
Lecture II Page 1

Lecture II
RECURRENCES

Recurrences arise naturally in the complexity analysis of recursive algorithms and in probabilistic analysis.
We introduce some basic techniques for solving recurrences. A recurrence is a recursive relation for a complexity
functionT (n). Here are two examples:

F (n) = F (n − 1) + F (n − 2) (1)

and Looks familiar?
T (n) = n + 2T (n/2). (2)

The reader may recognize the first as the recurrence for Fibonacci numbers, and the second as the complexity of
the Mergesort, described in Lecture 1. These recurrences have1 the following “separable form”:

T (n) = G(n, T (n1), . . . , T (nk)) (3)

whereG(x0, x1, . . . , xk) is a function ink + 1 variables and eachni (i = 1, . . . , k) is a function ofn that is
strictly less thann. E.g., in (1), we havek = 2 andn1 = n − 1, n2 = n − 2 while in (2), we havek = 1 and
n1 = n/2.

What does it mean to “solve” recurrences such as equations (1) and (2)? The Fibonacci and Mergesort
recurrences have the following well-known solutions:

F (n) = Θ(φn)

whereφ = (1 +
√

5)/2 = 1.618 . . . is the golden ratio, and Solve up toΘ-order

T (n) = Θ(n log n).

In this book, we generally estimate complexity functionsT (n) only up to itsΘ-order. If only an upper bound or
lower bound is needed, and we determineT (n) up to itsO-order or toΩ-order. In rare cases, we may be able to
derive the exact solution (in fact, this is possible forT (n) andF (n) above). One benefit ofΘ-order solutions is
this — most of the recurrences we treat in this book can be solved by only elementary methods, without assuming
differentiability or using calculus tools.

The variable “n” is called thedesignated variableof the recurrence (3). If there are non-designated variables,
they are supposed to be held constant. In mathematics, we usually reserve “n” for natural numbers or perhaps
integers. In the above examples, this is the natural interpretation forn. But one of the first steps we take in
solving recurrences is to re-interpretn (or whatever is the designated variable) to range over the real numbers.
The corresponding recurrence equation (3) is then called areal recurrence. For this reason, we may prefer the All recurrences are

realsymbol “x” as our designated variable, sincex is normally viewed as a real variable.

What does an extension to real numbers mean? In the Fibonaccirecurrence (1), what isF (2.5)? In Mergesort
(2), what doesT (π) = T (3.14159 . . .) represent? The short answer is, we don’t really care.

In addition to the recurrence (3), we generally need theboundary conditionsor initial values of the function
T (n). They give us the values ofT (n) beforethe recurrence (3) becomes valid. Without initial values,T (n) is
generally under-determined. For our example (1), ifn ranges over natural numbers, then the initial conditions

F (0) = 0, F (1) = 1

give rise to the standard Fibonacci numbers,i.e., F (n) is thenth Fibonacci number. ThusF (2) = 1, F (3) = Some initial condi-
tions lead to trivial so-
lutions

1Non-separable recurrences looks likeG(n, T (n), T (n1), . . . , T (nk)) = 0, but these are rare.

Chee-Keng Yap Basic Version February 8, 2011

§1. SIMPLIFICATION Lecture II Page 2

2, F (4) = 3, etc. On the other hand, if we use the initial conditionsF (0) = F (1) = 0, then the solution is
trivial: F (n) = 0 for all n ≥ 0. Thus, our assertion earlier thatF (n) = Θ(φn) is the solution to (1) is not2 really
true without knowing the initial conditions. On the other hand,T (n) = O(n log n) can be shown to hold for (2)
regardless of the initial conditions. For the typical recurrence from complexity analysis, this will be the case.

EXERCISES

Exercise 0.1: Consider the non-homogeneous version of Fibonacci recurrenceF (n) = F (n− 1)+F (n− 2)+
f(n) for some functionf(n). If f(n) = 1, show thatF (n) = Ω(cn) for somec > 1, regardless of the
initial conditions. Try to find the largest value forc. Does your bound hold if we havef(n) = n instead?

♦

Exercise 0.2: Let T (n) = aT (n/b) + n, wherea > 0 andb > 1. How sensitive is this recurrence to the initial
conditions? More precisely, ifT1(n) andT2(n) are two solutions corresponding to two initial conditions,
what is the strongest relation you can infer betweenT1 andT2? ♦

Exercise 0.3: Consider recurrences of the form

T (n) = (T (n − 1))2 + g(n). (4)

In this exercise, we restrictn to natural numbers and use explicit boundary conditions.
(a) Show that the number of binary trees of height at mostn is given by this recurrence withg(n) = 1 and
the boundary conditionT (1) = 1. Show that this particular case of (4) has solution

T (n) =
⌊

k2n
⌋

. (5)

(b) Show that the number of Boolean functions onn variables is given by (4) withg(n) = 0 andT (1) = 2.
Solve this.
NOTE: Aho and Sloane (1973) investigate the recurrence (4). ♦

Exercise 0.4: Let T, T ′ be binary trees and|T | denote the number of nodes inT . Define the relationT ∼ T ′

recursively as follows: (BASIS) If|T | = 0 or 1 then|T | = |T ′|. (INDUCTION) If |T | > 1 then|T ′| > 1
and either (i)TL ∼ T ′

L andTR ∼ T ′
R, or (ii) TL ∼ T ′

R andTR ∼ T ′
L. HereTL andTR denote the left and

right subtrees ofT .
(a) Use this to give a recursive algorithm for checking ifT ∼ T ′.
(b) Give the recurrence satisfied by the running timet(n) of your algorithm.
(c) Give asymptotic bounds ont(n). ♦

END EXERCISES

§1. Simplification

In the real world, when faced with an actual recurrence to be solved, there are usually some simplifications
steps to be taken. Here are three general simplifications that should be automatically taken:

Chee-Keng Yap Basic Version February 8, 2011

§1. SIMPLIFICATION Lecture II Page 3

• Initial Condition. In this book, we normally state recurrence without any initial conditions. This is
deliberate: we expect the student to supply the initial conditions, based on the following assumption: how convenient!!

Default Initial Condition (DIC): There is somen1 > 0 such that for alln < n1,
T (n) is assigned arbitrary values. The recurrence forT (n) holds for alln ≥ n1.

The intent is for the student to make convenient choices forn1 and the initial values ofT (n). Normally, we
make choices so that the resulting solution has a simple form. Our favorite version of DIC isT (n) = C for
all n < n1 and some constantC. To use DIC, we need not specifyn1 or the initial values ofT (n) before
hand. We just proceed to solve the recurrence, and at the appropriate moments, introduce these values.

What is the justification for this approach? It allows us to focus on the recurrence itself rather than the
initial conditions. In many cases, this arbitrariness doesnot affect the asymptotic behavior of the solution.
Even if this simplication is not valid, we might have learnedsomething about the recurrence.

• Extension to Real Functions.Even if the functionT (n) is originally defined for natural numbersn, we
will now treatT (n) as a real function (i.e., n is viewed as a real variable), and defined forn sufficiently
large. See the Exercise for an alternative approach (“ampledomain”) that avoids extensions to real func-
tions. It is important to realize that even if we have no interest in real recurrences, some solution techniques
below will transform our recurrences into non-integer recurrences. So we might as well take the plunge
from the start.

• Converting Recurrence Inequality into a Recurrence Equation. If we begin with a recurrence in-
equality such asT (n) ≤ G(n, T (n1), . . . , T (nk)), we simply rewrite this as an equality relation:
T (n) = G(T (n1), . . . , T (nk)). Because of this change, our eventual solution forT (n) is only an up-
per bound on the original function. Similarly, if we had started withT (n) ≥ G(n, T (n1), . . . , T (nk)), the
eventual solution is only a lower bound.

¶1. Special Simplifications. Suppose the running time of an algorithm satisfies the following inequality:

T (n) ≤ T (⌈n/2⌉) + T (⌊n/2⌋) + 6n + lg n − 4, (6)

for integern > 100, with boundary condition

T (n) = 3n2 − 4n + 2 (7)

for 0 ≤ n ≤ 100. Such arecurrence in-equationmay arises in some imagined implementation of Mergesort,
with special treatment forn ≤ 100. Our general simplification steps tells us to (a) discard thespecific boundary
conditions (7) in favor of DIC, (b) treatT (n) as a real function, and (c) write the recurrence as a equation.

What other simplifications might apply here? Let us convert (6) into the following

T (n) = 2T (n/2) + n. (8)

This represents two additional simplifications: (i) We replaced the term “+6n + lg n − 4” by some simple
expression (“+n”) with sameΘ-order. (ii) We have removed the ceiling and floor functions.Step (i) is justified
because this does not affect theΘ-order (if this is not clear, then you can always come back to verify this claim).
Step (ii) exploits the fact that we now treatT (n) as a real function, so we need not worry about non-integral
arguments when we remove the ceiling or floor functions. Also, it does not affect the asymptotic value ofT (n)
here.

The justifications for these steps are certainly not obvious, but they should seem reasonable. Ultimately, one
ought to return to such simplifications to justify them.

2The reason behind this is that (1) is a homogeneous recurrence while (2) is non-homogeneous. For instance,F (n) = F (n − 1) +
F (n − 2) + 1 would be non-homogeneous and itsΘ-solution would not depend on the initial conditions.

Chee-Keng Yap Basic Version February 8, 2011

§1. SIMPLIFICATION Lecture II Page 4

EXERCISES

Exercise 1.1: Show that our above simplifications of the the recurrence (6)(with its initial conditions) cannot
affect the asymptotic order of the solution. [Show this for ANY choice of a Default Boundary Condition.]

♦

Exercise 1.2: We seek counterexamples to the claim that we can replace⌈n/2⌉ by n/2 in a recurrence without
changing theΘ-order of the solution.
(a) Construct a functiong(n) that provides a counter example for the following recurrence: T (n) =
T (⌈n/2⌉) + g(n). HINT: makeg(n) depend on the parity ofn.
(b) Construct a different counter example of the formT (n) = h(n)T (

⌈

n
2

⌉

) for a suitable functionh(n).
♦

Exercise 1.3: Show examples where the choice of initial conditions can change theΘ-order of the solution
T (n). HINT: ChooseT (n) to increase exponentially. ♦

Exercise 1.4: Supposex, n are positive numbers satisfying the following “recurrence” equation,

2x = x2n.

Solve forx as a function ofn, showing

x(n) = [1 + o(1)]2n log2(2n).

HINT: take logarithms. This is an example of a bootstrappingargument where we use an approximation
of x(n) to derive yet a better approximation. See, e.g., Purdom and Brown [14]. ♦

Exercise 1.5: [Ample Domains] Our approach of considering real functionsis non-standard. The standard ap-
proach to solving recurrences in the algorithms literatureis the following. Consider the simplification of
(6) to (8). Suppose, instead of assumingT (n) to be a real function (so that (8) makes sense for all values
of n), we continue to assumen is a natural number. It is easy to see thatT (n) is completely defined by (8)
iff n is a power of2. We say that (8) is closed over the setD0 := {2k : k ∈ N} of powers of2. In general,
we say a recurrence is “closed over a setD ⊆ R” if for all n ∈ D, the recurrence forT (n) depends only
on smaller valuesni that also belong inD (unlessni lies within the boundary condition).
(a) Let us call a setD ⊆ R an “ample set” if, for someα > 1, the setD ∩ [n, α · n] is non-empty for all
n ∈ N. Here[n, αn] is closed real interval betweenn andαn. If the solutionT (n) is sufficiently “smooth”,
then knowing the values ofT (n) at an ample setD gives us a good approximation to values wheren 6∈ D.
In this question, our “smoothness assumption” is simply:T (n) is monotonic non-decreasing.Suppose
thatT (n) = nk for n ranging over an ample setD. What can you say aboutT (n) for n 6∈ D? What if
T (n) = cn overD? What ifT (n) = 22n

overD?
(b) SupposeT (n) is recursively expressed in terms ofT (n1) wheren1 < n is the largest prime smaller
thann. Is this recurrence defined over an ample set? ♦

Exercise 1.6: Consider inversions in a sequence of numbers.
(a) The sequenceS0 = (1, 2, 3, 4) has no inversions, but sequenceS1 = (2, 1, 4, 3) has two inversions,
namely the pairs{1, 2} and{3, 4}. Now, the sequenceS2 = (2, 3, 1, 4) also has two inversions, namely
the pairs{1, 2} and{1, 3}. Let I(S) be the number of inversions inS. Give anO(n lg n) algorithm to
computeI(S). Hint: this is a generalization of Mergesort.
(b) We next distinguish between the quality of the inversions ofS1 andS2. The inversions{1, 2} and{3, 4}

Chee-Keng Yap Basic Version February 8, 2011

§2. DIVIDE -AND-CONQUERALGORITHMS Lecture II Page 5

in S1 are said to have weight of 1 each, so theweighted inversionof S1 is W (S1) = 2 = 1 + 1. But
for S2, the inversion{1, 2} has weight2 while inversion{1, 3} has weight1. So the weighted inversion
is W (S2) = 3 = 2 + 1. Thus the “weight” measures how far apart the two numbers are. In general, if
S = (a1, . . . , an) then a pair{ai, aj} is aninversion if i < j andai > aj . The weight of this inversion
is j − i. Let W (S) be the sum of the weights of all inversions. Give anO(n lg n) algorithm for weighted
inversions. ♦

Exercise 1.7: We might consider following form of DIC where we assume that there exists0 < n0 < n1, and
constants0 < C0 ≤ C1 such that

(∀ n0 ≤ n < n1)[C0 ≤ T (n) ≤ C1]. (9)

Solve the Fibonacci and mergesort recurrences using this version of DIC. Your solutions should be stated
in terms of the parametersC1, C2. ♦

END EXERCISES

§2. Divide-and-Conquer Algorithms

In this section, we see some other interesting recurrences that arise in a divide-and-conquer algorithms. First,
we look at Karatsuba’s classic algorithm for multiplying integers [8]. Then we consider a modern problem arising
in searching for key words.

¶2. Example from Arithmetic. To motivate Karatsuba’s algorithm, let us recall the classic “high-school OK,you learned it in
grade schoolalgorithm” for multiplying integers. Given positive integersX, Y , we want to compute their productZ = XY .

This algorithm assumes you know how to do single-digit multiplication and multi-digit additions (“pre-high
school”). The algorithm multiplesX by each digit ofY . If X andY haven digits each, then we now haven
products, each having at mostn + 1 digits. After appropriate left-shifts of thesen products, we add them all up.
It is not hard to see that this algorithm takesΘ(n2) time. Can we improve on this?

Usually we think ofX, Y in decimal notation, but the algorithm works equally well inany base. We shall
assume base2 for simplicity. For instance, ifX = 19 then in binaryX = 10011. To avoid the ambiguity from
different bases, we indicate3 the base using a subscript,X = (10011)2. The standard convention is that decimal
base is assumed when no base is indicated. Thus a plain “100” without any base represents one hundred, and not
four. If we wanted four,

we have to write
“(100)2”AssumeX andY has length exactlyn wheren is a power of2 (we can pad with0’s if necessary). Let us

split upX into a high-order halfX1 and low-order halfX0. Thus

X = X0 + 2n/2X1

whereX0, X1 aren/2-bit numbers. Similarly,

Y = Y0 + 2n/2Y1.

3By the same token, we may writeX = (19)10 for base10. But now the base “10” itself may be ambiguous — after all “10” in binary
is equal to two. The convention is to write the base in decimal.

Chee-Keng Yap Basic Version February 8, 2011

§2. DIVIDE -AND-CONQUERALGORITHMS Lecture II Page 6

Then

Z = (X0 + 2n/2X1)(Y0 + 2n/2Y1)

= X0Y0 + 2n/2(X1Y0 + X0Y1) + 2nX1Y1

= Z0 + 2n/2Z1 + 2nZ2,

whereZ0 = X0Y0, etc. Clearly, each of theseZi’s have at most2n bits. Now, if we compute the 4 products

X0Y0, X1Y0, X0Y1, X1Y1

recursively, then we can put them together (“conquer step”)in O(n) time. To see this, we must make an ob-
servation: in binary notation, multiplying any numberX by 2k (for any positive integerk) takesO(k) time,
independent ofX . We can view this as a matter of shifting left byk, or by appending a string ofk zeros toX .

Hence, ifT (n) is the time to multiply twon-bit numbers, we obtain the recurrence

T (n) ≤ 4T (n/2) + Cn (10)

for someC > 1. Given our simplification suggestions, we immediately rewrite this as

T (n) = 4T (n/2) + n.

As we will see, this recurrence has solutionT (n) = Θ(n2), so we have not really improved on the high-school
method.

Karatsuba observed that we can proceed as follows: we can computeZ0 = X0Y0 andZ2 = X1Y1 first. Then
we can computeZ1 using the formula

Z1 = (X0 + X1)(Y0 + Y1) − Z0 − Z2.

ThusZ1 can be computed with one recursive multiplication plus someadditionalO(n) work. FromZ0, Z1, Z2,
we can again obtainZ in O(n) time. This gives us theKaratsuba recurrence,

T (n) = 3T (n/2) + n. (11)

We shall show thatT (n) = Θ(nα) whereα = lg 3 = 1.58 · · · . This is clearly an improvement of the high
school method. first improvement in

1000 years? Ac-
cording to Wikipedia,
high school multipli-
cation is equivalent to
the “lattice method”
which is at least 1000
years old.

There is an even faster algorithm from Schönhage and Strassen (1971) that runs in
O(n log n log log n) time. This has withstood improvements for almost 20 years, but in re-
cent years, thelog log n factor has begun to be breached (they can be replaced bylog∗ n).
Many theoretical computer scientists believe that anO(n log n) algorithm should be possible.
There is an increasing need for multiplication of arbitrarily large integers. In cryptography or
computational number theory, for example. These are typically implemented in software in
a “big integer” package. For instance,Java has aBigInteger class. A well-engineered
big integer multiplication algorithm will typically implement the High-School algorithm for
n ≤ n0, and use Karatsuba forn0 < n ≤ n1, and use Schönhage-Strassen forn > n1.
Typical values forn0, n1 are30, 200.

¶3. A Google Problem. The Google Phenomenon is possible because of efficient algorithms: every files on
the web can be searched and indexed. Searching is by keywords. Let us suppose that Google pre-processes every
file in its database for keywords. However, a user may ask to search files for two or more keywords. We will
reduce this multi-keyword search to a precomputed single-keyword index.

Chee-Keng Yap Basic Version February 8, 2011

§2. DIVIDE -AND-CONQUERALGORITHMS Lecture II Page 7

Let F be a file, viewed as a sequence of words (ignoring punctuations, capitalization, etc). We first pre-
processF for the occurrences of keywords. For each keywordw, we precompute anindex which amounts a
sorted sequenceP (w) of positions indicating wherew occurs inF . E.g.,

P (divide) = (11, 16, 42, 101, 125, 767)

means that the keyworddivide occurs6 times inF , at positions11, 16, etc. Suppose we want to search the file
using a conjunction ofk keywords,w1, . . . , wk. An intervalJ = [s, t] is called acover for w1, . . . , wk if each
wi occurs at least once within the positions inJ . The size of a cover[s, t] is justt − s. A cover isminimal if it
is not contained in some larger cover; it isminimum if its size is smallest among all covers. Note that if[si, ti]
are minimal covers fori = 1, 2, . . ., and ifsi < si+1 thenti < ti+1. Thekeyword cover problem is this: given
the indicesP (w1), . . . , P (wk) for a setW = {w1, . . . , wk} of keywords in a file, to compute a minimum cover
for W .

