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Lecture Il
RECURRENCES

Recurrences arise naturally in the complexity analysieofirsive algorithms and in probabilistic analysis.
We introduce some basic techniques for solving recurrecescurrence is a recursive relation for a complexity
functionT'(n). Here are two examples:

F(n)=F(n—-1)+ F(n—2) 1)

and Looks familiar?
T(n)=n+2T(n/2). 2

The reader may recognize the first as the recurrence for Bdmdnumbers, and the second as the complexity of
the Mergesort, described in Lecture 1. These recurrenaes tiee following “separable form”:

T(n)=Gn,T(n),...,T(ng)) 3)

whereG(zg, z1,...,xx) is a function ink + 1 variables and each; (: = 1,...,k) is a function ofn that is
strictly less tham. E.g., in (1), we havé = 2 andn, = n — 1,ny = n — 2 while in (2), we havet = 1 and
ny =n/2.

What does it mean to “solve” recurrences such as equationand (2)? The Fibonacci and Mergesort
recurrences have the following well-known solutions:

F(n) =06(¢")
whereg = (1 ++/5)/2 = 1.618...... is the golden ratio, and Solve up tod-order
T(n) = O(nlogn).

In this book, we generally estimate complexity functidi(s:) only up to its©-order. If only an upper bound or
lower bound is needed, and we determiif(e) up to itsO-order or toQ2-order. In rare cases, we may be able to
derive the exact solution (in fact, this is possible Tdin) and F'(n) above). One benefit ¢d-order solutions is
this — most of the recurrences we treat in this book can beegdly only elementary methods, without assuming
differentiability or using calculus tools.

The variable 1" is called thedesignated variableof the recurrence (3). If there are non-designated vargable
they are supposed to be held constant. In mathematics, vedlyuseserve %" for natural numbers or perhaps
integers. In the above examples, this is the natural indéésion forn. But one of the first steps we take in
solving recurrences is to re-interpre{or whatever is the designated variable) to range over thlentembers.
The corresponding recurrence equation (3) is then caltedlaecurrence. For this reason, we may preferthe All recurrences ar

symbol “z” as our designated variable, sincés normally viewed as a real variable. real

What does an extension to real numbers mean? In the Fibareacerence (1), what i8'(2.5)? In Mergesort
(2), what doed'(7) = T'(3.14159....) represent? The short answer is, we don’t really care.

In addition to the recurrence (3), we generally needditniendary conditionsor initial values of the function
T(n). They give us the values @f(n) beforethe recurrence (3) becomes valid. Without initial valig&y) is
generally under-determined. For our example (13, iinges over natural numbers, then the initial conditions

F(0)=0, F(1)=1

give rise to the standard Fibonacci numbeéss, F'(n) is thenth Fibonacci number. ThuB(2) = 1, F(3) = Some initial condi-
T . tions lead to trivial so-
Non-separable recurrences looks [&¢n, T'(n), T'(n1),...,T(nk)) = 0, but these are rare. lutions
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2,F(4) = 3, etc. On the other hand, if we use the initial conditidn®) = F(1) = 0, then the solution is
trivial: F(n) = 0 foralln > 0. Thus, our assertion earlier théifn) = ©(¢") is the solution to (1) is nétreally
true without knowing the initial conditions. On the othenkda?’ (n) = O(nlogn) can be shown to hold for (2)
regardless of the initial conditions. For the typical reence from complexity analysis, this will be the case.

EXERCISES

Exercise 0.1: Consider the non-homogeneous version of Fibonacci renceié(n) = F(n—1) + F(n—2)+
f(n) for some functionf (n). If f(n) = 1, show thatF'(n) = 2(c") for somec > 1, regardless of the
initial conditions. Try to find the largest value for Does your bound hold if we havgn) = n instead?

O

Exercise 0.2: LetT'(n) = aT'(n/b) + n, wherea > 0 andb > 1. How sensitive is this recurrence to the initial
conditions? More precisely, if; (n) andT>(n) are two solutions corresponding to two initial conditions,
what is the strongest relation you can infer betw@&emand7;? &

Exercise 0.3: Consider recurrences of the form
T(n) = (T(n—1))*+ g(n). (4)

In this exercise, we restriet to natural numbers and use explicit boundary conditions.
(a) Show that the number of binary trees of height at mastgiven by this recurrence wit(n) = 1 and
the boundary conditiof’(1) = 1. Show that this particular case of (4) has solution

T(n) = WJ . (5)
(b) Show that the number of Boolean functionsrovariables is given by (4) with(n) = 0 andT'(1) = 2.
Solve this.
NOTE: Aho and Sloane (1973) investigate the recurrence (4). &

Exercise 0.4: Let T, T’ be binary trees and’| denote the number of nodesh Define the relatiod” ~ T’
recursively as follows: (BASIS) If'| = 0 or 1 then|T'| = |T"|. (INDUCTION) If |T| > 1 then|T"| > 1
and either (iYI', ~ 17 andTr ~ T, or (i) T, ~ Tj, andTr ~ T . HereT, andTr denote the left and
right subtrees of .

(a) Use this to give a recursive algorithm for checkin@'if- 7".
(b) Give the recurrence satisfied by the running tiifie) of your algorithm.
(c) Give asymptotic bounds ai(n). O

END EXERCISES

§1. Simplification

In the real world, when faced with an actual recurrence todbeesl, there are usually some simplifications
steps to be taken. Here are three general simplificationshioald be automatically taken:
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e Initial Condition. In this book, we normally state recurrence without any @hitionditions. This is
deliberate: we expect the student to supply the initial @oomts, based on the following assumption:

Default Initial Condition (DIC): There is some; > 0 such that for alln < nq,
T(n) is assigned arbitrary values. The recurrence 7o) holds for alln > n;.

The intent s for the student to make convenient choicea{f@nd the initial values df’(n). Normally, we
make choices so that the resulting solution has a simple.f@um favorite version of DIC i§"(n) = C for

all n < n, and some constant. To use DIC, we need not specify or the initial values of'(n) before
hand. We just proceed to solve the recurrence, and at thepigie moments, introduce these values.

What is the justification for this approach? It allows us tous on the recurrence itself rather than the
initial conditions. In many cases, this arbitrariness duossaffect the asymptotic behavior of the solution.
Even if this simplication is not valid, we might have learrseanething about the recurrence.

e Extension to Real Functions.Even if the functionil’(n) is originally defined for natural numbers we
will now treat7’(n) as a real functionife., n is viewed as a real variable), and defined fiosufficiently
large. See the Exercise for an alternative approach (“adymeain”) that avoids extensions to real func-
tions. Itis importantto realize that even if we have no iagtin real recurrences, some solution techniques
below will transform our recurrences into non-integer reences. So we might as well take the plunge
from the start.

e Converting Recurrence Inequality into a Recurrence Equaton. If we begin with a recurrence in-
equality such asl'(n) < G(n,T(n1),...,T(ng)), we simply rewrite this as an equality relation:
T(n) = G(T'(n1),...,T(ny)). Because of this change, our eventual solutionZf¢r) is only an up-
per bound on the original function. Similarly, if we had séarwithT'(n) > G(n,T(n4),...,T(ng)), the
eventual solution is only a lower bound.

q1. Special Simplifications. Suppose the running time of an algorithm satisfies the faligunequality:
T(n) <T([n/2])+T(|n/2])+ 6n+1gn — 4, (6)
for integern > 100, with boundary condition
T(n) =3n? —4n + 2 (7)

for 0 < n < 100. Such arecurrence in-equationmay arises in some imagined implementation of Mergesort,
with special treatment far < 100. Our general simplification steps tells us to (a) discardsghecific boundary
conditions (7) in favor of DIC, (b) tredf (n) as a real function, and (c) write the recurrence as a equation

What other simplifications might apply here? Let us conv@rirfto the following
T(n) =2T(n/2) + n. (8)

This represents two additional simplifications: (i) We ea@d the term +6n + lgn — 4” by some simple
expression (4-n") with same®©-order. (i) We have removed the ceiling and floor functio&tep (i) is justified
because this does not affect theorder (if this is not clear, then you can always come bacletifythis claim).
Step (ii) exploits the fact that we now tre&{n) as a real function, so we need not worry about non-integral
arguments when we remove the ceiling or floor functions. Alsdoes not affect the asymptotic valueBfn)
here.

The justifications for these steps are certainly not obyibusthey should seem reasonable. Ultimately, one
ought to return to such simplifications to justify them.

2The reason behind this is that (1) is a homogeneous recernghite (2) is non-homogeneous. For instan&n) = F(n — 1) +
F(n — 2) 4+ 1 would be non-homogeneous and@ssolution would not depend on the initial conditions.
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EXERCISES

Exercise 1.1: Show that our above simplifications of the the recurrencéy@h its initial conditions) cannot
affect the asymptotic order of the solution. [Show this fdW¥Achoice of a Default Boundary Condition.]

&

Exercise 1.2: We seek counterexamples to the claim that we can replacz| by n/2 in a recurrence without
changing thed-order of the solution.
(a) Construct a functiog(n) that provides a counter example for the following recureenf(n) =
T([n/2]) + g(n). HINT: makeg(n) depend on the parity of.
(b) Construct a different counter example of the fafitn) = h(n)T'([%]) for a suitable functior(n).
o

Exercise 1.3: Show examples where the choice of initial conditions camgkathe©-order of the solution
T(n). HINT: ChooseT'(n) to increase exponentially. O

Exercise 1.4: Supposer, n are positive numbers satisfying the following “recurréheguation,
2% = g1,
Solve forz as a function of:, showing
z(n) = [1 + o(1)]2nlog,y(2n).

HINT: take logarithms. This is an example of a bootstrap@rgument where we use an approximation
of z(n) to derive yet a better approximation. See, e.g., Purdom aoadB[14]. &

Exercise 1.5: [Ample Domains] Our approach of considering real functimson-standard. The standard ap-
proach to solving recurrences in the algorithms literatsitée following. Consider the simplification of
(6) to (8). Suppose, instead of assumifi@:) to be a real function (so that (8) makes sense for all values
of n), we continue to assumeis a natural number. Itis easy to see tfién) is completely defined by (8)
iff n is a power oR. We say that (8) is closed over the $&f := {2% : k € N} of powers of2. In general,
we say a recurrence is “closed over aBet R” if for all n € D, the recurrence fof (n) depends only
on smaller values; that also belong itD (unlessn; lies within the boundary condition).

(a) Let us call a seb C R an “ample set” if, for somex > 1, the setD N [n, « - n] is non-empty for all
n € N. Here[n, an] is closed real interval betweerandan. If the solution?’(n) is sufficiently “smooth”,
then knowing the values @f(n) at an ample seb gives us a good approximation to values wherg D.

In this question, our “smoothness assumption” is simflyn) is monotonic non-decreasinguppose
thatT(n) = n* for n ranging over an ample s&. What can you say abolt(n) for n ¢ D? What if
T(n) = ¢" overD? What ifT'(n) = 2>" overD?

(b) Suppose'(n) is recursively expressed in terms’Bfn,) wheren; < n is the largest prime smaller
thann. Is this recurrence defined over an ample set? &

Exercise 1.6: Consider inversions in a sequence of numbers.
(a) The sequencl, = (1,2,3,4) has no inversions, but sequenge = (2,1, 4,3) has two inversions,
namely the pair§1,2} and{3,4}. Now, the sequencg, = (2,3, 1,4) also has two inversions, nhamely
the pairs{1,2} and{1,3}. Let I(S) be the number of inversions ifl. Give anO(nlgn) algorithm to
computel (S). Hint: this is a generalization of Mergesort.
(b) We next distinguish between the quality of the inversiofS; andS,. The inversiong1, 2} and{3,4}
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in S; are said to have weight of 1 each, so theighted inversionof S; is W(S;) = 2 = 1+ 1. But
for S, the inversion{1, 2} has weigh® while inversion{1, 3} has weightl. So the weighted inversion
isW(S2) = 3 = 2+ 1. Thus the “weight” measures how far apart the two numberslargeneral, if

S = (a1,...,a,) then a pai{a;, a;} is aninversionif i < j anda; > a;. The weight of this inversion
isj —i. LetW(S) be the sum of the weights of all inversions. Give@n lgn) algorithm for weighted
inversions. &

Exercise 1.7: We might consider following form of DIC where we assume tlhatré existd < ng < ny, and
constant$) < Cy < C; such that

Solve the Fibonacci and mergesort recurrences using thégoweof DIC. Your solutions should be stated
in terms of the paramete€s; , Cs. &

END EXERCISES

§2. Divide-and-Conquer Algorithms

In this section, we see some other interesting recurreheg¢atise in a divide-and-conquer algorithms. First,
we look at Karatsuba’s classic algorithm for multiplyingggers [8]. Then we consider a modern problem arising
in searching for key words.

2. Example from Arithmetic. To motivate Karatsuba’s algorithm, let us recall the clashigh-school OK,youlearned it in
algorithm” for multiplying integers. Given positive integs X, Y, we want to compute their produgt= XY. grade school

This algorithm assumes you know how to do single-digit mplittation and multi-digit additions (“pre-high

school”). The algorithm multipleX by each digit ofY". If X andY haven digits each, then we now have

products, each having at most+ 1 digits. After appropriate left-shifts of theseproducts, we add them all up.

It is not hard to see that this algorithm takeg?) time. Can we improve on this?

Usually we think of X, Y in decimal notation, but the algorithm works equally wellany base. We shall
assume basefor simplicity. For instance, if{ = 19 then in binaryX = 10011. To avoid the ambiguity from
different bases, we indicatéhe base using a subscripf, = (10011),. The standard convention is that decimal
base is assumed when no base is indicated. Thus a pléif Without any base represents one hundred, and not
four. If we wanted four,
we have to write

AssumeX andY has length exactly. wheren is a power of2 (we can pad with)'s if necessary). Let us “(100)2”
split up X into a high-order halX'; and low-order halfX,. Thus

X = Xo+2"2%X,
whereX, X; aren/2-bit numbers. Similarly,

Y =Y, + 2%y,

3By the same token, we may wrif§ = (19)1¢ for basel0. But now the base10” itself may be ambiguous — after alll” in binary
is equal to two. The convention is to write the base in decimal
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Then

Z = (Xo+2V2X1)(Yo +2"*V1)
= XoYo+2"3(X1Yy + XoY1) + 2" X1 Y;
Zo+ 2272, + 277,

whereZ, = XYy, etc. Clearly, each of thesg¢’s have at mos2n bits. Now, if we compute the 4 products
XoYo, X1Yo, XoY1, XaY3

recursively, then we can put them together (“conquer stap®(n) time. To see this, we must make an ob-
servation: in binary notation, multiplying any numh&rby 2% (for any positive integek) takesO(k) time,
independent of. We can view this as a matter of shifting left byor by appending a string é@fzeros toX.

Hence, ifT'(n) is the time to multiply twon-bit numbers, we obtain the recurrence
T(n) <4T(n/2)+ Cn (10)
for someC > 1. Given our simplification suggestions, we immediately iigahis as
T(n) =4T(n/2) + n.

As we will see, this recurrence has solutiffin) = ©(n?), so we have not really improved on the high-school
method.

Karatsuba observed that we can proceed as follows: we caputettyy = XY, andZ; = XY first. Then
we can compute; using the formula

Zy=(Xo+X1)Yo+ Y1) — Zo — Zs.

ThusZ; can be computed with one recursive multiplication plus seaitionalO(n) work. FromZy, Z1, Zo,
we can again obtair in O(n) time. This gives us thKaratsuba recurrence,

T(n) =3T(n/2)+ n. (12)

We shall show thaf'(n) = ©(n*) wherea = 1g3 = 1.58---. This is clearly an improvement of the high

school method. first improvement in
1000 years? Ac-
cording to Wikipedia,

There is an even faster algorithm from Schonhage and ®tragkd71) that runs in high school multipli-
O(nlognloglogn) time. This has withstood improvements for almost 20 yeausjrbre- cation is equivalent to
cent years, théoglogn factor has begun to be breached (they can be replacéogby:). the “lattice method”

D

Many theoretical computer scientists believe thaOdn log n) algorithm should be possibl
There is an increasing need for multiplication of arbitsalarge integers. In cryptography or
computational number theory, for example. These are tilpicaplemented in software in
a “big integer” package. For instanckava has aBi gl nt eger class. A well-engineere
big integer multiplication algorithm will typically implaent the High-School algorithm fq
n < ng, and use Karatsuba for, < n < ni, and use Schonhage-Strassen+for- n;.
Typical values fomg, n, are30, 200.

which is at least 1000
years old.

