
§1. ALGORITHMICS Lecture I Page 1

Lecture I
OUTLINE OF ALGORITHMICS

We assume the student is familiar with computer programmingand has a course in data structures
and some background in discrete mathematics. Problems solved using computers can be roughly classi-
fied into problems-in-the-large and problems-in-the-small. The former is associated with large software
systems such as an airline reservation system, compilers ortext editors. The latter1 is identified with
mathematically well-defined problems such as sorting, multiplying two matrices or solving a linear pro-
gram. The methodology for studying such “large” and “small”problems are quite distinct: Algorithmics Algorithmics isabout

“small” problemsis the study of the small problems and their algorithmic solution. In this introductory lecture, we present
an outline of this enterprise. Throughout this book,computational problems (or simply “problems”)
refer to problems-in-the-small. It is the only kind of problem we address. This chapter presents a broad
but systematic account of the field of algorithmics.

READING GUIDE: The chapters in this book are organized into sections,
denoted§1, §2, §3, etc. Occasionally, we have subsections such as§3.1, §3.2,
etc. But independent of the sections and subsections, we have labeled para-
graphs, denoted¶1,¶2,¶3, etc. This first chapter is mostly informal. The
rest of this book has no dependency on this chapter, save the definitions in§8
concerning asymptotic notations. Hence a light reading maybe sufficient. We
recommend re-reading this chapter after finishing the rest of the book, when
many of the remarks here may take on more concrete meaning.

§1. What is Algorithmics?

Algorithmics is the systematic study of efficient algorithms for computational problems; it includes
techniques of algorithm design, data structures, and mathematical tools for analyzing algorithms.

Why is algorithmics important? Because algorithms is at thecore of all applications of computers.
These algorithms are the “computational engines” that drive larger software systems. Hence it is im-
portant to learn how to construct algorithms and to analyze them. Although algorithmics provide the
building blocks for large application systems, the construction of such systems usually require additional
non-algorithmic techniques (e.g., database theory) whichare outside our scope.

We can classify algorithmics according to its applicationsin subfields of the sciences and mathe-
matics: thus we have computational geometry, computational topology, computational number theory,
computer algebra, computational statistics, computational finance, computational physics, and compu-
tational biology, etc. More generally, we have “computational X” where X can be any discipline. But
another way to classify algorithmics is to look at the generic tools and techniques that are largely in-
dependent any discipline. Thus, we have sorting techniques, graph searching, string algorithms, string
algorithms, dynamic programming, numerical PDE, etc, thatcuts across individual disciplines. A good
way to represent these two orthogonal classification is to use a matrix:

1If problems-in-the-large is macro-economics, then the problems-in-the-small is micro-economics.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§2. COMPUTATIONAL PROBLEMS Lecture I Page 2

g
eo

m
et

ry

to
p

o
lo

g
y

fin
an

ce

p
h

ys
ic

s

b
io

lo
g

y

al
g

eb
ra

· · ·
sorting X X X X X X

graph searching X X X

string algorithms X X X

dynamic programming X X X

numerical PDE X X

...
...

Computer Science is
row-oriented

So each computational X is represented by a column in this matrix, and each computational tech-
nique is represented by a row. Each checkmark indicates thata particular computational technique is
used in a particular discipline X. Individual scientific disciplines take a column-oriented view, but Com-
puter Science takes the row-oriented view. These row labelscan be classified into four basic themes:

(a) data-structures (e.g, linked lists, stacks, search trees)

(b) algorithmic techniques (e.g., divide-and-conquer, dynamic programming)

(c) basic computational problems (e.g., sorting, graph-search, point location)

(d) analysis techniques (e.g., recurrences, amortization, randomized analysis)

These themes interplay with each other. For instance, some data-structures naturally suggest certain
algorithmic techniques (e.g., graphs requires graph-search techniques). Or, an algorithmic technique
may entail certain analysis methods (e.g., divide-and-conquer algorithms require recurrence solving).
The field of complexity theory in computer science provides some unifying concepts for algorithmics;
but complexity theory is too abstract to capture many finer distinctions we wish to make. Thus algorith-
mics often makes domain-dependent assumptions. For example, in the subfield of computer algebra, the
complexity model takes each algebraic operation as a primitive while in the subfield of computational
number theory, these algebraic operations are reduced to some bit-complexity model primitives. In this
sense, algorithmics is more like combinatorics (which is eclectic) than group theory (which has a unified
framework).