3002

11 42

44

767

P (divide)

P (conquer)

positions
16 101 125

289

Figure 1: Minimal Covers

E.g., letk = 2 with w1 = divide andw2 = conquer. With P (divide) as before, letP (conquer) =
(2, 44, 289, 300). Then the minimal covers are[2, 11], [42, 44], [44, 101], [125, 289], [289, 767]. This is illustrated
in Figure 1. The minimum cover is[42, 44].

Before attempting to solve this problem, consider how Google might use the minimum cover solutions:
suppose a user wants to search for a setW = {w1, . . . , wk} of key words. For each filefj (j = 1, 2, . . .) we
use the algorithm to compute a minimum cover[cj , dj] (if one exists) forW in fj . The indicesP (wi) for each
key wordwi are assumed to have been precomputed. The search results will be a list of all files for which covers
exist, but we order these files in order of non-decreasing cover sizedj − cj. The actual cover[cj , dj] can be used
by Google to display a snippet of the filefj .

Let us now consider algorithms. Letni be the length of listP (wi) (i = 1, . . . , k) andn = n1 + · · · + nk.
The casek = 2 is relatively straightforward, and we leave it for an exercise. Consider the casek = 3. First,
mergeP (w1), P (w2), P (w3) into the arrayA[1..n]. Recall that in Lecture I, we discussed the merging of sorted
lists. Merging takes timeO(n1 + n2 + n3) = O(n). To keep track of the origin of each number inA, we may
also construct an arrayB[1..n] such thatB[i] = j ∈ {1, 2, 3} iff A[i] comes from the listP (wj).

We use a divide-and-conquer approach. Recursively, compute a minimum cover ofA[1..(n/2)] and
A[(n/2) + 1..n] (for simplicity, assumen is a power of2). Let C1,n/2 and C(n/2)+1,n be these minimum
covers. We now need to find a minimal cover that straddlesA[(n/2)] andA[(n/2) + 1]. Let C = [A[i], A[j]] be
such a minimal cover, wherei ≤ (n/2) andj ≥ (n/2) + 1. There are 6 cases. One case is whenC = C′ ∪ C′′,
whereC′ = [A[i], A[n/2]] is the rightmost cover forw1 in A[1..(n/2)], andC′′ = [A[(n/2) + 1], A[j]] is the
leftmost cover forw2, w3 in A[(n/2) + 1, n]. We can findC′ andC′′ in O(n) time. The remaining 5 cases can
similarly be found inO(n) time. ThenC is the cover that has minimum size among these 6 cases. Hence,the
overall complexity of the algorithm satisfies

T (n) = 2T (n/2) + n.

We have seen this recurrence before, as the Mergesort recurrence (2). The solution isT (n) = Θ(n log n). See
exercise for a general solution inO(n log k) time.

Chee-Keng Yap Basic Version February 8, 2011

§2. DIVIDE -AND-CONQUERALGORITHMS Lecture II Page 8

¶4. Master Recurrence and Divide-and-Conquer Algorithms. The recurrences (2) and (11) are instances of
theMaster Recurrencewhich has the form:

T (n) = aT (n/b) + d(n) (12)

wherea > 0 andb > 1 are constants andd is any function, usually called thedriving function . Below, we shall
solve this recurrence under fairly general conditions.

The idea of solving a problem by reducing it to smaller subproblems is a very general one. In this chapter,
we mainly focus on reductions from problems of sizen to subproblems of size≤ cn for some fixedc < 1. If
there are a finite number of such subproblems, the running times can be bounded using solutions to the Master
recurrence (12). In other problems, we reduce a problem of sizen to several subproblems that of size≤ n − c
for some fixedc ≥ 1. Such solutions would be exponential time without additional properties; we study these
under the topic of dynamic programming (Chapter 7). In applications, we haved(n) > 0, representing the cost
of merging solutions of subproblems in divide-and-conqueralgorithms.

EXERCISES

Exercise 2.1: Carry out Karatsuba’s algorithm forX = 6 = (0110)2 andY = 11 = (1011)2. It is enough to
display the recursion tree with the correct arguments for each recursive call, and the returned values.♦

Exercise 2.2: Suppose an implementation of Karatsuba’s algorithm achievesT (n) ≤ Cn1.58 whereC = 1000.
Moreover, the High School multiplication isT (n) = 30n2. At what value ofn does Karatsuba become
competitive with the High School method? ♦

Exercise 2.3: Consider the recurrenceT (n) = 3T (n/2) + n and T ′(n) = 3T ′(⌈n/2⌉) + 2n. Show that
T (n) = Θ(T ′(n)). ♦

Exercise 2.4: The following is a programming exercise. It is best done using a programming language such as
Java that has a readily available library of big integers.
(a) Implement Karatsuba’s algorithm using such a programming language and using its big integer data
structures and related facilities. The only restriction isthat you must not use the multiplication, squaring,
division or reciprocal facility of the library. But you are free to use its addition/subtraction operations, and
any ability to perform left/right shifts (multiplication by powers of2).
(b) Let us measure the running time of your implementation ofKaratsuba’s algorithm. For input numbers,
use a random number generator to produce numbers of any desired bit length. IfT (n) ≤ Cnα then
lg T (n) ≤ lg C + α lg n. The exponentα is thus the slope of the curve obtained by plottinglg T (n)
againstlg n, we should get a slope of at mostα. Plot the running time of your implementation to verify
that its exponent is< 1.58.
(c) What is the exponent in Java’s native implementation? Explain your data.
(d) My 1999 undergraduate class in algorithms did the preceding exercise, using the
java.math.BigInteger package. One timing from this class is shown in Table 2. The “ex-
ponent” in this table is computing with a crude formulalg(avgTime)−avgTime0

lg(numBits)−numBits0
wherenumBits0 = 4000

andavgT ime0 = 4.358 (the initial trial). This crude exponent hovers around1.9. What would be the
empirical exponent if you do a proper regression analysis? This data suggests that in 1999, the library
only implemented the High School algorithm. By 2001, the situation appeared to have improved. ♦

Exercise 2.5: Suppose the running time of an algorithm is an unknown function of the formT (n) = Ana +
Bnb wherea > b andA, B are arbitrary positive constants. You want to discover the exponenta by

Chee-Keng Yap Basic Version February 8, 2011

§2. DIVIDE -AND-CONQUERALGORITHMS Lecture II Page 9

NumBits AvgTime Exponent

4000 4.358 0.0
4200 4.696 1.531002145103799
4400 5.194 1.841260577604784
4600 5.517 1.6873048110254347
4800 5.983 1.7381865504999572
5000 6.51 1.7985113947251763
5200 6.988 1.7997159663026001
5400 7.509 1.812998128928515
5600 8.01 1.8089977665618309
5800 8.684 1.85558837393382
6000 9.183 1.838236378924439
6200 9.769 1.8418523402197153
6400 10.365 1.8434357852847953
6600 11.088 1.864808884276074
6800 11.717 1.8638802969571109
7000 12.413 1.8704459319724756
7200 13.092 1.8714070696035303
7400 13.843 1.8787279477010768
7600 14.532 1.8763458534440565
7800 15.297 1.8801860861195574
8000 16.054 1.8811947011507577
8200 16.905 1.8884383570994894
8400 17.644 1.8847717474449632
8600 18.498 1.8885827751677746
8800 19.283 1.8862283707110576
9000 20.225 1.8927722703240168
9200 21.17 1.8976522229154338
9400 22.063 1.8982439890258536

NumBits AvgTime Exponent

9600 23.034 1.9017905239616146
9800 24.055 1.9064306092855452
10000 24.986 1.905838802838669
10200 25.987 1.9074840762036238
10400 26.948 1.9067232067781992
10600 28.108 1.912700793571853
10800 29.111 1.9120055203582398
11000 30.221 1.9143159996069712
11200 31.534 1.922120988851413
11400 31.542 1.8898795547030012
11600 32.67 1.8920105894497778
11800 33.703 1.8908891117429292
12000 34.67 1.8877101089855162
12200 36.082 1.8955269064390694
12400 37.218 1.8956825843907563
12600 38.049 1.8884930574030907
12800 39.242 1.8894663931349043
13000 40.553 1.892493164635265
13200 41.696 1.8915733844170872
13400 42.951 1.8925738155123988
13600 44.159 1.8923271871808227
13800 45.533 1.8947617307075215
14000 46.816 1.8951803717241376
14200 48.1 1.8953182704475686
14400 49.401 1.8954588786790316
14600 50.873 1.8979435636574864
14800 52.364 1.9002856600816482
15000 53.537 1.8977482007273088

Figure 2: Timing as a function of number of bits

measurement. How can you, by plotting the running time of thealgorithm for variousn, find a with an
error of at mostǫ? Assume that you can do least squares line fitting. ♦

Exercise 2.6: Try to generalize Karatsuba’s algorithm by breaking up eachn-bit number into3 parts. What
recurrence can you achieve in your approach? Does your recurrence improve upon Karatsuba’s exponent
of lg 3 = 1.58 · · ·? ♦

Exercise 2.7: To generalize Karatsuba’s algorithm, consider splitting an n-bit integerX into m equal parts
(assumingm dividesn). Let the parts beX0, X1, . . . , Xm−1 whereX =

∑m−1
i=0 Xi2

in/m. Similarly, let
Y =

∑m−1
i=0 Yi2

in/m. Let us defineZi =
∑i

j=0 XjYi−j for i = 0, 1, . . . , 2m − 2. In the formula forZi,
assumeXℓ = Yℓ = 0 whenℓ ≥ m.
(i) Determine theΘ-order off(m, n), defined to be the time to compute the productZ = XY when you
are givenZ0, Z1, . . . , Z2m−2. Remember thatf(m, n) is the number of bit operations.
(ii) It is known that we can compute{Z0, Z1, . . . , Z2m−2} from theXi’s andYj ’s usingO(m log m)
multiplications andO(m log m) additions, all involving(n/m)-bit integers. Using this fact with part (i),
give a recurrence relations for the timeT (n) to multiply twon-bit integers.
(iii) Conclude that for everyε > 0, there is an algorithm for multiplying any twon-bit integers in time
T (n) = Θ(n1+ε). NOTE: part (iii) is best attempted after you have studied the Master Theorem in the
subsequent sections. ♦

Exercise 2.8: In the Google problem, we need to merge several sorted lists.Recall from Lecture I that we can
merge a two lists of sizesm andn in time Θ(m + n). SupposeX1, . . . , Xn aren ≥ 1 sorted lists, each
with k ≥ 1 elements. Here,n andk are independent parameters.
(a) We want to analyze the complexityT (n, k) of sorting the setX =

⋃n
i=1 Xi. At each phase, we merge

pairs of lists. Withn lists of sizek, we takeO(nk) time to merge, and producen/2 lists each of size2k.
Set up the recurrence forT (n, k) based on this repeated merging algorithm.
(b) Show thatT (n, k) = O(nk lg(1 + n)) (we say “1 + n” to ensure that the logarithm does not vanish

Chee-Keng Yap Basic Version February 8, 2011

§3. EGVS METHOD Lecture II Page 10

whenn = 1). HINT: you could use domain transformation (see§7) but this is not necessary.
(c) Use the Information Theoretic Lower Bound from Lecture Ito show a lower bound ofΩ(nk lg(1+n)).

♦

Exercise 2.9: Recall the Google4 multi-keyword search. This was reduced to computing a minimum cover for
a setW = {w1, . . . , wk} of key words in a file. For each key wordw ∈ W , we are given an indexP (w)
which is just a sorted list of positions wherew occurs in the file.
(a) Solve the minimum cover fork = 2 in linear time.
(b) SupposeP (wi) = (si, ti) for eachi = 1, . . . , k, i.e., each keyword has just two positions. Give an
O(k log k) algorithm to find the minimum coverC for w1, . . . , wk. HINT: suppose the minimal covers
areC1, . . . , Cm for somem ≥ 1. Give an algorithm to list all the minimal covers. IfCi = [ci, di] and
assumingc1 < c2 < · · · < cm, how do you findC1? How do you findCi+1 givenCi?
(c) Solve the general Google problem (k is arbitrary and each word can have arbitrarily many occurrences
in the file). HINT: if you used the hint from (b), it should be possible to generalize your solution. ♦

Exercise 2.10:Write a program to solve the Google multi-keyword for the case k = 3 as described in the text.
Use your favorite programming language (C or Java without any Object-Oriented fanfare is recommended).
Initially, assumen is a power of2. Indicate how to adapt your algorithm whenn is not a power of2. ♦

Exercise 2.11:Consider the following problem: we are given an arrayA[1..n] of numbers, possibly with dupli-
cates. Letf(x) be the number of times (“frequency”) a numberx occurs. Given a numberk ≥ 1, we want
to know whether there arek distinct numbersx1, . . . , xk such that

∑k
i=1 f(xi) > n/2. Call {x1, . . . , xk}

ak-majority set.
(a) Solve this decision problem fork = 1.
(b) Solve this decision problem fork = 2.
(c) Instead of the previous decision problem, we consider the optimization version: find the smallestk

such that there arek numbersx1, . . . , xk with
∑k

i=1 f(xi) > n/2. ♦

END EXERCISES

§3. EGVS Method

We are going to introduce two “direct methods” for solving recurrences: rote method and induction. They are
“direct” as opposed to other transformational methods which we will introduce later. Although fairly straightfor-
ward, these direct methods may call for some creativity (educated guesses). We begin with the rote method, as it
appears to require somewhat less guess work.

¶5. What is rote? The “rote method” refers to the idea of solving a recurrence by repeated expansion of a
recurrence. Since such expansions can be done mechanically, this method has been characterized as rote.

4This problem was adapted from a Google interview question (the interviewed student was hired).

Chee-Keng Yap Basic Version February 8, 2011

§3. EGVS METHOD Lecture II Page 11

Let us illustrate this method using the merge-sort recurrence (8):

T (n) = 2 T(n/2) + n (first expansion)

= 2 2T(n/4)+(n/2) + n (second expansion)

= 4 T(n/4) + 2n (simplify)

= 4 2T(n/8) + (n/4) + 2n (third expansion)

= 8T (n/8) + 3n (simplify)







































(13)

This is the expansion step. At this point, we may guess that the ith expansion, the formula is

(G)i : T (n) = 2iT (n/2i) + in. (14)

To verify our guess, we use natural induction. Note that the formula (14) is true fori = 1 (it also holds fori = 2
and3, but this is not logically necessary). We need an induction step: This amounts to expanding the formula
once more:

T (n) = 2i 2T (n/2i) + in (guessedith expansion)

= 2i 2T (n/2i+1) + n/2i + in (i + 1st expansion)

= 2i+1T (n/2i+1) + (i + 1)n, (simplify)















(15)

and noting that this confirms that the formula holds fori + 1 (cf. formula(G)i+1 in (14)).

Finally, we must choose a value ofi at which to stop this expansion. First consider the ideal situation where
n is a power of2 and we choosei = lg n. Then (14) yieldsT (n) = 2iT (n/2i) + in = nT (1) + (lg n)n.
Invoking DIC to makeT (1) = 0, we obtain the solutionT (n) = n lg n. This is a beautiful solution, except for
one problem:i must be an integer, and it will not work whenn is not a power of2. It makes no sense to pretent
thati is a real variable (as we did forn). In general, we may choose an integer close tolg n: ⌈lg n⌉ or ⌊lg n⌋ will
do. Let us choose

i = ⌊lg n⌋ (16)

as our stopping value. With this choice, we obtain1 ≤ n/2i < 2. Under DIC, we can choose the initial condition
to be

T (n) = 0, for n < 2. (17)

This yields theexactsolution that forn ≥ 2,

T (n) = n ⌊lg n⌋ . (18)

¶6. Is is really rote? To recap, there are four distinct stages in the rote method:

(E) Expansion steps as in (13). This is the rote part. You can expand as many times as you like until you see the
general pattern.

(G) Guessing of a formula for theith expansion, as in (14). This guess may require some creativity. Indeed, if
we had not re-arranged the terms in our example in the suggestive manner, you might see the pattern.

(V) Verification of the formula as in (15). This step should be mechanical, and amounts to one more expansion
step and re-arranging the terms into the desired form. One problem is that students sometimes do not do
this step “honestly”.

(S) Stopping criteria choice as in (16). You need to know when to step expension! Note you must choosei Child’s dilemma: I
can’t spell banana
because I don’t know
when to stop!

to be a natural number. Thus, you cannot pick “i = lg n” in (16), but need something likei = ⌈lg n⌉ or
i = ⌊lg n⌋. Now you can invoke DIC to finish off the derivation.

Chee-Keng Yap Basic Version February 8, 2011

§4. REAL INDUCTION Lecture II Page 12

In summary, you must expand, then guess, then verify and finally stop. Even if you get the correct form
in the form of a summation, you do need to know how to replaced it by a closed form expression. But when
the method works, it gives you the exact solution. How can this method fail? It is clear that you can always
perform expansions, but you may be stuck at the next step. Forinstance, try to expand the recurrenceT (n) =
2T (⌈n/2⌉) + n in an exact form. The only way out is to give up exact solution,and guess reasonable upper
and/or lower bounds.

The appearance of the floor function in the solution (18) makes T (n) discontinuous whenevern is a power
of 2. We can make the solution continuous if we fully exploit our freedom in specifying boundary conditions.
Let us now assume thatT (n) = n lg n for 1 ≤ n < 2. Then the above proof gives the solution

T (n) = n lg n (19)

for n ≥ 1. This solution is the “ultimate” in simplicity for the recurrence (8). In the exercises, we see more
examples of the influence of DIC (17) on our solution.

EXERCISES

Exercise 3.1: No credit work: Rote is discredited word in pedagogy, so we would like a more dignified name
for this method. We could call this the “4-Fold Path” or the “EGVS Method”. Suggest your own name for
this method. In a humorous vein, what can EGVS stand for? ♦ Pronounce “EGVS”

as “egg-us” (like the
Romans, treat V as
U).Exercise 3.2: Use the Rote Method to solve the following recurrences

(a)T (n) = n + 8T (n/2).
(b) T (n) = n + 16T (n/4).

(c) Can you generalize your results in (a) and (b) to recurrences of the formT (n) = n + aT (n/b)
wherea, b are in some special relation? ♦

Exercise 3.3: Solve the Karatsuba recurrence (11) using the Rote Method. ♦

Exercise 3.4: Give the exact solution forT (n) = 2T (n/2) + n for n ≥ 1 under the initial conditionT (n) = 0
for n < 1. ♦

Exercise 3.5: Solve (37) assuming thatd(n) = nβ for some realβ. NOTE: there will be three different cases,
depending on the relationships betweenβ, a, b. ♦

Exercise 3.6: Let us consider the following form of DIC, where we assume that

C0 ≤ T (n) ≤ C1

for 0 < n ≤ n1, with the recurrence operative forn > n1. Here,C0, C1, n1 are positive constante. Solve
the Mergesort Recurrence under this initial condition, andshow how the solution depends onn1, C0, C1.

♦

END EXERCISES

Chee-Keng Yap Basic Version February 8, 2011

§4. REAL INDUCTION Lecture II Page 13

§4. Real Induction

The rote method, when it works, is a very sharp tool in the sense that as it gives us the exact solution to
recurrences. Unfortunately, it does not work for many recurrences: while you can always expand, you may not
be able to guess the general formula for thei-th expansion. We now introduce a more widely applicable method,
based on the idea of “real induction”.