S o

93. A Google Problem. The Google Phenomenon is possible because of efficientithigm: every files on

the web can be searched and indexed. Searching is by keyvi@tdss suppose that Google pre-processes every
file in its database for keywords. However, a user may askadcchdiles for two or more keywords. We will
reduce this multi-keyword search to a precomputed singievord index.
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Let F' be a file, viewed as a sequence of words (ignoring punctusticapitalization, etc). We first pre-
processk for the occurrences of keywords. For each keywerdve precompute amdex which amounts a
sorted sequencB(w) of positions indicating where» occurs inF. E.g.,

P(divide) = (11,16,42, 101,125, 767)

means that the keyworéfvide occurs6 times inF', at positionsl 1, 16, etc. Suppose we want to search the file
using a conjunction ok keywords,ws, ..., wy. An intervalJ = [s, t] is called acoverfor wy, ..., w; if each

w; occurs at least once within the positionsinThe size of a covel, ] is justt — s. A cover isminimal if it

is not contained in some larger cover; insnimum if its size is smallest among all covers. Note thdif ¢,]

are minimal covers foir = 1,2, ..., and ifs; < s; 1 thent; < t;1. Thekeyword cover problemis this: given

the indicesP(wy), ..., P(wy) for a setW = {wy, ..., w;} of keywords in a file, to compute a minimum cover
for .
P(divide)
11 16 42 101 125 767
— 5 - —— L~ positions
2 44 289 300
P(conquer)

Figure 1: Minimal Covers

E.g., letk = 2 with wy = divide andws = conquer. With P(divide) as before, letP(conquer) =
(2,44,289,300). Then the minimal covers af2, 11], [42, 44], [44, 101], [125, 289], [289, 767]. This is illustrated
in Figure 1. The minimum cover {42, 44].

Before attempting to solve this problem, consider how Geaglght use the minimum cover solutions:
suppose a user wants to search for ail¥et= {w1,...,w;} of key words. For each fil¢; (j = 1,2,...) we
use the algorithm to compute a minimum coyet; d;] (if one exists) forlV in f;. The indicesP(w;) for each
key wordw; are assumed to have been precomputed. The search reslitts wiist of all files for which covers
exist, but we order these files in order of non-decreasingrsized; — ¢;. The actual covele;, d;] can be used
by Google to display a snippet of the fife.

Let us now consider algorithms. Let be the length of lisP(w;) (i = 1,...,k) andn = ny + - - - + ng.
The case: = 2 is relatively straightforward, and we leave it for an exseci Consider the case= 3. First,
mergeP(w ), P(ws), P(ws3) into the arrayA[1..n]. Recall that in Lecture |, we discussed the merging of sorted
lists. Merging takes timé&(n; + ny + n3) = O(n). To keep track of the origin of each numberdnwe may
also construct an array[1..n] such thatB[i] = j € {1, 2, 3} iff A[i] comes from the lisP(w;).

We use a divide-and-conquer approach. Recursively, canautinimum cover ofA[l..(n/2)] and
A[(n/2) + 1..n] (for simplicity, assumer is a power of2). Let C, /o, andC, 241, be these minimum
covers. We now need to find a minimal cover that straddlgs/2)] andA[(n/2) + 1]. LetC = [A[i], A[j]] be
such a minimal cover, wherie< (n/2) andj > (n/2) + 1. There are 6 cases. One case is whes C' U C”,
whereC’ = [A]i], A[n/2]] is the rightmost cover fow; in A[1..(n/2)], andC” = [A[(n/2) + 1], A[j]] is the
leftmost cover forws, w3 in A[(n/2) + 1,n]. We can findC” andC” in O(n) time. The remaining 5 cases can
similarly be found inO(n) time. ThenC'is the cover that has minimum size among these 6 cases. Héece,
overall complexity of the algorithm satisfies

T(n)=2T(n/2) +n.

We have seen this recurrence before, as the Mergesorteacer(2). The solution i§(n) = O(nlogn). See
exercise for a general solution@®(n log k) time.
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94. Master Recurrence and Divide-and-Conquer Algorithms. The recurrences (2) and (11) are instances of
theMaster Recurrencewhich has the form:

T(n) =aT(n/b) +d(n) (12)

wherea > 0 andb > 1 are constants antlis any function, usually called ttdriving function . Below, we shall
solve this recurrence under fairly general conditions.

The idea of solving a problem by reducing it to smaller subpgms is a very general one. In this chapter,
we mainly focus on reductions from problems of sizé subproblems of sizg cn for some fixede < 1. If
there are a finite number of such subproblems, the runningstican be bounded using solutions to the Master
recurrence (12). In other problems, we reduce a probleneefisto several subproblems that of sigen — ¢
for some fixed: > 1. Such solutions would be exponential time without addgigoroperties; we study these
under the topic of dynamic programming (Chapter 7). In aapions, we havé(n) > 0, representing the cost
of merging solutions of subproblems in divide-and-congugorithms.

EXERCISES

Exercise 2.1: Carry out Karatsuba’s algorithm fof = 6 = (0110), andY = 11 = (1011),. Itis enough to
display the recursion tree with the correct arguments fonheacursive call, and the returned values¢>

Exercise 2.2: Suppose an implementation of Karatsuba’s algorithm aelsigyn) < Cn'*® whereC = 1000.
Moreover, the High School multiplication B(n) = 30n2. At what value ofn does Karatsuba become
competitive with the High School method? %

Exercise 2.3: Consider the recurrencB(n) = 37'(n/2) +n andT’(n) = 37'([n/2]) + 2n. Show that
T(n) = 6(T"(n)). ¢

Exercise 2.4: The following is a programming exercise. It is best done gisipprogramming language such as
Java that has a readily available library of big integers.
(a) Implement Karatsuba'’s algorithm using such a programrtanguage and using its big integer data
structures and related facilities. The only restrictiothist you must not use the multiplication, squaring,
division or reciprocal facility of the library. But you aresfe to use its addition/subtraction operations, and
any ability to perform left/right shifts (multiplicationyopowers of2).
(b) Let us measure the running time of your implementatiodarfatsuba’s algorithm. For input numbers,
use a random number generator to produce numbers of anedédstrlength. If7(n) < Cn® then
lgT(n) < lgC + algn. Theexponent is thus the slope of the curve obtained by plottligd’(n)
againstlg n, we should get a slope of at mast Plot the running time of your implementation to verify
that its exponent is< 1.58.
(c) What is the exponent in Java’s native implementation@l&ir your data.
(d) My 1999 undergraduate class in algorithms did the pregedexercise, using the
j ava. nat h. Bi gl nt eger package. One timing from this class is shown in Table 2. The “e
ponent” in this table is computing with a crude form%ﬁiﬁéﬁji:iﬁfﬂzz wherenumBitsy = 4000
andavgTimey = 4.358 (the initial trial). This crude exponent hovers arounfl. What would be the
empirical exponent if you do a proper regression analysib® @ata suggests that in 1999, the library
only implemented the High School algorithm. By 2001, thaatibon appeared to have improved. <

Exercise 2.5: Suppose the running time of an algorithm is an unknown fenctif the formT'(n) = An® +
Bnb wherea > b and A, B are arbitrary positive constants. You want to discover tkgoaenta by
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[ NumBits  AvgTime  Exponent |[ NumBits — AvgTime  Exponent |
4000 4.358 0.0 9600 23.034 1.9017905239616146
4200 4.696 1.531002145103799| 9800 24.055 1.9064306092855442
4400 5.194 1.841260577604784| 10000 24.986 1.905838802838664
4600 5.517 1.687304811025434f 10200 25.987 1.907484076203623

N

4800 5.983 1.73818655049995
5000 6.51 1.798511394725176|

>
=
o
i
o
S

26.948 1.906723206778199
10600 28.108 1.912700793571859

5200 6.988 1.7997159663026001 10800 29.111 1.9120055203582398
5400 7.509 1.812998128928515| 11000 30.221 1.9143159996069712
5600 8.01 1.8089977665618309 11200 31.534 1.922120988851413

5800 8.684 1.85558837393382 || 11400 31.542 1.8898795547030012
6000 9.183 1.838236378924439| 11600 32.67 1.8920105894497718
6200 9.769 1.8418523402197158 11800 33.703 1.8908891117429292
6400 10.365 1.843435785284795B 12000 34.67 1.8877101089855162
6600 11.088 1.864808884276074| 12200 36.082 1.8955269064390694
6800 11.717 1.863880296957110p 12400 37.218 1.89568258439075¢3
7000 12.413 1.8704459319724756 12600 38.049 1.88849305740309(07
7200 13.092 1.87140706960353(0B 12800 39.242 1.8894663931349043

7400 13.843 1.87872794770107
7600 14.532 1.87634585344405
7800 15.297 1.88018608611955

13000 40.553 1.892493164635264
13200 41.696 1.891573384417087
13400 42.951 1.892573815512394

8000 16.054 1.88119470115075 44.159 1.892327187180827
8200 16.905 1.888438357099489¢ 13800 45.533 1.894761730707521
8400 17.644 1.884771747444963P 14000 46.816 1.895180371724137
8600 18.498 1.8885827751677746 14200 48.1 1.895318270447568

8800 19.283 1.88622837071105
9000 20.225 1.89277227032401
9200 21.17 1.89765222291543
9400 22.063 1.89824398902585

14400 49.401 1.895458878679031
14600 50.873 1.897943563657486
14800 52.364 1.900285660081644
15000 53.537 1.897748200727304
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Figure 2: Timing as a function of number of bits

measurement. How can you, by plotting the running time ofalgerithm for variousr, find a with an
error of at most? Assume that you can do least squares line fitting. &

Exercise 2.6: Try to generalize Karatsuba’s algorithm by breaking up eadfit number into3 parts. What
recurrence can you achieve in your approach? Does youresma improve upon Karatsuba’s exponent
oflg3 =1.58---? ¢

Exercise 2.7: To generalize Karatsuba’s algorithm, consider splittimgnabit integer X into m equal parts
(assumingn dividesn). Let the parts beXy, X1, ..., X,,_1 whereX = ZZ’;_Ol X;2m/m  Similarly, let
Y = Z;’:Ol Y;2in/m et us defineZ; = Z;:o X;Y;,_;fori=0,1,...,2m — 2. In the formula forZ;,
assumeX, = Yy = 0 when/ > m.

(i) Determine thed-order of f(m, n), defined to be the time to compute the proddct XY when you
are givenZy, Z1, . . ., Zam—2. Remember that(m, n) is the number of bit operations.

(ii) It is known that we can computéZy, Z1, ..., Zam—2} from the X;’s andY;’s using O(mlogm)
multiplications and?(m log m) additions, all involving(n/m)-bit integers. Using this fact with part (i),
give a recurrence relations for the tirfi¢n ) to multiply two n-bit integers.

(iii) Conclude that for every > 0, there is an algorithm for multiplying any twe-bit integers in time
T(n) = ©(n'*¢). NOTE: part (iii) is best attempted after you have studiezl Master Theorem in the
subsequent sections. &

Exercise 2.8: In the Google problem, we need to merge several sorted ks#sall from Lecture | that we can
merge a two lists of sizes, andn in time ©(m + n). SupposeX;, ..., X,, aren > 1 sorted lists, each
with & > 1 elements. Herey andk are independent parameters.

(a) We want to analyze the complexify(n, k) of sorting the sefX’ = [ J;"_, X;. At each phase, we merge
pairs of lists. Withn lists of sizek, we takeO(nk) time to merge, and produeg/2 lists each of siz&k.
Set up the recurrence f@i(n, k) based on this repeated merging algorithm.

(b) Show thatl'(n, k) = O(nklg(1 + n)) (we say ‘1 + n” to ensure that the logarithm does not vanish
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whenn = 1). HINT: you could use domain transformation ($&¢ but this is not necessary.
(c) Use the Information Theoretic Lower Bound from Lectute $how a lower bound d2(nk1g(1+n)).

Exercise 2.9: Recall the Googlemulti-keyword search. This was reduced to computing a mimincover for
aset = {ws,...,w;} of key words in a file. For each key wotd € W, we are given an indeR(w)
which is just a sorted list of positions wheweoccurs in the file.

(a) Solve the minimum cover fdr = 2 in linear time.

(b) SupposeP(w;) = (s;,t;) for eachi = 1,...,k, i.e., each keyword has just two positions. Give an
O(k log k) algorithm to find the minimum covet' for wy, ..., w,. HINT: suppose the minimal covers
areCy,...,C,, forsomem > 1. Give an algorithm to list all the minimal covers. df; = [¢;, d;] and
assuming: < ¢z < - -+ < ¢, how do you find”; ? How do you find”; ;1 givenC;?

(c) Solve the general Google probleii¢ arbitrary and each word can have arbitrarily many occuee

in the file). HINT: if you used the hint from (b), it should begsible to generalize your solution. <

Exercise 2.10: Write a program to solve the Google multi-keyword for theedlas= 3 as described in the text.
Use your favorite programming language (C or Java withoytinject-Oriented fanfare is recommended).
Initially, assumen is a power oR2. Indicate how to adapt your algorithm whens not a power o2. <

Exercise 2.11: Consider the following problem: we are given an arrdy..n] of numbers, possibly with dupli-
cates. Letf(z) be the number of times (“frequency”) a numheoccurs. Given a numbér > 1, we want
to know whether there aredistinct numbers;, ...,z such thath:1 f(x;) >n/2. Call {x1,... a1}

a k-majority set.

(a) Solve this decision problem fér= 1.

(b) Solve this decision problem fér= 2.

(c) Instead of the previous decision problem, we consideraghtimization version: find the smallest
such that there arle numberse, . . ., z; with Zle f(z:) >n/2. O

END EXERCISES

§3. EGVS Method

We are going to introduce two “direct methods” for solvingugrences: rote method and induction. They are
“direct” as opposed to other transformational methods twiie will introduce later. Although fairly straightfor-
ward, these direct methods may call for some creativity ¢athd guesses). We begin with the rote method, as it
appears to require somewhat less guess work.

5. What is rote? The “rote method” refers to the idea of solving a recurrengedpeated expansion of a
recurrence. Since such expansions can be done mechartiuialinethod has been characterized as rote.

4This problem was adapted from a Google interview questiom ifiterviewed student was hired).
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Let us illustrate this method using the merge-sort recawe€8):

T(n) = 2 +n (first expansion)
= 2 +n (second expansion
= 4 T(n4)|+2n (simplify) (13)
= 4 -+ 2n  (third expansion)
= 8T(n/8)+3n (simplify)

This is the expansion step. At this point, we may guess tleatlhexpansion, the formula is
(@)i: T(n)=2T(n/2") +in. (14)

To verify our guess, we use natural induction. Note that thmfila (14) is true foi = 1 (it also holds for = 2
and3, but this is not logically necessary). We need an inducttep:sThis amounts to expanding the formula

once more:
21 2T (n/2%) |+ in (guessedth expansion)

22T (n/2"1) + n/2" |+ in (i + 1st expansion) (15)
2T (n /2 + (i + 1)n,  (simplify)
and noting that this confirms that the formula holdsifar 1 (cf. formula(G);41 in (14)).

T(n)

Finally, we must choose a value ©at which to stop this expansion. First consider the ideabsibn where
n is a power of2 and we chooseé = lgn. Then (14) yieldsI'(n) = 2'T(n/2%) + in = nT(1) + (gn)n.
Invoking DIC to makeT'(1) = 0, we obtain the solutioff’(n) = nlgn. This is a beautiful solution, except for
one problem:i must be an integer, and it will not work whenis not a power of. It makes no sense to pretent
thati is a real variable (as we did far). In general, we may choose an integer closkgta [lgn] or [1gn| will
do. Let us choose

i=|lgn] (16)
as our stopping value. With this choice, we obtaig n/2! < 2. Under DIC, we can choose the initial condition

to be
T(n) =0, forn < 2. 17)

This yields theexactsolution that fom > 2,

T(n)=nllgn]. (18)

q6. Isisreally rote? To recap, there are four distinct stages in the rote method:

(E) Expansion steps as in (13). This is the rote part. You canrekpa many times as you like until you see the
general pattern.

(G) Guessing of a formula for thigh expansion, as in (14). This guess may require some citgativdeed, if
we had not re-arranged the terms in our example in the suggesanner, you might see the pattern.

(V) Verification of the formula as in (15). This step should be h@tcal, and amounts to one more expansion
step and re-arranging the terms into the desired form. Oolglgmn is that students sometimes do not do
this step “honestly”.

(S) Stopping criteria choice as in (16). You need to know whentép €xpension! Note you must choase Child’s dilemma: |
to be a natural number. Thus, you cannot pitk="lgn” in (16), but need something like= [lgn] or can’t spell banana
i = |lgn]. Now you can invoke DIC to finish off the derivation. because | don’t know
when to stop!
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In summary, you must expand, then guess, then verify andyfisdp. Even if you get the correct form
in the form of a summation, you do need to know how to replatéy ia closed form expression. But when
the method works, it gives you the exact solution. How cas theéthod fail? It is clear that you can always
perform expansions, but you may be stuck at the next stepinstance, try to expand the recurrericen) =

2T([n/2]) + n in an exact form. The only way out is to give up exact solutiang guess reasonable upper
and/or lower bounds.