§2. What are Computational Problems?

Despite its name, the starting point for algorithmics is notalgorithms, butcomputational problems.
But what are “computational problems”? We mention three main categories.

(A) Input-output problems. Such problems are the simplest to understand. Acomputational
problem is a precise specification of input and output formats, and for each input instanceI, a descrip-
tion of the set of possible output instancesO = O(I). Standard I/O prob-

lems

The word “formats” emphasizes the fact the input and output representation is part and parcel of
the problem. In practice, standard representations may be taken for granted (e.g., numbers are assumed
to be in binary and set elements are arbitrarily listed without repetition). Note that the input-output
relationship need not be functional: a given input may have several acceptable outputs.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§2. COMPUTATIONAL PROBLEMS Lecture I Page 3

¶1. Example (A1) Sorting Problem. Input is a sequence of numbers(a1, . . . , an) and output is a re-
arrangement of these numbers(a′

1, . . . , a
′
n) in non-decreasing order. An input instance is(2, 5, 2, 1, 7),

with corresponding output instance(1, 2, 2, 5, 7).

¶2. Example (A2) Primality Testing. Input is a natural numbern and output is either YES (ifn is
prime) or NO (if n is composite). Numbers are assumed to be encoded in binary. This is an exam-
ple of decision or recognition problem, where the outputs have only two possible answers (YES/NO,
0/1, Accept/Reject). One can generalize this to problems whoseoutput comes from a finite set. For
instance, in computational geometry, the decision problems tend to have three possible answers: Pos-
itive/Negative/Zero or IN/OUT/ON. For instance, thepoint classification problem is where we are
given a point and some geometric object such as a triangle or acell. The point is either inside the cell,
outside the cell or on the boundary of the cell.

(B) Preprocessing problems.A generalization of input-output problems is what we callprepro-
cessing problem: given a setS of objects, construct a data structureD(S) such that for an arbitrary
‘query’ (of a suitable type) aboutS, we can useD(S) to efficiently answer the query.There are two dis-
tinct stages in such problems: preprocessing stage and a “run-time” stage. Usually, the setS is “static”
meaning that membership inS does not change under querying. Two-staged problems

¶3. Example (B1) Ranking Problem. preprocessing input is a setS of numbers. A query onS is
a numberq for which we like to determine its rank inS. The rank ofq is S is the number of items in
S that are smaller than or equal toq. A standard solution to this problem is thebinary search treedata
structureD(S) and the binary search algorithm onD(S).

¶4. Example (B2) Post Office Problem. Many problems in computational geometry and database
search are the preprocessing type. The following is a geometric-database illustration: given a setS of
points in the plane, find a data structureD(S) such that for any query pointp, we find an element in
S that is closest top. (Think of S as a set of post offices and we want to know the nearest post office
to any positionp). Note that the 1-dimensional version of this problem is closely allied to the ranking
problem.

Two algorithms are needed to solve a preprocessing problem:one to constructD(S) and another
to answer queries. They correspond to the two stages of computation: an initialpreprocessing stage
to constructD(S), and a subsequentquerying stagein which the data structureD(S) is used. There
may be a tradeoff between thepreprocessing complexityand thequery complexity: D1(S) may be
faster to construct than an alternativeD2(S), but answering queries usingD1(S) may be less efficient
thanD2(S). But our general attitude to preferD2(S) overD1(S) in this case: we prefer data structures
D(S) that support the fastest possible query complexity. Our attitude is often justified because the
preprocessing complexity is a one-time cost.