To illustrate this idea, we use a simple example: consider the recurrence

T (x) = T (x/2) + T (x/3) + x. (20)

The student is encouraged to attempt the rote method on this recurrence. Let us use real induction to prove an Try rote first!
upper bound: suppose we guess thatT (x) ≤ Kx (ev.), for someK > 1. Then we verify it “inductively”:

T (x) = T (x/2) + T (x/3) + x (By definition)
≤ K x

2 + K x
3 + x (Inductive hypothesis)

= Kx
(

1
2 + 1

3 + 1
K

)

= Kx (ProvidedK > 6/5)

In the following, we will rigorously justify this method of proof.

How did we guess the upper boundT (x) ≤ Kx? What if we had guessedT (x) ≤ Kx2? Well, we would
have succeeded as well. In other words, this argument confirms a particular guess; it does not tell us anything
about the optimality of the guess (in reality, the proof yields hints how tight an inequality is). We could likewise
use real induction to confirm a guessed lower bound. The combined upper and lower bound can often lead to
optimal bounds.

¶7. Natural Induction. Real induction is not a familiar in computing or even mathematics, so let us begin
by recalling the related but well-known method ofnatural induction . The latter is a proof method based on
induction over natural numbers. In brief, supposeP (·) is a natural number predicate, i.e., for eachn ∈ N, P (n)
is a proposition.

For example,P (n) might be “There is a prime number betweenn andn + 10 inclusive”. A proposition is
either true or false. Thus, we may verify5 thatP (100) is true because101 is prime, butP (200) is false because
211 is the smallest prime larger than200. A similar predicate isP (n) ≡ “there is prime betweenn and2n − 1′′,
called Bertrand’s Postulate (1845).

We simply write “P (n)” or, for emphasis, “P (n) holds” when we want to assert that “propositionP (n) is
true”. Natural induction is aimed at proving propositions of the form

(∀n ∈ N)[P (n) holds]. (21)

When (21) holds, we say the predicateP (·) is valid. For instance, Chebyshev proved in 1850 that Bertrand’s
PostulateP (n) is valid. A “proof by natural induction” has three steps:
(i) [Natural Basis Step] Show thatP (0) holds.
(ii) [Natural Induction Step] Show that ifn ≥ 1 andP (n − 1) holds thenP (n) holds:

(n ≥ 1) ∧ P (n − 1) ⇒ P (n). (22)

(iii) [Principle of Natural Induction] Invoke the principle of natural induction, which simply says that (i) and (ii)
imply the validity ofP (·), i.e., (21).

5The smallestn such thatP (n) is false isn = 114.

Chee-Keng Yap Basic Version February 8, 2011

§4. REAL INDUCTION Lecture II Page 14

Since step (iii) is independent of the predicateP (·), we only need to show the first two steps. A variation of
natural induction is the following: for any natural number predicateP (·), introduce a new predicate (the “star
version ofP ”) denotedP ∗(·), defined via

P ∗(n) : (∀m ∈ N)[m < n ⇒ P (m)]. (23)

The “Strong Natural Induction Step” replaces (22) in step (ii) by

(n ≥ 1) ∧ P ∗(n) ⇒ P (n). (24)

It is easy to see that if we carry out the Natural Basis Step andthe Strong Natural Induction Step, we have shown
the validity ofP ∗(n). Moreover,P ∗(·) is valid iff P (·) is valid. Hence, a proof of the validity ofP ∗(·) is called
a strong natural induction proof of the validity ofP (·).

¶8. Real Induction. Now we introduce the real analogue of strong natural induction. Unlike natural induction,
real induction is rarely discussed in standard mathematical literature, except possibly as a form of transfinite
induction. Nevertheless, this topic holds interest in areas such as program verification [2], timed logic [11], and
real computational models [3]. We regard it is an important technique for analysis of algorithms.

Real induction is applicable toreal predicates, i.e., a predicateP (·) such that for eachx ∈ R, we have a
proposition denotedP (x). For example, supposeT (x) is a total complexity function that satisfies the Karatsuba
recurrence (11) subject to the initial conditionT (x) = 1 for x ≤ 10. Let us define the real predicate

P (x) : [x ≥ 10 ⇒ T (x) ≤ x2]. (25)

As in (21), we want to prove thevalidity of the real predicateP (·), i.e.,

(∀x ∈ R)[P (x) holds]. (26)

In analogy to (23), we transformP (·) into a “star-version ofP ”, defined as follows:

P ∗
δ (x) : (∀y ∈ R)[y ≤ x − δ ⇒ P (y)] (27)

whereδ is any positive real number. The predicateP ∗
δ (x) is called theReal Induction Hypothesis(RIH). When

δ is understood, we may simply writeP ∗(x) instead ofP ∗
δ (x).

THEOREM1 (Principle of Real Induction).LetP (x) be a real predicate. Suppose there exist real numbersδ > 0
(gap constant) andx1 (cutoff constant) such that

(I) [Real Basis Step]For all x < x1, P (x) holds.

(II) [Real Induction Step]For all x ≥ x1, P ∗
δ (x) ⇒ P (x).

ThenP (x) is valid: for all x ∈ R, P (x) holds.

The proof of this principle is left as an exercise. It amountsto a reduction to Natural Induction. The principle
behind this reduction is a very intuitive property of real numbers:Given anyδ > 0, for every real numberx there
is a smallest natural numbern(x) such thatx ≤ n(x)δ. This is also known as theArchimedean Property of “Give me a lever long

enough and I can
move the earth” –
Archimedes

the reals. We can divideR into the set{Q(k) : k ∈ N} of intervals where each intervalQ(i) comprises all those
x with n(x) = k. This is illustrated in Figure 3. We can then prove that the Principle of Real Induction holds
over eachQ(k) for k, using natural induction.

Let us apply real induction to real recurrences. Note that its application requires the existence of two con-
stants,x1 andδ, making it somewhat harder to use than natural induction.

Chee-Keng Yap Basic Version February 8, 2011

§4. REAL INDUCTION Lecture II Page 15

0

Q(−1) Q(1) Q(2) Q(3) · · ·

δ 2δ−δ
x

x1

Figure 3: Discrete steps in real induction

¶9. Example. SupposeT (x) satisfies the recurrence

T (x) = x5 + T (x/a) + T (x/b) (28)

wherea ≥ b > 1. Givenx0 ≥ 1 andK > 0, let P (x) be the proposition

x ≥ x0 ⇒ T (x) ≤ Kx5. (29)

Define the constantk0 = a−5 + b−5. CLAIM: If k0 < 1 then for allx0 ≥ 1, there is aK > 0 such thatP (x) is
valid.

Proof: Now for anyx1, if x1 > x0 then our Default Initial Condition says that there is aC > 0 such that

T (x) ≤ C

for all x0 ≤ x < x1. If we chooseK such thatK ≥ C/x5
0 then for allx0 ≤ x < x1, we haveT (x) ≤ C ≤

Kx5
0 ≤ Kx5 (sincex ≥ x0 ≥ 1). HenceP (x) holds. This establishes the Real Basis Step (I) forP (x) relative

to x1.

To establish the Real Induction Step (II), we need more properties forx1 and must choose a suitableδ. First
choose

x1 = ax0. (30)

Thus forx ≥ x1, we havex0 ≤ x/a ≤ x/b. Next choose

δ = x1 − (x1/b) = x1
b − 1

b
. (31)

This ensures that forx ≥ x1, we havex/a ≤ x/b ≤ x − δ. The Real Induction HypothesisP ∗
δ (x) says that for

all y ≤ x − δ, P (y) holds, i.e.,y ≥ x0 ⇒ P (y). Supposex ≥ x1 andP ∗
δ (x) holds. We need to show thatP (x)

holds:

T (x) = x5 + T (x/a) + T (x/b)

≤ x5 + K · (x/a)5 + K · (x/b)5, (by P ∗
δ (x) andx0 ≤ x/a ≤ x/b ≤ x − δ) (32)

= x5(1 + K · k0)

≤ Kx5 (33)

where the last inequality is true provided our choice ofK above further satisfies1 + K · k0 ≤ K or K ≥
1/(1 − k0). This proves the Real Induction Step (II). Invoking the Principle of Real Induction, we conclude that
P (·) is valid.

In a similar vein, we can use real induction to prove a lower bound: there is a constantk > 0 such that
T (x) ≥ kx5 (ev.). Hence, we have shownT (x) = Θ(n5) for the recurrence (28).

Chee-Keng Yap Basic Version February 8, 2011

§4. REAL INDUCTION Lecture II Page 16

¶10. Default Real Basis. The last example shows that the direct application of the Principle of Real Induction
can be tedious, as we have to track constants such asδ, x1 andK. But this tedium is only associated with
justifying the Real Basis (RB); the proof of the Real Induction (RI) is actually not tedius and highly instructive.
Our goal is this subsection is to seek ways to avoid RB, so thatyou can focus on the interesting part (RI).

There is a simple way out, by fiat! Letf(x) be a complexity function andT satisfies some recurrence.
Suppose we want to show that

T (x) ≺ f(x)

by real induction. This amounts to showing that there existsK > 0 andx1 such that

(∀x ≥ x1)T (x) ≤ Kf(x). (34)

We ask you to assume (34) holds providedK andx1 is sufficiently large.Call this theDefault Real Basis(DRB).
In the next subsection, we will formally justify this for a large class of situations (surely enough to cover all your
applications).

¶11. Growth Functions. We will now show that under some general conditions, the RealBasis (RB) of Real
Induction Principle is automatic. The idea is to exploit thefollowing property that most natural complexity
functions satisfy. SKIP this on first

reading!

A real functionf : R
k → R is said to be agrowth function if f is eventually defined, eventually non-

decreasing and is unbounded in each of its variables. For instance,f(x) = x2 − 3x andf(x, y) = xy + x/ log x
are growth functions, butf(x) = −x andf(x, y, z) = xy/z are not.

THEOREM 2. AssumeT (x) satisfies the real recurrence

T (x) = G(x, T (g1(x)), . . . , T (gk(x)))

and

• G(x, t1, . . . , tk) and eachgi(x) (i = 1, . . . , k) are growth functions.

• There is a constantδ > 0 such that eachgi(x) ≤ x − δ (ev.x).

Supposef(x) is a growth function such that

G(x, Kf(g1(x)), . . . , Kf(gk(x))) ≤ Kf(x)) (ev.K, x). (35)

Under the Default Initial Condition, we conclude

T (x) = O(f(x)).

Proof.Pick x0 > 0 andK > 0 large enough so that all the “eventual premises” of the theorem are satisfied.
In particular,f(x), G(x, t1, . . . , tk) andgi(x) are all defined, non-decreasing and positive when their arguments
are≥ x0. Also,gi(x0) ≤ x0 − δ for eachi. Let P (x) be the predicate

P (x) : x ≥ x0 ⇒ T (x) ≤ Kf(x).

Pick
x1 = max{g−1

i (x0) : i = 1, . . . , k}. (36)

Chee-Keng Yap Basic Version February 8, 2011

§4. REAL INDUCTION Lecture II Page 17

The inverseg−1
i of gi is undefined atx0 if there does not existyi such thatgi(yi) = x0, or if there exists more

than one suchyi. In this case, takeg−1
i (x0) in (36) to be anyyi such thatgi(yi) ≥ x0. We then conclude that for

all x ≥ x1,
x0 ≤ gi(x) ≤ x − δ.

By the Default Initial Condition (DIC), we conclude that forall x ∈ [x0, x1], P (x) holds. Thus, the Real Basis
Step is verified. We now verify the Real Induction Step. Assumex ≥ x1 andP ∗

δ (x). Then,

T (x) = G(x, T (g1(x)), . . . , T (gk(x)))
≤ G(x, Kf(g1(x), . . . , Kf(g1(x))) (by P ∗

δ (x))
≤ Kf(x) (by (35)).

ThusP (x) holds. By the Principle of Real Induction,P (x) is valid. This impliesT (x)O(f(x)). Q.E.D.

To apply this theorem, the main property to verify is the inequality (35), since the other properties are usually
routine to check. Let us see this in action on the example (28). We basically need to verify that

1. f(x) = x5, G(x, t1, t2) = x5 + t1 + t2, g1(x) = x/a andg2(x) = x/b are growth functions

2. g1(x) ≤ x − 1 andg2(x) ≤ x − 1 whenx is large enough.

3. The inequality (35) holds whenK ≥ 1/(1 − k0). This is just the derivation of (33) from (32).

From theorem 2 we conclude thatT (x) = O(f(x)). The step (35) is the most interesting step of this
derivation.

It is clear that we can give an analogous theorem which can be used to easily establish lower bounds onT (x).
We leave this as an Exercise.

• One phenomenon that arises is that one often has to introducea stronger induction hypothesis than the
actual result aimed for. For instance, to prove thatT (x) = O(x log x), we may need to guess thatT (x) =
Cx log x + Dx for someC, D > 0. See the Exercises below.

• A real predicateP can be identified with a subsetSP of R comprising thosex such thatP (x) holds. The
statementP (x) can be generically viewed as asserting membership ofx in SP , viz., “x ∈ SP ”. Then
a principle of real induction is just one that gives necessary conditions for a setSP to be equal toR.
Similarly, a natural number predicate is just a subset ofN.

In the rest of this chapter, we indicate other systematic pathways; similar ideas are in lecture notes of Mishra
and Siegel [12], the books of Knuth [9], Greene and Knuth [6].See also Purdom and Brown [14] and the survey
of Lueker [10].

EXERCISES

Exercise 4.1: Prove theorem 1, by reduction to natural induction. You can also use a proof by contradiction.♦

Exercise 4.2: SupposeT (x) = 3T (x/2) + x. Show by real induction thatT (x) = Θ(xlg 3). ♦

Chee-Keng Yap Basic Version February 8, 2011

§5. BASIC SUMS Lecture II Page 18

Exercise 4.3: Consider equation (8),T (n) = 2T (n)+n. Fix anyk > 1. Show by induction thatT (n) = O(nk).
Which part of your argument suggests to you that this solution is not tight? ♦

Exercise 4.4: Consider the recurrenceT (n) = n + 10T (n/3). Suppose we want to showT (n) = O(n3).
(a) Attempting to prove by real induction, students often begin with a statement such as “Using the Default
Initial Condition, we may assume that there is someC > 0 andn0 > 0 such thatT (n) ≤ Cn3 for all
n < n0”. What is wrong with this statement?
(b) Give a correct proof by real induction.
(c) SupposeT (n) = n + 10T ((n + K)/2) for some constantK. How does your proof in (b) change?♦

Exercise 4.5: Let T (n) = 2T (n
2 + c) + n for somec > 0.

(a) By choosing suitable initial conditions, prove the following bounds onT (n) by induction, andnot by
any other method:

(a.1)T (n) ≤ D(n − 2c) lg(n − 2c) for someD > 1. Is there a smallestD that depends only onc?
Explain. Similarly, showT (n) ≥ D′(n − 2c) lg(n − 2c) for someD′ > 0.

(a.2)T (n) = n lg n − o(n).
(a.3)T (n) = n lg n + Θ(n).

(b) Obtain the exact solution toT (n).
(c) Use your solution to (b) to explain your answers to (a). ♦

Exercise 4.6: Generalize our principle of real induction so that the constant δ is replaced by a real function
δ : R → R>0. ♦

Exercise 4.7: (Gilles Dowek, “Preliminary Investigations on Induction over Real Numbers”, manuscript 2002).
(a) A setS ⊆ R is closed if every limit point ofS belongs toS. Let P (x) be a real predicateP (x).
Assume{x ∈ R : P (x)holds} is a closed set. Suppose

P (a). ∧ .(∀c ≥ a)[P (c). ⇒ .(∃ε)(∀y)[c ≤ y ≤ c + ε ⇒ P (y)]]

Conclude that(∀x ≥ a)P (x).
(b) Let a, b ∈ R andα, β : R → R such that for allx, α(x) ≥ 0 andα(x) > 0. Supposef is a
differentiable function satisfying

f(a) = bf ′(x) = −α(x)f(x) + β(x)

then for allx ≥ a, f(x) > 0. Intuition: If f(x) is the height of an object at timex, then the object will
never reach the ground,i.e., f(x) > 0. ♦

END EXERCISES

§5. Basic Sums

In this section, we discuss some well-known basic sums and their role in solving recurrences.

Chee-Keng Yap Basic Version February 8, 2011

§5. BASIC SUMS Lecture II Page 19

¶12. Rote expansion of the Master Recurrence. As motivataton, let us return to the rote or EGVS method.
We have used it for the Mergesort recurrence (8). We now try tosee if the technique extends to the more general
Master Recurrence (12) which is

T (n) = aT (n/b) + d(n)

for a > 0 andb > 1. Expanding, guessing and verifying yields:

T (n) = a T(n/b) + d(n)

= a2 T (n/b2) + ad(n/b) + f(n)

= · · ·

= ai T (n/bi) +

i−1
∑

j=0

ajd(n/bj). (37)

The generali-th expansion, unlike in the Mergesort case, is anopen sum, i.e., a sum with an unbounded number
of summands depending onn. This open sum remains after we stop in EGVS. We generally do not regard an
open sum as a satisfactory solution. This calls for techniques to convert open sums into closed form solutions.
That is the topic of this section.

¶13. The Standard Recurrence and Descending Sums.Basically, the EGVS method has transformed the
Master Recurrence into a recurrence of the form

T (n) = T (n− 1) + f(n). (38)

We shall call this thestandard recurrence. Our goal in the following sections is to show systematic ways to
reduce many recurrences into this standard form. Trivially, (38) has the following open sum as solution

T (n) =

n
∑

i=1

f(i), (39)

assumingT (0) = 0 andn is integer.

In the solution (39) we have assumed thatn is integer. But what ifn is an arbitrary real value? Let us
introduce some general notations that befits our intention of “going totally real”. In general, for any real numbers
a, b, we define two kinds of sums off -values over this real interval[a, b]: Hey,

∑π
x≥1 x =

3π − 3 where
π = 3.1415

∑b
i≥a f(i) = f(b) + f(b − 1) + f(b − 2) + · · · + f(b − ⌊b − a⌋) (descending)

∑b
i=a f(i) = f(a) + f(a + 1) + f(a + 2) + · · · + f(a + ⌊b − a⌋) (ascending)

}

(40)

We call these thedescendingandascendingf -summations. Such sums are defined to be0 if a > b. Note
that the difference between these two sums is indicated by the way we write the initial value of the summation
variablei: “

∑b
i≥a” instead “

∑b
i=a”. We shall mainly focus on the descending sums, but sometimes we need to Henceforth, pay

close attention to this
minute detail!

use ascending sums as well. There is a simple connection between the these two sums:

b
∑

i≥a

f(i) =

b
∑

i=a

f(b − i). (41)

Even whenf(x) is a partial function, these sums are well-defined using the convention that undefined summands
are replaced by0. In recognition of our interest in descending sums, we introduce a convenient notation:

Sf (n) :=

n
∑

i≥1

f(i). (42)

Chee-Keng Yap Basic Version February 8, 2011

§5. BASIC SUMS Lecture II Page 20

¶14. What Does It Mean to Solve a Recurrence? The RHS in (39) is anopen sum, meaning a summation in
which the number of summands is unbounded as a function ofn. We do not regard open sums as a satisfactory
final answer. But what is a satisfactory answer?

Supposef(n) = n in (39). Then we know how to convert the open sum into a aclosed sum:

T (n) =

n
∑

i=1

f(i) =

n
∑

i=1

i =

(

n + 1

2

)

=
n(n + 1)

2
= Θ(n2).