The appearance of the floor function in the solution (18) redke:) discontinuous wheneveris a power
of 2. We can make the solution continuous if we fully exploit otegeldom in specifying boundary conditions.
Let us now assume thdt(n) = nlgn for 1 < n < 2. Then the above proof gives the solution

T(n)=nlgn (19)

for n > 1. This solution is the “ultimate” in simplicity for the reance (8). In the exercises, we see more
examples of the influence of DIC (17) on our solution.

EXERCISES

Exercise 3.1: No credit work: Rote is discredited word in pedagogy, so welldidike a more dignified name
for this method. We could call this the “4-Fold Path” or theG®%S Method”. Suggest your own name for
this method. In a humorous vein, what can EGVS stand for? { Pronounce “EGVS”
as “egg-us” (like the
Romans, treat V as
Exercise 3.2: Use the Rote Method to solve the following recurrences U).

(@T(n) =n+8T(n/2).
(b) T'(n) =n + 16T (n/4).

(c) Can you generalize your results in (a) and (b) to receesrof the formI’'(n) = n + aT'(n/b)
wherea, b are in some special relation? &

Exercise 3.3: Solve the Karatsuba recurrence (11) using the Rote Method. &

Exercise 3.4: Give the exact solution fdf'(n) = 27'(n/2) + n for n > 1 under the initial conditiol’(n) = 0
forn < 1. &

Exercise 3.5: Solve (37) assuming tha(n) = n” for some rea3. NOTE: there will be three different cases,
depending on the relationships betwegi, b. &

Exercise 3.6: Let us consider the following form of DIC, where we assume tha
Co<T(n)<C4

for 0 < n < ny, with the recurrence operative far> n;. Here,Cy, C1,n; are positive constante. Solve
the Mergesort Recurrence under this initial condition, sinow how the solution depends an, Cy, C;.

&

END EXERCISES
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84. Real Induction

The rote method, when it works, is a very sharp tool in the sehat as it gives us the exact solution to
recurrences. Unfortunately, it does not work for many resnces: while you can always expand, you may not
be able to guess the general formula for#lk expansion. We now introduce a more widely applicablehmet
based on the idea of “real induction”.

To illustrate this idea, we use a simple example: considereburrence
T(x)=T(x/2)+ T(x/3) + x. (20)

The student is encouraged to attempt the rote method onetfusrence. Let us use real induction to prove an  Try rote first
upper bound: suppose we guess that) < Kz (ev.), for somek > 1. Then we verify it “inductively”:

T(x) = T(z/2)+T(x/3)+« (By definition)
< Kg+K3g+x (Inductive hypothesis)
= Ke(3+i+4)
= Kz (ProvidedK > 6/5)

In the following, we will rigorously justify this method ofrpof.

How did we guess the upper bouiidz) < Kx? What if we had guesseéfl(z) < Kx?? Well, we would
have succeeded as well. In other words, this argument canfirparticular guess; it does not tell us anything
about the optimality of the guess (in reality, the proof ggehints how tight an inequality is). We could likewise
use real induction to confirm a guessed lower bound. The awdhipper and lower bound can often lead to
optimal bounds.

€7. Natural Induction. Real induction is not a familiar in computing or even mathgasa so let us begin
by recalling the related but well-known methodrmtural induction. The latter is a proof method based on
induction over natural numbers. In brief, suppd¥e) is a natural number predicate, i.e., for eack N, P(n)

is a proposition.

For example P(n) might be “There is a prime number betweemndn + 10 inclusive”. A proposition is
either true or false. Thus, we may vefifhat P(100) is true becausg01 is prime, butP(200) is false because
211 is the smallest prime larger thano. A similar predicate is?(n) = “there is prime betweem and2n — 1",
called Bertrand’s Postulate (1845).

We simply write “P(n)” or, for emphasis, P(n) holds” when we want to assert that “propositi&iin) is
true”. Natural induction is aimed at proving propositiorigtee form

(Vn € N)[P(n) holds. (21)

When (21) holds, we say the predicd®¢-) is valid. For instance, Chebyshev proved in 1850 that Bertrand’s
PostulateP(n) is valid. A “proof by natural induction” has three steps:

(i) [Natural Basis Step] Show thd@(0) holds.

(i) [Natural Induction Step] Show that if > 1 andP(n — 1) holds thenP(n) holds:

(n>1)A P(n—1)= P(n). (22)

(iii) [Principle of Natural Induction] Invoke the principlof natural induction, which simply says that (i) and (ii)
imply the validity of P(-), i.e., (21).

5The smallesk such thatP(n) is false isn = 114.
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Since step (iii) is independent of the predic&te), we only need to show the first two steps. A variation of
natural induction is the following: for any natural numbeegicateP(-), introduce a new predicate (the “star
version of P”) denotedP*(-), defined via

P*(n): (Ym e N)[m <n = P(m)]. (23)
The “Strong Natural Induction Step” replaces (22) in st@ofy
(n>1)A P*(n) = P(n). (24)

Itis easy to see that if we carry out the Natural Basis Steptlam&trong Natural Induction Step, we have shown
the validity of P*(n). Moreover,P*(+) is valid iff P(-) is valid. Hence, a proof of the validity d?*(-) is called
astrong natural induction proof of the validity of P(-).

€8. Real Induction. Now we introduce the real analogue of strong natural indactUnlike natural induction,
real induction is rarely discussed in standard mathemldiieeature, except possibly as a form of transfinite
induction. Nevertheless, this topic holds interest in sugach as program verification [2], timed logic [11], and
real computational models [3]. We regard it is an importanohnique for analysis of algorithms.

Real induction is applicable t@al predicates i.e., a predicateP(-) such that for eachr € R, we have a
proposition denoted(x). For example, suppode(z) is a total complexity function that satisfies the Karatsuba
recurrence (11) subject to the initial conditi®ifz) = 1 for 2 < 10. Let us define the real predicate

P(z): [z > 10 = T(z) < 27]. (25)
As in (21), we want to prove thealidity of the real predicat®(-), i.e.,
(Vo € R)[P(x) holdg. (26)
In analogy to (23), we transfori(+) into a “star-version of”, defined as follows:
Py(z): (W eR)y<z—0= Py)] (27)

whered is any positive real number. The predic#&§g(x) is called theReal Induction Hypothesis(RIH). When
d is understood, we may simply wri#e*(z) instead ofP; ().

THEOREM1 (Principle of Real Induction)Let P(x) be a real predicate. Suppose there exist real numbers)
(gap constant) and; (cutoff constant) such that

() [Real Basis Stepfor all z < z1, P(x) holds.
(I1) [Real Induction StepFor all x > x1, P (z) = P(z).

ThenP(z) is valid: for all z € R, P(z) holds.

The proof of this principle is left as an exercise. It amouata reduction to Natural Induction. The principle
behind this reduction is a very intuitive property of reahmhers:Given any > 0, for every real numbet there
is a smallest natural number(x) such that: < n(x)d. This is also known as th&rchimedean Property of “Give me a lever long
the reals. We can divid® into the sef{Q(k) : k € N} of intervals where each intervgl(:) comprises all those enough and | can
2 with n(xz) = k. This is illustrated in Figure 3. We can then prove that thedfple of Real Induction holds move the earth” —
over each) (k) for k, using natural induction. Archimedes

Let us apply real induction to real recurrences. Note tlsagitplication requires the existence of two con-
stants,;z; andé, making it somewhat harder to use than natural induction.
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Figure 3: Discrete steps in real induction

99. Example. Supposd (z) satisfies the recurrence
T(x) =2° + T(x/a) + T(x/b) (28)
wherea > b > 1. Givenzy > 1 andK > 0, let P(x) be the proposition
x> x9= T(zx) < Kab. (29)

Define the constarity = a=° + b=>. CLAIM: If ko < 1then for allzy > 1, there is aK > 0 such thatP(z) is
valid.

Proof: Now for anyzy, if 21 > 2 then our Default Initial Condition says that there i€'a> 0 such that
T(x)<C

forall zp < z < x;. If we chooseK such thatk' > C/xj then for allzg < z < 21, we haveT'(z) < C <
Kzj < Ka (sincer > zo > 1). HenceP(z) holds. This establishes the Real Basis Step (I)f6r) relative
tox;.

To establish the Real Induction Step (1), we need more pit@sforz; and must choose a suitaldleFirst
choose
T, = axg. (30)

Thus forz > z1, we havery < z/a < z/b. Next choose
b—1
b

This ensures that for > x4, we haver/a < z/b < x — §. The Real Induction Hypothesi3(z) says that for
ally <z —4, P(y) holds, i.e.y > z9 = P(y). Suppose: > x1 andP; (x) holds. We need to show th&¥(x)
holds:

5:$1 —(ml/b):l'l

(31)

T(z) = °+T(z/a)+T(z/b)
< 2P+ K- (v/a)’ + K - (z/b)°, (by Pj(z) andzg < z/a < x/b < x —0) (32)
= 2°(1+ K - ko)
< Kab (33)

where the last inequality is true provided our choicefofabove further satisfies + K - kg < K or K >
1/(1 — ko). This proves the Real Induction Step (ll). Invoking the Bife of Real Induction, we conclude that
P(-) is valid.

In a similar vein, we can use real induction to prove a loweuritb there is a constait > 0 such that
T(z) > ka® (ev.). Hence, we have shovl(x) = ©(n®) for the recurrence (28).
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€10. Default Real Basis. The last example shows that the direct application of thediyie of Real Induction
can be tedious, as we have to track constants su@dhagsand K. But this tedium is only associated with
justifying the Real Basis (RB); the proof of the Real Indant{RI) is actually not tedius and highly instructive.
Our goal is this subsection is to seek ways to avoid RB, soyihatan focus on the interesting part (RI).

There is a simple way out, by fiat! Let(z) be a complexity function and satisfies some recurrence.
Suppose we want to show that

T(x) < f(x)
by real induction. This amounts to showing that there exiSts 0 andx; such that
(Vo > 21)T(x) < K f(x). (34)

We ask you to assume (34) holds providédndz is sufficiently largeCall this theDefault Real Basis(DRB).
In the next subsection, we will formally justify this for ar¢ge class of situations (surely enough to cover all your
applications).

€11. Growth Functions. We will now show that under some general conditions, the Baals (RB) of Real
Induction Principle is automatic. The idea is to exploit tb#owing property that most natural complexity
functions satisfy. SKIP this on first
reading!
A real functionf : R* — R is said to be ayrowth function if f is eventually defined, eventually non-
decreasing and is unbounded in each of its variables. F@mios,f(z) = 2? — 3z andf(z,y) = 2¥ +x/logx
are growth functions, but(xz) = —z andf(z,y, z) = zy/z are not.

THEOREM2. Assuméd’(z) satisfies the real recurrence
T(z) = Gz, T(91(x)),- -, T(gr(x)))

and

o G(z,t1,...,t;) and eachy;(z) (i = 1,. .., k) are growth functions.

e There is a constant > 0 such that eacly; (z) < x — § (ev.z).

Suppos¢ (x) is a growth function such that

Gz, Kf(g1(x)), ..., Kf(gk(x))) < K f(x)) (ev. K, x). (35)

Under the Default Initial Condition, we conclude

Proof. Pick zop > 0 andK > 0 large enough so that all the “eventual premises” of the #mcare satisfied.
In particular,f (z), G(x,t1, ..., t;) andg;(z) are all defined, non-decreasing and positive when theimaegis
are> xg. Also, g;(zo) < z¢ — ¢ for eachi. Let P(z) be the predicate

P(z): x> x0=T(z) < Kf(z).

Pick
xy = max{g; *(vo) :i=1,...,k}. (36)
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The inversegi_1 of ¢; is undefined at if there does not exigj; such thaty;(y;) = o, or if there exists more
than one sucl;. In this case, take; ' (o) in (36) to be anyy; such thay;(y;) > xo. We then conclude that for
all x > x4,

0 < gi(z) <z —0.

By the Default Initial Condition (DIC), we conclude that fall «© € [z¢, z1], P(x) holds. Thus, the Real Basis
Step is verified. We now verify the Real Induction Step. Assum> z; andP; (z). Then,

T(x) = G T(g(2)),...,T(gr(x))
< Gl Kf(gi(x),..., Kf(gi(x))) (by By (x))
< Kf(z) (by (35)).
ThusP(x) holds. By the Principle of Real Inductio®(x) is valid. This impliesT’(z)O(f(x)). Q.E.D.

To apply this theorem, the main property to verify is the gy (35), since the other properties are usually
routine to check. Let us see this in action on the example {&8)basically need to verify that

1. f(z) = 2% G(x,t1,t2) = 2° + t1 + t2, g1(x) = /a andgs(z) = x/b are growth functions
2. g1(z) <z —1landgs(z) < 2 — 1 whenz is large enough.

3. Theinequality (35) holds wheli > 1/(1 — k¢). This is just the derivation of (33) from (32).

From theorem 2 we conclude th@t(z) = O(f(z)). The step (35) is the most interesting step of this
derivation.

Itis clear that we can give an analogous theorem which caséeé to easily establish lower boundsBfx).
We leave this as an Exercise.

e One phenomenon that arises is that one often has to intradst®nger induction hypothesis than the
actual result aimed for. For instance, to prove thiat) = O(xlog x), we may need to guess tHE{z) =
Cxlogx + Dz for someC, D > 0. See the Exercises below.

e Areal predicate” can be identified with a subs&i of R comprising those: such thatP(z) holds. The
statementP(z) can be generically viewed as asserting membership iof Sp, viz, “z € Sp”. Then
a principle of real induction is just one that gives necgssanditions for a seSp to be equal taR.
Similarly, a natural number predicate is just a subsé{.of

In the rest of this chapter, we indicate other systematibvpays; similar ideas are in lecture notes of Mishra
and Siegel [12], the books of Knuth [9], Greene and Knuth §&e also Purdom and Brown [14] and the survey
of Lueker [10].

EXERCISES

Exercise 4.1: Prove theorem 1, by reduction to natural induction. You dao ase a proof by contradiction<)

Exercise 4.2: Supposd(z) = 3T (z/2) + z. Show by real induction th&(z) = O(x'83). O
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Exercise 4.3: Consider equation (8);(n) = 2T (n)+n. Fixanyk > 1. Show by induction thaf'(n) = O(n*).
Which part of your argument suggests to you that this saiugaot tight? O

Exercise 4.4: Consider the recurren@®n) = n + 107T'(n/3). Suppose we want to shdi(n) = O(n?).
(a) Attempting to prove by real induction, students oftegibevith a statement such as “Using the Default
Initial Condition, we may assume that there is sofie- 0 andny > 0 such thatl'(n) < Cn? for all
n < ng”. What is wrong with this statement?
(b) Give a correct proof by real induction.
(c) Supposé’(n) = n+ 10T ((n + K)/2) for some constank’. How does your proof in (b) change?

Exercise 4.5:LetT'(n) = 2T(% + ¢) + n for somec > 0.
(a) By choosing suitable initial conditions, prove the daling bounds orf’(n) by induction, andchot by
any other method:
(@.1)T(n) < D(n — 2c¢)lg(n — 2¢) for someD > 1. Is there a smallesb that depends only oer?
Explain. Similarly, showl'(n) > D’(n — 2¢) lg(n — 2¢) for someD’ > 0.
(@.2)T(n) =nlgn — o(n).
(@.3)T'(n) =nlgn+ 6(n).
(b) Obtain the exact solution B(n).
(c) Use your solution to (b) to explain your answers to (a). &

Exercise 4.6: Generalize our principle of real induction so that the canst is replaced by a real function
0:R — Ryy. O

Exercise 4.7: (Gilles Dowek, “Preliminary Investigations on Inductioner Real Numbers”, manuscript 2002).
(a) A setS C R is closed if every limit point ofS belongs toS. Let P(z) be a real predicat®(z).
Assume{x € R : P(x)holds} is a closed set. Suppose

P(a). A .(Ve > a)[P(c). = .(Fe)(Vy)[c <y < c+e= P(y)]]

Conclude thafVz > a)P(x).
(b) Leta,b € R anda, 8 : R — R such that for allz, a(z) > 0 anda(x) > 0. Supposef is a
differentiable function satisfying

fla) =bf'(z) = —a(x)f(z) + B(x)

then for allz > a, f(x) > 0. Intuition: If f(z) is the height of an object at time then the object will
never reach the grounde., f(z) > 0. &

END EXERCISES

§5. Basic Sums

In this section, we discuss some well-known basic sums aidrble in solving recurrences.
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€12. Rote expansion of the Master Recurrence. As motivataton, let us return to the rote or EGVS method.
We have used it for the Mergesort recurrence (8). We now tegtoif the technique extends to the more general
Master Recurrence (12) which is

T(n) =aT(n/b) +d(n)

fora > 0 andb > 1. Expanding, guessing and verifying yields:
T(n) = qT(n/b)|+d(n)
a2 + ad(n/b) + f(n)

i—1
| T(n/b) |+ " ald(n/b). (37)
§=0

The general-th expansion, unlike in the Mergesort case, i®pan sum i.e., a sum with an unbounded number
of summands depending en This open sum remains after we stop in EGVS. We generallyad@agard an
open sum as a satisfactory solution. This calls for tectegda convert open sums into closed form solutions.
That is the topic of this section.

