is a binary trees in which every node has no right-child (resp., left-child). LetR2(n) be
defined for this strategy in analogy toR1(n). Give a tight analysis ofR2(n). ♦

Exercise 3.11:Prove Lemma 2, that there is a unique way to order the nodes of abinary treeT that is
consistent with any binary search tree based onT . HINT: remember the Fundamental Rule about
binary trees. ♦

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 16, 2011



§4. TREE TRAVERSALS Lecture III Page 20

Exercise 3.12: Implement the Cut(u) operation in a high-level informal programming language. As-
sume that nodes have parent pointers, and your code should work even ifu.parent = nil. Your
code should explicitly “delete(v)” after you physically remove a nodev. If u has two children,
then Cut(u) must be a no-op.

♦

Exercise 3.13:Design an algorithm to find both the successor and predecessor of a given keyK in
a binary search tree. It should be more efficient than just finding the successor and finding the
predecessor independently. ♦

Exercise 3.14:Show that if a binary search tree has heighth andu is any node, then a sequence of
k ≥ 1 repeated executions of the assignmentu← successor(u) takes timeO(h + k). ♦

Exercise 3.15:Show how to efficiently maintain the heights of the left and right spines of each node.
(Use this in the rotation-based deletion algorithm.) ♦

Exercise 3.16:We refine the successor/predecessor relation. Suppose thatT u is obtained fromT by
pruning all the proper descendants ofu (sou is a leaf inT u). Then the successor and predecessor
of u in T u are called (respectively) theexternal successorandpredecessorof u in T Next, if
Tu is the subtree atu, then the successor and predecessor ofu in Tu are called (respectively) the
internal successorandpredecessorof u in T
(a) Explain the concepts of internal and external successors and predecessors in terms of spines.
(b) What is the connection between successors and predecessors to the internal or external ver-
sions of these concepts? ♦

Exercise 3.17:Give the rotation-based version of the successor algorithm. ♦

Exercise 3.18:Suppose that we begin withu pointing at the first node of a binary tree, and continue to
apply the rotation-based successor (see previous question) until u is at the last node. Bound the
number of rotations made as a function ofn (the size of the binary tree). ♦

Exercise 3.19:Suppose we allow allow duplicate keys. Under (1), we can modify our algorithms
suitably so that all the keys with the same value lie in consecutive nodes of some “right-path
chain”.
(a) Show how to modify lookup on keyK so that we list all the items whose key isK.
(b) Discuss how this property can be preserved during rotation, insertion, deletion.
(c) Discuss the effect of duplicate keys on the complexity ofrotation, insertion, deletion. Suggest
ways to improve the complexity. ♦

Exercise 3.20:Consider the priority queue ADT. Describe algorithms to implement this ADT when
the concrete data structures are binary search trees.
(b) Analyze the complexity of your algorithms in (a). ♦

END EXERCISES
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§4. Tree Traversals and Applications

In this section, we describe systematic methods to visit allthe nodes of a binary tree. Such methods
are calledtree traversals. Tree traversals provide “algorithmic skeletons” orshellsfor implementing Unix fans – shell pro-

gramming is not what
you think it is

many useful algorithms. We had already seen this concept in¶2, when implemented ADT operations
using linked lists.

¶21. In-order Traversal. There are three systematic ways to visit all the nodes in a binary tree: they
are all defined recursively. Perhaps the most important is the in-order or symmetric traversal. Here Fundamental Rule of

binary trees!is the recursive procedure to perform an in-order traversalof a tree rooted atu:

IN-ORDER(u):
Input: u is root of binary treeT to be traversed.
Output: The in-order listing of the nodes inT .

0. BASE (u).
1. In-order(u.left).
2. VISIT (u).
3. In-order(u.right).

This recursive program uses two subroutines, or more accurately, macros called BASE and VISIT. For
traversals, the BASE macro5 can be expanded into the following single line of code:

BASE (u)≡
if (u=nil) Return.

The VISIT(u) macro is simply:

VISIT (u)≡
Print u.key.

To illustrate, consider the two binary trees in figure 2. The numbers on the nodes are keys, but they
are not organized into a binary search tree. They simply serve as identifiers.

An in-order traversal of the small tree in Figure 2 will produce(4, 2, 1, 5, 3). For a more substantial
example, consider the output of an in-order traversal of thebig tree:

(7, 4, 12, 15, 8, 2, 9, 5, 10, 1, 3, 13, 11, 14, 6)

Basic fact:if we list the keys of a BST using an inorder traversal, then the keys will be sorted.

For instance, the in-order traversal of the BST in Figure 3 will simply produce the sequence

(1, 2, 3, 4, 5, . . . , 12, 13, 14, 15).

5We regard BASE to be a macro call (or an “inline”) and not as a subroutine call. This is because theReturn statement in
BASE is meant to return from the In-Order routine, and not a return from the “BASE subroutine”.
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This yields an interesting conclusion:sorting a setS of numbers can be reduced to constructing a
binary search tree on a set of nodes withS as their keys.

¶22. Pre-order Traversal. We can re-write the above In-Order routine succinctly as:

IN(u) ≡ [ BASE (u); IN(u.left); VISIT (u); IN(u.right)]

Changing the order of Steps 1, 2 and 3 in the In-Order procedure (but always doing Step 1 before
Step 3), we obtain two other methods of tree traversal. Thus,if we perform Step 2 before Steps 1 and 3,
the result is called thepre-order traversal of the tree:

PRE(u) ≡ [ BASE (u); VISIT (u); PRE(u.left); PRE(u.right)]

Applied to the small tree in figure 2, we obtain(1, 2, 4, 3, 5). The big tree produces

(1, 2, 4, 7, 8, 12, 15, 5, 9, 10, 3, 6, 11, 13, 14).

¶23. Post-order Traversal. If we perform Step 2 after Steps 1 and 3, the result is called the post-
order traversal of the tree:

POST (u) ≡ [ BASE (u); POST (u.left); POST (u.right); VISIT (u)]

Using the trees of Figure 2, we obtain the output sequences(4, 2, 5, 3, 1) and

(7, 15, 12, 8, 4, 9, 10, 5, 2, 13, 14, 11, 6, 3, 1).

¶24. Applications of Tree Traversal: Shell Programming Tree traversals may not appear interest-
ing on their own right. However, they serve as shells for solving many interesting problems. That is,
many algorithms can be programmed by taking a tree traversalshell, and replacing the named macros
by appropriate code: for tree traversals, we have two such macros, called BASE and VISIT.

To illustrate shell programming, suppose we want to computethe height of each node of a BST.
Assume that each nodeu has a variableu.H that is to store the height of nodeu. If we have recursive
computed the values ofu.left.H andu.right.H , then we see that the height ofu can be computed
as

u.H = 1 + max {u.left.H + u.right.H} .
This suggests the use of post-order shell to solve the heightproblem: We keep the previous BASE computing height in

post-ordersubroutine, but modifyV ISIT (u) to the following task:

VISIT (u)
if (u.left = nil) then L← −1.

else L← u.left.H .
if (u.right = nil) then R← −1.

else R← u.right.H .
u.H ← 1 + max{L, R}.

On the other hand, suppose we want to compute the depth of eachnode. Again, assume each nodeu
stores a variableu.D to record its depth. Then, assuming thatu.D has been computed, then we could computing depth in

pre-order
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easily compute the depths of the children ofu using

u.left.D = u.right.D = 1 + u.D.

This suggests that we use the pre-order shell for computing depth.

¶25. Return Shells. For some applications, we want a version of the above traversal routines that
return some value. We call them “return shells” here. Let us illustrate this by modifying the postorder
shell POST(u) into a new version rPOST(u) which returns a value of typeT . For instance,T might be
the type integer or the type node. The returned value from recursive calls are then passed to the VISIT
macro:

RPOST(u)
rBASE (u).

L← rPOST (u.left).
R← rPOST (u.right).
rVISIT (u, L, R).

Note that bothrBASE(u) andrV ISIT (u, L, R) returns some value of typeT .

As an application of this rPOST routine, consider our previous solution for computing the height of
binary trees. There we assume that every nodeu has an extra field calledu.H that we used to store the
height ofu. Suppose we do not want to introduce this extra field for everynode. Instead of POST(u),
we can use rPOST(u) to return the height ofu. How can we do this? First, BASE(u) should be modified
to return the height ofnil nodes:

RBASE(u)≡
if (u=nil) Return(−1).

Second, we must re-visit the VISIT routine, modifying (simplifying!) it as follows: no pun intended

RVISIT(u, L, R)
Return(1 + max{L, R}).

The reader can readily check that rPOST solves the height problem elegantly. As another application
of such “return shell”, suppose we want to check if a binary tree is a binary search tree. This is explored
in Exercises below.

The motif of using shell programs such as BASE and VISIT will be further elaborated when we
study graph traversals. Indeed, we can view graph traversals as a generalization of tree traversal. Using
shells is a great unifying aspect in the study of traversal algorithms: we cannot over emphasize this Pay attention when

the professor says thispoint.