Indeed, we would be perfectly happy with the answer “T (n) = Θ(n2)” even though the answer is really
(

n+1
2

)

— remember that we are generally interested inΘ-order answers in this book. The reason we are happy with
the answerΘ(n2) is becausen2 is a “familiar function”. So this section is about how we can write some “basic
sums” in terms of similar familiar functions. These are the ones you must know. You will not be responsible for
summations outside this small repertoire of basic sums.

¶15. Familiar Functions. So we conclude that “solving a recurrence” is relative to theform of solution we
allow. This we interpret to mean a finite sum or finite product involving only “familiar” functions. For our
purposes, the functions considered familiar include

polynomialsf(n) = nk, logarithmsf(n) = log n, and exponentialsf(n) = cn (c > 0).
I see! Solving means
to relate to known
functionsFunctions such as factorialsn!, binomial coefficients

(

n
k

)

and harmonic numbersHn (see below) are tightly
bounded by familiar functions, and are therefore considered familiar. Finally, we have a rule saying thatthe
sum, product and functional composition of familiar functions are considered familiar. Thuslogk n, log log n,
n + 2 logn andnn log n are familiar. For instance, letf(n) be the number of ways an integern can be written
as the sum of two integers. Number theorists have shown thatf(n) is (log n)O(log n), which is familiar by our
definition.

In addition to the above functions, two very slow growing functions arise naturally in algorithmic analysis.
These are the log-star functionlog∗ x and the inverse Ackermann functionα(n) (see Lecture XII). We will
consider them familiar, although functional compositionsinvolving them are only familiar in our technical sense!

We refer the reader to the Appendix A in this lecture for basicproperties of the exponential and logarithm
function. In this section, we present some basic closed formsummations.

Here are some basic facts that you should know of basic functions:

LEMMA 3.
(i) For all k < k′, nk = O(nk′

) andnk 6= Ω(nk′

).
(ii) For all k > 0, lg n = O(nk) andlg n 6= Ω(nk).
(iii) For all k and all c > 1, nk = O(cn) andnk 6= Ω(ck).

We ask you to prove these in the exercises.

¶16. Arithmetic series. The basic arithmetic series is

Sn :=
n
∑

i=1

i =

(

n + 1

2

)

. (43)

Chee-Keng Yap Basic Version February 8, 2011

§5. BASIC SUMS Lecture II Page 21

In proof,

2Sn =
n
∑

i=1

i +
n
∑

i=1

(n + 1 − i) =
n
∑

i=1

(n + 1) = n(n + 1).

There is a well-known “proof by picture” where you draw two congruent staircases, each representing the desired
sum; you can put these two staircases together to get a rectangle of area2Sn = n(n + 1).

More generally, for fixedk ≥ 1, we have the “arithmetic series of orderk”,

Sk
n :=

n
∑

i=1

ik = Θ(nk+1). (44)

In proof, we have

nk+1 > Sk
n >

n
∑

i=⌈n/2⌉
(n/2)k ≥ (n/2)k+1.

For more precise bounds, we boundSk
n by integrals,

nk+1

k + 1
=

∫ n

0

xkdx < Sk
n <

∫ n+1

1

xkdx =
(n + 1)k+1 − 1

k + 1
,

yielding

Sk
n =

nk+1

k + 1
+ Ok(nk). (45)

Don’t worry about
our use of integrals
— they are not es-
sential for this book
at all. We will show
elementary ways to
get these bounds, up
to Θ-order, without
any calculus! Yay?
Yay!

¶17. Geometric series. Forx 6= 1 andn ≥ 1,

Sn(x) :=

n−1
∑

i=0

xi

=
xn − 1

x − 1
. (46)

In proof, note thatxSn(x) − Sn(x) = xn − 1. Next, lettingn → ∞, we get the series

S∞(x) :=

∞
∑

i=0

xi

=







∞ if x ≥ 1
↑ (undefined) if x ≤ −1

1
1−x if |x| < 1.

Why isS∞(−1) (say) considered undefined? For instance, writing

S∞(−1) = 1 − 1 + 1 − 1 + 1 − 1 + · · ·
= (1 − 1) + (1 − 1) + (1 − 1) + · · ·
= 0 + 0 + 0 + · · · ,

we concludeS∞(−1) = 0. But writing

S∞(−1) = 1 − 1 + 1 − 1 + 1 − · · ·
= 1 − (1 − 1) + (1 − 1) − · · ·
= 1 + 0 + 0 + · · · ,

Chee-Keng Yap Basic Version February 8, 2011

§5. BASIC SUMS Lecture II Page 22

we concludeS∞(−1) = 1. So that we must consider this sum as having no definite value,i.e., undefined. Again,

S∞(−1) = 1 − 1 + 1 − 1 + 1 − · · ·
= 1 − S∞(−1),

and we conclude thatS∞(−1) = 1/2. In fact,S∞(−1) can take infinitely many possible values in this way. Mathematical an-
alysts learned this
lesson in the 19th
century: treat infinite
sums with great care.

This provides a strong case whyS∞(−1) should be regarded as undefined.

Viewing x as a formal6 variable, the simplest infinite series isS∞(x) =
∑∞

i=0 xi. It has a very simple closed
form solution,

∞
∑

i=0

xi =
1

1 − x
. (47)

Viewed numerically, we may regard this solution as a specialcase of (46) whenn → ∞; but avoiding numerical The one infinite series
to know!arguments, it can be directly derived from the formal identity S∞(x) = 1+xS∞(x). We suggest calling

∑∞
i=0 xi

the “mother of series” because, from the formal solution to this series, we can derive solutions for many related
series, including finite series. In fact, for|x| < 1, we can derive equation (46) by plugging equation (47) into

Sn(x) = S∞(x) − xnS∞(x) = (1 − xn)S∞(x).

By differentiating both sides of the mother series with respect tox, we get:

1

(1 − x)2
=

∞
∑

i=1

ixi−1

x

(1 − x)2
=

∞
∑

i=1

ixi (48)

This process can be repeated to yield formulas for
∑∞

i=0 ikxi, for any integerk ≥ 2. Differentiating both sides
of equation (46), we obtain the finite summation analogue:

n−1
∑

i=1

ixi−1 =
(n − 1)xn − nxn−1 + 1

(x − 1)2
,

n−1
∑

i=1

ixi =
(n − 1)xn+1 − nxn + x

(x − 1)2
, (49)

(50)

Combining the infinite and finite summation formulas, equations (48) and (49), we also obtain

∞
∑

i=n

ixi =
nxn − (n − 1)xn+1

(1 − x)2
. (51)

We may verify by induction that these formulas actually holdfor all x 6= 1 when the series are finite. In general,
for anyk ≥ 0, we obtain formulas for thegeometric series of orderk:

n−1
∑

i=1

ikxi. (52)

The infinite series have finite values only when|x| < 1.

6I.e., as an uninterpreted symbol rather than as a numerical value. Thereby, we avoid questions about the sum converging to some unique
numerical value.

Chee-Keng Yap Basic Version February 8, 2011

§5. BASIC SUMS Lecture II Page 23

¶18. Harmonic series. For natural numbersn ≥ 1, thenth harmonic number is defined as

Hn := 1 +
1

2
+

1

3
+ · · · + 1

n
. (53)

We can give some easy estimates ofHn using using calculus:

Hn < 1 +

∫ n

1

dx

x
< 1 + Hn.

But
∫ n

1
dx
x = lnn. This proves that

Hn = lnn + g(n), where0 < g(n) < 1. (54)

Note thatln is the natural logarithm (appendix A). Claim: lnx is identi-
cally 1:

d(ln x)

dx
=

1

x

and

d(1)

dx
=

d(x0)

dx

= x0−1 =
1

x
.

So lnx = 1.

1
2

1
4

1
6

1
8

25
24

Figure 4: Stacking bricks with maximum overhang:n = 5

Harmonic numbers arise naturally in the analysis of algorithms. But here is a
“physical” application of harmonic numbers: Suppose you have a set ofn ≥ 2
bricks. The bricks are identical and have unit length. We want to stack the bricks
so that the overhang is as large as possible. For instance, ifn = 2, the overhang is
1/2 since we can put one brick over the other such that the center of gravity of the
top brick is above the edge of the bottom brick. This is illustrated in Figure 4(a).
The case ofn = 3 is shown in Figure 4(b). An obvious question is whether we
can make the overhang arbitrarily large (providedn is large enough)? Somewhat
surprisingly, the answer is ‘yes’. See Figure 4(c) for the casen = 5: we see that
in this case, the overhang is25/24, already exceeding the length of a single brick!
In general, the overhang is12Hn−1 (Exercise). AsHn is aboutlnn, the overhang
goes to infinity (albeit very slowly) asn → ∞.

We can view (54) as a special case of our descending sumsSf (n) wheref(n) = 1/n. Then for all realn,
Hn = Sf (n) =

∑n
i≥1

1
n . There are more precise estimates forg(n):

g(n) = γ + (2n)−1 + O(n−2) (55)

whereγ = 0.577... is Euler’s constant. We can also deduce asymptotic properties ofHn without calculus: if
n = 2N , then

Hn =
∑

1

+
∑

2

+ · · · +
∑

N

where
∑

k is defined as
∑2k−1

i=2k−1
1
i . Clearly,

1/2 = 2k−1 1

2k
<
∑

k

≤ 2k−1 1

2k−1
= 1.

This proves that
1

2
N ≤ Hn ≤ N

Chee-Keng Yap Basic Version February 8, 2011

§5. BASIC SUMS Lecture II Page 24

for n a power of2. Extrapolating to all values ofn, we conclude thatHn = Θ(N) = Θ(log n). This result also
shows thatHn andlg(n) are unbounded (we may chooseN as big as we like). This idea can be greatly extended
(Exercises).

For any realα, we can define the sum

H(α)
n :=

n
∑

i=1

1

iα
.

ThusH(1)
n is justHn. Whenα > 1, H(α)

n is bounded asn → ∞ (below). The infinite sumH(α)
∞ is then the value

of the Riemann zeta function atα: ζ(α) := sum∞
i=1n

−α. For instance,ζ(2) = H
(2)
∞ = π2/6. An exercise below

estimates the sumH(2)
n : we will see that a constant analogous to Euler’sγ arises. Below, we shall generalize

H
(α)
n to all realn.

Application: to solve the recurrenceT (n) = 2T (n/2) + (n/ lg n), we convert it to
the standard form

t(N) = t(N − 1) + 1/N (56)

using the substitutiont(N) = T (2N)/2N , whereN = lg n is a real variable. Ac-
cording to (??), t(N) = H−1(N). Back solving, the original recurrence has solution
T (n) = nH−1(lg n) = n(ln lg n + O(1)).

¶19. Stirling’s Approximation. So far, we have treated open sums. If we have an open product such as the
factorial functionn!, we can convert it into an open sum by taking logarithms. Thismethod of estimating an
open product may not give as tight a bound as we wish (why?). For the factorial function, there is a family of
more direct bounds that are collectively calledStirling’s approximation . The following Stirling approximation
is from Robbins (1955) and it may be committed to memory:

n! =
(n

e

)n √
2πn eαn

where
1

12n + 1
< αn <

1

12n
.

Sometimes, the boundαn > (12n)−1 − (360n3)−1 is useful [4]. Up toΘ-order, we may prefer to simplify the
above bound to

n! = Θ

(

(n

e

)n+ 1
2

)

.

¶20. Binomial theorem.

(1 + x)n = 1 + nx +
n(n − 1)

2
x2 + · · · + xn

=

n
∑

i=0

(

n

i

)

xi.

For solving real recurrences, it is useful to generalize this theorem to(1 + x)p for any real numberp. In general,
the binomial function

(

x
i

)

may be extended to all realx and integeri:

(

x

i

)

=























0 if i < 0

1 if i = 0

x(x−1)···(x−i+1)
i(i−1)···2···1 if i > 0.

Chee-Keng Yap Basic Version February 8, 2011

§5. BASIC SUMS Lecture II Page 25

We use Taylor’s expansion for a functionf(x) atx = a:

f(x) = f(a) +
f ′(a)

1!
(x − a) +

f ′′(a)

2!
(x − a)2 + · · · + f (n)(a)

n!
(x − a)n + · · ·

wheref (n)(x) = dnf
dnx . This expansion is defined provided all derivatives off exist and the series converges.

Applied tof(x) = (1 + x)p for any realp atx = 0, we get the desired binomial theorem for real exponents:

(1 + x)p = 1 + px +
p(p − 1)

2!
x2 +

p(p − 1)(p − 2)

3!
x3 + · · ·

=
∑

i≥0

(

p

i

)

xi.

See [9, p. 56] for Abel’s generalization of the binomial theorem.

EXERCISES

Exercise 5.1: Show Lemma 3. For logarithms, we want you to use direct inequalities (no calculus). ♦

Exercise 5.2: Solve the recurrenceT (x) = 1
x + T (x − 1) for all x > 1. ♦

Exercise 5.3: Let h(n) denote the maximum overhang forn bricks. Prove thath(n) =
∑n−1

i=1
1
2i = 1

2Hn−1.
Thus,h(2) = 1/2, h(3) = h(2) + 1/4 = 3/4, h(4) = h(3) + 1/6 = 11/12, andh(5) = h(4) + 1/8 =
25/24. HINT: Let the right edge of theith brick be at positionxi where theith brick is stacked on the
i+1st brick withxi > xi+1. Inductively, assume that the optimal configuration forh(n) is (x1, x2, . . . , xn)
wherexi − xi+1 = 1/2i. Moreover, the C.G. of the optimal configuration forh(n − 1) is atxn. Extend
this induction hypothesis toh(n + 1). ♦

Exercise 5.4: Let c > 0 be any real constant.
(a) Show thatln(n + c) − lnn = O(c/n).
(b) Show that|Hx+c − Hx| = O(c/n) whereHx is the generalized Harmonic function.
(c) Bound the sum

∑n
i=1+⌊c⌋

1
i(i−c) . ♦

Exercise 5.5: ConsiderS∞(x) as a numerical sum.
(a) Prove that there is a unique value forS∞(x) when|x| < 1.
(b) Prove that there are infinitely many possible values forS∞(x) whenx ≤ −1.
(c) Are all real values possible as a solution toS∞(−1)? ♦

Exercise 5.6: Show the following useful estimate:

ln(n) − (2/n) < ln(n − 1) < (ln n) − (1/n).

♦

Exercise 5.7:
(a) Give the exact value of

∑n
i=2

1
i(i−1) . HINT: use partial fraction decomposition of1i(i−1) .

(b) Conclude thatH(2)
∞ ≤ 2. ♦

Chee-Keng Yap Basic Version February 8, 2011

§6. STANDARD FORM Lecture II Page 26

Exercise 5.8: The goal is to give tight bounds forH(2)
n :=

∑n
i=1

1
i2 (cf. previous exercise).

(a) LetS(n) =
∑n

i=2
1

(i−1)(i+1) . Find the exact bound forS(n).

(b) LetG(n) = S(n) − H
(2)
n + 1. Now γ′ = G(∞) is a real constant,

γ′ =
1

1 · 3 · 4 +
1

2 · 4 · 9 +
1

3 · 5 · 16
+ · · · + 1

(i − 1) · (i + 1) · i2 + · · · .

Show thatG(n) = γ′ − θ(n−3).

(c) Give an approximate expression forH
(2)
n (involving γ′) that is accurate toO(n−3). Note thatγ′ plays

a role similar to Euler’s constantγ for harmonic numbers.
(d) What can you say aboutγ′, given thatH(2)

∞ = π2/6? Use a calculator (and a suitable approximation
for π) to computeγ′ to 6 significant digits. ♦

Exercise 5.9: Solve the recurrenceT (n) = 5T (n− 1) + n. ♦

Exercise 5.10:Solve exactly (choose your own initial conditions):
(a)T (n) = 1 + n+1

n T (n− 1).
(b) T (n) = 1 + n+2

n T (n − 1). ♦

Exercise 5.11:Show that
∑n

i=1 Hi = (n + 1)Hn − n. More generally,

n
∑

i=1

(

i

m

)

Hi =

(

n + 1

m + 1

)[

Hn+1 −
1

m + 1

]

.

♦

Exercise 5.12: (J.van de Lune, 1980) Above, we definedHn :=
∑n

i≥1 1/i (descending sum). A variant that is
neither a descending nor an ascending sum is to defineH(a, b) :=

∑

a≤i≤b 1/i where the summation is
over all integer values ofi in the range[a, b]. Then this sum is bounded by

∑

a≤x≤b

1

x
≤ ln(y/x) + min {1, 1/x}

♦

Exercise 5.13:Give a recurrence forSk
n (see (44)) in terms ofSi

n, for i < k. Solve exactly forS4
n. ♦

Exercise 5.14:Derive the formula for the “geometric series of order2”, k = 2 in (52). ♦

Exercise 5.15: (a) Use Stirling’s approximation to give an estimate of the exponentE in the expression2E =
(

2n
n

)

.

(b) (Feller) Show
(

2n
n

)

=
∑n

k=0

(

n
k

)2
. ♦

END EXERCISES

Chee-Keng Yap Basic Version February 8, 2011

§6. STANDARD FORM Lecture II Page 27

§6. Standard Form and Summation Techniques

Recall that our goal is to reduce all recurrences to thestandard form:

t(n) = t(n − 1) + f(n). (57)

Assuming the recurrence is valid for alln ≥ 1, we have

t(n − i + 1) − t(n − i) = f(n − i + 1), (i = 1, . . . , ⌊n⌋).

Adding these⌊n⌋ equations together, all but two terms on the left-hand side cancel, leaving us

t(n) − t(n − ⌊n − 1⌋) =

n
∑

i≥1

f(i).

(We say the left-hand side is a “telescoping sum”, and this trick is known as “telescopy”.) Assuming DIC with
t(n) = 0 for n < 1, we obtain

t(n) =

n
∑

i≥1

f(i). (58)

The summation on the right is just our descending sumSf (n). If this open sum has the form of one of the basic
sums in the previous section, we are done. For instance, in the analysis of bubble sort, we obtain a standard form
recurrence:

t(n) = t(n − 1) + n.

Choosing the initial conditiont(0) = 0, we obtain the exact solutiont(n) =
∑n

i=1 i =
(

n+1
2

)

.

¶21. Polynomial-type and Exponential-type Sums. Let us consider what is to be done if the open sum (58)
does not readily reduce to one of the basic sums we have discussed in the previous section. Traditionally, the
sumSf (n) (for n ∈ N) is solved using the Euler-Maclaurin summation formula,

n−1
∑

i=1

f(i) =

∫ n

i

f(x)dx +

(∞
∑

i=1

Bif
(i−1)(x)

i!

)x=n

x=1

whereBi is the ith Bernoulli number. See [5, p. 217]. But throughout this chapter, we have emphasized the
solution of recurrences using elementary arguments, avoiding calculus or limits. Moreover, we seek solutions No calculus please!
only up toΘ-order. We now introduce two elementary summation techniques for this purpose. They are based
on the following “growth classification” of real functions:it is assumed that the functionf in these definitions
satisfyf ≥ 0 (when defined), andf > 0 (ev.).

Polynomial Type: A real functionf is polynomial-type if f is non-decreasing (ev.) and there is someC > 0
such that

f(x) ≤ C · f(x/2) (ev.).

E.g.,
f0(x) = x, f1(x) = log x, f2(x) = f0(x)f1(x), f3(x) = (f0(x))a (a > 0).

Exponential Type: The functionf is exponential-type if it increases exponentially or it decreases exponen-
tially:
(a)f increases exponentiallyif there exists real numbersC > 1 andk > 0 such that

f(x) ≥ C · f(x − k) (ev.).