€13. The Standard Recurrence and Descending SumsBasically, the EGVS method has transformed the
Master Recurrence into a recurrence of the form

T(n)=T(n—1)+ f(n). (38)

We shall call this thestandard recurrence. Our goal in the following sections is to show systematic sviy
reduce many recurrences into this standard form. TriviéB8) has the following open sum as solution

T(n)=3_f(0), (39)
assumingdl’(0) = 0 andn is integer.

In the solution (39) we have assumed thais integer. But what ifn is an arbitrary real value? Let us
introduce some general notations that befits our intentiégaing totally real”. In general, for any real numbers

a, b, we define two kinds of sums gFvalues over this real intervid, bl: Hey, > .,z =
3r — 3  where
SV f@) = )+ Fb—1)+ fb—2)+ -+ f(b—[b—al) (descending)} (ag) =315
Yo f(0) = fla)+ flat )+ fla+2)+-+ flat|b—al) (ascending)

We call these thelescendingand ascending f-summations Such sums are defined to béf « > b. Note
that the difference between these two sums is indicatedéowtly we write the initial value of the summation

variablei: Zf>a" instead ‘Zf:a". We shall mainly focus on the descending sums, but sometimgeneed to  Henceforth, pay
use ascending sums as well. There is a simple connectiorbgtilie these two sums: close attention to this
minute detail!
b b
D) = fb—i) (41)
i>a i=a

Even whenf(x) is a partial function, these sums are well-defined using timeention that undefined summands
are replaced bg. In recognition of our interest in descending sums, we thie a convenient notation:

Sp(n) = > f(i). (42)

i>1
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914. What Does It Mean to Solve a Recurrence? The RHS in (39) is almpen sum meaning a summation in
which the number of summands is unbounded as a functian @fe do not regard open sums as a satisfactory
final answer. But what is a satisfactory answer?

Supposef (n) = nin (39). Then we know how to convert the open sum intocioaed sum

n n

) =3 fG) =Y i= <”;“1) _ @ — o(n?).

i=1 =1

Indeed, we would be perfectly happy with the answE(rf) = ©(n?)” even though the answer is real@};l)

— remember that we are generally intereste@®uorder answers in this book. The reason we are happy with
the answe® (n?) is because? is a “familiar function”. So this section is about how we caritersome “basic
sums” in terms of similar familiar functions. These are tihe®you must know. You will not be responsible for
summations outside this small repertoire of basic sums.

915. Familiar Functions. So we conclude that “solving a recurrence” is relative tofthren of solution we
allow. This we interpret to mean a finite sum or finite produnlving only “familiar” functions. For our
purposes, the functions considered familiar include

polynomialsf (n) = n*, logarithmsf (n) = log n, and exponentialg(n) = ¢ (c > 0).

| see! Solving means
to relate to known

Functions such as factorialg, binomial coefficients(z) and harmonic number#,, (see below) are tightly functions

bounded by familiar functions, and are therefore consitiéaeniliar. Finally, we have a rule saying thite

sum, product and functional composition of familiar funos are considered familiarThuslog” n, loglogn,

n + 2logn andn™ log n are familiar. For instance, lgt(n) be the number of ways an integeican be written

as the sum of two integers. Number theorists have shownfthatis (logn)°(°2) which is familiar by our

definition.

In addition to the above functions, two very slow growingdtians arise naturally in algorithmic analysis.
These are the log-star functidog™ = and the inverse Ackermann functier{n) (see Lecture XIlI). We will
consider them familiar, although functional compositio®Ilving them are only familiar in our technical sense!

We refer the reader to the Appendix A in this lecture for basimperties of the exponential and logarithm
function. In this section, we present some basic closed fanrmmations.

Here are some basic facts that you should know of basic foms:ti

LEMMA 3.

(i) Forall k < K/, n* = O(n*") andn® # Q(n*").

(i) Forall k£ > 0,1gn = O(n*) andlgn # Q(n*).

(iii) For all kand allc > 1, n* = O(c") andn® # Q(c*).

We ask you to prove these in the exercises.

q16. Arithmetic series. The basic arithmetic series is

S, = Zn:z_(”‘;l) (43)

i=1
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In proof,

n

2S’n=Z;i—i—Z;(n—l—l—i)=Z(n+1):n(n+1).

i=1
There is a well-known “proof by picture” where you draw twagouent staircases, each representing the desired
sum; you can put these two staircases together to get a geet@irarea®S,, = n(n + 1).

More generally, for fixed: > 1, we have the “arithmetic series of order,

Sk = izk = O(nFth). (44)

n
i=1
In proof, we have

nft s gk s N (n/2)F > (n/2)M
i=[n/2]

For more precise bounds, we bousifi by integrals,

k+1 n n+1 e+
o :/ xkdx<5’7’§</ xkdw:L,
0 1

kE+1

yielding
Sy = + Ox(n). (45)

Don't worry about
our use of integrals
— they are not es-
sential for this book
at all. We will show

n-1 elementary ways to
Sp(z) = Y ' get these bounds, up
i=0 to ©-order, without
ot =1 any calculus! Yay?
i (46) vay!

In proof, note that:S,, () — S, () = 2™ — 1. Next, lettingn — oo, we get the series

Seo(x) = Z z!
i=0

%) if z>1
= 7 (undefined) ifz < -1
= if |z <1.

Why is S, (—1) (say) considered undefined? For instance, writing

Seo(-1) = 1—-14+1—-1+1-1+---
= 1-D+0-D)4+0Q=1)+---
= 04+04+0+---,

we concludeS.,(—1) = 0. But writing

S(=1) = T—141—-T141—---
(-4 (1=1) =
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we concludeS,(—1) = 1. So that we must consider this sum as having no definite visduguindefined. Again,

Seo(=1) = 1—141—-141—--.
1— Sa(—1),

and we conclude thai..(—1) = 1/2. In fact, S (—1) can take infinitely many possible values in this way. Mathécah  an-
This provides a strong case wiy, (—1) should be regarded as undefined. alysts learned this
lesson in the 19th

Viewing = as a formdl variable, the simplest infinite seriesds, (z) = Y25, «*. It has a very simple closedcentury: treat infinite
form solution, sums with great care.

Saie (47)
= 1—2z

Viewed numerically, we may regard this solution as a spegisé of (46) when — oo; but avoiding numerical The one infinite series
arguments, it can be directly derived from the formal idgrix, () = 1+2S(x). We suggest calliny~:° ) 2*  to know!
the “mother of series” because, from the formal solutiorhis series, we can derive solutions for many related
series, including finite series. In fact, flar} < 1, we can derive equation (46) by plugging equation (47) into

Sp(x) = Soo () — 2" Seo () = (1 — 2™) S ().

By differentiating both sides of the mother series with extfgox, we get:

oo

1 -
7(1 27 = ;zx !
T = ;zx (48)

This process can be repeated to yield formulassfgt, i*2?, for any integetk > 2. Differentiating both sides
of equation (46), we obtain the finite summation analogue:

nilmi,l  (n—1)a" —na" 41
i - (z—1)* ’
n—1
" (n— 1Dz —nz" + 2z
Z ' = e , (49)
=1
(50)
Combining the infinite and finite summation formulas, equzdi(48) and (49), we also obtain
., ona"—(n— 1)zt
Z it = E . (51)

We may verify by induction that these formulas actually holdall = = 1 when the series are finite. In general,
for anyk > 0, we obtain formulas for thgeometric series of orderk:

n—1
> ital, (52)
=1

The infinite series have finite values only wheh < 1.

5|.e., as an uninterpreted symbol rather than as a numerts vThereby, we avoid questions about the sum convergisgrhe unique
numerical value.
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€18. Harmonic series. For natural numbers > 1, thenth harmonic number is defined as

1 1 1
Hy=14+-4+-+---4+—. (53)
2 3 n

We can give some easy estimatedHf using using calculus:
"d
Hn<1+/ & 14 H,.
1 X

But [;" £¢ = Inn. This proves that

H, =Inn+g(n), where0 < g(n) < 1. (54)
Note thatln is the natural logarithm (appendix A). Claim: Inz is identi-
cally 1:
d(lnz) 1
der =z
and
d(1) _ d(=°)
Figure 4: Stacking bricks with maximum overhamg= 5 dr  dzx
= xo_l = l
e
Harmonic numbers arise naturally in the analysis of alpar&. But here is a Solnz = 1.

“physical” application of harmonic numbers: Suppose youveha set ofn > 2
bricks. The bricks are identical and have unit length. Wetwastack the brick
so that the overhang is as large as possible. For instance; i, the overhang i
1/2 since we can put one brick over the other such that the cehgeawity of the
top brick is above the edge of the bottom brick. This is ilagtd in Figure 4(a),
The case of: = 3 is shown in Figure 4(b). An obvious question is whethernwe
can make the overhang arbitrarily large (provide large enough)? Somewhat

surprisingly, the answer is ‘yes’. See Figure 4(c) for theegsa= 5: we see that
in this case, the overhangds,/24, already exceeding the length of a single brick!
In general, the overhang %Hn_l (Exercise). AsH,, is aboutln n, the overhang
goes to infinity (albeit very slowly) as — oo.

("2 2]

We can view (54) as a special case of our descending $iyifis) where f(n) = 1/n. Then for all real,
Hy, = S¢(n) =375, L. There are more precise estimates{or):

g(n) =7+ (2n)~1 + O0(n?) (55)

wherey = 0.577... is Euler’s constant. We can also deduce asymptotic propertiegigfwithout calculus: if
n =2V, then
L LD DD
1 2 N

wherey”, is defined a§~2 ;' , L. Clearly,

1 1

k—1 k—1
1/2 =2 —2k<§ e
k

This proves that
%N <H,<N
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for n a power of2. Extrapolating to all values of, we conclude thaif,, = ©(N) = ©(logn). This result also
shows thatt,, andlg(n) are unbounded (we may choa¥eas big as we like). This idea can be greatly extended
(Exercises).

For any reaky, we can define the sum
"1
H® = —.

ThusH.Y isjustH,,. Whena > 1, H is bounded as — oo (below). The infinite suniz’? is then the value
of the Riemann zeta function at {(«) := sum$2,n~“. For instance;(2) = ® = 72 /6. An exercise below
estimates the sum{,(f): we will see that a constant analogous to Eulerarises. Below, we shall generalize

H' to all realn.

Application: to solve the recurren@&n) = 2T'(n/2) + (n/lgn), we convert it tg
the standard form
t(N)=t(N —1)+1/N (56)

using the substitution(N) = T'(2V) /2", whereN = lgn is a real variable. Ac
cordingto ??),¢(N) = H—'(N). Back solving, the original recurrence has solution
T(n) =nH '(lgn) = n(lnlgn + O(1)).

€19. Stirling’s Approximation. So far, we have treated open sums. If we have an open prodtitiasuthe

factorial functionn!, we can convert it into an open sum by taking logarithms. Tiéthod of estimating an
open product may not give as tight a bound as we wish (why?) tHeofactorial function, there is a family of
more direct bounds that are collectively caltirling’s approximation . The following Stirling approximation
is from Robbins (1955) and it may be committed to memory:

n n
n! = (—) 2mn e

(&
where

1
2ntl -9 Ton

Sometimes, the bound, > (12n)~! — (360n%)~! is useful [4]. Up to©-order, we may prefer to simplify the

above bound to
n\"tz
| — i
n!l =0 <(e) ) .

€20. Binomial theorem.

-1
I+z)" = 1+nw+Ma€2+---+x"

()

=0

For solving real recurrences, it is useful to generalize tthéorem td 1 + =)? for any real numbep. In general,
the binomial functior(f) may be extended to all realand integet:

0 if 1<0

G): 1 if i=0
(3

st i i > 0.

Chee-Keng Yap Basic Version February 8, 2011



§5. BAsIC Sums Lecture Il Page 25

We use Taylor’s expansion for a functigiiz) atz = a:

f'(a) f"(a)
%(x—a)—f—z—(!(x—a)g—i—---—i—

f"(a)

n!

f(x) = fla) +

(x_a)”+...

where f(")(z) = ‘32—5. This expansion is defined provided all derivativesfaéxist and the series converges.
Applied to f(x) = (1 + z)? for any realp atz = 0, we get the desired binomial theorem for real exponents:

1+a)p = 1+m+p(p27 1)x2+P(P_13)!(P_2)x3+...
- p ey
()

See [9, p. 56] for Abel's generalization of the binomial thera.

EXERCISES
Exercise 5.1: Show Lemma 3. For logarithms, we want you to use direct iniipsa(no calculus). &
Exercise 5.2: Solve the recurrencB(z) = 1 + T'(x — 1) forall z > 1. &
Exercise 5.3: Let h(n) denote the maximum overhang forbricks. Prove thak(n) = Z?;ll 3 = iH, ;.

Thus,h(2) = 1/2, h(3) = h(2) + 1/4 = 3/4, h(4) = h(3) + 1/6 = 11/12, andh(5) = h(4) + 1/8 =
25/24. HINT: Let the right edge of théth brick be at position:; where theith brick is stacked on the

i+1stbrick withz; > x;41. Inductively, assume that the optimal configurationfo) is (x1, xo, . .., x,)
wherex; — x;+1 = 1/2i. Moreover, the C.G. of the optimal configuration fgfn — 1) is atx,,. Extend
this induction hypothesis th(n + 1). O

Exercise 5.4: Let ¢ > 0 be any real constant.
(@) Show thain(n + ¢) — Inn = O(c/n).
(b) Show thatH,,+. — H,| = O(c/n) whereH,, is the generalized Harmonic function.
(c) Bound the sum_7" || iy &

Exercise 5.5: ConsiderS..(x) as a numerical sum.
(a) Prove that there is a unique value ¢ (z) when|z| < 1.
(b) Prove that there are infinitely many possible valuesstgfz) whena < —1.
(c) Are all real values possible as a solutiorstg (—1)? &

Exercise 5.6: Show the following useful estimate:

In(n) — (2/n) <In(n —1) < (Inn) — (1/n).

¢
Exercise 5.7:
(a) Give the exact value of ", ﬁ HINT: use partial fraction decomposition %1_—1)
(b) Conclude that7) < 2. o
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Exercise 5.8: The goal is to give tight bounds far(? = S }Q (cf. previous exercise).
(@) LetS(n) = 3=i_, =y - Find the exact bound fdf (n).

(b) LetG(n) = S(n) — o +1. Now~" = G(c0) is a real constant,

1 1 1 1
I __ e
L O B R DO T A s oy i DRIl

Show thatG(n) = v — 0(n=3).
(c) Give an approximate expression > (involving +') that is accurate t@(n~2). Note thaty’ plays
a role similar to Euler’s constantfor harmonic numbers.

(d) What can you say about, given that?) = 72/6? Use a calculator (and a suitable approximation
for 7) to computey’ to 6 significant digits. &

Exercise 5.9: Solve the recurrencB(n) = 5T(n — 1) + n. &

Exercise 5.10: Solve exactly (choose your own initial conditions):
@T(n)=1+22T(n—1).
(b)T(n) =1+ 22T (n—1). &

Exercise 5.11:Show thaty""" | H;, = (n + 1)H,, — n. More generally,

QIS (.|
— \m m+1 m—+1

K2

Exercise 5.12:(J.van de Lune, 1980) Above, we defindg := 2?21 1/i (descending sum). A variant that is

neither a descending nor an ascending sum is to défiteb) := > __,., 1/i where the summation is
over all integer values afin the rang€a, b]. Then this sum is bounded by

> é < In(y/z) + min {1, 1/x}

a<x<b
¢
Exercise 5.13: Give a recurrence fos” (see (44)) in terms o’ , for i < k. Solve exactly forS2. O
Exercise 5.14: Derive the formula for the “geometric series of ord&rk = 2 in (52). &
Exercise 5.15: (a) Use Stirling’s approximation to give an estimate of tkpanentE in the expressiog” =
Gn)
(b) (Feller) Show(*") = >>1_ (7)°. o

END EXERCISES
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§6. Standard Form and Summation Techniques

Recall that our goal is to reduce all recurrences tostaedard form:
t(n) =t(n—1) + f(n). (57)
Assuming the recurrence is valid for all> 1, we have
tth—i+1)—tln—1i)=fn—i+1), (@E=1...,|n)).