EXERCISES

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 16, 2011



§4. TREE TRAVERSALS Lecture III Page 24

Exercise 4.1: Give the in-order, pre-order and post-order listing of the tree in Figure 14. ♦

Exercise 4.2: Tree traversals.
(a) Let the in-order and pre-order traversal of a binary treeT with 10 nodes be
(a, b, c, d, e, f, g, h, i, j) and(f, d, b, a, c, e, h, g, j, i), respectively. Draw the treeT .
(b) Prove that if we have the pre-order and in-order listing of the nodes in a binary tree, we can
reconstruct the tree.
(c) Consider the other two possibilities: (c.1) pre-order and post-order, and (c.2) in-order and
post-order. State in each case whether or not they have the same reconstruction property as in (b).
If so, prove it. If not, show a counter example.
(d) Redo part(c) for full binary trees. Recall that in a full binary tree, each node either has no
children or 2 children. ♦

Exercise 4.3:
(a) Here is the set of keys from post-order traversal of a binary search tree:

2, 1, 4, 3, 6, 7, 9, 11, 10, 8, 5, 13, 16, 15, 14, 12

Draw this binary search tree.
(b) Describe the general algorithm to reconstruct a BST fromits post-order traversal. ♦

Exercise 4.4: Use shell programming to give an algorithm SIZE(u) that returns the number of nodes
in the subtree rooted atu. Do not assume any additional fields in the nodes. ♦

Exercise 4.5: Let size(u) be the number of nodes in the tree rooted atu. Say that nodeu is size-
balancedif

1/2 ≤ size(u.left)/size(u.right) ≤ 2

where a leaf node is size-balanced by definition.
(a) Use shell programming to compute the routineB(u) which returnssize(u) if each node in
the subtree atu is balanced, andB(u) = −1 otherwise. Do not assume any additional fields in
the nodes or that the size information is available.
(b) Suppose you know thatu.left and u.right are size-balanced. Give a routine called
REBALANCE(u) that uses rotations to makeu balanced. Assume each nodev has an ex-
tra fieldu.SIZE whose value issize(u) (you must update this field as you rotate).

♦

Exercise 4.6: Show how to use the pre-order shell to compute the depth of each node in a binary tree.
Assume that each nodeu has a depth field,u.D. ♦

Exercise 4.7: Give a recursive routine calledCheckBST (u) which checks whether the binary treeTu

rooted at a nodeu is a binary search tree (BST). You must figure out the information to be returned
by CheckBST (u); this information should also tell you whetherTu is BST or not. Assume that
each non-nil nodeu has the three fields,u.key, u.left, u.right. ♦

Exercise 4.8: A student proposed a different approach to the previous question. LetminBST (u) and
maxBST (u) compute the minimum and maximum keys inTu, respectively. These subroutines
are easily computed in the obvious way. For simplicity, assume all keys are distinct andu 6= nil
in these arguments. The recursive subroutine is given as follows:
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CheckBST(u)
⊲ Returns largest key inTu if Tu is BST
⊲ Returns+∞ if not BST
⊲ Assumeu is notnil

If (u.left 6= nil)
L← maxBST (u.left)
If (L > u.key or L =∞) return(∞)

If (u.right 6= nil)
R← minBST (u.right)
If (R < u.key or R =∞) return(∞)

Return(CheckBST (u.left) ∧ (CheckBST (u.right)

Is this program correct? Bound its complexity. HINT: Let the“root path length” of a node be the
length of its path to the root. The “root path length” of a binary treeTu is the sum of the root path
lengths of all its nodes. The complexity is related to this number. ♦

Exercise 4.9: Like the previous problem, we want to check if a binary tree isa BST. Write a recursive
algorithm calledSlowBST (u) which solves the problem, except that the running time of your
solution must be provably exponential-time. If you like, your solution may consist of mutually
recursive algorithms. Your overall algorithm must achievethis exponential complexity without
any trivial redundancies. E.g., we should not be able to delete statements from your code and still
achieve a correct program. Thus, we want to avoid a trivial solutions of this kind:

SlowBST (u)
Compute the numbern of nodes inTu

Do for 2n times:
FastBST (u)

♦

END EXERCISES

§5. Variations on Binary Trees

This is an optional section, for those who wants a deeper understanding of binary trees and their
applications. We will discuss extended binary trees, alternative ways to use binary trees in search
structures, and the notion of implicit binary search trees.

¶26. Extended binary trees. There is an alternative view of binary trees; following Knuth [4, p. 399],
we call themextended binary trees. For emphasis, the original version will be calledstandard binary
trees. In the extended trees, every node has0 or 2 children; nodes with no children are called6 nil
nodeswhile the other nodes are callednon-nil nodes. See figure 10(a) for a standard binary tree
and figure 10(b) for the corresponding extended version. In this figure, we see a common convention
(following Knuth) of representing nil nodes by black squares.

The bijection between extended and standard binary trees isgiven as follows:

6A binary tree in which every node has 2 or 0 children is said to be “full”. Knuth calls the nil nodes “external nodes”. A path
that ends in an external node is called an “external path”.
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(a) (b)

Figure 10: Binary Trees: (a) standard, (b) extended.

1. For any extended binary tree, if we delete all its nil nodes, we obtain a standard binary
tree.
2. Conversely, for any standard binary tree, if we give everyleaf two nil nodes as children
and for every internal node with one child, we give it one nil node as child, then we obtain
a corresponding extended binary tree.

In view of this correspondence, we could switch between the two viewpoints depending on which is
more convenient. Generally, we avoid drawing the nil nodes since they just double the number of
nodes without conveying new information. In fact, nil nodescannot store data or items. One reason Who cares about nil

nodes?we explicitly introduce them is that it simplifies the description of some algorithms (e.g., red-black tree
algorithms). The “nil node” terminology may be better appreciated when we realize that in conventional
realization of binary trees, we allocate two pointers to every node, regardless of whether the node has
two children or not. The lack of a child is indicated by makingthe corresponding pointer take thenil
value. We extend the notion of extended binary tree toextended binary search tree. Here, the non-nil
nodes store keys in the usual nodes but the nil nodes do not hold keys (obviously).

The concept of a “leaf” of an extended binary tree is apt to cause some confusion: we shall use
the “leaf” terminology so as to be consistent with standard binary trees. A node of an extended binary
tree is called aleaf if it is the leaf of the corresponding standard binary tree. Alternatively, a leaf in an
extended binary tree is a node with two nil nodes as children.Thus a nil node is never a leaf.

¶27. Exogenous versus Endogenous Search StructuresRecall that each key is associated with
some data, and such key-data pairs constitute the items for searching. There are two ways to organize
such items. One way is to directly store the data with the key.The other way is for the key to be
paired with a pointer to the data. Following7 Tarjan [9], we call the latter organization anexogenous
search structure In contrast, if the data is directly stored with the key, it isan endogenous search
structure. What is the relative advantage of either form? The exogenous case has an extra level of
indirection (the pointer) which uses extra space. But on theother hand, it means that the actual data can
be freely re-organized more easily and independently of thesearch structure. In databases, this freedom
is important, and the exogenous search structure are called“indexes”. Database users can freely create
and destroy such indexes for the set of items. This allows a collection of items can be searched using
different search criteria. The concept of(a, b)-trees below illustrates such exogenous search structures.

¶28. Duplicate keys. We normally assume that the keys in a BST are distinct unless otherwise noted.
But let us now briefly consider BST whose keys are not necessarily unique or distinct. One way to

7He used this classification for linked lists data structure.
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handle duplicate keys is to require the followingright-path rule : all items with the same key must lie
on consecutive nodes of some right-path.We can view all the equal-key nodes on this right-path as a
super-node for the purposes of maintaining height-balanced trees such as AVL trees. Before discussing
how to maintain this right-path rule, let us discuss howlookUp must be modified. When we look up
on a keyk, we can just return the first node that contains the keyk. Alternatively, if there is a secondary
key besides the (primary) key which might distinguish amongthe different items with primary keyk,
we can search the right-path for this secondary key. Now we must modify all our algorithms to preserve
the right-path rule. In particular, insertion and rotationshould be appropriately modified. What about
deletion? If the argument of deletion is the node to be deleted, it is clearly easy to maintain this property.
If the argument of deletion is a keyk, we can either delete all items whose key isk or rely on secondary
keys to distinguish among the items with keyk.

Instead of the right-path rule, we could put all the equal-key items in an auxiliary linked list attached
to a node. There are pros and cons in either approach. The “right path” organization of duplicate keys
do not need any auxiliary structures. If the expected numberof duplicated keys is small, it may be the
best solution.

¶29. Auxiliary Information. In many applications, additional information must be maintained at
each node of the binary search tree. We already mentioned thepredecessor and successor links. Another
information is the the size of the subtree at a node. Some of this information is independent, while other
is dependent orderived. Maintaining the derived information under the various operations is usually
straightforward. In all our examples, the derived information is local in the following sense thatthe
derived information at a nodeu can only depend on the information stored in the subtree atu. We will
say that derived information isstrongly local if it depends only on the independent information at node
u, together with all the information at its children (whetherderived or independent).

¶30. Parametric Binary Search Trees. Perhaps the most interesting variation of binary search trees
is when the keys used for comparisons are only implicit. The information stored at nodes allows us to
make a “comparison” and decide to go left or to go right at a node but this comparison may depend on
some external data beyond any explicitly stored information. We illustrate this concept in the lecture on
convex hulls in Lecture V.

¶31. Implicit Binary Trees. By an implicit tree, we mean one that does not have explicit pointers
which determine the parent/child relationships of nodes. An example is theheap structure: this is
defined to be binary tree whose nodes are indexed by integers following this rule: the root is indexed
1, and if a node has indexi, then its left and right children are indexed by2i and2i + 1, respectively.
Moreover, if the binary tree hasn nodes, then the set of its indices is the set{1, 2, . . . , n}. A heap
structure can therefore be represented naturally by an array A[1..n], whereA[i] represents the node of
index i. If, at theith node of the heap structure, we store a keyA[i] and these keys satisfy theheap
order property for eachi = 1, . . . , n,

HO(i) : A[i] ≤ min{A[2i], A[2i + 1]}. (4)

In (4), it is understood that if2i > n (resp.,2i + 1 > n) thenA[2i] (A[2i + 1]) is taken to be∞. Then
we call the binary tree aheap. Here is an array that represents a heap:

A[1..9] = [1, 4, 2, 5, 6, 3, 8, 7, 9].

In the exercises we consider algorithms for insertion and deletion from a heap. This leads to a highly
efficient method for sorting elements in an array, in place.
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In general, implicit data structures are represented by an array with some rules for computing the
parent/child relations. By avoiding explicit pointers, such structures can be very efficient to navigate.