Chee-Keng Yap Basic Version February 8, 2011

§6. STANDARD FORM Lecture II Page 28

E.g.,
g0(x) = 2x, g1(x) = x!, g2(x) = g0(x)g1(x), g3(x) = 2g0(x)

(b) f decreases exponentiallyif there exists real numbers0 < c < 1 andk > 0 such that

f(x) ≤ c · f(x − k) (ev.).

E.g.,
h0(x) = 2−x, h1(x) = x−x, h2(x) = h0(x)h1(x), h3(x) = 2h0(x)

In proofs, we usually assumek = 1 in the above definition of exponential-types: i.e., ifg(n) is increasing
exponentially,g(n) ≥ Cg(n − 1) and ifh(n) is decreasing exponentially,h(n) ≤ ch(n − 1). It should be clear
that these arguments generalizes to the more generalk > 0.

We also say that the sumS(n) = Sf (n) :=
∑n

x≥1 f(x) is polynomial-type or exponential-type, according
to the above classification off . The following theorem gives a simple rule for bounding suchsums.

THEOREM 4 (Summation Rules).Consider the sumSf (n):
(i) If f is polynomial-type,S(n) = Θ(nf(n)).
(ii) If f is exponential-type,

Sf (n) =

{

Θ(f(n)) if f is increasing exponentially,
Θ(1) if f is decreasing exponentially.

Proof.(i) For a polynomial-type sum, using the fact thatf is non-decreasing, we get the upper boundSf (n) ≤
∑n

x=1 f(n) = nf(n). For lower bound, we also need thatf(x) ≤ Cf(x/2) (ev.) for someC > 0:

Sf (n) ≥
n
∑

x≥n/2

f(x)

≥
n
∑

x≥n/2

f(n/2) ≥ ⌊n/2⌋ f(n/2)

≥ ⌊n/2⌋ f(n)

C
= Ω(nf(n)).

(ii-a) For an increasing exponential sum, there is someC > 1, k > 0 andm > 0 such that for alln ≥ m + 1,
we havef(n) ≥ Cf(n − k). By increasingk, m, n if necessary, we may assume wlog thatk, n − m ∈ N and
n ≥ m + 1. We can even assumen − m is divisible byk. Thus,

Sf (n) = f(n) + f(n − 1) + · · · + f(m + 1) + Sf (m)

We can subdivide the sumf(n) + f(n − 1) + f(n− 2) + · · · + f(m + 1) into k different subsums, each of the
form

f(n − κ) + f(n − κ − k) + f(n − κ − 2k) + · · · + f(m − κ + k) (59)

for eachκ = 0, 1, . . . , k − 1. The lemma then follows since each subsum satisfies

f(n − κ) + f(n − κ − k) + f(n − κ − 2k) + · · · + f(m − κ + k)

< f(n − κ)

[

1 +
1

C
+

1

C2
+ · · ·

]

= f(n − κ)
C

C − 1
= O(f(n − κ)) = O(f(n)).

Chee-Keng Yap Basic Version February 8, 2011

§6. STANDARD FORM Lecture II Page 29

(ii-b) For a decreasing exponential sum, there is somec < 1, k > 0 andm > 0 such that for alln ≥ m + 1, we
havef(n + k) ≤ cf(n) andf(m) ≥ f(n). Again wlog,k, n − m ∈ N andk dividesn − m. Then

Sf (n) = Sf (m) + f(m + 1) + f(m + 2) + · · · f(n)

wheref(m + 1) + f(m + 2) + · · ·+ f(n) can be broken up intok subsums, as in (59). The result follows since
each subsum is bounded as

f(m − κ + k) + f(m − κ + 2k) + f(m − κ + 3k) + · · · + f(n − κ)

< f(m − κ + k)
[

1 + c + c2 + · · ·
]

≤ f(m)
1

1 − c
.

Q.E.D.

This theorem tells us to upper bound a polynomial-type sumSf (n) by replacingeach term
in the sum by its largest termf(n). Similarly, to upper bound an exponential-type sum
Sf (n), replacethe entire sumby its largest term. So we shift the burden of estimating
sums to the simpler task of identifying the growth-type of the functionf .

Let us illustrate applications of this theorem:

• Polynomial Sums.

n
∑

i≥1

i log i = Θ(n2 log n),

n
∑

i≥1

log i = Θ(n logn)

n
∑

i≥1

ia = Θ(na+1) (wherea > 0). (60)

• Exponentially Increasing Sums.

n
∑

i≥1

2i = Θ(2n),

n
∑

i≥1

i−522i

= Θ(n−522n

),

n
∑

i≥1

i! = Θ(n!) . (61)

• Exponentially Decreasing Sums.

n
∑

i≥1

2−i = Θ(1),

n
∑

i≥1

i2i−i = Θ(1),

n
∑

i≥1

i−i = Θ(1) . (62)

Summation that does not fit the framework of Theorem 4 can sometimes be reduced to one that does. A
trivial case is where summation we are interested in does notbegin withi = 1. As another example, consider

S :=
n
∑

i≥1

i!

lgi n
, (63)

which has terms depending oni as well as on the limitn. Write S =
∑n

i≥1 f(i, n) where

f(i, n) =
i!

lgi n
.

We note thatf(i, n) is increasing exponentially fori ≥ 2 lg n (ev. n), sincef(i, n) = i
lg nf(i − 1, n) ≥

2f(i − 1, n). Hence we may split the summation into two parts,S = A + B whereA comprise the terms for
which i ≥ 2 lg n andB comprising the rest. SinceB is an exponential sum, we haveB = Θ(f(n, n)). We can
easily use Stirling’s estimate forA to see thatA = O(log3/2 n) = O(f(n, n)). ThusS = Θ(f(n, n)).

Chee-Keng Yap Basic Version February 8, 2011

§6. STANDARD FORM Lecture II Page 30

¶22. A Counter Example. Most common functions we encounter will be either polynomial-type or
exponential-type. But the functionf(n) = nlnn is neither. Showing thatf(n) is not polynomial-type is easy.
The box below proves it is not exponential-type. How do we estimate the sumSf (n) :=

∑n
x≥0 f(x) without the

benefit of Theorem 4? In this case, techniques similar to polynomial and exponential sums still give reasonably
tight bounds (but notΘ-order):f(n) ≤ S(n) ≤ nf(n) ≤ f(n)1+ε for anyε > 0.

CLAIM: f(n) = nln n is not exponential-type. By way of contradiction, suppose
there existsC0 > 1 such that

f(n) ≥ C0f(n − 1) (ev.). (64)

A well-known bound (see Appendix A) says that for|x| < 1,

ln(1 + x) < x. (65)

Also from (54) and (55), we conclude that

lnn + γ ≤ Hn ≤ lnn + γ + (1/n) (ev.). (66)

All the following inequalities are to hold eventually:

lnn ≤ Hn − γ

≤ (1/n) + ln(n − 1) + (1/n)

= ln(n − 1) + (2/n), (67)

We now get a contradiction:

f(n) =
[

(n − 1)(1 + 1
n−1)

]ln n

≤ (n − 1)ln(n−1)+(2/n)(1 + 1
n−1)ln n (by (67))

= f(n − 1) · (n − 1)2/n · 2ln(1+ 1
n−1) ln n

≤ f(n − 1) · 22 ln(n−1)/n · 2 ln n
n−1 (by (65))

= f(n − 1) · C1(n)

whereC1(n) := 22 ln(n−1)/n ·2 ln n
n−1 . SincelnC1(n) = (2 ln(n−1)/n)+(lnn/(n−

1)) → 0 asn → ∞, we conclude thatC1(n) ≤ C0 (ev.). This showf(n) ≤
f(n − 1)C0 (ev.), contradicting (64).

To apply the summation rules Theorem 4, we want to rapidly classify functions according to their growth
types:

LEMMA 5. Leta ∈ R.
(a) Polynomial-type functions are closed under addition, multiplication, and raising to any positive powera > 0.
(b) Exponential-type functionsf are closed under addition, multiplication and raising to any powera. In case
a > 0, the functionfa will not change its subtype (increasing or decreasing). In casea < 0, the functionfa will
change its subtype.
(c) If f is polynomial-type andf > 1 (ev.) thenlg f is also polynomial-type. Iff is exponential-type anda > 1
then so isaf .

Proof.All the inequalities in the following proofs are assumed to hold eventually:
(a) Assumef(n) ≤ Cf(n/2) andg(n) ≤ Cg(n/2) for someC > 1. Thenf(n)+g(n) ≤ C(f(n/2)+g(n/2)),
f(n)g(n) ≤ C2f(n/2)g(n/2), and for anye > 0, f(n)e ≤ Cef(n/2)e.

Chee-Keng Yap Basic Version February 8, 2011

§6. STANDARD FORM Lecture II Page 31

(b) Assumegi(n) ≥ Cgi(n − 1) andhi(n) ≤ chi(n − 1). for someC > 1, c < 1, and fori = 0, 1. Also,
let g = g0, h = h0. Closure under addition:g0(n) + g1(n) ≥ C(g0(n − 1) + g1(n − 1)) and h0(n) +
h1(n) ≤ c(h0(n − 1) + h1(n − 1)). Closure under product:g0(n)g1(n) ≥ C2g0(n − 1)g1(n − 1)) and
h0(n)h1(n) ≤ c2h0(n−1)h1(n−1). Closure under raising to powere: If e > 0, thenge(n) ≥ Cege(n−1) and
he(n) ≤ cehe(n− 1) whereCe > 1 andce < 1. If e < 0, thenge(n) ≤ Cege(n− 1) andhe(n) ≥ cehe(n− 1)
whereCe < 1 andce > 1.
(c) If f is polynomial-type, thenlog(f(n)) ≤ (log C) + log(f(n/2)) ≤ (1 + (log C)/c) log(f(n/2)), where
log(f(n/2)) ≥ c > 0 for some constantc. This proveslog f to be polynomial-type.

If g, h is exponential type as in (b), then note thatCg(n) ≥ (C − 1) + g(n) sinceg(n) ≥ 1. Thus

bg(n) ≥ bCg(n−1) ≥ b(C−1)+f(n−1)

≥ bC−12f(n−1).

Q.E.D.

¶23. Generalized Harmonic Numbers. Let us determine theΘ-order ofH(α)
n . But first, we extendH(α)

n to
real values ofn.

For alln, α ∈ R, define thegeneralized Harmonic number

Hα(n) := nα + (n − 1)α + (n − 2)α + · · · + ({n} + 1)α

=

n
∑

x=1

xα, (68)

using our summation notation (??) for real limits. The original harmonic numbers in our new notation becomes

H(α)
n = H−α(n).

Also, Hα(n) = 0 for n < 1.

THEOREM 6. For all α ∈ R,

Hα(n) = Θ







1 if α < −1
lg n if α = −1
nα+1 if α > −1

Proof. It is best to initially assumen + 1 is a power of2. Then

Hα(n) =

lg(n+1)
∑

k=1





2k−1
∑

i=2k−1

iα





=

lg(n+1)
∑

k=1

2k · Θ
(

2kα
)

=

lg(n+1)
∑

k=1

Θ
(

2k(1+α)
)

.

Note that the slick use ofΘ in this derivation is capturing upper and lower bounds simultaneously. If explicitly
spelled out, you would need to consider the casesα ≥ 0 andα < 0 separately. Now we notice that if1 + α = 0 Exercise: spell it out!
then the sum

lg(n+1)
∑

k=1

Θ
(

2k(1+α)
)

= Θ(lg(n + 1)).

Chee-Keng Yap Basic Version February 8, 2011

§6. STANDARD FORM Lecture II Page 32

If 1 + α < 0, then the sum is decreasing exponentially and Theorem 4 yields

lg(n+1)
∑

k=1

= Θ(1).

If 1 + α > 0, then the sum is increasing exponentially and Theorem 4 yields

lg(n+1)
∑

k=1

= Θ
(

2lg(n+1)(1+α)
)

= Θ
(

n1+α
)

.

Whenn + 1 is not a power of2, we can replacen by n = 2⌈lg(n+1)⌉ − 1 andn = 2⌊lg(n+1)⌋ − 1 for upper and
lower bounds (Exercise). Q.E.D.

Up toΘ-order, the result unifies the standard bounds for (a) the arithmetic series (44), (b) harmonic numbers
(54), and (c) geometric sums (46). Our proof is completely elementary; its basic method of splitting up the sum
into a “geometric sequence” of groups is applicable to many other estimates involving logarithms.

¶24. Grouping: Breaking Up into Big and Small Parts. The above example (63) illustrates the technique
of breaking up a sum into two parts, one containing the “smallterms” and the other containing the “big terms”.
This is motivated by the wish to apply different summation techniques for the 2 parts, and this in turn determines
the cutoff point between small and big terms. Suppose we wantto show

Hn =

n
∑

i=1

1

i
= O(

√
n).

BreakHn into two summations,Hn = An + Bn where

An =

⌊√n⌋
∑

i=1

1

i

comprises the “big terms” andBn contains the remainingn − ⌊√n⌋ “small terms”. Then

An ≤
⌊√n⌋
∑

i=1

1

i
≤

√
n

and

Bn =

n
∑

i=⌊√n⌋+1

1

i
≤

n
∑

i=1

1√
n

=
√

n.

ThusSn ≤ 2
√

n as desired.

We can generalize the grouping idea to prove the following:

Hn < kn1/k (69)

for any integerk ≥ 2. We break then term ofHn k subsums,Hn = An(1) + An(2) + · · · + An(k) where
An(1) comprises the first

⌈

n1/k)
⌉

terms ofHn, An(2) comprises the next
⌈

n2/k
⌉

−
⌈

n1/k
⌉

terms, etc, where in
general,An(j) comprises the next

⌈

nj/k
⌉

−
⌈

n(j−1)/k
⌉

terms. It is easy to see that eachAn(j) is bounded by
n1/k and this proves (69).

Chee-Keng Yap Basic Version February 8, 2011

§7. DOMAIN TRANSFORMATION Lecture II Page 33

This gives an elementary proof thatHn is O(nc) for anyc > 0. This also imply

Hn = o(nc), logb n = o(nc)

for anyc > 0.

EXERCISES

Exercise 6.1: (a) Verify that the examples in (60), (61) and (62) are, indeed, as claimed, polynomial type or
exponential type.
(b) Is the summation

∑n
i=1 ilg i an exponential type or polynomial type? Give bounds for the summation.

♦

Exercise 6.2: Let Tn be a complete binary tree withn ≥ 1 nodes. Son = 2h+1 − 1 whereh is the height ofTn.
Suppose an algorithm has to visit all the nodes ofTn and at each node of heighti ≥ 0, expend(i + 1)2

units of work. LetT (n) denote the total work expended by the algorithm at all the nodes. Give a tight
upper and lower bounds onT (n). ♦

Exercise 6.3: (a) Show that the summation
∑n

i=2(lg n)lg n is neither polynomial-type nor exponential-type.
(b) Estimate this sum. ♦

Exercise 6.4: For this problem, please use arguments from first principles. Do not use calculus, properties of
log x such asx/ log x → ∞, etc. (a) Show thatHn = o(nα) for any α > 0. HINT: Generalize the
argument in the text.
(b) Likewise, show thatHn → ∞ asn → ∞. ♦

Exercise 6.5: Let n = 2k. Show thatHn = θ(k) by grouping. Conclude that for alln, Hn = Θ(lg n). ♦

Exercise 6.6: Use the method of grouping to show thatS(n) =
∑n

i=1
lg i
i is Ω(lg2 n). ♦

Exercise 6.7: Give theΘ-order of the following sums:
(a)S =

∑n
i=1

√
i.

(b) S =
∑n

i=1 lg(n/i). ♦

Exercise 6.8: Let f(i) = fn(i) = i−1
n−i+1 . The sumF (n) =

∑n
i=1 fn(i) is neither polynomial-type nor

exponential-type. Give aΘ-order bound onF (n). HINT: transform this into something familiar. ♦

Exercise 6.9: Can our summation rules forS(n) =
∑n

i=1 f(i) be extended to the case wheref(i) is “decreasing
polynomially”, suitably defined? NOTE: such a definition must somehow distinguish betweenf(i) = 1/i
andf(i) = 1/(i2), since in one caseS(n) diverges and in the other it converges asn → ∞. ♦

END EXERCISES

Chee-Keng Yap Basic Version February 8, 2011

§7. DOMAIN TRANSFORMATION Lecture II Page 34

§7. Domain Transformation

So our goal for a general recurrence is to transform it into the standard form. You may think of change of
domain as a “change of scale”. Transforming the domain of a recurrence equation may sometimes bring it into
standard form. Consider

T (N) = T (N/2) + N. (70)

We define
t(n) := T (2n), N = 2n.

This transforms the originalN -domain into then-domain. The new recurrence is now in standard form,

t(n) = t(n − 1) + 2n.

Choosing the boundary conditiont(0) = 1, we gett(n) =
∑n

i=0 2i. This is a geometric series which we know
how to sum,t(n) = 2n+1 − 1; hence,T (N) = 2N − 1.

Omit in a first reading

¶25. Logarithmic transform. More generally, consider the recurrence

T (N) = T

(

N

c
− d

)

+ F (N), c > 1, (71)

andd is an arbitrary constant. It is instructive to begin with thecased = 0. Then it is easy to see that the
“logarithmic transformation” of the argumentN to the new argumentn := logc(N) converts this to the new
recurrence

t(n) = t(n − 1) + F (cn)

where we define
t(n) := T (cn) = T (N).

There is possible confusion in such manipulations where we have used some implicit conventions. So let us
state the connection betweent andT more explicit. Letτ denote thedomain transformation function ,

τ(N) = logc(N)

(so “n” is only a short-hand for “τ(N)”). Then t(τ(N)) is defined to beT (N), valid for large enoughN . In
order for this to be well-defined, we needτ to have an inverse for large enoughn. Then we can write

t(n) := T (τ−1(n)).

We now return to the general case whered is an arbitrary constant. Note that ifd < 0 then we must assume
thatN is sufficiently large (how large?) so that the recurrence (71) is meaningful (i.e., (N/c) − d < N). The
following transformation

n := τ(N) = logc(N +
cd

c − 1
)

will reduce the recurrence to standard from. To see this, note that the “inverse transformation” is

N := cn − cd

c − 1

= τ−1(n)

(N/c) − d = cn−1 − cd

c − 1

= τ−1(n − 1).

Chee-Keng Yap Basic Version February 8, 2011

§7. DOMAIN TRANSFORMATION Lecture II Page 35

Writing t(n) for T (τ−1(n)) andf(n) for F (τ−1(n)), we convert equation (71) to

t(n) = t(n − 1) + F

(

cn − cd

c − 1

)

= t(n − 1) + f(n)

=

n
∑

i=1

f(i).

To finally “solve” for t(n) we need to know more about the functionF (N). For example, ifF (N) is a polyno-
mially bounded function, thenf(n) = F (cn + cd

c−1) would beΘ(F (cn)). This is the justification for ignoring
the additive term “d” in the equation (71).

¶26. Division transform. Notice that the logarithmic transform case does not quite capture the following
closely related recurrence

T (N) = T (N − d) + F (N), d > 0. (72)

It is easy to concoct the necessary domain transformation: replaceN by n = N/d and substituting

t(n) = T (dn)

will transform it to the standard form,

t(n) = t(n − 1) + F (dn).

Again, to be formal, we can explicitly introduce the transform functionτ(N) = N/d, etc. This may be called
the “division transform”.