Adding thesg n | equations together, all but two terms on the left-hand siheel, leaving us

n

t(n) —t(n—[n—1]) =Y f().

i>1

(We say the left-hand side is a “telescoping sum”, and tltk is known as “telescopy”.) Assuming DIC with

t(n) = 0forn < 1, we obtain
n) =y f(). (58)

i>1

The summation on the right is just our descending $yitn). If this open sum has the form of one of the basic
sums in the previous section, we are done. For instancegiarthlysis of bubble sort, we obtain a standard form

recurrence:
ttn)=tln—1)+n

Choosing the initial condition(0) = 0, we obtain the exact solutiaiin) = 37, i = ("11).

921. Polynomial-type and Exponential-type Sums. Let us consider what is to be done if the open sum (58)
does not readily reduce to one of the basic sums we have degtuis the previous section. Traditionally, the
sumS(n) (for n € N) is solved using the Euler-Maclaurin summation formula,

0= [ 1 d“( $° BN >> .

where B; is theith Bernoulli number. See [5, p. 217]. But throughout thisptka we have emphasized the

solution of recurrences using elementary arguments, engichlculus or limits. Moreover, we seek solutions No chilsyplease!
only up to©-order. We now introduce two elementary summation tectesdar this purpose. They are based

on the following “growth classification” of real functiong:is assumed that the functighin these definitions

satisfy f > 0 (when defined), and > 0 (ev.).

Polynomial Type: A real functionf is polynomial-type if f is non-decreasing (ev.) and there is safe- 0
such that

fl@) < C- f(z/2) (ev).
E.g.,
fo@) ==, fi(z) =logz, fa(z) = fo(x)fi(x), f3(z)= (fo(z))* (a>0).
Exponential Type: The functionf is exponential-typeif it increases exponentially or it decreases exponen-
tially:
(a) f increases exponentiallyf there exists real numbe(s > 1 andk > 0 such that

f(z) > C- f(x—k) (ev).
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E.g.,

go(x) =27, gi(z) =2, ga(x) =go(x)gr(x), gs(z) =29
b) f decreases exponentiallif there exists real numbefs< ¢ < 1 andk > 0 such that
( p

fl@) <c- flx—k) (ev).

E.g.,
ho(x) =277, hi(z) = 2%, he(x) = ho(z)hi(x), hs(z) = 2"

In proofs, we usually assunie= 1 in the above definition of exponential-types: i.e.gf) is increasing
exponentiallyg(n) > Cg(n — 1) and if h(n) is decreasing exponentially(n) < ch(n — 1). It should be clear
that these arguments generalizes to the more geherd).

We also say that the susi(n) = Sy(n) := >.", f(z) is polynomial-type or exponential-type, according
to the above classification gt The following theorem gives a simple rule for bounding ssams.

THEOREM4 (Summation Rules)Consider the sun§s(n):
(i) If fis polynomial-typeS(n) = O(nf(n)).
(i) If fis exponential-type,

S(n) = O(f(n)) if fisincreasing exponentially,
= O(1) if fis decreasing exponentially.

Proof. (i) For a polynomial-type sum, using the fact ttfas non-decreasing, we get the upper bosiath) <
>or_, f(n) =nf(n). For lower bound, we also need thétr) < Cf(x/2) (ev.) for some” > 0:

Si(n) > > f(x)

%
~
S
~
N
Y
s
~
il
~
S
~
N

> [n/2] o = Qnf(n)).

(ii-a) For an increasing exponential sum, there is safme 1, £ > 0 andm > 0 such that for allh > m + 1,
we havef(n) > C'f(n — k). By increasingk, m, n if necessary, we may assume wlog that — m € N and
n > m+ 1. We can even assume— m is divisible byk. Thus,

Sp(n) = f(n)+ f(n—=1) +---+ f(m+1) + 5¢(m)

We can subdivide the suif(n) + f(n — 1) + f(n — 2) + --- + f(m + 1) into k different subsums, each of the
form
fln=r)+fin—k—k)+fin—Kk—=2k)+---+ flm—rK+k) (59)

foreachx = 0,1,...,k — 1. The lemma then follows since each subsum satisfies

fin—r)+fin—rk—K)+fn—rk—=2k)+---+ f(m—Kk+k)
1

1
< fln—rk) 1—1—6—1-@4-"'
c

= f(n— “)m
= O(f(n—k)) = O(f(n)).
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(ii-b) For a decreasing exponential sum, there is sorrel, £ > 0 andm > 0 such that for allh > m + 1, we
havef(n+ k) < c¢f(n)andf(m) > f(n). Again wlog,k,n —m € N andk dividesn — m. Then

Sg(n) = Sg(m) + f(m+1) + f(m+2) +--- f(n)

wheref(m+1) + f(m+2)+---+ f(n) can be broken up inth subsums, as in (59). The result follows since
each subsum is bounded as

fm—=k+k)+ f(m—rK+2k)+ f(m — Kk +3k) +---+ f(n — k)
< f(m—Kk+k) [1+c+c2+...]

< f(m)

1—c¢
Q.E.D.

This theorem tells us to upper bound a polynomial-type Stun) by replacingeach term
in the sum by its largest terrfi(n). Similarly, to upper bound an exponential-type sum
Sr(n), replacethe entire sunby its largest term. So we shift the burden of estimating
sums to the simpler task of identifying the growth-type @ fhnctionf.

Let us illustrate applications of this theorem:

e Polynomial Sums.

n

Zilogi:@(n21ogn), Zlogi: ©(nlogn) Zi“

i>1 i>1 i>1

O(n®!) (wherea > 0).  (60)

e Exponentially Increasing Sums.

Yoi=e@y,  YiY=em%2¥), Yli=e@m) . (61)
1>1 i>1 1>1
e Exponentially Decreasing Sums.
doi=01), Y #t=e1), Yit=e(1) . (62)
i>1 1>1 1>1

Summation that does not fit the framework of Theorem 4 can somae be reduced to one that does. A
trivial case is where summation we are interested in doebegih withi = 1. As another example, consider

n

S = . (63)

which has terms depending o@as well as on the limit. Write S = Z?Zl f(i,n) where

i!

fin)

- 1gin'
We note thatf(i,n) is increasing exponentially far > 21gn (ev.n), sincef(i,n) = lgin (i—1,n) >
2f(i — 1,n). Hence we may split the summation into two pafis= A + B where A comprise the terms for

whichi > 21gn and B comprising the rest. SincB is an exponential sum, we have= O(f(n,n)). We can
easily use Stirling’s estimate fof to see thatd = O(log*? n) = O(f(n,n)). ThusS = O(f(n,n)).
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922. A Counter Example. Most common functions we encounter will be either polyndrype or
exponential-type. But the functiof{n) = n'™" is neither. Showing thaf(n) is not polynomial-type is easy.
The box below proves it is not exponential-type. How do wéeste the sunby(n) := >~ ) f(x) without the
benefit of Theorem 47 In this case, techniques similar torotyial and exponential sums still give reasonably
tight bounds (but noB-order): f(n) < S(n) < nf(n) < f(n)'™ for anye > 0.

CLAIM: f(n) = n"™ is not exponential-type. By way of contradiction, suppose
there existg, > 1 such that

f(n) = Cof(n—1) (ev). (64)
A well-known bound (see Appendix A) says that fot < 1
In(l+z) <. (65)
Also from (54) and (55), we conclude that
Inn+~y<H,<lnn+~v+(1/n) (ev). (66)

All the following inequalities are to hold eventually:

Inn < H,—v
< (I/n)4+In(n—1)+(1/n)
= In(n—1)+(2/n), (67)

We now get a contradiction:

f) = [m-na+ 2]

< (n- ROV S (by (67))
= fln—1)-(n—1)2/n. gn0+zty)nn
ST 221“” D2 (by (65))

(n—1)-Ci(n)
whereC (n) := 22n(n=1)/n. 20 r. Sinceln C(n) = 2In(n—1)/n)+(nn/(n—
1)) — 0 asn — oo, we conclude that’;(n) < Cy (ev.). This showf(n) <
f(n —1)Cy (ev.), contradicting (64).

To apply the summation rules Theorem 4, we want to rapidlgsifa functions according to their growth
types:

LEMMA 5. Leta € R.

(a) Polynomial-type functions are closed under additionltiplication, and raising to any positive power> 0.

(b) Exponential-type functiong are closed under addition, multiplication and raising toygmowera. In case
a > 0, the functionf® will not change its subtype (increasing or decreasing).dren < 0, the functionf® will

change its subtype.

(c) If f is polynomial-type ang > 1 (ev) thenlg f is also polynomial-type. If is exponential-type and > 1

then so isz/.

Proof. All the inequalities in the following proofs are assumed tddheventually:
(@) Assumef(n) < C'f(n/2)andg(n) < Cg(n/2)forsomeC > 1. Thenf(n)+g(n) < C(f(n/2)+g(n/2)),
f(n)g(n) < C?f(n/2)g(n/2), and for anye > 0, f(n)¢ < C°f(n/2)e.
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(b) Assumeg;(n) > Cg;(n — 1) andh;(n) < ch;(n — 1). for someC > 1,¢ < 1, and fori = 0,1. Also,
let g = go, h = ho. Closure under additiongo(n) + gi(n) > C(go(n — 1) + g1(n — 1)) and hg(n) +
hi(n) < c(ho(n — 1) + hi(n — 1)). Closure under productyy(n)gi(n) > C%go(n — 1)g1(n — 1)) and
ho(n)hi(n) < c®ho(n—1)hi(n—1). Closure under raising to powerlf e > 0, theng®(n) > C¢g¢(n—1) and
h¢(n) < c®h®(n —1) whereC® > 1 andc® < 1. If e < 0, theng®(n) < C°g°(n — 1) andh®(n) > c“h°(n — 1)
whereC*® < 1andc¢® > 1.

(c) If f is polynomial-type, thetiog(f(n)) < (log C') + log(f(n/2)) < (1 + (logC)/c)log(f(n/2)), where
log(f(n/2)) > ¢ > 0 for some constant This provedog f to be polynomial-type.

If g, his exponential type as in (b), then note tiat(n) > (C' — 1) 4+ g(n) sinceg(n) > 1. Thus

) > pCan1) 5 (@ Df(n-1)
> bC*lZf(’n.fl)'

Q.E.D.

€23. Generalized Harmonic Numbers. Let us determine th®-order ofH,(f‘). But first, we extend:l,(f‘) to
real values oh.
For alln, « € R, define thegeneralized Harmonic number
Hmn) == n*+mh-1)4+n-2)+---+{n}+ 1"
= ) a (68)
=1
using our summation notatio29) for real limits. The original harmonic numbers in our newatmn becomes
H(®) = H%(n).
Also, H*(n) = 0forn < 1.
THEOREMG. Forall a € R,
1 if a<—1

HYn)=0¢ lgn if a=-1
notl if a>—1

Proof. It is best to initially assume + 1 is a power of2. Then

lg(n+1) [ 2F—1

H%n) = Z Z i
k=1 \i=2k-1
lg(n+1)

= ) 2".e(2%)
k=1
lg(n+1)

k(1+a)
; 9(2 + )

Note that the slick use @ in this derivation is capturing upper and lower bounds steméously. If explicitly
spelled out, you would need to consider the cases0 anda < 0 separately. Now we notice thatli+ « =0 Exercise: spell it out!

then the sum
lg(n+1)

kFlte)) — n .
kzz‘; 6 (2:0+) = O(lg(n + 1))
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If 1+ a < 0, then the sum is decreasing exponentially and Theorem dyyiel

lg(n+1)

> =e).

k=1
If 1+ a > 0, then the sum is increasing exponentially and Theorem dyiel

lg(n+1)

Z -0 (21g(n+1)(1+a)) -0 (TLIJFO‘) .

k=1

Whenn + 1 is not a power o2, we can replace by 7 = 2['8(*+1D1 _ 1 andpn = 2Us(»*+D] _ 1 for upper and
lower bounds (Exercise). Q.E.D.

Up to ©-order, the result unifies the standard bounds for (a) thieradtic series (44), (b) harmonic numbers
(54), and (c) geometric sums (46). Our proof is completedyredntary; its basic method of splitting up the sum
into a “geometric sequence” of groups is applicable to mahgmestimates involving logarithms.

924. Grouping: Breaking Up into Big and Small Parts. The above example (63) illustrates the technique
of breaking up a sum into two parts, one containing the “steaths” and the other containing the “big terms”.
This is motivated by the wish to apply different summatiacht@ques for the 2 parts, and this in turn determines
the cutoff point between small and big terms. Suppose we teastiow

n

1
H, = -=0 .
; - =0(Vn)
Break H,, into two summationstZ,, = A,, + B,, where
Lv7)

Ay =

S|

Il
-

i
comprises the “big terms” an8,, contains the remaining — |\/n| “small terms”. Then

vl |

i=1

and

S| =

<

%

"1
=/n.
— n

RS
i=[ v+

E

1

ThusS,, < 2,/n as desired.

We can generalize the grouping idea to prove the following:
H, < kn'/* (69)

for any integerk > 2. We break the: term of H,, k subsumsH,, = A, (1) + A, (2) + --- + A, (k) where

A, (1) comprises the firstn!/*)| terms ofH,,, A, (2) comprises the next?/*| — [n!/*] terms, etc, where in
general, A, (j) comprises the nexXtn’/*] — [nU=1/k] terms. Itis easy to see that eadh(;) is bounded by
n'/k and this proves (69).
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This gives an elementary proof thé, is O(n¢) for anyc > 0. This also imply
H, = o(n®), log, n = o(n®)

foranyc > 0.

EXERCISES

Exercise 6.1: (a) Verify that the examples in (60), (61) and (62) are, injexs claimed, polynomial type or
exponential type.
(b) Is the summatiofy_;_, i'¢* an exponential type or polynomial type? Give bounds for tirarmation.

O

Exercise 6.2: Let T, be a complete binary tree with> 1 nodes. Sa = 2"+! — 1 whereh is the height off’,.
Suppose an algorithm has to visit all the node&’pfand at each node of height> 0, expend(i + 1)?
units of work. LetT'(n) denote the total work expended by the algorithm at all theesodive a tight
upper and lower bounds &i(n). O

Exercise 6.3: (a) Show that the summation;_, (1g n)'s" is neither polynomial-type nor exponential-type.
(b) Estimate this sum. &

Exercise 6.4: For this problem, please use arguments from first principls not use calculus, properties of
log x such ase/logx — oo, etc. (a) Show thati,, = o(n®) for any« > 0. HINT: Generalize the
argument in the text.

(b) Likewise, show thatl,, — oo asn — oc. &
Exercise 6.5: Letn = 2%, Show thatf,, = #(k) by grouping. Conclude that for all, /,, = ©(Ign). &
Exercise 6.6: Use the method of grouping to show th#t) = > | % is Q(lg% n). O

Exercise 6.7: Give the©-order of the following sums:
@s=>" Vi
(b) S =>""  1g(n/i). %

Exercise 6.8: Let f(i) = f.(i) = n:}rl. The sumF(n) = Y » | fa(i) is neither polynomial-type nor

exponential-type. Give @-order bound orF'(n). HINT: transform this into something familiar. %

Exercise 6.9: Can our summation rules fél(n) = >-""_, f(i) be extended to the case whe(e) is “decreasing
polynomially”, suitably defined? NOTE: such a definition mssmehow distinguish betwegfti) = 1/:
andf(i) = 1/(i?), since in one cas8(n) diverges and in the other it convergesas: oc. O

END EXERCISES
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§7. Domain Transformation

So our goal for a general recurrence is to transform it ineodtandard form. You may think of change of
domain as a “change of scale”. Transforming the domain otarrence equation may sometimes bring it into

standard form. Consider
T(N)=T(N/2)+ N. (70)

We define
t(n) :=T(2"), N =2".

This transforms the origindV-domain into the:-domain. The new recurrence is now in standard form,
t(n) =t(n—1)+2".

Choosing the boundary conditiat0) = 1, we gett(n) = >." 2". This is a geometric series which we know
how to sum¢(n) = 2"t — 1; hence'(N) = 2N — 1.