EXERCISES

Exercise 5.1: Describe what changes is needed in our binary search tree algorithms for the exogenous
case. ♦

Exercise 5.2: Suppose we insist that for exogenous binary search trees, each of the keys in the internal
nodes really correspond to keys in stored items. Describe the necessary changes to the deletion
algorithm that will ensure this property. ♦

Exercise 5.3: Consider the usual binary search trees in which we no longer assume that keys in the
items are unique. State suitable conventions for what the various operations mean in this setting.
E.g.,lookUp(K) means find any item whose key isK or find all items whose keys are equal to
K. Describe the corresponding algorithms. ♦

Exercise 5.4: Describe the various algorithms on binary search trees thatstore the size of subtree at
each node. ♦

Exercise 5.5: Recall the concept of heaps in the text. LetA[1..n] be an array of real numbers. We call
A analmost-heap ati there exists a number such that ifA[i] is replaced by this number, thenA
becomes a heap. Of course, a heap is automatically an almost-heat at anyi.
(i) SupposeA is an almost-heap ati. Show how to convertA into a heap be pairwise-exchange
of array elements. Your algorithm should take no more thanlg n exchanges. Call this the
Heapify(A, i) subroutine.
(ii) SupposeA[1..n] is a heap. Show how to delete the minimum element of the heap, so that the
remaining keys inA[1..n − 1] form a heap of sizen − 1. Again, you must make no more than
lg n exchanges. Call this theDeleteMin(A) subroutine.
(iii) Show how you can use the above subroutines to sort an array in-place inO(n log n) time.

♦

Exercise 5.6: Normally, each nodeu in a binary search tree maintains two fields, a key value and
perhaps some balance information, denotedu.KEY andu.BALANCE, respectively. Suppose we
now wish to “augment” our treeT by maintaining two additional fields calledu.PRIORITY and
u.MAX. Here,u.PRIORITY is an integer which the user arbitrarily associates with this node, but
u.MAX is a pointer to a nodev in the subtree atu such thatv.PRIORITY is maximum among
all the priorities in the subtree atu. (Note: it is possible thatu = v.) Show that rotation in such
augmented trees can still be performed in constant time.

♦

END EXERCISES

§6. AVL Trees
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AVL trees is the first known family of balanced trees. By definition, an AVL tree is a binary search
tree in which the left subtree and right subtree at each node differ by at most1 in height. They also have
relatively simple insertion/deletion algorithms.

More generally, define thebalanceof any nodeu of a binary tree to be the height of the left subtree
minus the height of the right subtree:

balance(u) = ht(u.left)− ht(u.right).

The node isperfectly balancedif the balance is0. It is AVL-balanced if the balance is either0 or±1.
Our insertion and deletion algorithms will need to know thisbalance information at each node. Thus we
need to store at each AVL node a 3-valued variable. Theoretically, this space requirement amounts to
lg 3 < 1.585 bits per node. Of course, in practice, AVL trees will reserve2 bits per node for the balance
information (but see Exercise).

Let us first prove that the family of AVL trees is a balanced family. It is best to introduce the function
µ(h), defined as the minimum number of nodes in any AVL tree with heighth. The first few values are

µ(−1) = 0, µ(0) = 1, µ(1) = 2, µ(2) = 4.

It seems clear thatµ(0) = 1 since there is a unique tree with height0. The other values are not entirely
obvious. To see8 thatµ(1) = 2, we must define the height of the empty tree to be−1. This explains why
µ(−1) = 0. We can verifyµ(2) = 4 by case analysis.

Consider an AVL treeTh of heighth and of sizeµ(h) (i.e., it hasµ(h) nodes). Clearly, among all
AVL trees of heighth, Th has the minimum size. For this reason, we call callTh a min-size AVL tree
(for heighth). Figure 11 shows the first few min-size AVL trees. Of course,we can exchange the roles
of any pair of siblings of such a tree to get another min-size AVL tree. Using this, we could compute
the number of non-isomorphic min-sized AVL trees of a given height. But we can define thecanonical
min-size AVL trees to be the ones in which the balance of each non-leaf node is+1. Note that we draw
such canonical trees in figure 11.

T4T0 T1 T2 T3

Figure 11: Canonical min-size AVL trees of heights0, 1, 2, 3 and4.

In general,µ(h) is seen to satisfy the recurrence

µ(h) = 1 + µ(h− 1) + µ(h− 2), (h ≥ 1). (5)

This equation says that the min-size tree of heighth having two subtrees which are min-size trees of
heightsh− 1 andh − 2, respectively. For instance,µ(2) = 1 + µ(1) + µ(0) = 1 + 2 + 1 = 4, as we
found by case analysis above. We similarly check that the recurrence (5) holds forh = 1.

From (5), we haveµ(h) ≥ 2µ(h−2) for h ≥ 1. It is then easy to see by induction thatµ(h) ≥ 2h/2

for all h ≥ 1. Writing C =
√

2 = 1.4142 . . ., we have thus shown

µ(h) ≥ Ch, (h ≥ 1).

8For instance, if we say the height of the empty tree is−∞, thenµ(1) = 3. This definition of AVL trees could certainly be
supported. See Exercise for an exploration of this idea.
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The next lemma improves this simple lower bound onµ(h) and also provide a matching upper bound:

let φ = 1+
√

5
2 > 1.6180. This is the golden ratio and it is easily seen to be the positive root of the

quadratic equationx2 − x− 1 = 0. Hence,φ2 = φ + 1 (in words: to squareφ, you add1).

LEMMA 4. For h ≥ 0, we have
φh ≤ µ(h) < 2φh. (6)

Proof.First we proveµ(h) ≥ φh: µ(0) = 1 ≥ φ0 andµ(1) = 2 ≥ φ1. Forh ≥ 2, we have

µ(h) > µ(h− 1) + µ(h− 2) ≥ φh−1 + φh−2 = (φ + 1)φh−2 = φh.

Next, to proveµ(h) < 2φh, we will strengthen our hypothesis toµ(h) ≤ 2φh− 1. Clearly,µ(0) = 1 ≤
2φ0 − 1 andµ(1) = 2 ≤ 2φ1 − 1. Then forh ≥ 2, we have

µ(h) = 1 + µ(h− 1) + µ(h− 2) ≤ 1 + (φh−1 − 1) + (φh−2 − 1) = (φ + 1)φh−2 − 1 = φh − 1.

Q.E.D.

The bounds of this lemma are asymptotically tight; but an exercise below will further sharpen the
estimate. Actually, it is the lower bound that is more important: this lower bound says that min-size
AVL

Let us derive a consequence of the lower bound onµ(h). If an AVL tree hasn nodes and heighth
then

µ(h) ≤ n

by definition ofµ(h). The lower bound in (6) then impliesφh ≤ n. Taking logs, we obtain

h ≤ logφ(n) = (logφ 2) lg n < 1.4404 lgn.

This constant of1.44 is clearly tight in view of lemma 4. Thus the height of AVL trees are at most44%
more than the absolute minimum. We have proved:

COROLLARY 5. The family of AVL trees is balanced.

¶32. Insertion and Deletion Algorithms. These algorithms for AVL trees are relatively simple, as
far as balanced trees go. In either case there are two phases:

UPDATE PHASE: Insert or delete as we would in a binary search tree. REMARK: We assume here
thestandarddeletion algorithm, not its rotational variant. Furthermore, the node containing the
deleted key and the node wephysicallyremoved may be different.

REBALANCE PHASE: Let x be the parent of node that was just inserted, or justphysicallydeleted,
in the UPDATE PHASE. We now retrace the path fromx towards the root, rebalancing nodes
along this path as necessary. For reference, call this therebalance path.

It remains to give details for the REBALANCE PHASE. If every node along the rebalance path
is balanced, then there is nothing to do in the REBALANCE PHASE. Otherwise, letu be the first
unbalanced node we encounter as we move upwards fromx to the root. It is clear thatu has a balance
of ±2. In general, we fix the balance at the “current” unbalanced node and continue searching upwards
along the rebalance path for the next unbalanced node. Letu be the current unbalanced node. By
symmetry, we may suppose thatu has balance2. Suppose its left child is nodev and has heighth + 1.
Then its right childv′ has heighth− 1. This situation is illustrated in Figure 12.

By definition, all the proper descendants ofu are balanced. The current height ofu is h + 2. In any
case, let the current heights of the children ofv behL andhR, respectively.
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h + 1 h− 1 h− 1

hL hR

v
expand left subtree

u

A
B

u

B

DC

v′

Figure 12: Nodeu is unbalanced after insertion or deletion.

¶33. Insertion Rebalancing. Suppose that this imbalance came about because of an insertion. What
was the heights ofu, v and v′ before the insertion? It is easy to see that the previous heights are
(respectively)

h + 1, h, h− 1.

The inserted nodex must be in the subtree rooted atv. Clearly, the heightshL, hR of the children ofv
satisfymax(hL, hR) = h. Sincev is currently balanced, we know thatmin(hL, hR) = h or h− 1. But
in fact, we claim thatmin(hL, hR) = h− 1. To see this, note that ifmin(hL, hR) = h then the height
of v beforethe insertion was alsoh+1 and this contradicts the initial AVL property atu. Therefore, we
have to address the following two cases.

CASE (I.1):hL = h andhR = h− 1. This means that the inserted node is in the left subtree ofv.
In this case, if we rotatev, the result would be balanced. Moreover, the height ofu is h + 1.

CASE (I.2):hL = h− 1 andhR = h. This means the inserted node is in the right subtree ofv. In
this case let us expand the subtreeD and letw be its root. The two children ofw will have heights of
h−1 andh−1− δ (δ = 0, 1). It turns out that it does not matter which of these is the left child (despite
the apparent asymmetry of the situation). If we double rotate w (i.e., rotate(w),rotate(w)), the
result is a balanced tree rooted atw of heighth + 1.

In both cases (I.1) and (I.2), the resulting subtree has height h + 1. Since this was height before the
insertion, there are no unbalanced nodes further up the pathto the root. Thus the insertion algorithm
terminates with at most two rotations.

For example, suppose we begin with the AVL tree in Figure 14, and we insert the key9.5. The
resulting transformations is shown in Figure 15.