Preprocessing problems are a special case ofpartial evaluation problems. In such problems, we
construct partial answers or intermediate structures based on part of the inputs; these partial answers or
intermediate structures must anticipate all possible extensions of the partial inputs.

(C) Dynamization and Online problems. Now assume the inputS is a set, or more generally
some kind of aggregate object like a database. IfS can be modified under queries, then we have a
dynamization problem: with S andD(S) as above, we must now design our solution with an eye to
the possibility of modifyingS (and henceD(S)). Typically, we want to insert and delete elements inS
while at the same time, answer queries onD(S) as before. A setS whose members can vary over time

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§3. COMPUTATIONAL MODEL Lecture I Page 4

is called adynamic setand hence the name for this class of problems.

Here is another formulation:we are given a sequence(r1, r2, . . . , rn) of requests, where a request
is one of two types: either anupdate or a query. We want to ‘preprocess’ the requests in an online
fashion, while maintaining a time-varying data structureD: for each update request, we modifyD and
for each query request, we useD to compute and retrieve an answer (D may be modified as a result).

In the simplest case, updates are either “insert an object” or “delete an object” while queries are “is
objectx in S?”. This is sometimes called theset maintenance problem. Preprocessing problems can
be viewed as a set maintenance problem in which we first process a sequence of insertions (to build up
the setS), followed by a sequence of queries.

¶5. Example (C1) Dynamic Ranking Problem. Any preprocessing problem can be systematically
converted into a set maintenance problem. For instance, theranking problem turns into thedynamic
ranking problem in which we dynamically maintain the setS subject to intermittent rank queries. The
data structures in solutions to this problem are usually calleddynamic search trees.

¶6. Example (C2) Graph Maintenance Problems. Dynamization problems on graphs are more
complicated than set maintenance problems (though one can still view it as maintaining a set of edges).
One such problem is thedynamic connected component problem: updates are insertion or deletion
of edges and/or vertices. Queries are pairs of vertices in the current graph, and we want to know if they
are in the same component. The graphs can be directed or undirected.

(D) Pseudo-problems. Let us illustrate what we regard to be a pseudo-problem from the view-
point of our subject. Suppose your boss asks your IT department to “build an integrated accounting
system-cum-employee database”. This may be a real world scenario but it is not a legitimate topic for
algorithmics because part of the task is to figure out what theinput and output of the system should
be, and there are probably other implicit non-quantifiable criteria (such as available technology and
economic realities).

§3. Computational Model: How do we solve problems?

Once we agree on the computational problem to be solved, we must choose the tools for solving
it. This is given by thecomputational model. Any conventional programming languages such asC
or Java (suitably abstracted, so that it does not have finite space bounds, etc) can be regarded as a
computational model. A computational model is specified by

(a) the kind of data objects that it deals with

(b) the primitive operations to operate on these objects

(c) rules for composing primitive operations into larger unitscalledprograms.

Programs can be viewed as individual instances of a computational model. For instance, the Turing
model of computation is an important model in complexity theory and the programs here are called
Turing machines.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§3. COMPUTATIONAL MODEL Lecture I Page 5

¶7. Models for Sorting. To illustrate computational models, we consider the problem of sorting.
The sorting problem has been extensively studied since the beginning of Computer Science (from the
1950’s). It turns out that there are several computational models underlying this simple problem, each
giving rise to distinct computational issues. We briefly describe just three of them: thecomparison
tree model, thecomparator circuit model, and thetape model. In each models, the data objects are
elements from a linear order. 3 sorting models

The first model, comparison trees, has only one primitive operation, viz., comparing the two ele-
mentsx, y resulting in one of two outcomesx < y or x ≥ y. Such a comparison is usually denoted
“x : y”. We compose these primitive comparisons into atree program by putting them at the internal
nodes of binary tree. Tree programs represent flow of controland are more generally calleddecision
trees. Figure 1(a) illustrates a comparison tree on inputsx, y, z.