Omit in a first reading

€25. Logarithmic transform. More generally, consider the recurrence

T(N)=T (ﬂ - d) +F(N), ¢>1, (71)

C

andd is an arbitrary constant. It is instructive to begin with t@sed = 0. Then it is easy to see that the
“logarithmic transformation” of the argumen¥ to the new argument := log.(N) converts this to the new

recurrence
t(n) =tn—1)+ F(c")

where we define

There is possible confusion in such manipulations whereave ised some implicit conventions. So let us
state the connection betweeandT more explicit. Letr denote thelomain transformation function,

7(N) =log.(N)

(so “n” is only a short-hand for#(N)"). Thent(7(N)) is defined to b&’(N), valid for large enoughV. In
order for this to be well-defined, we needo have an inverse for large enoughThen we can write

t(n) == T(r~ (n)).

We now return to the general case whéiis an arbitrary constant. Note thatdf< 0 then we must assume
that IV is sufficiently large (how large?) so that the recurrencg {§ ineaningful (e., (N/c¢) — d < N). The
following transformation

d
n = 7(N) = log,(N + —= -)
c—
will reduce the recurrence to standard from. To see thi® th@it the “inverse transformation” is
N = " — cd
c—1
= ')
cd
N _ d — n—1 _
(N/e) -
= 77n-1).
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Writing t(n) for T'(7—1(n)) and f(n) for F(r—1(n)), we convert equation (71) to

tn) = t(n—1)+F<c"— Cd)

To finally “solve” for t(n) we need to know more about the functibiiN'). For example, iff’(NV) is a polyno-
mially bounded function, theffi(n) = F(c" + -24) would be©(F(c")). This is the justification for ignoring
the additive term d” in the equation (71).

926. Division transform. Notice that the logarithmic transform case does not quitgwa the following
closely related recurrence
T(N)=T(N —d)+ F(N),d > 0. (72)

Itis easy to concoct the necessary domain transformatéptaceN by n = N/d and substituting
t(n) =T(dn)
will transform it to the standard form,
t(n) =t(n — 1) + F(dn).

Again, to be formal, we can explicitly introduce the transficunctionr(N) = N/d, etc. This may be called
the “division transform”.

927. General Pattern. In general, we considéar(N) = T'(r(N))+ F(N) wherer(N) < N is some function.
We want a domain transform= 7(N) so that

T(r(N)) =7(N) — 1. (73)
For instance, if-(N) = v/N we may choose
T(N) = Iglg(N). (74)

Then we see that
T(VN) =1g(g(VN)) =1g(1g(N)/2) =1glg N — 1 = 7(N) — 1.

Applying this transformation to the recurrence
T(N)=T(VN)+ N, (75)

we may defing(n) := T(7~(n)) = T'(22") = T(N), thereby transforming the recurrence (75) td (o) =
t(n —1) +22".

REMARKS:
1. The transformation (74) may be regarded as two applicatdd the logarithmic transform.
2. Domain transformation can be confusing because of tHewtly of keeping straight the similar-looking
symbols, 1’ versus ‘N’ and ‘t’ versus T”. Of course, these symbols are mnemonically chosen. Whepeply
used, these conventions reduce clutter in our formulasifButy are confusing, you can always fall back to the
use of the explicit transformation functions suchras

EXERCISES
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Exercise 7.1: Justify the simplification step (iv) ifl (where we replacén/2] by n/2). O

Exercise 7.2: Solve recurrence (71) in these cases:
(@) F(N) = N*.
(b) F(N) =log N. &

Exercise 7.3: Construct examples where you need to compose two or more afthve domain transformations.

&

END EXERCISES

68. Range Transformation

A transformation of the range is sometimes called for. Fetance, consider
T(n)=2T(n—1)+n.

To put this into standard form, we could define

and get the standard form recurrence

t(n) =t(n—1)+ 2%

Telescoping gives us a series of the type in equation (48)hmve know how to sum. Specifically(n) =
> (ny 37 = O(1). Hencel'(n) = ©(2").

We have transformed the rangeB{n) by introducing a multiplicative facto2”: this factor is called the
summation factor. The reader familiar with linear differential equationdlwee an analogy with “integrating
factor”. (In the same spirit, the previous trick of domaiartsformation is simply a “change of variable”.)

In general, a range transformation converts a recurrentteedbrm

T(n)=c,T(n—1)4 F(n) (76)

into standard form. Here, is a constant depending an Let us discover which summation factor will work. If
C(n) is the summation factor, we get

t(n) = %
and hence
t(n) = g(—:g
= -1+ %
_ ZEZ - 3 +E Z§ (providedC(n) = ¢,C(n — 1))
= t(n—1)+ %

Chee-Keng Yap Basic Version February 8, 2011



§9. DIFFERENCING AND QUICKSORT Lecture Il Page 37

Thus we need’(n) = ¢,C(n — 1) which expands into

C(n) = cpCp—1---c1.

EXERCISES

Exercise 8.1: Solve the recurrence (76) in the case where= 1/n andF(n) = 1. &

Exercise 8.2: (a) Reduce the following recurrence

n2
to standard form. Then solve it exactly wheris a power of2.

(b) Extend the solution of part(a) to generalising our generalized Harmonic numbéfg for realz > 2
(see§2). You may choose any suitable initial conditions, but péestate it explicitly.

(c) Solve the variations
2

T(n)=4T(n/2) +

lg%n
and
n2
T(n)=4T(n/2) + T
o
Exercise 8.3: Repeat the previous question with the following recurrence
(@)T(n) = 4T (n/2) + 4
(b) T'(n) = 4T(n/2) + . o

END EXERCISES

§9. Differencing and QuickSort

Summation is the discrete analogue of integration. Extemthis analogy, we introduce tliéfferencing as
the discrete analogue of differentiation. As expectededkhcing is the inverse of summation. The differencing
operationV applied to any complexity functiofi(n) yields another functio® 7" defined by

(VT)(n) =T(n) —T(n—1).
Differentiation often simplifies an equation: thygx) = 22 is simplified to the linear equatioiD f)(z) = 2x,

using the differential operatdp. Similarly, differencing a recurrence equation ¢») may lead to a simpler
recurrence fo(VT)(n).

Indeed, the “standard form” (57) can be rewritten as
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This is just an equation involving a difference operator -e-discrete analogue of a differential equation.

For example, consider the recurrence

n—1
T(n)=n+» T(i).
i=1

This recurrence does not immediately yield to the previeabiiques. But note that
(VT)(n)=1+T(n—1).

HenceT'(n) — T(n—1) =1+ T(n —1)andT(n) = 2T(n — 1) + 1, which can be solved by the method of
range transformation. (Solve it!)

€28. QuickSort. A well-known application of differencing is the analysistbé QuickSort algorithm of Hoare.
In QuickSort, we randomly pick a “pivot” elemept If p is theith largest element, this subdivides thénput
elements inta — 1 elements less thgnandn — i elements greater than Then we recursively sort the subsets
of sizei — 1 andn — i. For a detailed description of QuickSort, including a diéfiet analysis, see Lecture VIII.
The recurrence is

n—1
1
- (T —1) +T(n—1)), (77)

=0

since for eachi, the probability that the two recursive subproblems in ®8irt are of sizesandn — i is 1/n.
The additive factor of #” indicates the cost (up to a constant factor) to subdivideghbproblems, and there
is no cost in “merging” the solutions to the subproblems. Té®urrence (77) is an example ofdl-history
recurrence, so-called becausE(n) depends off’(m) for all smaller values ofn.

Simplifying (77),

T(n) = n+ 2300 T()

nT(n) = 24250 T@) [Multiply by n]

(n—1)T(n—1) = (n—1)24+23072T() [Substituten by n — 1]
nT(n)—(n—1)Tn-1) = 2n—142T(n—-1) [Differencing operator fonT'(n)]
nT(n) = 2n—14+(n+1)T(n—-1) [Simplify]

Z(—fl = S T T(n—1) [Divide by n(n + 1) (range transform)]
t(n) = 3w Tt —1) [Definet(n) = T'(n)/(n + 1)]

2(Hpy1 — 1) =30, ﬁ +1¢(0) [Telescoping a standard form]
Thus we see tha{n) < 2H,,4+1 (assuming(0) = 0) and hence we conclude
T(n) =2nlnn+ O(n).

Itis also easy to get the exact solution f6r), by evaluating the suy_;_; ﬁ (in a previous Exercise).

€29. QuickSelect. The following recurrence is a variant of the QuickSort reeace, and arises in the average
case analysis of the QuickSelect algorithm:

T +T@2)+-+T(n—1)

T(n)=n+

(78)

In the selection problem we need to “select #ik largest” wherek is given (This problem is studied in more
detail in Lecture XXX). Recursively, after splitting thepat set into subsets of sizés- 1 andn — i (as in
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QuickSort), we only need to continue one one of the two sgb@atless the pivot element is already tta
largest that we seek). This explains why, compared to (ot change in (78) is to replace the constant factor
of 2 to 1. To solve this, let us first multiply the equation by(a range transform!). Then, on differencing, we
obtain

nT(n)—(n—1)Tn-1) = 2n—1+T(n-1)
nT(n) —nT(n—1) = 2n-—1
T(n)—T(n—-1) = 2—%

T(n) = 2n—Inn+O(1).

Again, note that we essentially obtain an exact solution.

€30. Improved QuickSort. We further improve the constants in QuickSort by first rantjochoosing three
elements, and picking the median of these three to be out.piVbe resulting recurrence is slightly more
involved:

T(n)=n+ ipZ[T(z —1)+T(n—1) (79)
where (- ()

is the probability that the pivot element gives rise to solbpems of sizeg — 1 andn — i.

See Lecture 8 on Probabilistic Analysis where we discussk3art

EXERCISES

Exercise 9.1: Solve the following recurrences t-order:

n—1
2 .
T(n):n—i—g E T(7).
i=|n/2]

HINT: Because of the upper boureh/2|, the functionVT'(n) has different behavior depending on
whethern is even or odd. Simple differencing does not seem to work wete. Instead, we suggest
the guess and verify-by-induction approach. &

Exercise 9.2: Generalize the previous question. Consider the recurrence

wherec > 0 and0 < « < 1 are constants.

(a) Solve the recurrence for= 2.

(b) SolveT (n) whenc = 4 anda = 0.

(c) Fix ¢ = 4. Determine the range ef such thafl'(n) = ©(n). You need to argue why'(n) is not©(n)
for « outside this range.

(d) Determine the solution of this recurrence for general &

Chee-Keng Yap Basic Version February 8, 2011



§10. GENERALIZED MASTERTHEOREM Lecture Il Page 40

Exercise 9.3: (a) Suppose that in the base case of QuickSort, we do nottiegever the size of the subarray
to be sorted has0 or less keys. Call thisQui r kSor t ”.
(i) Describe the nature of the output fraQui r kSort .
(ii) Describe a linear time method to take the outpu@af r kSort and make it into a sorted array.
(iii) Explain why your method in (ii) takes linear time. &

Exercise 9.4:
(a) Show that every polynomial X') of degreed can be written as a sum of binomial coefficients with
suitable coefficients;:

o0 =) e (5 ) v () e

(b) Assume the above form f@(X), expresgVp)(X) as a sum of binomial coefficients. HINT: what is

v(1)? o

n

END EXERCISES

§10. Generalized Master Theorem

§10.1. The Master Theorem

We first look at a recurrence that does fall under our transédion techniques: thmaster recurrenceis
T(n) = aT (n/b) + f(n) (80)
wherea > 0,b > 1 are constants anfi(n) is some function.

We have already seen several instances of this recurrenaathér famous one is Strassen’s algorithm for
multiplying two n x n matrices in subcubic time. Strassen’s recurrencg(is) = 77(n/2) + n?, which has
solutionT'(n) = ©(n'87). Evidently, the Master recurrence is the recurrence toesiblwe manage to solve
a problem of sizex by breaking it up intax subproblems each of size/b, and merging these sub-solutions
in time f(n). The recurrence was systematically studied by BentleyeHand Saxe [1]. Solving it requires a
combination of domain and range transformation.

First apply a domain transformation by defining a new furrctide) from 7'(n), wherek = log, (n):
t(k) :==T(b*) (forall k € R).
Then (80) transforms into
t(k) = at(k — 1)+ f(b%).
Next, transform the range by using the summation fatfer. This defines the function(k) from¢(k):
s(k) == t(k)/a".

Now s(k) satisfies a recurrence in standard form:

s(k)y = —=
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Telescoping, we get

) =) = 3 i

i={k}+1
where{k} is the fractional part of (recall thatk is real). Using the DIC, we chose the boundary condition

s(x) = f(b*)/a”, for z <1

in order to end up with the simple formula,

_ f')
s(k) = > prad (81)
i={k}
If we like, we can back substitute to get this solution in temfthe original functio¥’(n):
T(n) = t(log,n)

= a°®"s(log, n)
_ nlogb a Z f(bz) )
al
i={log;, n}

This is the general solution to the master recurrence. Bsiaih open sum, and we need a closed formhtaw,
we cannot proceed any further without knowing the natur&éeftinctionf.

Let us call the function
W(n) = n'o& @ (82)

thewatershed functionfor our recurrence, anldg, « thewatershed exponent The Master Theorem considers
three cases fof. These cases are obtained by compaying W (n). The easiest case is whefeandV have
the samed-order (CASE(0)). The other two cases are whefg@rows “polynomially slower” (CASE—1)) or
“polynomially faster” (CASE(+1)) than the watershed function.

CASE (0) This is whenf(n) satisfies
f(n) = O©(n= ). (83)

Thenf(b') = ©(a’) and hence
k

s(k) =" f(b')/a’ = O(k). (84)

i=1
CASE (—1) This is whenf(n) grows polynomially slowerthan the watershed function:
f(n) = O(n=ctlogv ), (85)

for somee > 0. Thenf(b') = O(biogva=9)) Let f(b') = O (a’b~") (using the subscripting notation
for ©). Sos(k) = Y25, f(b)/a' = 3 Oy (bi€) = Oy(1), sinceb > 1 impliesb— < 1. Hence

s(k) = ©(1). (86)

CASE (+1) This is whenf(n) satisfies theegularity condition

af(n/b) <cf(n) (ev) (87)
for somec < 1. Expanding this,
rm oz 2r (%)
a\ logy n
> (57 s

_ Q(ne-i—logb u,)7
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wheree = —log, ¢ > 0. Thus the regularity condition implies th#tn) grows polynomially fasterthan

the watershed function,
f(n) = Q(nHose ), (88)

It follows from (87) thatf (b*~7) < (c/a) f(b¥). So

s(k) = f)/a’

> =
ol M?r
—_

G

|
ol Ti
i

(c/a)' f(b")/a"~

k—1 .
- e (3 )
=0
bk
o (112).

sincec < 1. But clearly,s(k) > f(b*)/a*. Hence we have

IN
I}
)

s(k) = ©(f(b*)/d"). (89)
Summarizing,
’ “ o(1), CASE(-1), see (86),
s(k) = { O(k), CASE(0), see (84),
O(f(b*)/a*), CASE(+1), see (89).

Back substituting using(k) = t(k)/a*, we get

t(k) = a*s(k) = ©(a"k CASE (0)

O(a*),  CASE(-1)
{ O(f(b"), CASE(+1)

Further back substition usirig(n) = t(log, n), we conclude:

THEOREM 7 (Master Theorem)The master recurrence (80) has solution:

O(n'osr @), if f(n) =O(n=ct°& ), for somee > 0,
T(n) =< O(n'°elogn), if f(n)=O(ner),
O(f(n)), if af(n/b) <cf(n)forsomec < 1.

Informally, we describe CASE+) as the case when the driving functigfn) is polynomially faster than
W (n). But the actual requirement is somewhat stronger, namelyetjularity condition (87). In applications of
the Master Theorem, this case is usually the least convetoieheck.

We can take advantage of the fact that checking if a funcfier) is polynomially faster (or slower) than
W (n) is usually easier to check (just by “inspection”). Hence wenmally begin by first verifying the polyno-
mially faster condition, equation (88). If so, we then chéwuk stronger regularity condition (87). To illustrate
this process, consider the recurrence

T(n) = 3T(n/10) + /n/lgn.
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We note thatx = log;;3 < logg3 = 1/2 and son® < /n/lgn (ev.), confirming equation (88). We now
suspect that CASE+) holds, and must verify that

cf(n) = 3f(n/10)

The Master Theorem is powerful but unfortunately, theregaes between its 3 cases. For instarfce,) =
nl°8s ¢ logn grows faster than the watershed function, but not polyntiyniaster. Thus the Master Theorem
is inapplicable for thisf(n). Yetitis just as easy to solve this case using the transfiom#echniques (see
Exercise).