¶34. Deletion Rebalancing. Suppose the imbalance in Figure 12 comes from a deletion. Theprevious
heights ofu, v, v′ must have been

h + 2, h + 1, h

and the deleted nodex must be in the subtree rooted atv′. We now have three cases to consider:

CASE (D.1):hL = h andhR = h − 1. This is like case (I.1) and treated in the same way, namely
by performing a single rotation atv. Now u is replaced byv after this rotation, and the new height ofv
is h + 1. Nowu is AVL balanced. However, since the original height ish + 2, there may be unbalanced
node further up the root path. Thus, this is a non-terminal case (i.e., we have to continue checking for
balance further up the root path).

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 16, 2011



§6. AVL T REES Lecture III Page 32

h− 1

hL hR

rotate2(w)

h− 1

hL
hL h− 1

h− 1

h h− 1 h− 1

h

expand

rotate(v)

h− 1

CASE (I.1)

CASE (I.2)

u

v

B

DC

u

v

B

C

w

DRDL

uv

C DL DR B

w

u

v

B

DC D

C

u

v

B

Figure 13: CASE (I.1):rotate(v), CASE (I.2):rotate2(w).

CASE (D.2): hL = h − 1 andhR = h. This is like case (I.2) and treated the same way, by
performing a double rotation atw. Again, this is a non-terminal case.

CASE (D.3):hL = hR = h. This case is new, and is illustrated in Figure 16. We simply rotate atv.
We check thatv is balanced and has heighth + 2. Sincev is in the place ofu which has heighth + 2
originally, we can safely terminate the rebalancing process.

This completes the description the insertion and deletion algorithms for AVL trees. In illustration,
suppose we delete key13 from Figure 14. After deleting13, the node14 is unbalanced. This is restored
by a single rotation at15. Now, the root containing12 is unbalanced. Another single rotation at5 will
restore balance. The result is shown in Figure 17.

Both insertion and deletion takeO(log n) time. In case of deletion, we may have to doO(log n)
rotations but a single or double rotation suffices for insertion.

¶35. Maintaining Balance Information. In order to carry out the rebalancing algorithm, we need
to check the balance condition at each nodeu. If nodeu stores the height ofu in some field,u.H
then we can do this check. If the AVL tree hasn nodes,u.H may needΘ(lg lg n) bits to represent the
height. However, it is possible to get away with just2 bits: we just need to indicate three possible states Hey, I thought it is

Θ(lg n)!(00, 01, 10) for each nodeu. Let 00 mean thatu.left andu.right have the same height, and01
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Figure 14: An AVL tree
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Insert(9.5)
rotate2(8)

Figure 15: Inserting9.5 into an AVL tree

mean thatu.left has height one less thanu.right, and similarly for10. In simple implementations,
we could just use an integer to represent this information. We leave it as an exercise to determine how
to use these bits during rebalancing.

¶36. Relaxed Balancing. Larsen [5] shows that we can decouple the rebalancing of AVL trees from
the updating of the maintained set. In the semi-dynamic case, the number of rebalancing operations is
constant in an amortized sense (amortization is treated in Chapter 5).

EXERCISES

h

rotate(v)
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h h h
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C D D

Figure 16: CASE (D.3):rotate(v)
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Figure 17: Deleting13 from the AVL tree in Figure 14

Exercise 6.1: Let T be the AVL tree in Figure 3(a). As usual, show intermediate trees, not just the final
one.
(a) Delete the key10 from T .
(b) Insert the key2.5 into T . This question is independent of part (a).

Re-do parts (a) and (b), but using the AVL tree in Figure 3(b) instead. ♦

Exercise 6.2: Give an algorithm to check if a binary search treeT is really an AVL tree. Your algorithm
should take timeO(|T |). HINT: Use shell programming.

♦

Exercise 6.3: What is the minimum number of nodes in an AVL tree of height 10? ♦

Exercise 6.4: My pocket calculator tells me thatlogφ 100 = 9.5699 · · · . What does this tell you about
the height of an AVL tree with 100 nodes? ♦

Exercise 6.5: Draw an AVLT with minimum number of nodes such that the following is true:there is
a nodex in T such that if you delete this node, the AVL rebalancing will require two rebalancing
acts. Note that a double-rotation counts as one, not two, rebalancing act. DrawT and the nodex.

♦

Exercise 6.6: Consider the AVL tree in Figure 18.

16

8

5

73

2 4

1

6

13 19

11 15

10
9

12 14

18

17

20

Figure 18: An AVL Tree for deletion

(a) Find all the keys that we can delete so that the rebalancing phase requires two rebalancing
acts.
(b) Among the keys in part (a), which deletion has a double rotation among its rebalancing acts?
(c) Please delete one such key, and draw the AVL tree after each of the rebalancing acts. ♦
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Exercise 6.7: Consider the height range for AVL trees withn nodes.
(a) What is the range forn = 15? n = 20 nodes?
(b) Is it true that there are arbitrarily largen such that AVL trees withn nodes has a unique height?

♦

Exercise 6.8: Draw the AVL trees after you insert each of the following keysinto an initially empty
tree:1, 2, 3, 4, 5, 6, 7, 8, 9 and then19, 18, 17, 16, 15, 14, 13, 12, 11. ♦

Exercise 6.9: Insert into an initially empty AVL tree the following sequence of keys:1, 2, 3, . . . , 14, 15.
(a) Draw the trees at the end of each insertion as well as aftereach rotation or double-rotation.
[View double-rotation as an indivisible operation].
(b) Prove the following: if we continue in this manner, we will have a complete binary tree at the
end of inserting key2n − 1 for all n ≥ 1. ♦

Exercise 6.10:Starting with an empty tree, insert the following keys in thegiven order:
13, 18, 19, 12, 17, 14, 15, 16. Now delete18. Show the tree after each insertion and deletion.
If there are rotations, show the tree just after the rotation. ♦

Exercise 6.11:Draw two AVL trees, withn keys each: the two trees must have different heights. Make
n as small as you can. ♦

Exercise 6.12:TRUE or FALSE: In CASE (D.3) of AVL deletion, we performed a single rotation at
nodev. This is analogous to CASE (D.1). Could we have also have performed a double rotation
atw, in analogy to CASE (D.2)? ♦

Exercise 6.13:Let M(h) be the number of non-isomorphic min-size AVL trees of heighth. Give a
recurrence forM(h). How many non-isomorphic min-size AVL trees are there of heights3 and
4? Provide sharp upper and lower bounds onM(h). ♦

Exercise 6.14: Improve the lower boundµ(h) ≥ φh by taking into consideration the effects of “+1”
in the recurrenceµ(h) = 1 + µ(h− 1) + µ(h− 2).
(a) Show thatµ(h) ≥ F (h − 1) + φh whereF (h) is theh-th Fibonacci number. Recall that
F (h) = h for h = 0, 1 andF (h) = F (h− 1) + F (h− 2) for h ≥ 2.
(b) Further improve (a). ♦

Exercise 6.15:Prove the following connection betweenφ (golden ratio) andFn (the Fibonacci num-
bers):

φn = φFn + Fn−1, (n ≥ 1)

Note that we ignore the casen = 0. ♦

Exercise 6.16:Recall that at each nodeu of the AVL tree, we can represent its balance state using a
2-bit field calledu.BAL whereu.BAL ∈ {00, 01, 10}.
(a) Show how to maintain these fields during an insertion.
(b) Show how to maintain these fields during a deletion. ♦
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Exercise 6.17:Allocating one bit per AVL node is sufficient if we exploit thefact that leaf nodes are
always balanced allow their bits to be used by the internal nodes. Work out the details for how to
do this. ♦

Exercise 6.18: It is even possible to allocate no bits to the nodes of a binarysearch tree. The idea is to
exploit the fact that in implementations of AVL trees, the space allocated to each node is constant.
In particular, the leaves have two null pointers which are basically unused space. We can use this
space to store balance information for the internal nodes. Figure out an AVL-like balance scheme
that uses no extra storage bits. ♦

Exercise 6.19:Relaxed AVL Trees
Let us defineAVL(2) balance condition to mean that at each nodeu in the binary tree,
|balance(u)| ≤ 2.
(a) Derive an upper bound on the height of a AVL(2) tree onn nodes.
(b) Give an insertion algorithm that preserves AVL(2) trees. Try to follow the original AVL inser-
tion as much as possible; but point out differences from the original insertion.
(c) Give the deletion algorithm for AVL(2) trees. ♦

Exercise 6.20:To implement we reserve 2 bits of storage per node to represent the balance information.
This is a slight waste because we only use 3 of the four possible values that the 2 bits can represent.
Consider the family of “biased-AVL trees” in which the balance of each node is one of the values
b = −1, 0, 1, 2.
(a) In analogy to AVL trees, defineµ(h) for biased-AVL trees. Give the general recurrence
formula and conclude that such trees form a balanced family.
(b) Is it possible to give anO(log n) time insertion algorithm for biased-AVL trees? What can be
achieved? ♦

Exercise 6.21:We introduce a new notion of ’height’ of an AVL tree: If nodeu is null, h′(u) =
−2 (this is new!), and ifu has no children,h′(u) = 0 (as usual). Recursively,h′(u) = 1 +
max {h′(uL), h′(uR)} as before. Let ’AVL’ (AVL in quotes) trees refer be those trees that are
AVL-balanced usingh′ as our new notion of height. We compare the original AVL treeswith
’AVL’ trees.
(a) TRUE or FALSE: every ’AVL’ tree is an AVL tree.
(b) Letµ′(h) be defined (similar toµ(h) in the text) as the minimum number of nodes in an ’AVL’
tree of heighth. Determineµ′(h) for all h ≤ 5.
(c) Prove the relationshipµ′(h) = µ(h) + F (h) whereF (h) is the standard Fibonacci numbers.
(d) Give a good upper bound onµ′(h).
(e) What is one conceptual difficulty of trying to use the family of ’AVL’ trees as a general search
structure? ♦

Exercise 6.22:A node in a binary tree is said to befull if it has exactly two children. Afull binary
tree is one where all internal nodes are full.
(a) Prove full binary tree have an odd number of nodes.
(b) Show that ’AVL’ trees as defined in the previous question are full binary trees. ♦

Exercise 6.23:The AVL insertion algorithm makes two passes over its searchpath: the first pass is
from the root down to a leaf, the second pass goes in the reverse direction. Consider the following
idea for a “one-pass algorithm” for AVL insertion: during the first pass, before we visit a node

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 16, 2011



§7. (a, b)-SEARCH TREES Lecture III Page 37

u, we would like to ensure that (1) its height is less than or equal to the height of its sibling.
Moreover, (2) if the height ofu is equal to the height of its sibling, then we want to make sure
that if the height ofu is increased by1, the tree remains AVL.