¶27. General Pattern. In general, we considerT (N) = T (r(N))+F (N) wherer(N) < N is some function.
We want a domain transformn = τ(N) so that

τ(r(N)) = τ(N) − 1. (73)

For instance, ifr(N) =
√

N we may choose

τ(N) = lg lg(N). (74)

Then we see that
τ(
√

N) = lg(lg(
√

N)) = lg(lg(N)/2) = lg lg N − 1 = τ(N) − 1.

Applying this transformation to the recurrence

T (N) = T (
√

N) + N, (75)

we may definet(n) := T (τ−1(n)) = T (22n

) = T (N), thereby transforming the recurrence (75) to tot(n) =
t(n − 1) + 22n

.

REMARKS:
1. The transformation (74) may be regarded as two applications of the logarithmic transform.
2. Domain transformation can be confusing because of the difficulty of keeping straight the similar-looking
symbols, ‘n’ versus ‘N ’ and ‘t’ versus ‘T ’. Of course, these symbols are mnemonically chosen. When properly
used, these conventions reduce clutter in our formulas. Butif they are confusing, you can always fall back to the
use of the explicit transformation functions such asτ .

EXERCISES

Chee-Keng Yap Basic Version February 8, 2011

§8. RANGE TRANSFORMATION Lecture II Page 36

Exercise 7.1: Justify the simplification step (iv) in§1 (where we replace⌈n/2⌉ by n/2). ♦

Exercise 7.2: Solve recurrence (71) in these cases:
(a)F (N) = Nk.
(b) F (N) = log N . ♦

Exercise 7.3: Construct examples where you need to compose two or more of the above domain transformations.
♦

END EXERCISES

§8. Range Transformation

A transformation of the range is sometimes called for. For instance, consider

T (n) = 2T (n− 1) + n.

To put this into standard form, we could define

t(n) :=
T (n)

2n

and get the standard form recurrence

t(n) = t(n − 1) +
n

2n
.

Telescoping gives us a series of the type in equation (48), which we know how to sum. Specifically,t(n) =
∑n

{n}
n
2n = Θ(1). HenceT (n) = Θ(2n).

We have transformed the range ofT (n) by introducing a multiplicative factor2n: this factor is called the
summation factor. The reader familiar with linear differential equations will see an analogy with “integrating
factor”. (In the same spirit, the previous trick of domain transformation is simply a “change of variable”.)

In general, a range transformation converts a recurrence ofthe form

T (n) = cnT (n − 1) + F (n) (76)

into standard form. Herecn is a constant depending onn. Let us discover which summation factor will work. If
C(n) is the summation factor, we get

t(n) :=
T (n)

C(n)
,

and hence

t(n) =
T (n)

C(n)

=
cn

C(n)
T (n − 1) +

F (n)

C(n)

=
T (n − 1)

C(n − 1)
+

F (n)

C(n)
, (providedC(n) = cnC(n − 1))

= t(n − 1) +
F (n)

C(n)
.

Chee-Keng Yap Basic Version February 8, 2011

§9. DIFFERENCING AND QUICKSORT Lecture II Page 37

Thus we needC(n) = cnC(n − 1) which expands into

C(n) = cncn−1 · · · c1.

EXERCISES

Exercise 8.1: Solve the recurrence (76) in the case wherecn = 1/n andF (n) = 1. ♦

Exercise 8.2: (a) Reduce the following recurrence

T (n) = 4T (n/2) +
n2

lg n

to standard form. Then solve it exactly whenn is a power of2.
(b) Extend the solution of part(a) to generaln using our generalized Harmonic numbersHx for realx ≥ 2
(see§2). You may choose any suitable initial conditions, but please state it explicitly.
(c) Solve the variations

T (n) = 4T (n/2) +
n2

lg2 n

and

T (n) = 4T (n/2) +
n2

√
lg n

.

♦

Exercise 8.3: Repeat the previous question with the following recurrences:
(a)T (n) = 4T (n/2) + n2

lg2 n

(b) T (n) = 4T (n/2) + n2
√

lg n
. ♦

END EXERCISES

§9. Differencing and QuickSort

Summation is the discrete analogue of integration. Extending this analogy, we introduce thedifferencing as
the discrete analogue of differentiation. As expected, differencing is the inverse of summation. The differencing
operation∇ applied to any complexity functionT (n) yields another function∇T defined by

(∇T)(n) = T (n) − T (n − 1).

Differentiation often simplifies an equation: thus,f(x) = x2 is simplified to the linear equation(Df)(x) = 2x,
using the differential operatorD. Similarly, differencing a recurrence equation forT (n) may lead to a simpler
recurrence for(∇T)(n).

Indeed, the “standard form” (57) can be rewritten as

∇t(n) = f(n).

Chee-Keng Yap Basic Version February 8, 2011

§9. DIFFERENCING AND QUICKSORT Lecture II Page 38

This is just an equation involving a difference operator — the discrete analogue of a differential equation.

For example, consider the recurrence

T (n) = n +

n−1
∑

i=1

T (i).

This recurrence does not immediately yield to the previous techniques. But note that

(∇T)(n) = 1 + T (n− 1).

HenceT (n) − T (n − 1) = 1 + T (n − 1) andT (n) = 2T (n − 1) + 1, which can be solved by the method of
range transformation. (Solve it!)

¶28. QuickSort. A well-known application of differencing is the analysis ofthe QuickSort algorithm of Hoare.
In QuickSort, we randomly pick a “pivot” elementp. If p is theith largest element, this subdivides then input
elements intoi − 1 elements less thanp andn − i elements greater thanp. Then we recursively sort the subsets
of sizei − 1 andn − i. For a detailed description of QuickSort, including a different analysis, see Lecture VIII.
The recurrence is

T (n) = n +
1

n

n−1
∑

i=0

(T (i − 1) + T (n − i)), (77)

since for eachi, the probability that the two recursive subproblems in QuickSort are of sizesi andn − i is 1/n.
The additive factor of “n” indicates the cost (up to a constant factor) to subdivide the subproblems, and there
is no cost in “merging” the solutions to the subproblems. Therecurrence (77) is an example of afull-history
recurrence, so-called becauseT (n) depends onT (m) for all smaller values ofm.

Simplifying (77),

T (n) = n + 2
n

∑n−1
i=0 T (i)

nT (n) = n2 + 2
∑n−1

i=0 T (i) [Multiply by n]
(n − 1)T (n − 1) = (n − 1)2 + 2

∑n−2
i=0 T (i) [Substituten by n − 1]

nT (n)− (n − 1)T (n− 1) = 2n− 1 + 2T (n − 1) [Differencing operator fornT (n)]
nT (n) = 2n− 1 + (n + 1)T (n − 1) [Simplify]
T (n)
n+1 = 2

n+1 − 1
n(n+1) + T (n−1)

n [Divide by n(n + 1) (range transform)]
t(n) = 2

n+1 − 1
n(n+1) + t(n − 1) [Definet(n) = T (n)/(n + 1)]

= 2(Hn+1 − 1) −
∑n

i=1
1

i(i+1) + t(0) [Telescoping a standard form]

Thus we see thatt(n) ≤ 2Hn+1 (assumingt(0) = 0) and hence we conclude

T (n) = 2n lnn + O(n).

It is also easy to get the exact solution fort(n), by evaluating the sum
∑n

i=1
1

i(i+1) (in a previous Exercise).

¶29. QuickSelect. The following recurrence is a variant of the QuickSort recurrence, and arises in the average
case analysis of the QuickSelect algorithm:

T (n) = n +
T (1) + T (2) + · · · + T (n − 1)

n
(78)

In the selection problem we need to “select thekth largest” wherek is given (This problem is studied in more
detail in Lecture XXX). Recursively, after splitting the input set into subsets of sizesi − 1 andn − i (as in

Chee-Keng Yap Basic Version February 8, 2011

§9. DIFFERENCING AND QUICKSORT Lecture II Page 39

QuickSort), we only need to continue one one of the two subsets (unless the pivot element is already thekth
largest that we seek). This explains why, compared to (), theonly change in (78) is to replace the constant factor
of 2 to 1. To solve this, let us first multiply the equation byn (a range transform!). Then, on differencing, we
obtain

nT (n) − (n − 1)T (n − 1) = 2n − 1 + T (n− 1)

nT (n) − nT (n − 1) = 2n − 1

T (n) − T (n − 1) = 2 − 1

n
T (n) = 2n − lnn + Θ(1).

Again, note that we essentially obtain an exact solution.

¶30. Improved QuickSort. We further improve the constants in QuickSort by first randomly choosing three
elements, and picking the median of these three to be our pivot. The resulting recurrence is slightly more
involved:

T (n) = n +

n−1
∑

i=2

pi[T (i − 1) + T (n − i)] (79)

where

pi =
(i − 1)(n − i)

(

n
3

)

is the probability that the pivot element gives rise to subproblems of sizesi − 1 andn − i.

See Lecture 8 on Probabilistic Analysis where we discuss QuickSort

EXERCISES

Exercise 9.1: Solve the following recurrences toΘ-order:

T (n) = n +
2

n

n−1
∑

i=⌊n/2⌋
T (i).

HINT: Because of the upper bound⌊n/2⌋, the function∇T (n) has different behavior depending on
whethern is even or odd. Simple differencing does not seem to work wellhere. Instead, we suggest
the guess and verify-by-induction approach. ♦

Exercise 9.2: Generalize the previous question. Consider the recurrence

T (n) = n +
c

n

n−1
∑

i=1+⌊αn⌋
T (i)

wherec > 0 and0 ≤ α < 1 are constants.
(a) Solve the recurrence forc = 2.
(b) SolveT (n) whenc = 4 andα = 0.
(c) Fix c = 4. Determine the range ofα such thatT (n) = Θ(n). You need to argue whyT (n) is notΘ(n)
for α outside this range.
(d) Determine the solution of this recurrence for generalc, α. ♦

Chee-Keng Yap Basic Version February 8, 2011

§10. GENERALIZED MASTER THEOREM Lecture II Page 40

Exercise 9.3: (a) Suppose that in the base case of QuickSort, we do nothing whenever the size of the subarray
to be sorted has10 or less keys. Call this “QuirkSort”.
(i) Describe the nature of the output fromQuirkSort.
(ii) Describe a linear time method to take the output ofQuirkSort and make it into a sorted array.
(iii) Explain why your method in (ii) takes linear time. ♦

Exercise 9.4:
(a) Show that every polynomialp(X) of degreed can be written as a sum of binomial coefficients with
suitable coefficientsci:

p(X) = cd

(

X

d

)

+ cd−1

(

X

d − 1

)

+ · · · + c1

(

X

1

)

+ c0.

(b) Assume the above form forp(X), express(∇p)(X) as a sum of binomial coefficients. HINT: what is
∇
(

m
n

)

? ♦

END EXERCISES

§10. Generalized Master Theorem

§10.1. The Master Theorem

We first look at a recurrence that does fall under our transformation techniques: themaster recurrenceis

T (n) = aT (n/b) + f(n) (80)

wherea > 0, b > 1 are constants andf(n) is some function.

We have already seen several instances of this recurrence. Another famous one is Strassen’s algorithm for
multiplying two n × n matrices in subcubic time. Strassen’s recurrence isT (n) = 7T (n/2) + n2, which has
solutionT (n) = Θ(nlg 7). Evidently, the Master recurrence is the recurrence to solve if we manage to solve
a problem of sizen by breaking it up intoa subproblems each of sizen/b, and merging thesea sub-solutions
in time f(n). The recurrence was systematically studied by Bentley, Haken and Saxe [1]. Solving it requires a
combination of domain and range transformation.

First apply a domain transformation by defining a new function t(k) from T (n), wherek = logb(n):

t(k) := T (bk) (for all k ∈ R).

Then (80) transforms into
t(k) = a t(k − 1) + f(bk).

Next, transform the range by using the summation factor1/ak. This defines the functions(k) from t(k):

s(k) := t(k)/ak.

Now s(k) satisfies a recurrence in standard form:

s(k) =
t(k)

ak

=
t(k − 1)

ak−1
+

f(bk)

ak

= s(k − 1) +
f(bk)

ak

Chee-Keng Yap Basic Version February 8, 2011

§10. GENERALIZED MASTER THEOREM Lecture II Page 41

Telescoping, we get

s(k) − s({k}) =

k
∑

i={k}+1

f(bi)

ai
,

where{k} is the fractional part ofk (recall thatk is real). Using the DIC, we chose the boundary condition

s(x) = f(bx)/ax, for x < 1

in order to end up with the simple formula,

s(k) =
k
∑

i={k}

f(bi)

ai
. (81)

If we like, we can back substitute to get this solution in terms of the original functionT (n):

T (n) = t(logb n)

= alogb ns(logb n)

= nlogb a
∑

i={logb n}

f(bi)

ai
.

This is the general solution to the master recurrence. But itis an open sum, and we need a closed formula.Now,
we cannot proceed any further without knowing the nature of the functionf .

Let us call the function
W (n) = nlogb a (82)

thewatershed functionfor our recurrence, andlogb a thewatershed exponent. The Master Theorem considers
three cases forf . These cases are obtained by comparingf to W (n). The easiest case is wheref andW have
the sameΘ-order (CASE(0)). The other two cases are wheref grows “polynomially slower” (CASE(−1)) or
“polynomially faster” (CASE(+1)) than the watershed function.

CASE (0) This is whenf(n) satisfies
f(n) = Θ(nlogb a). (83)

Thenf(bi) = Θ(ai) and hence

s(k) =

k
∑

i=1

f(bi)/ai = Θ(k). (84)

CASE (−1) This is whenf(n) grows polynomially slowerthan the watershed function:

f(n) = O(n−ǫ+logb a), (85)

for someǫ > 0. Thenf(bi) = O(bi(logb a−ǫ)). Let f(bi) = O1(a
ib−iǫ) (using the subscripting notation

for O). Sos(k) =
∑k

i=1 f(bi)/ai =
∑

O1(b
−iǫ) = O2(1), sinceb > 1 impliesb−ǫ < 1. Hence

s(k) = Θ(1). (86)

CASE (+1) This is whenf(n) satisfies theregularity condition

af(n/b) ≤ cf(n) (ev.) (87)

for somec < 1. Expanding this,

f(n) ≥ a

c
f
(n

b

)

≥
(a

c

)logb n

f(1)

= Ω(nǫ+logb a),

Chee-Keng Yap Basic Version February 8, 2011

§10. GENERALIZED MASTER THEOREM Lecture II Page 42

whereǫ = − logb c > 0. Thus the regularity condition implies thatf(n) grows polynomially faster than
the watershed function,

f(n) = Ω(nǫ+logb a). (88)

It follows from (87) thatf(bk−i) ≤ (c/a)if(bk). So

s(k) =
k
∑

i=1

f(bi)/ai

=

k−1
∑

i=0

f(bk−i)/ak−i

≤
k−1
∑

i=0

(c/a)if(bk)/ak−i

= f(bk)/ak

(

k−1
∑

i=0

ck−i

)

= O
(

f(bk)

ak

)

,

sincec < 1. But clearly,s(k) ≥ f(bk)/ak. Hence we have

s(k) = Θ(f(bk)/ak). (89)

Summarizing,

s(k) =







Θ(1), CASE(−1), see (86),
Θ(k), CASE(0), see (84),
Θ(f(bk)/ak), CASE(+1), see (89).

Back substituting usings(k) = t(k)/ak, we get

t(k) = aks(k) =







Θ(ak), CASE(−1)
Θ(akk), CASE(0)
Θ(f(bk)), CASE(+1).

Further back substition usingT (n) = t(logb n), we conclude:

THEOREM 7 (Master Theorem).The master recurrence (80) has solution:

T (n) =







Θ(nlogb a), if f(n) = O(n−ǫ+logb a), for someǫ > 0,
Θ(nlogb a log n), if f(n) = Θ(nlogb a),
Θ(f(n)), if af(n/b) ≤ cf(n) for somec < 1.

Informally, we describe CASE(+) as the case when the driving functionf(n) is polynomially faster than
W (n). But the actual requirement is somewhat stronger, namely the regularity condition (87). In applications of
the Master Theorem, this case is usually the least convenient to check.

We can take advantage of the fact that checking if a functionf(n) is polynomially faster (or slower) than
W (n) is usually easier to check (just by “inspection”). Hence we normally begin by first verifying the polyno-
mially faster condition, equation (88). If so, we then checkthe stronger regularity condition (87). To illustrate
this process, consider the recurrence

T (n) = 3T (n/10) +
√

n/ lg n.

Chee-Keng Yap Basic Version February 8, 2011

§10. GENERALIZED MASTER THEOREM Lecture II Page 43

We note thatα = log10 3 < log9 3 = 1/2 and sonα ≤ √
n/ lg n (ev.), confirming equation (88). We now

suspect that CASE(+) holds, and must verify that

cf(n) ≥ 3f(n/10)

The Master Theorem is powerful but unfortunately, there aregaps between its 3 cases. For instance,f(n) =
nlogb a log n grows faster than the watershed function, but not polynomially faster. Thus the Master Theorem
is inapplicable for thisf(n). Yet it is just as easy to solve this case using the transformation techniques (see
Exercise).

In practice, the polynomial version of the theorem is most useful:

COROLLARY 8. Leta > 0, b > 1 andk be constants. The solution toT (n) = aT (n/b) + nk is given by

T (n) =







Θ(nlogb a), if logb a > k
Θ(nk), if logb a < k
Θ(nk lg n), if logb a = k

What if the valuesa, b in the master recurrence are not constants but depends onn? For instance, attempting
to apply this theorem to the recurrence

T (n) = 2nT (n/2) + nn

(with a = 2n andb = 2), we obtain the false conclusion thatT (n) = Θ(nn log n). See Exercises. The paper
[17] treats the caseT (n) = a(n)T (b(n)) + f(n). For other generalizations of the master recurrence, see [16].

¶31. Graphic Interpretation of the Master Recurrence. We imagine a recursion tree with branching factor
of a at each node, and every leaf of the tree is at levellogb a. We further associate a “size” ofn/bi and “cost”
of f(n/bi) to each node at leveli (root is at leveli = 0). ThenT (n) is just the sum of the costs at all the
nodes. The Master Theorem says this: In case (0), the total cost associated with nodes at any level isΘ(nlogb a)
and there arelogb n levels giving an overall cost ofΘ(nlogb a log n). In case (+1), the cost associated with the
root isΘ(T (n)). In case (−1), the total cost associated with the leaves isΘ(T (n)). Of course, this “recursion
tree” is not realizable unlessa andlogb a are integers. Hence the student should view this as a heuristic aid to
remembering how the Master Theorem works.

EXERCISES

Exercise 10.1:Which is the faster growing function:T1(n) or T2(n) where

T1(n) = 6T1(n/2) + n3, T2(n) = 8T2(n/2) + n2.

♦

Exercise 10.2:State the solution, up toΘ-order of the following recurrences:

T (n) = 10T (n/10) + log10 n.

T (n) = 100T (n/10) + n10.

T (n) = 10T (n/100) + (log n)log log n.

T (n) = 16T (n/4) + 4lg n.