In practice, the polynomial version of the theorem is mosfuils

COROLLARY 8. Leta > 0,b > 1 andk be constants. The solution T(n) = aT'(n/b) + n* is given by

O(n'°ere), if log,a >k
T(n)=<{ ©O(n), if logya <k
O(nFlgn), if logya==k

What if the values, b in the master recurrence are not constants but depena?® &or instance, attempting
to apply this theorem to the recurrence

T(n)=2"T(n/2)+n"

(with @ = 2™ andb = 2), we obtain the false conclusion tHA{n) = O(n" logn). See Exercises. The paper
[17] treats the cas&(n) = a(n)T'(b(n)) + f(n). For other generalizations of the master recurrence, e [1

€31. Graphic Interpretation of the Master Recurrence. We imagine a recursion tree with branching factor
of a at each node, and every leaf of the tree is at léwg) a. We further associate a “size” of/b* and “cost”

of f(n/b) to each node at level (root is at leveli = 0). ThenT'(n) is just the sum of the costs at all the
nodes. The Master Theorem says this: In case (0), the tatabssociated with nodes at any levebig:'°%: ¢)
and there aréog, n levels giving an overall cost &b (n'°¢ % logn). In case {1), the cost associated with the
rootis®(T'(n)). In case 1), the total cost associated with the leave®{g’(n)). Of course, this “recursion
tree” is not realizable unlessandlog, a are integers. Hence the student should view this as a hieuwaidtto
remembering how the Master Theorem works.

EXERCISES
Exercise 10.1: Which is the faster growing functiorf?; (n) or T>(n) where
Ti(n) = 6Ty (n/2) +n®, To(n) = 8Tx(n/2) + n?.
o
Exercise 10.2: State the solution, up t©-order of the following recurrences:
T(n) = 10T(n/10)+ log" n.
T(n) = 100T(n/10)+ n'.
T(n) = 10T (n/100)+ (logn)'°eloem,
T(n) = 16T (n/4)+ 48",
o
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Exercise 10.3: Solve the following using the Master’s theorem.
(@)T(n) = 3T(n/25) + log*n
(b) T'(n) = 25T (n/3) + (n/logn)3
(©T(n) =T(yn)+n.

HINT: in the third problem, the Master theorem is applicadfter a simple transformation. &

Exercise 10.4: Sometimes the Master Theorem is not applicable directly.itBian still be used to yield useful
information. Use the Master Theorem to give as tight an uppdrlower bound you can for the following
recurrences:

(@) T(n) = n®log®n + 8T(n/2)
(b) T(n) = n?/loglogn + 9T (n/3)
(©)T(n) =4T(n/2) + 3T (n/3) + n. &

Exercise 10.5:Supposel'(n) = n + 3T (n/2) + 2T(n/3). Joe claims thaf'(n) = O(n), Jane claims that
T(n) = O(n?), John claims thal’'(n) = O(n?). Who is closest to the truth? %

Exercise 10.6: We want to improve on Karatsuba’s multiplication algorithvsle managed to subdivide a prob-
lem of sizen into a > 2 subproblems of size /4. After solving these: subproblems, we could combine
their solutions inD(n) time to get the solution to the original problem of sizeTo beat Karatsuba, what
is the maximum value can have? O

Exercise 10.7: Suppose algorithml; has running time satisfying the recurrence
Ti(n) =aT(n/2)+n
and algorithmA, has running time satisfying the recurrence
Ta(n) = 2aT(n/4) + n.

Here,a > 0 is a parameter which the designer of the algorithm can chddsepare these two running
times for various values af. &

Exercise 10.8: Suppose
To(n) = 18Ty(n/6) 4+ n'>

and
Ty(n) = 32T1(n/8) + n'5.

Which is the correct relatiorify (n) = Q(71(n)) or To(n) = O(T1(n))? We want you to do this exercise
without using a calculator or its equivalent; instead, nsgjualities such dsgg(z) < logg(z) (forz > 1)
andlogg(2) < 1/2. &

Exercise 10.9:How is the regularity condition orfi(rn) and the condition thaf(n) increase polynomially re-
lated? What can you say about the sbi}’_, f(i) when f satisfies the regularity condition for some
a,b,c? %

Exercise 10.10:Solve the master recurrence whgfm) = n'°% “log" n, for anyk > 1. &
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Exercise 10.11:Show that the master theorem applies to the following vianatf the master recurrence:

T(n) =a-T(5) + f(n)

wherea > 0,b > 1 andc is arbitrary. &

Exercise 10.12:
(a) SolveT'(n) = 2"T'(n/2) + n™ by direct expansion.
(b) To what extent can you generalize the Master theoremridleaome cases @f(n) = a,, T (n/b,) +
f(n) wherea,,, b,, are both functions of? O

Exercise 10.13:Let W (n) be the watershed function of the master recurrence. In vemestesis the “watershed
function” of the next order equal i (n)/ In n? &

Exercise 10.14:
(a) Let

" 1gi
s(n) = Z e
i=1

Prove thats(n) = O(lg* n). For the lower bound, we want you to use real induction, aeddbt that for
n > 2, we have
In(n) — (2/n) <In(n —1) < (Inn) — (1/n).

(b) Using the domain/range transformations to solve thewiohg recurrence:

T(n) = 2T(n/2) + n 28",

lgn

Exercise 10.15:Consider the recurren@(n) = aT'(n/b) + h;gn wherea > 0 andb > 1. Describe the sef

of all pairs(a, b) for which the Master Theorem gives a solution for this reence. Do not describe the
solutions. You must describe the sgin the simplest possible terms. &

Exercise 10.16:The following recurrences arises in the analysis of a palralgorithm for hidden-surface re-
moval (Reif and Sen, Proc. ACM Symp. on Comp. Geometry, 1:988)

T(n)=T(2n/3)+1gnlglgn
Another version of the algorithm [17] leads to
T(n)=T(2n/3)+ (Ign)/lglgn.

Solve forT'(n) in both cases. O

END EXERCISES
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§10.2. The Multiterm Master Theorem

The Master recurrence (80) can be generalized to the fallgmiultiterm master recurrence:

n) + i:r (bﬁ) (90)

wherek > 1,a; >0 (foralli =1,...,k)andb; > by > --- > b, > 1. We give two examples:
T(n) = T(ein)+ T(can)+n, (c1 42 < 1), (91)
T(n) = T(n/2)+T(n/4)+log" n. (92)

The first recurrence (91) arise in linear time selection algms (see Chapter Xl). There are many versions of
this algorithm with different choices for the constaatscs. E.g.,c; = 7/10,¢2 = 1/5. The second recurrence
(92) arise in the so-called conjugate search trees in caatipnal geometry (see Exercise 8.7).

Before we give the multiterm analogue of the Master Theomeengeneralize two concepts from the Master
Theorem:
(a) Associated with the recurrence (90) is thetershed constanta real numbes such that

%

Clearlya exists and is unique since the summation tendsasa — oo, and tends tec asa — —oo. As usual,
let W (n) = n™ denote the watershed function.
(b) The recurrence (90) gives rise tganeralized regularity conditionon the driving functionf(n), namely,

(93)

LFQ‘|®

k
> aif(n/bi) < cf(n) (94)

=1
forsomel < ¢ < 1.

THEOREM9 (Multiterm Master Theorem).

{ O(n*logn) if f(n)=0(n%)

T(n)=<{ O(n*) if f(n)=0O(n>"*),for somes > 0,

O(f(n)) if f satisfies the regularity condition (94).

Proof. The proof uses real induction.

CASE (0): Assume thaff (n) = ©1(W(n)). We will show thatl’(n) = ©2(W (n)logn). We have

T(n) = f(n)+ i al (3
_ @1(710‘)—1—2?:1@1-@2((;’—7) log (b% ) (by induction)
= O1(n") +O:(n*) [ LI, g log ()
= 01(n%) 4+ O2(n®) [logn — D], (whereD = S°F_, ba - log(b;) and using (93))
O2(n%logn)

Let us elaborate on the last equality. Suppfge) = O, (n*) amounts to the inequalities W (n) < f(n) <
C1W(n) (ev.). We must choos&, C5 such thaiceW (n)logn < T'(n) < CoW(n)logn (ev.). The following
choice suffices:

ngCl/D, ngcl/D.
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CASE (—1): Assumel < f(n) < Dyn®~¢ for somes > 0. The lower bound is easy: assuffién/b;) >
c1(n/b;)® (ev.) for each. Therl
T(n) = f)+Xk, T ()
Zle aic1 ()" (sincef(n) > 0 and by induction)
cin®.

v

The upper bound needs a slightly stronger hypothesis: as#inyb;) < Cin*(1 —n~¢) (ev.). Then
T) = fn)+Sh,aT (1)
Din® + Y% aiCy (bﬂi)a [1 - (bﬂ)_] (by induction)

= C’lno‘ — Clnais |:Zf 1 ba = D1/01:|
< Cin*—-Cin%>=

IN

providede:1 a; /by > 1+ (Dq/Ch). Sincer:1 a; /by > 1, we can certainly choose a large enoigh
to satisfy this.

CASE (+1): The lower bound’(n) = Q(f(n)) is trivial. As for upper bound, assumidg(m) < D f(m)
(ev.) whenevem = n/b;,

T(n) fn)+ 2L, aiT (bﬁ)

< fn)+ ¥ a;Dif(n/b;)  (byinduction)
= f(n)+ Dicf(n) (by regularity)
< Dif(n) (if D1 > 1/(1—¢))

Q.E.D.

The use of real induction appears to be necessary in thig:puatike the master recurrence, the multiterm
version does not yield to transformations. Again, the gelimrd regularity condition implies that(n) =
Q(n>*¢) for somes > 0. This is shown by induction:

fm) = 2 X aif(n/b)
1 ZZ L (n/b )ate  (by induction, for somedD > 0)
a+a Zz L b°¢+5

Dn““ (if we choose: = Zl " ba+€)

v Iv

Smcezl 1 l‘j(; = 1, we should be able to choose a- 0 to satisfy the last condition. Note that this derivation
imposes no condition o, and saD can be determined based on the initial conditions.

Let us apply the theorem to the recurrenceffpfn) in the selection problem (91) affd(n) in the conjugate
tree problem (92). For (91), we see that 1 and since the regularity condition holds for the functfdn) = n,
we conclude thaf;(n) = ©(n). For (92), we may use a calculator to verify that the watetstedue is
a=0.694.... Sincef(n) = O(n“~¢), we conclude thal(n) = ©(n%6%4-),

EXERCISES

Exercise 10.17:The following recurrence arises in the analysis of the ragtime of the “conjugation tree” in
computational geometry:

T(n) = T(n/2) + T(n/4) +1g" n.

"The factf(n) > 0 (ev.) is a consequence of ‘€ O(n>—¢)” and the definition of the big-Oh notation.
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Solve forT'(n). O

Exercise 10.18:To understand the recurren@&n) = T'(n/2) + T(n/3) + T(n/4) + n, we will explore
numerically the functiot(z) = 27* 4+ 37* + 47*. We want to determine the such that(a)) = 1. For
a simple way to do this, use a user-friendly, powerful sofewlike MATLAB. For instance, consider the
following two lines of MATLAB code:

>> h=@(x) 2.7 (-x) + 3.”(-X) + 4.”(-x);
>> forx=0.9:0.1:1.2, display([x, h(X)]), en

—

The first line defines the functioi(x). The second line is a for-loop wheteegins with the valué.9 and
each iteration increases the valuerdfy 0.1 until z = 1.2. Each iteration simply prints the pdir, h(x))
of values. This loop produces the values shown in the firdt@fallowing four tables:

[ [ @ @[ & e ]
0.9000| 1.1951|| 1.0700| 1.0119|| 1.0810| 1.0011}|| 1.0820| 1.0001
1.0000| 1.0833|| 1.0800| 1.0021| 1.0820| 1.0001| 1.0821| 1.0000
1.1000| 0.9828|| 1.0900| 0.9924 | 1.0830| 0.9992( 1.0822| 0.9999
1.2000| 0.8923|| 1.1000| 0.9828|| 1.0840| 0.9982( 1.0823| 0.9998

By changing the stepsize and limits of the for-loop, we canngere correct digits with run of the for-
loop. Each successive table above is obtained this way,teaetgiving us an extra digit in the decimal
expansion ofv. Thus,a ~ 1.0821. How would you continue this experiment to determine thé fitg)
digits of a? &

END EXERCISES

§11. Other Recurrences

There is a wide variety of recurrences which we have bareitehiat. For instance, the typical recurrences
arising in counting combinatorial structures have an egptal (e.g.,7(n) = 2T(n — 1) + f(n)) or double
exponential growth (e.gZ'(n) = T'(n — 1) + f(n)). We refer to Knuth for such examples. In this section, we
focus on some other types of recurrences.

§11.1. Recurrences with Max

A class of recurrences that arises frequently in compuiense involves the max operation. Fredman has
investigated the solution of a class of recurrences innglvhax.

Consider the following variant of QuickSort: each time afte partition the problem into two subproblems,
we will solve the subproblem that has the smaller size fif$héir sizes are equal, it does not matter which order
is used). We want to analyze the depth of the recursion sthalproblem of size is split into two subproblems
of sizesn, no thenn; + no = n — 1. Without loss of generality, let; < ny. S00 <ny < [(n—1)/2]. Ifthe
stack contains problems of sizes, > no > --- > ny > 1) whereny, is the problem size at the top of the stack,
then we have

Ni—1 2 Ny + Nit1.
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Sincen; < n, this easily impliesiz; 11 < n/2' ork < 21gn. Atighter boundisge < log, nwherep = 1.618....
is the golden ratio. This is not tight either.

The depth of recursion satisfies

— 524 fmax{1 + D(my), Do)}

ni

D(n)

This recurrence involving max is actually easy to solve. uhsiig D(n) < D(m) for all n < m, and for any
realz, D(x) = D(|x]), it is easy to see thaD(n) = 1+ D(n/2). Using the fact thalD(1) = 0, we obtain
D(n) <lgn. [Note: D(1) = 0 means that all problems on the stack has zize

611.2. Analysis ofe-Nets

The following recurrence arise in the analysis of a classaif dtructures calleenets, first studied by
Haussler and Welzl. Assumirig< ¢ < 1 andm > 2 are fixed,

T(n)=14+ max T(n;
( ) (nlvna”hn); ( )
where the maximum ranges over @tk , . . ., n,,) satisfyingn; > 0 and}_"" | n; < en.

There is a trivial solution to this: the constant function
T(n)=1/(1-—m)

for all n. ButT'(n) < 0 in this case and we seek a non-negative solution. Assumatgtn) is a convex ca
it is easy to see that
T(n) =1+ mT(en/m) = O(n!8m/e™).

To showT'(n) is a convex cap, we note that it is continuous (exercise) andreotonic non-decreasing function.
Then it suffices (exercise) to prove that

T(x)+T(y) <2T((z +y)/2) (95)

where we now regar@(x) as a real function defined for all> 0. This turns out to be easy to show inductively,
assuming the base case whéie:) = x (orT'(z) = 0) forall 0 < x < 1.

§11.3. A Log-square Solution

Consider the recurrence
T(n)=14T(n—

). (96)

This does not yield to our standard techniques. To probeaterpte some simple bounds. It is easy to see that
T'(n) < n since this is the solution to the recurrerité:) < 1+ T'(n — 1). LikewiseT'(n) > lgn since this is
the solution tal'(n) > 1+ T'(n/2).

logn

8We say a real functiorf (=) is convex capif for all 0 < a < 1, f(x) + f(y) < 2f(az + (1 — a)y). For completeness, we s#yz)
is convex cupifforall 0 < a < 1, f(z) + f(y) > 2f(az + (1 — a)y).
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To get a better upper bound, we note that

ro = 1o (n(1- )
24T <n (1 - 10;ﬂ>2> , (why?)

et (n (1 - 10;1)’“)

using monotonicity off'(n). HenceT' (n) = k if we assumé’(n) = 0 for n < 1 andk is chosen so that

k k+1
1 ! <l/n< |1 !
— n — .
logn,) — logn

Taking natural logs, and assuming for simplicity thaf = In in (96), we see that

IN

IN

1
(k+1)In (1—5) > —lnn,

(k+1) <—1L) > —lnn, (since In(1 +z) <z for |z| < 1),
nn

E+1 < In’n.

Up to a constant factor, this is also the lower bound: we sthatt(n) > C'In® n by induction:

1
T(n) > 1—|—Cln2<n(1—1 ))
ogn
1
2 .
> 1—|—C(lnn—1—)2, sinceln(1 +z) >z — 22/2for |z| < 1
nn
> Cln®n.

ThusT'(n) = ©(In?n).

REMARK: If we were told from the beginning to verify thdt(n) = @(lm2 n), this would be routine. What
we are demonstrating here is the process of discoveringXtfat ) is the correct answer.