The following example illustrates the difficulty of designing such an algorithm:

Imagine an AVL tree with a path(u0, u1, . . . , uk) whereu0 is the root andui is a child ofui−1.
We have 3 conditions:
(a) Leti ≥ 1. Thenui is a left child iff i is odd, and otherwiseui is a right child. Thus, the path
is a pure zigzag path.
(b) The height ofui is k − i (for i = 0, . . . , k). Thusuk is a leaf.
(c) Finally, the height of the sibling ofui is h− i− 1.

Suppose we are trying to insert a key whose search path in the AVL tree is precisely(u0, . . . , uk).
Can we preemptively balance the AVL tree in this case? ♦

END EXERCISES

§7. (a, b)-Search Trees

We consider another class of trees that is important in practice, especially in database applications.
These are no longer binary trees, but are parametrized by a choice of two integers,

2 ≤ a < b. (7)

An (a, b)-tree is a rooted, ordered tree with the following requirements:

• DEPTH BOUND: All leaves are at the same depth.

• BRANCHING BOUND: Letm be the number of children of an internal nodeu. In general, we
have the bounds

a ≤ m ≤ b. (8)

The root is an exception, with the bound2 ≤ m ≤ b.

Figure 19: A(2, 3)-tree.
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To see the intuition behind these conditions, compare with binary trees. In binary trees, the leaves do
not have to be at the same depth. To re-introduce some flexibility into trees where leaves have the same
depth, we allow the number of children of an internal node to vary over a larger range[a, b]. Moreover,
in order to ensure logarithmic height, we requirea ≥ 2. This means that if theren leaves, the height is
at mostloga(n) +O(1). Therefore,(a, b)-trees forms a balanced family of trees.

The definition of(a, b)-trees imposes purely structural requirements. Figure 19 illustrates an(a, b)-
tree for(a, b) = (2, 3). But to use(a, b)-trees as a search structure, we need to store keys and items in
the nodes of the trees. These keys and items must be suitably organized. Before giving these details,
we can build some intuition by studying an example of such a search tree in Figure 20. The14 items
stored in this tree are all at the leaves, with the keys2, 4, 6, . . . , 23, 25, 27. As usual, we do not display
the associated data in items. The keys in the internal nodes do not correspond to items.

102 4 6 8 12 13 15 17 19 21 23

2 5 9 10 14 16 18 22 23

6 12 20

25 27

25

Figure 20: A (3,4)-search tree on14 items

Recall that an item is a(key,data) pair. We define an(a, b)-search treeto be an(a, b)-tree whose
nodes are organized as follows:

• LEAF: Each leaf stores a sequence of items, sorted by their keys. Hence we represent a leafu
with m items as the sequence,

u = (k1, d1, k2, d2, . . . , km, dm) (9)

where(ki, di) is theith smallest item. See Figure 21(i). In practice,di might only be a pointer to
the actual location of the data. We must consider two cases.NON-ROOT CASE: suppose leafu
is not the root. In this case, we require

a′ ≤ m ≤ b′ (10)

for some1 ≤ a′ ≤ b′. Here,(a′, b′) is an additional pair of parameters that are independent of
(a, b). For simplicity, we will usea′ = b′ = 1 in our illustrations.ROOT CASE: supposeu
is the root. Our requirements are relaxed somewhat to:0 ≤ m ≤ 2b′ − 1. The reason for this
condition will become clear when we discuss the insertion/deletion algorithms.

• INTERNAL NODE: Each internal node withm children stores an alternating sequence of keys
and pointers (node references), in the form:

u = (p1, k1, p2, k2, p3, . . . , pm−1, km−1, pm) (11)

wherepi is a pointer (or reference) to thei-th child of the current node. Note that the number of
keys in this sequence is one less than the numberm of children. See Figure 21(ii). The keys are
sorted so that

k1 < k1 < · · · < km−1.

For i = 1, . . . , m, each keyk in thei-th subtree ofu satisfies

ki−1 ≤ k < ki, (12)
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with the convention thatk0 = −∞ < ki < km = +∞. Note that this is just a generalization of
the binary search tree property in (1).

· · ·(k1, d1) (k2, d2) · · · k1 k2

p1
p2 p3

pm−1 pm

1 ≤ a′ ≤ m ≤ b′ 2 ≤ a ≤ m ≤ b

(i) Leaf Node Organization (ii) Internal Node Organization

(km, dm) km−1

Figure 21: Organization of nodes in(a, b)-search trees

¶37. Choice of the(a′, b′) parameters. Since thea′, b′ parameters are independent ofa, b, it is
convenient to choose some default value for our discussion of (a, b) trees. This decision is justified So(a′, b′) is implicit!
because the the dependence of our algorithms on thea′, b′ parameters are not significant (and they play
roles analogous toa, b). There are two canonical choices: the simplest isa′ = b′ = 1. This means
each leaf stores exactly one item. All our examples (e.g., Figure 20) use this default choice. Another
canonical and perhaps more realistic choice is

a′ = a, b′ = b. (13)

As usual, we assume that the set of items in an(a, b)-search tree has unique keys. But as seen in
Figure 20, the keys in internal nodes may be the same as keys inthe leaves.

2 5 6 8 10 13 18 21 23 29 33

2 5 9 22

2318

10

6

13 30

Figure 22: A(2, 3)-search tree.

Another(a, b)-search tree is shown in Figure 22, for the case(a, b) = (2, 3). In contrast to Figure 20,
here we use a slightly more standard convention of representing the pointers as tree edges.

¶38. Special Cases of(a, b)-Search Trees. The earliest and simplest(a, b)-search trees correspond
to the case(a, b) = (2, 3). These are called2-3 treesand were introduced by Hopcroft (1970). By
choosing

b = 2a− 1 (14)
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(for any a ≥ 2), we obtain the generalization of(2, 3)-trees calledB-trees. These were introduced
by McCreight and Bayer [2]. When(a, b) = (2, 4), the trees have been studied by Bayer (1972) as
symmetric binary B-treesand by Guibas and Sedgewick as2-3-4 trees. Another variant of 2-3-4 trees
is red-black trees. The latter can be viewed as an efficient way to implement 2-3-4 trees, by embedding
them in binary search trees. But the price of this efficiency is complicated algorithms for insertion and
deletion. Thus it is clear that the concept of(a, b)-search trees serves to unify a variety of search trees.
The terminology of(a, b)-trees was used by Mehlhorn [7].

TheB-tree relationship (14) is optimal in a certain9 sense. Nevertheless, there are other benefits in
allowing more general relationships betweena andb. E.g., if we replace (14) byb = 2a, the amortized
complexity of such(a, b)-search trees algorithms can improve [3].

¶39. Searching. The organization of an(a, b)-search tree supports an obvious lookup algorithm that
is a generalization of binary search. Namely, to dolookUp(key k), we begin with the root as the
current node. In general, ifu is the current node, we process it as follows, depending on whether it is a
leaf or not:

• Base Case: supposeu is a leaf node given by (9). Ifk occurs inu aski (for somei = 1, . . . , m),
then we return the associated datadi. Otherwise, we return the null value, signifying search
failure.

• Inductive Case: supposeu is an internal node given by (11). Then we find thepi such that
ki−1 ≤ k < ki (with k0 = −∞, km = ∞). Setpi as the new current node, and continue by
processing the new current node.

The running time of thelookUp algorithm isO(hb) whereh is the height of the(a, b)-tree, and we
spendO(b) time at each node. The following bounds the height of(a, b)-trees:

LEMMA 6. An (a, b)-tree withn leaves has height satisfying

⌈logb ⌈n/b′⌉⌉ ≤ h ≤ 1 + ⌊loga ⌊n/(2a′)⌋⌋ . (15)

Proof. The numberℓ of leaves clearly lies in the range[⌊n/b′⌋ , ⌈n/a′⌉]. However, with a little
thought, we can improve it to:

ℓ ∈ [⌈n/b′⌉ , ⌊n/a′⌋].
(Why?) With heighth, we must have at least2ah−1 leaves. Hence⌊n/a′⌋ ≥ ℓ ≥ 2ah−1 or ⌊n/a′⌋ /2 ≥
ah−1. Sinceah−1 is integer, we obtain⌊⌊n/a′⌋ /2⌋ = ⌊n/(2a′)⌋ ≥ ah−1 or h ≤ 1 + loga(⌊n/(2a′)⌋).
Again, sinceh is integer, this yieldsh ≤ 1 + ⌊loga(⌊n/(2a′)⌋)⌋. For the lower bound onh, a similar
(but simpler) argument holds. Q.E.D.

This lemma implies
⌈logb ⌈n/b′⌉⌉ ≤ 1 + ⌊loga ⌊n/(2a′)⌋⌋ . (16)

For instance, withn = 109 (a billion), (a, b) = (34, 51) anda′ = b′ = 1, this inequality is actually an
equality (both sides are equal to6). It become a strict inequality forn sufficiently large. For smalln,
the inequality may even fail. Hence it is clear that we need additional inequalities on our parameters.

This lemma shows thatb, b′ determine the lower bound anda, a′ determine the upper bound on
h. Our design goal is to maximizea, b, a′, b′ for speed, and to minimizeb/a for space efficiency (see
below). Typicallyb/a is bounded by a small constant close to2, as inB-trees.