♦

Chee-Keng Yap Basic Version February 8, 2011

§10. GENERALIZED MASTER THEOREM Lecture II Page 44

Exercise 10.3:Solve the following using the Master’s theorem.
(a)T (n) = 3T (n/25) + log3 n
(b) T (n) = 25T (n/3) + (n/ log n)3

(c) T (n) = T (
√

n) + n.
HINT: in the third problem, the Master theorem is applicableafter a simple transformation. ♦

Exercise 10.4:Sometimes the Master Theorem is not applicable directly. But it can still be used to yield useful
information. Use the Master Theorem to give as tight an upperand lower bound you can for the following
recurrences:
(a)T (n) = n3 log3 n + 8T (n/2)
(b) T (n) = n2/ log log n + 9T (n/3)
(c) T (n) = 4T (n/2) + 3T (n/3) + n. ♦

Exercise 10.5:SupposeT (n) = n + 3T (n/2) + 2T (n/3). Joe claims thatT (n) = O(n), Jane claims that
T (n) = O(n2), John claims thatT (n) = O(n3). Who is closest to the truth? ♦

Exercise 10.6:We want to improve on Karatsuba’s multiplication algorithm. We managed to subdivide a prob-
lem of sizen into a ≥ 2 subproblems of sizen/4. After solving thesea subproblems, we could combine
their solutions inO(n) time to get the solution to the original problem of sizen. To beat Karatsuba, what
is the maximum valuea can have? ♦

Exercise 10.7:Suppose algorithmA1 has running time satisfying the recurrence

T1(n) = aT (n/2) + n

and algorithmA2 has running time satisfying the recurrence

T2(n) = 2aT (n/4) + n.

Here,a > 0 is a parameter which the designer of the algorithm can choose. Compare these two running
times for various values ofa. ♦

Exercise 10.8:Suppose
T0(n) = 18T0(n/6) + n1.5

and
T1(n) = 32T1(n/8) + n1.5.

Which is the correct relation:T0(n) = Ω(T1(n)) or T0(n) = O(T1(n))? We want you to do this exercise
without using a calculator or its equivalent; instead, use inequalities such aslog8(x) < log6(x) (for x > 1)
andlog6(2) < 1/2. ♦

Exercise 10.9:How is the regularity condition onf(n) and the condition thatf(n) increase polynomially re-
lated? What can you say about the sum

∑n
i=1 f(i) whenf satisfies the regularity condition for some

a, b, c? ♦

Exercise 10.10:Solve the master recurrence whenf(n) = nlogb a logk n, for anyk ≥ 1. ♦

Chee-Keng Yap Basic Version February 8, 2011

§10. GENERALIZED MASTER THEOREM Lecture II Page 45

Exercise 10.11:Show that the master theorem applies to the following variation of the master recurrence:

T (n) = a · T (
n + c

b
) + f(n)

wherea > 0, b > 1 andc is arbitrary. ♦

Exercise 10.12:
(a) SolveT (n) = 2nT (n/2) + nn by direct expansion.
(b) To what extent can you generalize the Master theorem to handle some cases ofT (n) = anT (n/bn) +
f(n) wherean, bn are both functions ofn? ♦

Exercise 10.13:Let W (n) be the watershed function of the master recurrence. In what sense is the “watershed
function” of the next order equal toW (n)/ lnn? ♦

Exercise 10.14:
(a) Let

s(n) =
n
∑

i=1

lg i

i

Prove thats(n) = Θ(lg2 n). For the lower bound, we want you to use real induction, and the fact that for
n ≥ 2, we have

ln(n) − (2/n) < ln(n − 1) < (ln n) − (1/n).

(b) Using the domain/range transformations to solve the following recurrence:

T (n) = 2T (n/2) + n
lg lg n

lg n
.

♦

Exercise 10.15:Consider the recurrenceT (n) = aT (n/b) + n4

log n wherea > 0 andb > 1. Describe the setS
of all pairs(a, b) for which the Master Theorem gives a solution for this recurrence. Do not describe the
solutions. You must describe the setS in the simplest possible terms. ♦

Exercise 10.16:The following recurrences arises in the analysis of a parallel algorithm for hidden-surface re-
moval (Reif and Sen, Proc. ACM Symp. on Comp. Geometry, 1988):

T (n) = T (2n/3) + lg n lg lg n

Another version of the algorithm [17] leads to

T (n) = T (2n/3) + (lg n)/ lg lg n.

Solve forT (n) in both cases. ♦

END EXERCISES

Chee-Keng Yap Basic Version February 8, 2011

§10. GENERALIZED MASTER THEOREM Lecture II Page 46

§10.2. The Multiterm Master Theorem

The Master recurrence (80) can be generalized to the followingmultiterm master recurrence:

T (n) = f(n) +

k
∑

i=1

aiT

(

n

bi

)

(90)

wherek ≥ 1, ai > 0 (for all i = 1, . . . , k) andb1 > b2 > · · · > bk > 1. We give two examples:

T (n) = T (c1n) + T (c2n) + n, (c1 + c2 < 1), (91)

T (n) = T (n/2) + T (n/4) + log7 n. (92)

The first recurrence (91) arise in linear time selection algorithms (see Chapter XI). There are many versions of
this algorithm with different choices for the constantsc1, c2. E.g.,c1 = 7/10, c2 = 1/5. The second recurrence
(92) arise in the so-called conjugate search trees in computational geometry (see Exercise 8.7).

Before we give the multiterm analogue of the Master Theorem,we generalize two concepts from the Master
Theorem:
(a) Associated with the recurrence (90) is thewatershed constant, a real numberα such that

k
∑

i=1

ai

bα
i

= 1. (93)

Clearlyα exists and is unique since the summation tends to0 asα → ∞, and tends to∞ asα → −∞. As usual,
let W (n) = nα denote the watershed function.
(b) The recurrence (90) gives rise to ageneralized regularity conditionon the driving functionf(n), namely,

k
∑

i=1

aif(n/bi) ≤ cf(n) (94)

for some0 < c < 1.

THEOREM 9 (Multiterm Master Theorem).

T (n) =







Θ(nα log n) if f(n) = Θ(nα)
Θ(nα) if f(n) = O(nα−ε), for someε > 0,
Θ(f(n)) if f satisfies the regularity condition (94).

Proof.The proof uses real induction.

CASE (0): Assume thatf(n) = Θ1(W (n)). We will show thatT (n) = Θ2(W (n) log n). We have

T (n) = f(n) +
∑k

i=1 aiT
(

n
bi

)

= Θ1(n
α) +

∑k
i=1 aiΘ2

((

n
bi

)α

log
(

n
bi

))

(by induction)

= Θ1(n
α) + Θ2(n

α)
[

∑k
i=1

ai

bα
i

log
(

n
bi

)]

= Θ1(n
α) + Θ2(n

α) [log n − D] , (whereD =
∑k

i=1
ai

bα
i

log(bi) and using (93))

= Θ2(n
α log n).

Let us elaborate on the last equality. Supposef(n) = Θ1(n
α) amounts to the inequalitiesc1W (n) ≤ f(n) ≤

C1W (n) (ev.). We must choosec2, C2 such thatc2W (n) log n ≤ T (n) ≤ C2W (n) log n (ev.). The following
choice suffices:

C2 = C1/D, c2 = c1/D.

Chee-Keng Yap Basic Version February 8, 2011

§10. GENERALIZED MASTER THEOREM Lecture II Page 47

CASE (−1): Assume0 ≤ f(n) ≤ D1n
α−ε for someε > 0. The lower bound is easy: assumeT (n/bi) ≥

c1(n/bi)
α (ev.) for eachi. Then7

T (n) = f(n) +
∑k

i=1 aiT
(

n
bi

)

≥ ∑k
i=1 aic1(

n
bi

)α (sincef(n) ≥ 0 and by induction)
= c1n

α.

The upper bound needs a slightly stronger hypothesis: assumeT (n/bi) ≤ C1n
α(1 − n−ε) (ev.). Then

T (n) = f(n) +
∑k

i=1 aiT
(

n
bi

)

≤ D1n
α−ε +

∑k
i=1 aiC1

(

n
bi

)α
[

1 −
(

n
bi

)−ε
]

(by induction)

= C1n
α − C1n

α−ε
[

∑k
i=1

ai

bα−ε
i

− D1/C1

]

≤ C1n
α − C1n

α−ε

provided
∑k

i=1 ai/bα−ε
i ≥ 1 + (D1/C1). Since

∑k
i=1 ai/bα−ε

i > 1, we can certainly choose a large enoughC1

to satisfy this.

CASE (+1): The lower boundT (n) = Ω(f(n)) is trivial. As for upper bound, assumingT (m) ≤ D1f(m)
(ev.) wheneverm = n/bi,

T (n) = f(n) +
∑k

i=1 aiT
(

n
bi

)

≤ f(n) +
∑k

i=1 aiD1f(n/bi) (by induction)
= f(n) + D1cf(n) (by regularity)
≤ D1f(n) (if D1 ≥ 1/(1 − c))

Q.E.D.

The use of real induction appears to be necessary in this proof: unlike the master recurrence, the multiterm
version does not yield to transformations. Again, the generalized regularity condition implies thatf(n) =
Ω(nα+ε) for someε > 0. This is shown by induction:

f(n) ≥ 1
c

∑k
i=1 aif(n/bi)

≥ 1
c

∑k
i=1 aiD(n/bi)

α+ε (by induction, for someD > 0)
= D

c nα+ε
∑k

i=1
ai

bα+ε
i

= Dnα+ε (if we choosec =
∑k

i=1
ai

bα+ε
i

)

Since
∑k

i=1
ai

bα
i

= 1, we should be able to choose aε > 0 to satisfy the last condition. Note that this derivation
imposes no condition onD, and soD can be determined based on the initial conditions.

Let us apply the theorem to the recurrence forT1(n) in the selection problem (91) andT2(n) in the conjugate
tree problem (92). For (91), we see thatα < 1 and since the regularity condition holds for the functionf(n) = n,
we conclude thatT1(n) = Θ(n). For (92), we may use a calculator to verify that the watershed value is
α = 0.694 Sincef(n) = O(nα−ε), we conclude thatT2(n) = Θ(n0.694...).

EXERCISES

Exercise 10.17:The following recurrence arises in the analysis of the running time of the “conjugation tree” in
computational geometry:

T (n) = T (n/2) + T (n/4) + lg7 n.

7The factf(n) ≥ 0 (ev.) is a consequence of “f ∈ O(nα−ε)” and the definition of the big-Oh notation.

Chee-Keng Yap Basic Version February 8, 2011

§11. OTHER RECURRENCES Lecture II Page 48

Solve forT (n). ♦

Exercise 10.18:To understand the recurrenceT (n) = T (n/2) + T (n/3) + T (n/4) + n, we will explore
numerically the functionh(x) = 2−x + 3−x + 4−x. We want to determine theα such thath(α) = 1. For
a simple way to do this, use a user-friendly, powerful software like MATLAB. For instance, consider the
following two lines ofMATLAB code:

>> h = @(x) 2.ˆ (-x) + 3.ˆ (-x) + 4.ˆ (-x);
>> for x = 0.9 : 0.1 : 1.2, display([x, h(x)]), end

The first line defines the functionh(x). The second line is a for-loop wherex begins with the value0.9 and
each iteration increases the value ofx by 0.1 until x = 1.2. Each iteration simply prints the pair(x, h(x))
of values. This loop produces the values shown in the first of the following four tables:

x h(x)

0.9000 1.1951
1.0000 1.0833
1.1000 0.9828
1.2000 0.8923

x h(x)

1.0700 1.0119
1.0800 1.0021
1.0900 0.9924
1.1000 0.9828

x h(x)

1.0810 1.0011
1.0820 1.0001
1.0830 0.9992
1.0840 0.9982

x h(x)

1.0820 1.0001
1.0821 1.0000
1.0822 0.9999
1.0823 0.9998

By changing the stepsize and limits of the for-loop, we can get more correct digits with run of the for-
loop. Each successive table above is obtained this way, eachtime giving us an extra digit in the decimal
expansion ofα. Thus,α ≈ 1.0821. How would you continue this experiment to determine the first 100
digits ofα? ♦

END EXERCISES

§11. Other Recurrences

There is a wide variety of recurrences which we have barely hinted at. For instance, the typical recurrences
arising in counting combinatorial structures have an exponential (e.g.,T (n) = 2T (n − 1) + f(n)) or double
exponential growth (e.g.,T (n) = T (n − 1)2 + f(n)). We refer to Knuth for such examples. In this section, we
focus on some other types of recurrences.

§11.1. Recurrences with Max

A class of recurrences that arises frequently in computer science involves the max operation. Fredman has
investigated the solution of a class of recurrences involving max.

Consider the following variant of QuickSort: each time after we partition the problem into two subproblems,
we will solve the subproblem that has the smaller size first (if their sizes are equal, it does not matter which order
is used). We want to analyze the depth of the recursion stack.If a problem of sizen is split into two subproblems
of sizesn1, n2 thenn1 + n2 = n − 1. Without loss of generality, letn1 ≤ n2. So0 ≤ n1 ≤ ⌊(n − 1)/2⌋. If the
stack contains problems of sizes(n1 ≥ n2 ≥ · · · ≥ nk ≥ 1) wherenk is the problem size at the top of the stack,
then we have

ni−1 ≥ ni + ni+1.

Chee-Keng Yap Basic Version February 8, 2011

§11. OTHER RECURRENCES Lecture II Page 49

Sincen1 ≤ n, this easily impliesn2i+1 ≤ n/2i ork ≤ 2 lg n. A tighter bound isk ≤ logφ n whereφ = 1.618 . . .
is the golden ratio. This is not tight either.

The depth of recursion satisfies

D(n) =
⌊(n−1)/2⌋

max
n1=0

[max{1 + D(n1), D(n2)}]

This recurrence involving max is actually easy to solve. AssumingD(n) ≤ D(m) for all n ≤ m, and for any
realx, D(x) = D(⌊x⌋), it is easy to see thatD(n) = 1 + D(n/2). Using the fact thatD(1) = 0, we obtain
D(n) ≤ lg n. [Note: D(1) = 0 means that all problems on the stack has size≥ 2.

§11.2. Analysis ofǫ-Nets

The following recurrence arise in the analysis of a class of data structures calledǫ-nets, first studied by
Haussler and Welzl. Assuming0 < ǫ < 1 andm ≥ 2 are fixed,

T (n) = 1 + max
(n1,...,nm)

m
∑

i=1

T (ni)

where the maximum ranges over all(n1, . . . , nm) satisfyingni ≥ 0 and
∑m

i=1 ni ≤ ǫn.

There is a trivial solution to this: the constant function

T (n) = 1/(1 − m)

for all n. But T (n) < 0 in this case and we seek a non-negative solution. Assuming thatT (n) is a convex cap8,
it is easy to see that

T (n) = 1 + mT (ǫn/m) = Θ(nlogm/ǫ m).

To showT (n) is a convex cap, we note that it is continuous (exercise) and amonotonic non-decreasing function.
Then it suffices (exercise) to prove that

T (x) + T (y) ≤ 2T ((x + y)/2) (95)

where we now regardT (x) as a real function defined for allx ≥ 0. This turns out to be easy to show inductively,
assuming the base case whereT (x) = x (or T (x) = 0) for all 0 ≤ x ≤ 1.

§11.3. A Log-square Solution

Consider the recurrence
T (n) = 1 + T (n − n

log n
). (96)

This does not yield to our standard techniques. To probe deeper, note some simple bounds. It is easy to see that
T (n) ≤ n since this is the solution to the recurrenceT (n) ≤ 1 + T (n − 1). LikewiseT (n) ≥ lg n since this is
the solution toT (n) ≥ 1 + T (n/2).

8We say a real functionf(x) is convex capif for all 0 < α < 1, f(x) + f(y) ≤ 2f(αx + (1 − α)y). For completeness, we sayf(x)
is convex cupif for all 0 < α < 1, f(x) + f(y) ≥ 2f(αx + (1 − α)y).

Chee-Keng Yap Basic Version February 8, 2011

§11. OTHER RECURRENCES Lecture II Page 50

To get a better upper bound, we note that

T (n) = 1 + T

(

n

(

1 − 1

log n

))

≤ 2 + T

(

n

(

1 − 1

log n

)2
)

, (why?)

...

≤ k + T

(

n

(

1 − 1

log n

)k
)

using monotonicity ofT (n). HenceT (n) = k if we assumeT (n) = 0 for n ≤ 1 andk is chosen so that

(

1 − 1

log n

)k

≤ 1/n <

(

1 − 1

log n

)k+1

.

Taking natural logs, and assuming for simplicity thatlog = ln in (96), we see that

(k + 1) ln

(

1 − 1

lnn

)

> − lnn,

(k + 1)

(

− 1

lnn

)

> − lnn, (since ln(1 + x) ≤ x for |x| < 1),

k + 1 < ln2 n.

Up to a constant factor, this is also the lower bound: we show thatT (n) ≥ C ln2 n by induction:

T (n) ≥ 1 + C ln2

(

n

(

1 − 1

log n

))

= 1 + C(ln n + ln

(

1 − 1

log n

)

)2

≥ 1 + C(ln n − 2

lnn
)2, sinceln(1 + x) ≥ x − x2/2 for |x| < 1

≥ C ln2 n.

ThusT (n) = Θ(ln2 n).

REMARK: If we were told from the beginning to verify thatT (n) = Θ(ln2 n), this would be routine. What
we are demonstrating here is the process of discovering thatΘ(ln2 n) is the correct answer.

EXERCISES

Exercise 11.1:Try to obtain tight constants for the recurrence (96). What if log is not the natural logarithm in
the original equation? ♦

Exercise 11.2:Show thatT (x) above is continuous by exploiting the fact that the additionand maximum func-
tions are continuous. ♦

Exercise 11.3:Prove that ifT (x) is continuous and satisfies equation (95) then it is a convex cap. ♦

Chee-Keng Yap Basic Version February 8, 2011

§11. OTHER RECURRENCES Lecture II Page 51

Exercise 11.4: (Leighton 1996) Show thatT (n) = 2T (n
2 − n

lg n) has solutionT (n) = Θ(n logΘ(1) n). Assume
thatT (n) = 1 for n ≤ 5, and the recurrence holds forn > 5. ThusT (5 + ε) = 2, so this function is
discontinuous. ♦

Exercise 11.5:Analyze the behavior of the functionT (n) defined by the recurrenceT (n) = nT (logn). Give
upper and lower bounds forT (n) using “closed form expressions” in terms of the functionslog(i) n, i ≥ 0.
Note:This recurrence arises from an early version of the fast integer multiplication algorithm of Schönhage
and Strassen. ♦

Exercise 11.6:Solve the recurrenceT (n) = 1 + max(n1,n2,n3,n4){T (n1) + T (n2) + T (n3) + T (n4)} where

(n1, . . . , n4) ranges over all non-negative numbers such that
∑4

i=1 ni = 3n
2 and eachni ≤ n/2. ♦

Exercise 11.7:Solve the following recurrences toΘ-order:
(a)T (n) = 1 + 2T (n− n

log n).
(b) T (n) = 2nT (n/2) + nn.
(c) T (n) = 1 + T (n

log n).
HINT: these recurrences are considerably harder than most of what we encounter. First guess non-tight
upper and lower bounds and verify by induction. Then try to tighten these bounds. ♦

END EXERCISES

§11.4. Multivariable Recurrences

So far, our recurrences involve only one variable. But multivariable recurrences arise in several ways: one
source of such recurrences is multidimensional problems incomputational geometry (one of the variable is the
dimension).