EXERCISES

Exercise 11.1: Try to obtain tight constants for the recurrence (96). Whadg is not the natural logarithm in
the original equation? &

Exercise 11.2: Show thatT'(x) above is continuous by exploiting the fact that the additind maximum func-
tions are continuous. &

Exercise 11.3: Prove that ifl’(x) is continuous and satisfies equation (95) then it is a conapx c &
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Exercise 11.4:(Leighton 1996) Show thaf (n) = 27'(3 — ;) has solutior’(n) = ©(n 1og®™M ). Assume

thatT'(n) = 1 for n < 5, and the recurrence holds for> 5. ThusT'(5 + ¢) = 2, so this function is
discontinuous. &

Exercise 11.5: Analyze the behavior of the functidfi(n) defined by the recurren&(n) = nT'(logn). Give
upper and lower bounds f@t(n) using “closed form expressions” in terms of the functimﬁ“ n,i > 0.
Note: This recurrence arises from an early version of the fasgjartenultiplication algorithm of Schonhage
and Strassen. &

Exercise 11.6: Solve the recurrenc€(n) = 1 + max(,, n, ngn) 17 (n1) + T'(n2) + T(n3) + T'(n4)} where
(n1,...,n4) ranges over all non-negative numbers such Eé;l n; = 37” and eacn; < n/2. O

Exercise 11.7: Solve the following recurrences &-order:
@7T(n)=1+2T(n— 2.

(0) T(n) = 27T (n/2) + m.
(©T(n) =1+ T (i),

HINT: these recurrences are considerably harder than nieghat we encounter. First guess non-tight
upper and lower bounds and verify by induction. Then trygbtin these bounds. &

END EXERCISES

§11.4. Multivariable Recurrences

So far, our recurrences involve only one variable. But mattable recurrences arise in several ways: one
source of such recurrences is multidimensional problene®mputational geometry (one of the variable is the
dimension).

The pre-processing problem pbint dominance queriesin d-dimensions is as follows: given a sgtC R?
of n points, construct a data structut S) such that for any query poipt € R¢, we can quickly determine if
there is any point: € S thatdominatesp (this means: > p, componentwise). One solution is to pick some
¢ € R such thatS splits into two subsets§,, S, of sizen/2 each, where the first component of eack 5; is
< ¢, and the first component of eagh € S» is > ¢. To answer the query fqr, begin by comparing the first
componenp; of ptoc: if p; > cthenitis sufficient to recursively check if somes S, dominate. If p; <,
we must do two searches: (i) check if some S; dominateg and (ii) check if some: € S, dominateg. The
search in (i) is, however, done ih— 1 dimensions since we may ignore the first components. Thutintteefor
answering queries satisfies the recurrence

T(n,d)=1+T(n/2,d)+T(n/2,d—1).

Itis not hard to see th&(n, 1) = O(1). Then we may verify the solutiofi(n, d) = ©(log* ' n).

€32. Output-sensitive algorithms. Multivariable recurrences arise in the analysis of “outpensitive” al-
gorithms. Such algorithms has, besides the traditiomalt parameter »n, an (implicit) output parameter ,
which is the measures the size of the output for the giventimstance. The computational complexity of such
algorithms depends on bothandh. An example is the problem of computing the convex hull of acfen

Chee-Keng Yap Basic Version February 8, 2011



§12. ORDERS OFGROWTH Lecture Il Page 52

points in the plane. The output size is just the number oftgomthe actual convex hull. There are well-known
O(nlogn) algorithms for this problem. Kirkpatrick and Seidel hasagivan algorithm whose time complexity
satisfies the following recurrence:

T(n,h)=0(m)+, max {T(5.h)+T(5.ha)]}.
Here,h; are positive integers. We may assufig:, h) = O(n) for h < 3. To see thaf'(n, h) = O(nlogh),

we could of course just substitute and verify. But it is margtiuctive to argue as follows: consider a “recursion
tree” corresponding to a possible expansion of the recaereglation forT’(n, k). There are exactlj nodes in
this binary tree, where each internal node at degthe root is deptid) carries a “cost” ofn/2¢. The “cost”

of the tree just the sum of these costs at the internal node§.(%, ») is the maximum cost over all possible
recursion trees. ThelaimT'(n, h) = O(nlog h) follows if we prove that the maximum cost occurs when the
tree has depth at mogig, / (since the total cost of all nodes at any depih invariablyn). For the sake of
contradiction, suppose we have a maximum cost tree witthdéptlog, h. Then there is a node at depih- 1
whose children are leaves at degthWe can transfer these two children to become the childresoiwfe other
node at deptk< d — 2. This would increase the cost for the tree, contradiction.

EXERCISES

Exercise 11.8: Show that ifS(n, d) is the space requirement for the above data structure,Sent) = 1 +
25(n/2,d) + S(n/2,d — 1). Solve this recurrence. Whatgn, 1)? O

Exercise 11.9: Consider the following recurrence

T(n,h) = O(n) + . {T(c1n, h1) + T(can, ha)}.

(a) Solve forT'(n, h) with only the assumptioh; > 1,¢; > 0 in the above.
(b) Solve forT'(n, k) with the additionalassumption that; < « where0 < a < 1is fixed. Generalize
the above argument about the shape of the maximum cost iettnse. &

Exercise 11.10:(Sharir-Welzl) The following recurrence arises in anafggithe diameter of.-dimensional
polytopes withm facets:

fny,m)=f(n—1,m—1)+ %i (n—1,14).

Solve the recurrence. &

END EXERCISES

§12. Orders of Growth

The reader should first review the basic properties of th@egptial and logarithm functions in the
appendix.
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Learning to judge the growth rates of complexity functiana fundamental skill in algorithmics. This section
is a practical one, designed to help students develop this sk

Most complexity functions in practice are the so-callegarithmico-exponential functions (for short, L-
functions): such functiong(x) are real and defined for all > z, for somez, depending off. An L-function
is either the identity functiom or a constant € R, or else obtained as a finite composition with the functions

A(z), In(z), e’

whereA(z) denotes a real branch of an algebraical function. For istatz) = \/x is the function that picks
the real square-root af. The reader may have noticed that all the common complenitgtfons are totally
ordered in the sense that for afiyg, eitherf < g or g < f. A theoreni of Hardy [7] confirms thisif f andg
are L-functions therf < g (ev.) or g < f (ev,). In particular, each-function f is eventually non-negative,
0 < f (ev.), or non-positivef < 0 (ev.).

The following are the common categories of functions you &rkcounter:

CATEGORY SYMBOL EXAMPLES
vanishing term | o(1) 12
constants (1) 1, 2-4
polylogs log” n (foranyk > 0) | H,, log*n
polynomials n* (for anyk > 0) n®,  /n
non-polynomials| nf(1) nl, 27, ploglogn

Note thatn! and H,, are notL-functions, but they can be closely approximated/bfunctions. The last cat-
egory forms a grab-bag of anything growing faster than amatyial. These 5 categories form a hierarchy of
increasingly large®-order.

933. Rules for comparing functions. We are interested in comparing functions up to titeiorder. The trick
of comparing two functions by taking their logarithms issthf log f < log g then clearlyf < g. But students
often think the converse is also true.

We list some simple rules. Most comparisons of interest tcarsbe reduced to repeated applications of
these rules:

Sum: In a direct comparison involving a sufi{n) + g(n), ignore the smaller term in this sum.
E.g., givenn? + nlogn + 5, you should ignore thertlogn + 5” term. However, beware that if the sum
appears in an exponent, the neglected part may turn out Eviawhen the dominant terms are identical.

Product: If 0 < f < fand0 < g < ¢’ thenfg < f’¢’. (If, in addition, f < f’ then we havefg < f'¢’.)
E.g., this rule implies® < n° whenb < ¢ (sincel < n°~?, by the logarithm rule next).

Logarithm: 1 < log®*™V n < (log™® n)c for any integerk > 0 and realc > 0. Herelog'®) n refers to the
k-fold application of the logarithm function aridg(o) n=n.

Exponentiation: If 1 < f < g (ev.) thend/ =< @9 for any constant > 1. If 1 < f < cg (ev.) for some
c < 1thend/ < a9.

°In the literature orf.-functions, the notationf < g” actually meansf < g (ev.). There is a deep theory involving such functions, with
connection to Nevanlinna theory.
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€34. Example. Suppose we want to compan&s ™ versus(log n)". By the rule of exponentiatiom!°s" <
(logn)™ follows if we take logs and show thasg®n < 0.5nloglogn (ev.). In fact, we show the stronger
log®n < nloglogn. Taking logs again, and by the rule of sum, it is sufficienttiow 2loglogn < logn.
Taking logs again, and by the rule of sum again, it is sufficeshbwlog™® n < log®™ n. But the latter follows
from the rule of logarithms.

EXERCISES

Exercise 12.1:(i) Simplify the following expressions: (a)'/!s™, (b) 22", (c) 325, 27, (d) 205™)°, (e)
4lgn, (f) (\/i)lgn'

(ii) Re-do the above, replacing each occurrence2df(&xplicit or otherwise) in the previous expressions
by some constant > 2. &

Exercise 12.2: Order these in increasing big-Oh order:

nlgn, n~t, lgn, n'8", 10n+n®?, g7, on  2ln

O

Exercise 12.3: Order the following 5 functions in order of increasifgorder: (a)log® n, (b)n/ log* n, (¢) v/,
(d)yn2="™, (e)loglogn.

Exercise 12.4:Order the following functions (be sure to parse these nesiganentiations correctly): (a)
n(Em™", (b) (Agm)™*", () (1gm) ™", (d) (n/1gm)™"™". (@) n" """ o

Exercise 12.5: Order the following set 086 functions in non-increasing order of growth. Between contee
pairs of functions, insert the appropriate ordering relahip: <, =, < (ev), =.

| 2 | b | |d e | f |
1. || lglgn (Ign)em | 27 2lgn 2lg" n 22"
2. (1/3)" n2" nlelen e nl/len [lgn]!
3. || 2v2len | (3/2)» |2 lg(n!) | n Vign
4. | 20sm)? 22" n? nlgn | (n+1)! | 487
5. || 1g(lg*n) | 1g%n (L+ L) | nlem | nl 2(lgn)/n
6. (vV2)s" | lg"n (n/1gn)? | Vi) | lg"(lgn) | 1/n

NOTE: to organize of this large list of functions, we ask that first order each row. Then the rows
are merged in pairs. Finally, perform a 3-way merge of thes.li Show the intermediate lists of your
computation (it allows us to visually verify your work). &

Exercise 12.6: Order the following functions:

n, [lgn]!, [lglgn]!, nlelnl olk™n jo*m)  1g*(Ign), lg(ig"n).

Exercise 12.7:(Purdom-Brown)
(@) Showthab"" , i! = n!{1+ O(1/n)]. NOTE: The summation rule gives onlygorder so this is more

precise.
(b) ZZ 12'Ini = 2" lnn — (1/n) + O(n~2?)]. HINT: uselni = Inn — (i/n) + O(i*/n?) for
1=1,. ¢
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Exercise 12.8: (Knuth) What is the asymptotic behavioref/*? ofn(n'/? —1)?
HINT: take logs. Alternatively, expanfd[}._, e'/(™). &

Exercise 12.9: Estimate the growth behavior of the solution to this reaureeT'(n) = T'(n/2)* + 1. &

END EXERCISES

€35. Bibliographic Notes Our example of maximum overhang of a brick stack, illustrgtiHarmonic num-
bers, is from the book “How Round is Your Circle? Where Engiireg and Mathematics Meet”, by John Bryant
and Chris Sangwin (Princeton University Press, 2008).

5A. APPENDIX: Exponential and Logarithm Functions

Next to the polynomials, the two most important functionsligorithmics are thexponential functionand
its inverse, thdogarithm function. Many of our asymptotic results depend on their basic ptaserFor the
student who wants to understand these properties, thevalipwill guide them through some exercises. We
define thenatural exponential function to be

X
exp(z) = Z W
=0
for all realz. This definition is also good for complex but we do not need this here. Thase of the natural
logarithm is defined to be the number

o0

1
e=exp(l) =) 5 =271828...
i=0

The next exercise derives some asymptotic properties axpenential function.

Exercise A.1: Show that
(@) exp(z) is continuous,
(b) d%‘;(”) = exp(x) and hencexp(x) has all derivatives,
(c) exp(x) is positive, strictly increasing,
(d) exp(z) — 0 asz — —o0, exp(x) — 0o @Sz — 0,
(€)exp(z + y) = exp(z) exp(y), 5

We often need explicit bounds on exponential functions jusitasymptotic behavior). Derive the following
bounds:

Exercise A.2:
(@) exp(x) > 1 + « for all x > 0 with equality iffx = 0.

(b) exp(z) > 2" forz > 0. Henceexp(x) grow faster than any polynomial in

(n+1)!
(c) For all realn > 0,
T\ " x\ n+(z/2)
(1—!——) Semg(l—i-—) .
n n
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It follows that an alternative definition ef* is
x€x n
e’ = lim (1—1——) .
n

n—oo

wnmwmﬁ—ﬁ)gu+§fnww%neanlmmﬂgm5%um. o

The natural logarithm functionIn(z) is the inverse ofxp(z): In(z) is defined® to be the real numbey
such thaexp(y) = . Note that this is a partial function because it is definedafband only positiver.

Exercise A.3: Show that

(b) In(zy) = In(x) + In(y),
(c) In(x) increases monotonically fromoo to +oo asx increases fron to +oo. &

These two functions now allow us to define exponentiatiomiolese: for any positiveand any reat, we
define
expy(a) := exp(aIn(b)). (97)

Usually, we writeexp, («) asb®. Note that ifb = e then we obtair®, a familiar notation foexp(«).

We see from (97) tha must be positive sinci(b) is otherwise undefined. Moreover, the case 1 is
highly degenerate sinde¢" is identically equal tdl. It is easy to check thdfl /b)* = b~<, and hence it is not
necessary to explicitly consider the case 1 (since we can replace suclb &y 1,/b which would be> 1.

Once we have the definition efcp,(z) = b*, the logarithm functiorog, (x) to an arbitrary basé > 0 is
defined to be the inverse of the functianp, (z) = b*. Thus the logarithm to badeis defined as long ds+ 1.

Exercise A.4: We show some familiar properties: the bass omitted if it does not affect the stated property.
(@)
logl1 =0, log,b=1, log,x = (log.z)/(log.b),
y =189 log(z¥) =ylogz, log(ab) = (loga)+ (logbh).
(b)log(1/z) = —logz, log,x =1/(log,b), a'°8b =plosa,
(c) %(IQ) = ar® L.
(d) Ford > 1, the functionlog, (x) increases monotonically fromoo to +oco asx increases fron to co.
At the same time, fob < b < 1, log, (z) decreases monotonically frofso to —oco. &

Notations for Logarithms. Logarithms to base is important in computer science
and we will write ‘1g” for log,. Of course,In denotesnatural logarithm which
has base = 2.71828--- and is extremely important in mathematics and calcuylus.
Many authors usé.og := log,, for logarithm to basé0. Our default assumptig
is that the base of logarithms is soe> 1, so thatlog, x is a monotonically in
creasing function. When the actual valueba$ immaterial (except thdt > 1), we
simple write log’ without specifying the base (for thenonymous logarithin We
also writelog(k) n for the k-fold application of the logarithm function to. Thus
log® n = loglogn, and by definitionlog®” n = n. This is to be distinguishe
from “log" n” which equals(logn)*. On the black board, we might sometinmes
write £¢ogn, ¢¢¢ogn for log log n, log log log n, etc.

>

o

10This real valuey is called the principal value of the logarithm. That is beseaif we viewexp(-) as a complex function, them(z) is a
multivalued function that takes all values of the foyr- 2nm, n € Z.
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€36. Bounds on logarithms. For approximations involving logarithms, it is useful tacad a fundamental
series for logarithms:

2 B (—2)’
1n(1+x)—x—?+?—---——;

{v)

valid for |z| < 1. We easily see that — 2% /2 < In(1 + z) < z. To see thain(1 + z) < = we must show that
R =73%.",(—x)"/i > 0. This follows because if we pair up the termsfrwe obtain

R=(2?/2—a°/3) + (' /4 — 2®[5) + -~ -,

which is clearly a sum of positive terms. A similar argumémwsin(1 + x) > z — 2%/2.

How do we evaluatén(y) for a generaly > 2? Assume that we have (a good approximation)nt@).
Then we can writey = 2"(1 + z) and thus evaluatén(y) asnIn(2) + In(1 + z). Alternatively, we can
write y = n(1 + z) wheren € N and writeln(y) = In(n) + In(1 + x). To evaluatdn(n) we use the fact
In(n) = H, —v— (2n)~! — O(n=2) (seess).

937. Log-star function. We define théog-star function: log* z is the maximum non-negative integesuch
thatlg'™ (z) is defined. Thusog*(z) = 0,1,2iff 2 < 0,0 < 2 < 1,1 < & < 2 (respectively). So log-star is
integer-valued. Although we have used base its definition, it could be defined generally for aby 1.
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