9I.e., assuming a certain type of split-merge inequality, which we will discuss below.
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¶40. Organization within a node. The keys in a node of an(a, b)-tree must be ordered for searching,
and manipulation such as merging or splitting two list of keys. Conceptually, we display them as in (11)
and (9). Since the number of keys is not necessarily a small constant, the organization of these keys
is an issue. In practice,b is a medium size constant (say,b < 1000) anda is a constant fraction ofb.
These ordered list of keys can be stored as an array, a singly-or doubly-linked list, or even as a balanced
search tree. These have their usual trade-offs. With an array or balanced search tree at each node, the
time spent at a node improves fromO(b) to O(log b). But a balanced search tree takes up more space
than using a plain array organization; this will reduce the value ofb. Hence, a practical compromise is
to simply store the list as an array in each node. This achievesO(lg b) search time but each insertion and
deletion in that node requiresO(b) time. When we take into account the effects of secondary memory,
the time for searching within a node is negligible compared to the time accessing each node. This argues
that the overriding goal in the design of(a, b)-search trees should be to maximizeb anda. The central tenet of

(a, b)-trees!

¶41. The Standard Split and Merge Inequalities for(a, b)-trees. To support efficient insertion and
deletion algorithms, the parametersa, b must satisfy an additional inequality in addition to (7). This
inequality, which we now derive, comes from two low-level operations on(a, b)-search tree. These
split andmergeoperations are called as subroutines by the insertion and deletion algorithms (respec-
tively). There is actually a family of such inequalities, but we first derive the simplest one (“the standard
inequality”).

During insertion, a node withb children may acquire a new child. Such a node violates the re-
quirements of an(a, b)-tree, so an obvious response is tosplit it into two nodes with⌊(b + 1)/2⌋ and
⌈(b + 1)/2⌉ children, respectively. In order that the result is an(a, b)-tree, we require the following
split inequality:

a ≤
⌊

b + 1

2

⌋

. (17)

Similarly, during deletion, we may remove a child from a nodethat hasa children. The resulting
node witha − 1 children violates the requirements of an(a, b)-tree. So we may consider borrowing a
child from one of itssiblings (there may be one or two siblings), provided the sibling has more than
a children. If this proves impossible, we are forced tomergea node witha − 1 children with a node
with a children. The resulting node has2a − 1 children, and to satisfy the branching factor bound of
(a, b)-trees, we have2a− 1 ≤ b. Thus we require the following merge inequality:

a ≤ b + 1

2
. (18)

Clearly (17) implies (18). However, sincea andb are integers, the reverse implication also holds! Thus
(17) and (18) are equivalent. The smallest choices of these parameters under the inequalities and also
(7) is (a, b) = (2, 3), which has been mentioned above. The case of equality in (17)and (18) gives us
b = 2a − 1, which leads to precisely theB-trees. Sometimes, the conditionb = 2a is used to define
B-trees; this behaves better in an amortized sense (see [7, Chap. III.5.3.1]).

¶42. How to Split, Borrow, and Merge. First, we discuss thegeneral caseof internal nodes that are
non-root. The special case of leaves and root will be discussed later.

Suppose we need to split because an insertion into causes a nodeN to haveb + 1 children. This is
illustrated in Figure 23. We splitN into two new nodesN1, N2, one node with⌊(b + 1)/2⌋ pointers
and the other with⌈(b + 1)/2⌉ pointers. The parent ofN will replace its pointer toN with two pointers
to N1 andN2. But what is the key to separate the pointers toN1 andN2? The solution is to use a key
from N : there areb keys in the original node, but onlyb− 1 will be needed by the two new nodes. The
extra key can be moved in the parent node as indicated.
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N1 :
11 2 3 4 5 6 4 5 6

split

N :
11 2 N2 :

3 7070

b ⌈(b + 1)/2⌉⌊(b + 1)/2⌋

Figure 23: Splitting:N splits intoN1, N1, (a, b) = (3, 6) illustrated

Next, suppose a deletion causes aN node to havea − 1 children. First we try to borrow from a
sibling if possible. This is because after borrowing, the rebalancing process can stop. To borrow, we Do not borrow from

a cousin or distant
cousins. Why?

look to a sibling (left or right), provided the sibling has more thana children. This is illustrated in
Figure 24. SupposeN borrows a new from its siblingM . After borrowing,N will havea children, but
it will need a key to separate the new pointer from its adjacent pointer. This key is taken from its parent
node. SinceM lost a child, it will have an extra key to spare — this can be sent to its parent node.

donate

4 51 2N : M :
N : M :

borrow
2 60

3 4 5

3 60

11

a> a
a− 1

≥ a

Figure 24: Borrowing:N borrows fromM , (a, b) = (3, 6) illustrated

If N is unable to borrow, we resort to merging: letM be a sibling ofN . ClearlyM hasa children,
and so we can mergeM andN into a new nodeN ′ with 2a− 1 children. Note thatN ′ needs an extra
key to separate the pointers ofN from those ofM . This key can be taken from the parent node; the
parent node will not miss the loss because it has lost one child pointer in the merge. This is illustrated
in Figure 25.

N ′ : 11 2 3 43 4

merge

5

N : M :

2 50

1

0

a
a− 1

2a− 1

Figure 25: Merging:N andM merges intoN ′, (a, b) = (3, 6) illustrated

Once the above three basic operations are understood, we canhave a general algorithm for insertion
and deletion. This will be explained after we take care of onemore detail — the case of roots and leaves.

The careful reader will notice an asymmetry in the above three processes. We have the concept of
borrowing, but it as much sense to talk about its inverse operation, donation. Indeed, if we simply reverse
the direction of transformation in Figure 24, we have the donation operation (nodeN donates a key to
nodeM ). Just as the operation of merging can sometimes be preempted by borrowing, the operation of
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splitting can sometimes be preempted by donation! This is not usually discussed in algorithms in the
literature. Below we will see the benefits of this.

¶43. Treatment of Leaves and Root. Consider splits at the root, and merges of children of the root:

(i) Normally, when we split a nodeu, its parent gets one extra child. But whenu is the root, we
create a new root with two children. This explains the exception we allow for roots to have between2
andb children.

(ii) Normally, when we merge two siblingsu andv, the parent loses a child. But when the parent is
the root, the root may now have only one child. In this case, wedelete the root and its sole child is now
the root.

Note that (i) and (ii) are theonlymeans for increasing and decreasing the height of the(a, b)-tree.

Now consider leaves: in order for the splits and merges of leaves to proceed as above, we need the
analogue of the split-merge inequality,

a′ ≤ b′ + 1

2
. (19)

Finally, consider the case where the root is also a leaf. We cannot treat it like an ordinary leaf having
betweena′ to b′ items. Suppose the parametersa′

0, b
′
0 control the minimum and maximum number of

items in a leaf. Let us determine constraints ofa′
0 andb′0 (relative toa′, b′). Initially, there may be no

items in the root, so we must leta′
0 = 0. Also, when the number of items exceedb′0, we must split into

two or more children with at leasta′ items. The standard literature allows the root to have 2 children
and this requires2a′ ≤ b′0 +1 (like the standard split-merge inequality). Hence we requireb′0 ≤ 2a′−1.

notb′0 ≤ 2a′
0 − 1

In practice, it seems better to allow the root to have a large degree than a small degree. Thus, we
might even want distinguish between leaves that are non-roots and the very special case of a root that is
simultaneously a leaf. Such alternative designs are explored in Exercises.

¶44. Mechanics of Insertion and Deletion. Both insertion and deletion can be described as a re-
peated application of the following while-loop:
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⊲ INITIALIZATION
To insert an item(k, d) or delete a keyk, we first do a lookup onk.
Let u be the leaf wherek is found.
Bring u into main memory and perform the indicated operation.
Call u thecurrent node.
⊲ MAIN LOOP
while u is overfull or underfull, do:
1. If u is root, handle as a special case and terminate.
2. Bring the parentv of u into main memory. ⊳ No need if caching is used
3. Depending on the case, some siblingsu1, u2, etc, ofu may be brought into main memory.
4. Do the necessary transformations ofu and its siblings andv in the main memory.

⊳ While in main memory, a node is allowed to to have more thanb or less thana children
⊳ We may have created a new node or deleted a node

5. Write back into secondary memory all the children ofv.
6. Makev our new current node (rename it asu) and repeat this loop.
Write the current nodeu to secondary memory and terminate.

13 15 17 19

14 16 17

6 12 20

22 23 25

6 12 20

108 12

9 10

108 12

9 10

8 10 12 13

9 10 12

14 15 17 19

14 16 17

6 13 20

14 16 1713

151413 191721 23 25 272 4 6

2 5

Insert(14)

Donate 13

Figure 26: Inserting14 into (3, 4, 2)-tree.

Insertion Example: Consider inserting the item (represented by its key)14 into the tree in Figure 20.
This is illustrated by Figure 26. Note thata′ = b′ = 1. After inserting14, we get an overfull node with
5 children. Suppose we first try to donates to our left sibling.In this case, this is possible since the left
sibling has less than4 children.

But imagine that a slightly different algorithm which triesto first donate to the right sibling. In this
case, the donation fails. Then our algorithm requires us to merge with the right sibling and then split
into 3 nodes. Of course, it is also possible to imagine a variant where we try to donate to the left sibling
if the right sibling is full. This variant may be slower sinceit involves bringing an additional disk I/O.
The tradeoff is that it leads to better space utilization.

Deletion Example: Consider deleting the item (representedby its key)4 from the tree in Figure 20.
The is illustrated in Figure 27. After deleting4, the current nodeu is underfull. We try to borrow from
the right sibling, but failed. But the right sibling of the right sibling could give up one child.