The pre-processing problem ofpoint dominance queriesin d-dimensions is as follows: given a setS ⊆ R
d

of n points, construct a data structureD(S) such that for any query pointp ∈ R
d, we can quickly determine if

there is any pointx ∈ S thatdominatesp (this meansx ≥ p, componentwise). One solution is to pick some
c ∈ R such thatS splits into two subsetsS1, S2 of sizen/2 each, where the first component of eachx ∈ S1 is
≤ c, and the first component of eachx′ ∈ S2 is ≥ c. To answer the query forp, begin by comparing the first
componentp1 of p to c: if p1 > c then it is sufficient to recursively check if somex ∈ S2 dominatesp. If p1 ≤ c,
we must do two searches: (i) check if somex ∈ S1 dominatesp and (ii) check if somex ∈ S2 dominatesp. The
search in (i) is, however, done ind − 1 dimensions since we may ignore the first components. Thus thetime for
answering queries satisfies the recurrence

T (n, d) = 1 + T (n/2, d) + T (n/2, d− 1).

It is not hard to see thatT (n, 1) = O(1). Then we may verify the solutionT (n, d) = Θ(logd−1 n).

¶32. Output-sensitive algorithms. Multivariable recurrences arise in the analysis of “output-sensitive” al-
gorithms. Such algorithms has, besides the traditionalinput parameter n, an (implicit) output parameter h,
which is the measures the size of the output for the given input instance. The computational complexity of such
algorithms depends on bothn andh. An example is the problem of computing the convex hull of a set of n

Chee-Keng Yap Basic Version February 8, 2011

§12. ORDERS OFGROWTH Lecture II Page 52

points in the plane. The output size is just the number of points in the actual convex hull. There are well-known
O(n log n) algorithms for this problem. Kirkpatrick and Seidel has given an algorithm whose time complexity
satisfies the following recurrence:

T (n, h) = O(n) + max
h1+h2=h−1

{

T (
n

2
, h1) + T (

n

2
, h2)

}

.

Here,hi are positive integers. We may assumeT (n, h) = O(n) for h ≤ 3. To see thatT (n, h) = O(n log h),
we could of course just substitute and verify. But it is more instructive to argue as follows: consider a “recursion
tree” corresponding to a possible expansion of the recurrence relation forT (n, h). There are exactlyh nodes in
this binary tree, where each internal node at depthi (the root is depth0) carries a “cost” ofn/2i. The “cost”
of the tree just the sum of these costs at the internal nodes. So T (n, h) is the maximum cost over all possible
recursion trees. Theclaim T (n, h) = O(n log h) follows if we prove that the maximum cost occurs when the
tree has depth at mostlog2 h (since the total cost of all nodes at any depthi is invariablyn). For the sake of
contradiction, suppose we have a maximum cost tree with depth d > log2 h. Then there is a node at depthd − 1
whose children are leaves at depthd. We can transfer these two children to become the children ofsome other
node at depth≤ d − 2. This would increase the cost for the tree, contradiction.

EXERCISES

Exercise 11.8:Show that ifS(n, d) is the space requirement for the above data structure, thenS(n, d) = 1 +
2S(n/2, d) + S(n/2, d− 1). Solve this recurrence. What isS(n, 1)? ♦

Exercise 11.9:Consider the following recurrence

T (n, h) = O(n) + max
h1+h2=h−1;c1+c2=1

{T (c1n, h1) + T (c2n, h2)} .

(a) Solve forT (n, h) with only the assumptionhi ≥ 1, ci > 0 in the above.
(b) Solve forT (n, h) with theadditionalassumption thatci ≤ α where0 < α < 1 is fixed. Generalize
the above argument about the shape of the maximum cost recursion tree. ♦

Exercise 11.10:(Sharir-Welzl) The following recurrence arises in analyzing the diameter ofn-dimensional
polytopes withm facets:

f(n, m) = f(n − 1, m− 1) +
2

m

m
∑

i=1

f(n − 1, i).

Solve the recurrence. ♦

END EXERCISES

§12. Orders of Growth

The reader should first review the basic properties of the exponential and logarithm functions in the
appendix.

Chee-Keng Yap Basic Version February 8, 2011

§12. ORDERS OFGROWTH Lecture II Page 53

Learning to judge the growth rates of complexity functions is a fundamental skill in algorithmics. This section
is a practical one, designed to help students develop this skill.

Most complexity functions in practice are the so-calledlogarithmico-exponential functions (for short,L-
functions): such functionsf(x) are real and defined for allx ≥ x0 for somex0 depending off . An L-function
is either the identity functionx or a constantc ∈ R, or else obtained as a finite composition with the functions

A(x), ln(x), ex

whereA(x) denotes a real branch of an algebraical function. For instance,A(x) =
√

x is the function that picks
the real square-root ofx. The reader may have noticed that all the common complexity functions are totally
ordered in the sense that for anyf, g, eitherf � g or g � f . A theorem9 of Hardy [7] confirms this:if f andg
are L-functions thenf ≤ g (ev.) or g ≤ f (ev.). In particular, eachL-functionf is eventually non-negative,
0 ≤ f (ev.), or non-positive,f ≤ 0 (ev.).

The following are the common categories of functions you will encounter:

CATEGORY SYMBOL EXAMPLES
vanishing term o(1) 1

n , 2−n

constants Θ(1) 1, 2 − 1
n

polylogs logk n (for anyk > 0) Hn, log2 n
polynomials nk (for anyk > 0) n3,

√
n

non-polynomials nΩ(1) n!, 2n, nlog log n

Note thatn! andHn are notL-functions, but they can be closely approximated byL-functions. The last cat-
egory forms a grab-bag of anything growing faster than a polynomial. These 5 categories form a hierarchy of
increasingly largerΘ-order.

¶33. Rules for comparing functions. We are interested in comparing functions up to theirΘ-order. The trick
of comparing two functions by taking their logarithms is this: if log f � log g then clearlyf � g. But students
often think the converse is also true.

We list some simple rules. Most comparisons of interest to uscan be reduced to repeated applications of
these rules:

Sum: In a direct comparison involving a sumf(n) + g(n), ignore the smaller term in this sum.
E.g., givenn2 + n logn + 5, you should ignore the “n logn + 5” term. However, beware that if the sum
appears in an exponent, the neglected part may turn out be decisive when the dominant terms are identical.

Product: If 0 � f � f ′ and0 � g � g′ thenfg � f ′g′. (If, in addition,f ≺ f ′ then we havefg ≺ f ′g′.)
E.g., this rule impliesnb ≺ nc whenb < c (since1 ≺ nc−b, by the logarithm rule next).

Logarithm: 1 ≺ log(k+1) n ≺ (log(k) n)c for any integerk ≥ 0 and realc > 0. Herelog(k) n refers to the
k-fold application of the logarithm function andlog(0) n = n.

Exponentiation: If 1 ≤ f ≤ g (ev.) thendf � dg for any constantd > 1. If 1 ≤ f ≤ cg (ev.) for some
c < 1 thendf ≺ dg.

9In the literature onL-functions, the notation “f � g” actually meansf ≤ g (ev.). There is a deep theory involving such functions, with
connection to Nevanlinna theory.

Chee-Keng Yap Basic Version February 8, 2011

§12. ORDERS OFGROWTH Lecture II Page 54

¶34. Example. Suppose we want to comparenlog n versus(log n)n. By the rule of exponentiation,nlog n ≺
(log n)n follows if we take logs and show thatlog2 n ≤ 0.5n log log n (ev.). In fact, we show the stronger
log2 n ≺ n log log n. Taking logs again, and by the rule of sum, it is sufficient to show 2 log log n ≺ log n.
Taking logs again, and by the rule of sum again, it is suffices to showlog(3) n ≺ log(2) n. But the latter follows
from the rule of logarithms.

EXERCISES

Exercise 12.1: (i) Simplify the following expressions: (a)n1/ lg n, (b) 22lg lg n−1

, (c)
∑k−1

i=0 2i, (d) 2(lg n)2 , (e)
4lg n, (f) (

√
2)lg n.

(ii) Re-do the above, replacing each occurrence of “2” (explicit or otherwise) in the previous expressions
by some constantc > 2. ♦

Exercise 12.2:Order these in increasing big-Oh order:

n lg n, n−1, lg n, nlg n, 10n + n3/2, πn, 2n, 2lg n.

♦

Exercise 12.3:Order the following 5 functions in order of increasingΘ-order: (a)log2 n, (b)n/ log4 n, (c)
√

n,
(d) n2−n, (e) log log n. ♦

Exercise 12.4:Order the following functions (be sure to parse these nestedexponentiations correctly): (a)
n(lg n)lg n

, (b) (lg n)nlg n

, (c) (lg n)(lg n)n

, (d) (n/ lg n)nn/(lg n)

. (e)nn(lg n)/n

. ♦

Exercise 12.5:Order the following set of36 functions in non-increasing order of growth. Between consecutive
pairs of functions, insert the appropriate ordering relationship:�, ≍, ≤ (ev.), =.

a b c d e f

1. lg lg n (lg n)lg n 2n 2lg n 2lg∗ n 22n+1

2. (1/3)n n2n nlg lg n en n1/ lg n ⌈lg n⌉!
3. 2

√
2 lg n (3/2)n 2 lg(n!) n

√
lg n

4. 2(lg n)2 22n

n2 n lg n (n + 1)! 4lg n

5. lg(lg∗ n) lg2 n (1 + 1
n)n nlg n n! 2(lg n)/n

6. (
√

2)lg n lg∗ n (n/ lg n)2
√

n) lg∗(lg n) 1/n
NOTE: to organize of this large list of functions, we ask thatyou first order each row. Then the rows
are merged in pairs. Finally, perform a 3-way merge of the 3 lists. Show the intermediate lists of your
computation (it allows us to visually verify your work). ♦

Exercise 12.6:Order the following functions:

n, ⌈lg n⌉!, ⌈lg lg n⌉!, n⌈lg lg n⌉!, 2lg∗ n, lg∗(2n), lg∗(lg n), lg(lg∗ n).

♦

Exercise 12.7: (Purdom-Brown)
(a) Show that

∑n
i=1 i! = n![1+O(1/n)]. NOTE: The summation rule gives only aΘ-order so this is more

precise.
(b)
∑n

i=1 2i ln i = 2n+1[lnn − (1/n) + O(n−2)]. HINT: use ln i = lnn − (i/n) + O(i2/n2) for
i = 1, . . . , n. ♦

Chee-Keng Yap Basic Version February 8, 2011

§A. APPENDIX Lecture II Page 55

Exercise 12.8: (Knuth) What is the asymptotic behavior ofn1/n? ofn(n1/n − 1)?
HINT: take logs. Alternatively, expand

∏n
i=1 e1/(in). ♦

Exercise 12.9:Estimate the growth behavior of the solution to this recurrence:T (n) = T (n/2)2 + 1. ♦

END EXERCISES

¶35. Bibliographic Notes Our example of maximum overhang of a brick stack, illustrating Harmonic num-
bers, is from the book “How Round is Your Circle? Where Engineering and Mathematics Meet”, by John Bryant
and Chris Sangwin (Princeton University Press, 2008).

§A. APPENDIX: Exponential and Logarithm Functions

Next to the polynomials, the two most important functions inalgorithmics are theexponential functionand
its inverse, thelogarithm function . Many of our asymptotic results depend on their basic properties. For the
student who wants to understand these properties, the following will guide them through some exercises. We
define thenatural exponential function to be

exp(x) =
∞
∑

i=0

xi

i!

for all realx. This definition is also good for complexx, but we do not need this here. Thebase of the natural
logarithm is defined to be the number

e := exp(1) =
∞
∑

i=0

1

i!
= 2.71828...

The next exercise derives some asymptotic properties of theexponential function.

Exercise A.1: Show that
(a)exp(x) is continuous,
(b) d exp(x)

dx = exp(x) and henceexp(x) has all derivatives,
(c) exp(x) is positive, strictly increasing,
(d) exp(x) → 0 asx → −∞, exp(x) → ∞ asx → ∞,
(e)exp(x + y) = exp(x) exp(y),

♦

We often need explicit bounds on exponential functions (notjust asymptotic behavior). Derive the following
bounds:

Exercise A.2:
(a)exp(x) ≥ 1 + x for all x ≥ 0 with equality iff x = 0.
(b) exp(x) > xn+1

(n+1)! for x > 0. Henceexp(x) grow faster than any polynomial inx.
(c) For all realn ≥ 0,

(

1 +
x

n

)n

≤ ex ≤
(

1 +
x

n

)n+(x/2)

.

Chee-Keng Yap Basic Version February 8, 2011

§A. APPENDIX Lecture II Page 56

It follows that an alternative definition ofex is

ex = lim
n→∞

(

1 +
x

n

)n

.

(d) exp(x)
(

1 − x2

n

)

≤
(

1 + x
n

)n
for all x, n ∈ R, n ≥ 1 and|x| ≤ n. See [13]. ♦

Thenatural logarithm function ln(x) is the inverse ofexp(x): ln(x) is defined10 to be the real numbery
such thatexp(y) = x. Note that this is a partial function because it is defined forall and only positivex.

Exercise A.3: Show that
(a) d ln(x)

dx = 1
x ,

(b) ln(xy) = ln(x) + ln(y),
(c) ln(x) increases monotonically from−∞ to +∞ asx increases from0 to +∞. ♦

These two functions now allow us to define exponentiation to any base: for any positiveb and any realα, we
define

expb(α) := exp(α ln(b)). (97)

Usually, we writeexpb(α) asbα. Note that ifb = e then we obtaineα, a familiar notation forexp(α).

We see from (97) thatb must be positive sinceln(b) is otherwise undefined. Moreover, the caseb = 1 is
highly degenerate sincebα is identically equal to1. It is easy to check that(1/b)α = b−α, and hence it is not
necessary to explicitly consider the caseb < 1 (since we can replace such ab by 1/b which would be> 1.

Once we have the definition ofexpb(x) = bx, the logarithm functionlogb(x) to an arbitrary baseb > 0 is
defined to be the inverse of the functionexpb(x) = bx. Thus the logarithm to baseb is defined as long asb 6= 1.

Exercise A.4: We show some familiar properties: the baseb is omitted if it does not affect the stated property.
(a)

log 1 = 0, logb b = 1, logb x = (logc x)/(logc b),

y = xlogx y, log(xy) = y log x, log(ab) = (log a) + (log b).

(b) log(1/x) = − log x, logb x = 1/(logx b), alog b = blog a.
(c) dx

dx (xα) = αxα−1.
(d) Forb > 1, the functionlogb(x) increases monotonically from−∞ to +∞ asx increases from0 to∞.
At the same time, for0 < b < 1, logb(x) decreases monotonically from+∞ to −∞. ♦

Notations for Logarithms. Logarithms to base2 is important in computer science
and we will write “lg” for log2. Of course,ln denotesnatural logarithm which
has basee = 2.71828 · · · and is extremely important in mathematics and calculus.
Many authors useLog := log10 for logarithm to base10. Our default assumption
is that the base of logarithms is someb > 1, so thatlogb x is a monotonically in-
creasing function. When the actual value ofb is immaterial (except thatb > 1), we
simple write ‘log’ without specifying the base (for theanonymous logarithm). We
also writelog(k) n for the k-fold application of the logarithm function ton. Thus
log(2) n = log log n, and by definition,log(0) n = n. This is to be distinguished
from “logk n” which equals(log n)k. On the black board, we might sometimes
write ℓℓogn, ℓℓℓogn for log log n, log log log n, etc.

10This real valuey is called the principal value of the logarithm. That is because if we viewexp(·) as a complex function, thenln(x) is a
multivalued function that takes all values of the formy + 2nπ, n ∈ Z.

Chee-Keng Yap Basic Version February 8, 2011

§A. APPENDIX Lecture II Page 57

¶36. Bounds on logarithms. For approximations involving logarithms, it is useful to recall a fundamental
series for logarithms:

ln(1 + x) = x − x2

2
+

x3

3
− · · · = −

∞
∑

i=1

(−x)i

i

valid for |x| < 1. We easily see thatx − x2/2 < ln(1 + x) < x. To see thatln(1 + x) < x we must show that
R =

∑∞
i=2(−x)i/i > 0. This follows because if we pair up the terms inR we obtain

R = (x2/2 − x3/3) + (x4/4 − x5/5) + · · · ,

which is clearly a sum of positive terms. A similar argument showsln(1 + x) > x − x2/2.

How do we evaluateln(y) for a generaly > 2? Assume that we have (a good approximation) toln(2).
Then we can writey = 2n(1 + x) and thus evaluateln(y) as n ln(2) + ln(1 + x). Alternatively, we can
write y = n(1 + x) wheren ∈ N and writeln(y) = ln(n) + ln(1 + x). To evaluateln(n) we use the fact
ln(n) = Hn − γ − (2n)−1 −O(n−2) (see§5).

¶37. Log-star function. We define thelog-star function: log∗ x is the maximum non-negative integern such
that lg(n)(x) is defined. Thuslog∗(x) = 0, 1, 2 iff x ≤ 0, 0 < x ≤ 1, 1 < x ≤ 2 (respectively). So log-star is
integer-valued. Although we have used base2 in its definition, it could be defined generally for anyb > 1.

References

[1] J. L. Bentley, D. Haken, and J. B. Saxe. A general method for solving divide-and-conquer recurrences.
ACM SIGACT News, 12(3):36–44, 1980.

[2] G. Dowek. Preliminary investigations on induction overreal numbers, 2003. Manuscript,
http://www.lix.polytechnique.fr/ dowek/publi.html.

[3] M. H. Escardó and T. Streicher. Induction and recursionon the partial real line with applications to Real
PCF.Theoretical Computer Science, 210(1):121–157, 1999.

[4] W. Feller.An introduction to Probability Theory and its Applications. Wiley, New York, 2nd edition edition,
1957. (Volumes 1 and 2).

[5] G. H. Gonnet. Handbook of Algorithms and Data Structures. International Computer Science Series.
Addison-Wesley Publishing Company, London, 1984.

[6] D. H. Greene and D. E. Knuth.Mathematics for the Analysis of Algorithms. Birkhäuser, 2nd edition, 1982.

[7] G. H. Hardy. Orders of Infinity. Cambridge Tracts in Mathematics and Mathematical Physics, No. 12.
Reprinted by Hafner Pub. Co., New York. Cambridge University Press, 1910.

[8] A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by automatic computers.Doklady
Akad. Nauk SSSR, 145:293–294, 1962.

[9] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1. Addison-Wesley,
Boston, 2nd edition edition, 1975.

[10] G. S. Lueker. Some techniques for solving recurrences.Computing Surveys, 12(4):419–436, 1980.

[11] B. P. Mahony and I. J. Hayes. Using continuous real functions to model timed histories. InProc. 6th
Australian Software Engineering Conf. (ASWEC91), pages 257–270. Australian Comp. Soc., 1991.

[12] B. Mishra and A. Siegel. (Class Lecture Notes) Analysisof Algorithms, January 28, 1991.

Chee-Keng Yap Basic Version February 8, 2011

§A. APPENDIX Lecture II Page 58

[13] D. S. Mitrinović. Analytic Inequalities. Springer-Verlag, New York, 1970.

[14] J. Paul Walton Purdom and C. A. Brown.The Analysis of Algorithms. Holt, Rinehart and Winston, New
York, 1985.

[15] J. van de Lune.An introduction to Tauberian theory: from Tauber to Weiner. Number 12 in CWI Syllabus.
Centrum voor Wiskunde en Informatica, 1980.

[16] R. M. Verma. A general method and a master theorem for divide-and-conquer recurrences with applications.
J. Algorithms, 16:67–79, 1994.

[17] X. Wang and Q. Fu. A frame for general divide-and-conquer recurrences.Info. Processing Letters, 59:45–
51, 1996.

Chee-Keng Yap Basic Version February 8, 2011