One way to break down this process is to imagine that we mergeu with the 2 siblings to its right
(a 3-to-1 merge) to create supernode. This requires bringing some keys (6 and12) from the parent of
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1 to 3 split
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Delete(4)
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3 to 1 merge

Figure 27: Deleting4 from (3, 4, 2)-tree.

u into the supernode. The supernode has 9 children, which we can split evenly into 3 nodes (a 1-3
split). These nodes are inserted into the parent. Note that keys9 and14 are pushed into the parent. An
implementation should be able combine this merge-then-split steps into one more efficient process.

¶45. Achieving2/3 Space Utility Ratio. A node withm children is said to befull whenm = b; for
in general, a node withm children is said to be(m/b)-full . Hence, nodes can be as small as(a/b)-full.
Call the ratioa : b thespace utilization ratio. The standard inequality (18) on(a, b)-trees implies that
the space utilization in such trees can never10 be better than⌊(b + 1)/2⌋ /b, and this can be achieved by
B-trees. This ratio is as large as2 : 3 (achieved whenb = 3), but asb → ∞, it is asymptotically only
slightly larger than1 : 2. We now address the issue of achieving ratios that are arbitrarily close to1, for
any choice ofa, b. First, we show how to achieve2/3 asymptotically.

Consider the following modified insertion: to remove anoverfull nodeu with b + 1 children, we
first look at a siblingv to see if we candonatea child to the sibling. Ifv is not full, we may donate to
v. Otherwise,v is full and we can take the2b + 1 children inu andv, and divide them into 3 groups as
evenly as possible. So each group has between⌊(2b + 1)/3⌋ and⌈(2b + 1)/3⌉ keys. More precisely,
the size of the three groups are

⌊(2b + 1)/3⌋ , ⌊(2b + 1)/3⌉ , ⌈(2b + 1)/3⌉

where⌊(2b + 1)/3⌉ denotesrounding to the nearest integer. Nodesu andv will (respectively) have
one of these groups as their children, but the third group will be children of a new node. See Figure 28.

We want these groups to have betweena andb children. The largest of these groups has at mostb
children (assumingb ≥ 2). However, for the smallest of these groups to have at leasta children, we
require

a ≤
⌊

2b + 1

3

⌋

. (20)

This process of merging two nodes and splitting into three nodes is calledgeneralized splitbecause it
involves merging as well as splitting. Letw be the parent ofu andv. Thus,w will have an extra child
v′ after the generalized split. Ifw is now overfull, we have to repeat this process atw.

10The ratioa : b is only an approximate measure of space utility for various reasons. First of all, it is an asymptotic limit as
b grows. Furthermore, the relative sizes for keys and pointers also affect the space utilization. The ratioa : b is a reasonable
estimate only in case the keys and pointers have about the same size.
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Figure 28: Generalized (2-to-3) split

Next consider a modified deletion: to remove anunderfull nodeu with a− 1 nodes, we again look
at an adjacent siblingv to borrow a child. If v hasa children, then we look at another siblingv′ to
borrow. If both attempts at borrowing fails, we merge the3a− 1 children11 the nodesu, v, v′ and then
split the result into two groups, as evenly as possible. Again, this is ageneralized mergethat involves
a split as well. The sizes of the two groups are⌊(3a− 1)/2⌋ and⌈(3a− 1)/2⌉ children, respectively.
Assuming

a ≥ 3, (21)

v andv′ exists (unlessu is a child of the root). This means
⌈

3a− 1

2

⌉

≤ b (22)

Because of integrality constraints, the floor and ceiling symbols could be removed in both (20) and (22),
without changing the relationship. And thus both inequality are seen to be equivalent to

a ≤ 2b + 1

3
(23)

As in the standard(a, b)-trees, we need to make exceptions for the root. Here, the numberm of
children of the root satisfies the bound2 ≤ m ≤ b. So during deletion, the second siblingv′ may not
exist if u is a child of the root. In this case, we can simply merge the level1 nodes,u andv. This merger
is now the root, and it has2a− 1 children. This suggests that we allow the root to have between a and
max{2a− 1, b} children.

Sharing with cousins?In the above attempt to fix an overfull nodeu with b+1 children, we first
try see to donate a child to a siblingv. Likewise, to fix an underfull nodeu with a − 1 children, we
first try to borrow a child from a siblingv. By definition, two nodesu, v are siblings of each other if
v andu share a common parentw. Now, the children ofw are linearly orderedu1 < u2 < · · · < um

in a natural way, based on their keys. We sayui, ui+1 aredirect siblings for i = 1, . . . , m − 1.
So each nodeui (1 < i < m) has 2 direct siblings; butu1 andum has only 1 direct sibling. It is
important to realize thata node canshare (i.e., borrow or donate) with a direct sibling only. In an
Exercise, we consider a relaxed sharing condition, wherebysharing can be done betweenu andv if
they aredirect cousins.

If we view b as a hard constraint on the maximum number of children, then the only way to allow
the root to havemax{2a − 1, b} children is to insist that2a − 1 ≤ b. Of course, this constraint is
just the standard split-merge inequality (18); so we are back to square one. This says we must treat the
root as an exception to the upper bound ofb. Indeed, one can make a strong case for treating the root
differently:

11Normally, we expectv, v′ to be immediate siblings ofu (to the left and right ofu). But if u is the eldest or youngest sibling,
then we may have to look slightly farther for the second sibling.
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(1) It is desirable to keep the root resident in memory at all times, unlike the other nodes.
(2) Allow the root to be larger thanb can speed up the general search.

The smallest example of a(2/3)-full tree is where(a, b) = (3, 4). We have already seen a(3, 4)-
tree in Figure 20. The nodes of such trees are actually3/4-full, not 2/3-full. But for largeb, the “2/3”
estimate is more reasonable.

¶46. Exogenous and Endogenous Search Structures.Search trees store items. But where these
items are stored constitute a major difference between(a, b)-search trees and the binary search trees
which we have presented. Items in(a, b)-search trees are stored in the leaves only, while in binary search
trees, items are stored in internal nodes as well. Tarjan [9,p. 9] calls a search structureexogenousif it
stores items in leaves only; otherwise it isendogenous.

The keys in the internal nodes of(a, b)-search trees are used purely for searching: they are not
associated with any data. In our description of binary search trees (or their balanced versions such as
AVL trees), we never explicitly discuss the data that are associated with keys. So how do we know that
these data structures are endogenous? We deduce it from the observation that, in looking up a keyk in
a binary search tree, ifk is found in an internal nodeu, we stop the search and returnu. Implicitly, it
means we have found the item with keyk (effectively, the item is stored inu). For (a, b)-search tree,
we cannot stop at any internal node, but must proceed until wereach a leaf before we can conclude that
an item with keyk is, or is not, stored in the search tree. It is possible to modify binary search trees so
that they become exogenous (Exercise).

There is another important consequence of this dual role of keys in(a, b)-search trees. The keys in
the internal nodesneed not be the keys of items that are stored in the leaves. This is seen in Figure 22 Can’t we require the

keys in internal nodes
to correspond to keys
of stored items?

where the key9 in an internal node does not correspond to any actual item in the tree. On the other
hand, the key13 appears in the leaves (as an item) as well as in an internal node.

¶47. Database Application. One reason for treating(a, b)-trees as exogenous search structures
comes from its applications in databases. In database terminology,(a, b)-search tree constitute anindex
over the set of items in its leaves. A given set of items can have more than one index built over it. If
that is the case, at most one of the index can actually store the original data in the leaves. All the other
indices must be contented to point to the original data, i.e., thedi in (9) associated with keyki is not
the data itself, but a reference/pointer to the data stored elsewhere. Imagine a employee database where
items are employee records. We may wish to create one index based on social security numbers, and
another index based on last names, and yet another based on address. We chose these values (social se-
curity number, last name, address) for indexing because most searches in such a data base is presumably
based on these values. It seems to make less sense to build an index based on age or salary, although we
could.

¶48. Disk I/O Considerations: How to choose the parameterb. There is another reason for pre-
ferring exogenous structures. In databases, the number of items is very large and these are stored in
disk memory. If there aren items, then we need at leastn/b′ internal nodes. This many internal nodes
implies that the nodes of the(a, b)-trees is also stored in disk memory. Therefore, while searching
through the(a, b)-tree, each node we visit must be brought into the main memoryfrom disk. The I/O
speed for transferring data between main memory and disk is relatively slow, compared to CPU speeds.
Moreover, disk transfer at the lowest level of a computer organization takes place in fixed sizeblocks
(or pages). E.g., in UNIX, block sizes are traditionally 512bytes but can be as large as 16 Kbytes. To
minimize the number of disk accesses, we want to pack as many keys into each node as possible. So the
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ideal size for a node is the block size. Thus the parameterb of (a, b)-trees is chosen to be the largest Parameterb is deter-
mined by block sizevalue so that a node has thisblock size. Below, we discuss constraints on how the parameter a is chosen.

If the number of items stored in the(a, b)-tree is too many to be stored in main memory, the same
would be true of the internal nodes of the(a, b)-tree. Hence each of these internal nodes are also stored
on disk, and they are read into main memory as needed. ThuslookUp, insertanddelete are
known assecondary memory algorithmsbecause data movement between disk and main memory
must be explicitly invoked. Typically, it amounts to bringing a specific disk block into memory, or
writing such a block back to disk.

¶49. On (a, b, c)-trees: Generalized Split-Merge for(a, b)-trees. Thus insertion and deletion al-
gorithms uses the strategy of “share a key if you can” in orderto avoid splitting or merging. Here,
“sharing” encompasses borrowing as well as donation. The2/3-space utility method will now be gen-
eralized by the introduction of a new parameterc ≥ 1. Call these(a, b, c)-trees. We use the parameter
c as follows.

• Generalized Splitof u: When nodeu is overfull, we will examine up toc−1 siblings to see if we
can donate a child to these siblings. If so, we are done. Otherwise, we mergec nodes (nodeu plus
c−1 siblings), and split the merger intoc+1 nodes. We viewc of these nodes as re-organizations
of the original nodes, but one of them is regarded as new. We must insert this new node into the
parent ofu. The parent will be transformed appropriately.

• Generalized Mergeof u: When nodeu is underfull, we will examine up toc siblings to see if
we can borrow a child of these siblings. If so, we are done. Otherwise, we mergec + 1 nodes
(nodeu plus c siblings), and split the merger intoc nodes. We viewc of the original nodes as
being re-organized, but one of them being deleted. We must thus delete a node from the parent of
u. The parent will be transformed appropriately.

In summary, the generalized merge-split of(a, b, c)-trees transformsc nodes intoc + 1 nodes, or
vice-versa. Whenc = 1, we have theB-trees; whenc = 2, we achieve the2/3-space utilization ratio
above. In general, they achieve a space utilization ratio ofc : c+1 which can be arbitrarily close to1 (we
also needb→∞). Our(a, b, c)-trees must satisfy the followinggeneralized split-merge inequality,

c + 1 ≤ a ≤ cb + 1

c + 1
. (24)

The lower bound ona ensures that generalized merge or split of a node will alwayshave enough siblings.
In case of merging, the current node hasa − 1 keys. When we fail to borrow, it means thatc siblings
havea keys each. We can combine all thesea(c + 1) − 1 keys and split them intoc new nodes. This
merging is valid because of the upper bound (24) ona. In case of splitting, the current node hasb + 1
keys. If we fail to donate, it means thatc − 1 siblings haveb keys each. We combine all thesecb + 1
keys, and split them intoc + 1 new nodes. Again, the upper bound ona (24) guarantees success.

We are interested in the maximum value ofa in (24). Using the fact thata is integer, this amounts
to

a =

⌊

cb + 1

c + 1

⌋

. (25)

The corresponding(a, b, c)-tree will be called ageneralized B-tree. Thus generalized B-trees are spec-
ified by two parameters,b andc.

Example: What is the simplest generalized B-tree wherec = 3? Thenb > a ≥ c + 1 = 4. So the
smallest choices for these parameters are(a, b, c) = (4, 5, 3).
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¶50. Using thec parameter. An (a, b, c)-trees is structurally indistinguishable from an(a, b)-tree. In
other words, the set of all(a, b, c) trees and the set of all(a, b) trees are the same (“co-extensive”). For
any(a, b) parameter, we can compute the smallestc such that this could be a(a, b, c)-tree.

Therefore, we can freely modify thec as we wish. Thec-parameter is only used during algorithm
insertion/deletion, and this can be stored as a global variable. E.g.,c can be a static member of the
(a, b, c) class, if we implement this usingC++). Why would we want to modifyc? Increasingc improves
space utilization but slows down the insertion/deletion process. Therefore, we can begin withc = 1,
and as space becomes tight, we slowly increasec. And conversely we can decreasec as space becomes
more available. This flexibility a great advantage of thec parameter.

¶51. A Numerical Example. Let us see how to choose the(a, b, c) parameters in a concrete setting.
The nodes of the search tree are stored on the disk. The root isassumed to be always in main memory.
To transfer data between disk and main memory, we assume a UNIX-like environment where memory
blocks have size of512 bytes. So that is the maximum size of each node. The reading orwriting
of one memory block constitute one disk access. Assume that each pointer is4 bytes and each key
6 bytes. So each (key,pointer) pair uses10 bytes. The value ofb must satisfy10b ≤ 512. Hence
we chooseb = ⌊512/10⌋ = 51. Suppose we wantc = 2. In this case, the optimum choice ofa is

a =
⌊

cb+1
c+1

⌋

= 34.

To understand the speed of using such(34, 51, 2)-trees, assume that we store a billion items in such
a tree. How many disk accesses in the worst is needed to lookupan item? The worst case is when the
root has2 children, and other internal nodes has34 children (if possible). A calculation shows that the
height is6. Assume the root is in memory, we need only6 block I/Os in the worst case. How many
block accesses for insertion? We need to readc nodes and write outc + 1 nodes. For deletion, we need
to readc + 1 nodes and writec nodes. In either case, we have2c + 1 nodes per level. Withc = 2 and
h = 6, we have a bound of 30 block accesses.

For storage requirement, let us bound the number of blocks needed to store the internal nodes of this
tree. Let us assume each data item is8 bytes (it is probably only a pointer). This allows us to compute

the optimum value ofa′, b′. Thusb′ = ⌊512/8⌋ = 64. Also, a′ =
⌊

cb′+1
c+1

⌋

= 43. Using this, we can

now calculate the maximum and number of blocks needed by our data structure (use Lemma 6).

¶52. Preemptive or 1-Pass Algorithms. The above algorithm uses 2-passes through nodes from the
root to the leaf: one pass to go down the tree and another pass to go up the tree. There is a 1-pass
versions of these algorithms. Such algorithms could potentially be twice as fast as the corresponding
2-pass algorithms since they could reduce the bottleneck disk I/O. The basic idea is to preemptively
split (in case of insertion) or preemptively merge (in case of deletion).

More precisely, during insertion, if we find that the currentnode is already full (i.e., hasb children)
then it might be advisable to splitu at this point. Splittingu will introduce a new child to its parent,v.
We may assume thatv is already in core, and by induction,v is not full. Sov can accept a new child
without splitting. In case of standardB-trees (c = 1), this involves no extra disk I/O. Such preemptive
splits might turn out to be unnecessary, but this extra cost is negligible when the work is done in-core.
Unfortunately, this is not true of generalizedB-trees since a split requires looking at siblings which
must be brought in from the disk. Further studies would be needed.

For deletion, we can again do a preemptive merge when the current nodeu hasa children. Unfortu-
nately, even for standardB-trees, this may involve extra disk I/O because we need to tryto donate to a
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sibling first.

But there is another intermediate solution: instead of preemptive merge/split, we simplycachethe
set of nodes from the root to the leaf. In this way, the second pass does not involve any disk I/O, unless
absolutely necessary (when we need to split and/or merge). In modern computers, main memory is
large and storing the entire path of nodes in the 2-pass algorithm seems to impose no burden. In this
situation, the preemptive algorithms may actually be slower than a 2-pass algorithm with caching.

¶53. Background on Space Utilization. Using thea : b measure, we see that standardB-trees have
about50% space utilization. Yao showed that in a random insertion model, the utilization is about
lg 2 ∼ 0.69%. (see [7]). This was the beginning of a technique called “fringe analysis” which Yao [10]
introduced in 1974. Nakamura and Mizoguchi [8] independently discovered the analysis, and Knuth
used similar ideas in 1973 (see the survey of [1]).

Now consider the space utilization ratio of generalizedB-trees. Under (25), we see that the ratio
a : b is cb+1

(c+1) : b, and is greater thanc : c + 1. In casec = 2, our space utilization that is close tolg 2.
Unlike fringe analysis, we guarantee this utilization in the worst case. It seems that most of the benefits
of (a, b, c)-trees are achieved withc = 2 or c = 3.

EXERCISES

Exercise 7.1: What is the the best ratio achievable under (18)? Under (23)? ♦

Exercise 7.2: Give a more detailed analysis of space utilization based on parameters for (A) a key
value, (B) a pointer to a node, (C) either a pointer to an item (in the exogenous case) or the data
itself (in the endogenous case). Suppose we needk bytes to store a key value,p bytes for a pointer
to a node, andd bytes for a pointer to an item or for the data itself. Express the space utilization
ratio in terms of the parameters

a, b, k, p, d

assuming the inequality (18). ♦

Exercise 7.3: Describe the exogenous version of binary search trees. Givethe insertion and deletion
algorithms. NOTE: the keys in the leaves are now viewed as surrogates for the items. Moreover,
we allow the keys in the internal nodes to duplicate keys in the leaves, and it is also possible that
some keys in the internal nodes correspond to no stored item. ♦

Exercise 7.4: Consider the tree shown in Figure 20. Although we previouslyviewed it as a(3, 4)-tree,
we now want to view it as a(2, 4)-tree. For insertion/deletion we further treat it as a(2, 4, 1)-tree.
(a) Insert an item (whose key is)14 into this tree. Draw intermediate results.
(b) Delete the item (whose key is)4 from this tree. Draw intermediate results. ♦

Exercise 7.5: To understand the details of insertion and deletion algorithms in(a, b, c)-trees, we ask
you to implement in your favorite language (we like Java) thefollowing two (2, 3, 1)-trees and
(3, 4, 2)-trees. ♦

Exercise 7.6: Is it possible to design(a, b, c) trees so that the root is not treated as an exception?♦
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Exercise 7.7: Suppose we want the root, if non-leaf, to have at leasta children. But we now allow it to
have more thanb children. This is reasonably, considering that the root should probably be kept
in memory all the time and so do not have to obey theb constraint. Here is the idea: we allow the
root, when it is a leaf, to have up toa′a− 1 items. Here,(a′, b′) is the usual bound on the number
of items in non-root leaves. Similarly, when it is a non-leaf, it has betweena andmax{aa− 1, b}
children. Show how to consistently carry out this policy. ♦

Exercise 7.8: Our insertion and deletion algorithms tries to share (i.e.,donate or borrow) children from
siblings only. Suppose we now relax this condition to allow sharing among “cousins”. Consider
all the nodes in a given level: two nodes nodesu, v arecousinsof each other if they belong to
the same level but they are not siblings. All the nodesvi (i = 1, . . . , M ) in a given level can be
sorted based on their keys,v1 < v2 < · · · < vM . If vi, vi+1 are not siblings, then we call them
direct cousins. Modify our insert/delete algorithms so that we try to sharewith direct siblings or
cousins before doing the generalized split/merge. ♦

Exercise 7.9: We want to explore the weight balanced version of(a, b)-trees.
(a) Define such trees. Bound the heights of your weight-balanced(a, b-trees.
(b) Describe an insertion algorithm for your definition.
(c) Describe a deletion algorithm. ♦

Exercise 7.10:How can we choose thea parameter (see (25)) in generalizedB-trees in a more relaxed
manner so that the repeated splits/merges during insertionand deletions are minimized? ♦

END EXERCISES
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