What is the output of the cmparison-tree? The outputs of the comparison tree is specified at each
leaf. For instance, if the tree is used for sorting, we outputthe sorted order of the input elements
determined at each leaf. Again, if the tree is used to find the maximum element of the input set, then
each leaf would specify the maximum element. But this is really begging the question: surely we cannot
write arbitrary outputs at each leaf?Intuitively, the output at each leaf must be completely determined
from the set of relations collected along the edges of the path to the leaf.Let us expand this idea: each
edge of the comparison tree represents a relationship of theform x < y or x ≥ y. The set of all these
relationships along a path to a leafv forms a partial orderP (v) on the input set. Then we want the
answer to our problem to be determined byP (v). In the sorting problem,P (v) must determine the
linear ordering on the input set, and in the maximum element problem, it must determine an elementx∗

such that for all other elementy, x∗ > y must be a relationship inP (v).

maxmax

min min

< <

< ≥

≥ ≥

(a)

x′

y
′

z′

(b)

x

y

z

x : z

x : y

y : z

Figure 1: (a) A comparison tree and (b) a comparator circuit

In the comparator circuit model, we also have one primitive operation which takes two input ele-
mentsx, y and returns two outputs: one output ismax{x, y}, the othermin{x, y}. These are composed
into circuits which are directed acyclic graphs withn input nodes (in-degree0) andn output nodes
(out-degree0) and some number of comparator nodes (in-degree and out-degree2). In contrast to tree
programs, the edges (calledwires) in such circuits represent actual data movement. Figure 1(b) shows
a comparator circuit on inputsx, y, z. Depending on the problem, the output of the comparator circuit
may be the set of all output lines (x′, y′, z′ in Figure 1(b)) or perhaps some subset of these lines.

A third model for sorting is the tape model. A tape is a storagemedium which allows slow, sequential
access to its data. We can use several tapes and limited amount of main memory, and the goal is to
minimize the number of passes over the entire data. We will not elaborate on this model, but [3] is
a good reference. Tape storage was the main means of mass storage in the early days of computing.
Curiously, some variant of this model (the “streaming data model”) is becoming important again because
of the vast amounts of data to be process in our web-age.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§3. COMPUTATIONAL MODEL Lecture I Page 6

¶8. Algorithms versus programs. To use a computational model to solve a given problem, we must
make sure there is a match between the data objects in the problem specification and the data objects
handled by the computational model. If not, we must specify some suitable encoding of the former
objects by the latter. Similarly, the input and output formats of the problem must be represented in some
way. After making explicit such encoding conventions, we may call A an algorithm for P if, if the
programA indeed computes a correct output for every legal input ofP . Thus the term algorithm is a
semantic concept, signifying a program in its relation to some problem. In contrast, programs may be
viewed as purely syntactic objects. E.g., the programs in figure 1(a,b) are both algorithms to compute
the maximum ofx, y, z. But what is the output convention for these two algorithms?

¶9. Uniform versus Non-uniform Models. While problems generally admit inputs of arbitrarily
large sizes (see discussion of size below), some computational models define programs that admit inputs
of a fixed size only. This is true of the decision tree and circuit models of computation. In order to
solve problems of infinite sizes, we must take a sequence of programsP = (P1, P2, P3, . . .) wherePi

admits inputs of sizei. We call such a programP a non-uniform program since we have nóa priori
connections between the differentPi’s. For this reason, we call the models whose programs admit only
finite size inputsnon-uniform models. The next section will introduce auniform model called the
RAM Model. Pointer machines (see Chapter 6) and Turing machines are other examples of uniform
models. The relationship between complexity in uniform models and in non-uniform models is studied
in complexity theory.

¶10. Problem of Merging Two Lists. Let us illustrate the difference between uniform and non-
uniform algorithms. A subproblem that arises in sorting is the merge problem where we are
given two sorted lists(x1, x2, . . . , xm) and (y1, y2, . . . , yn) and we want to produce a sorted list
(z1, z2, . . . , zm+n) where{z1, . . . , zm+n} = {x1, . . . , xm, y1, . . . , yn}. Assume these sorted lists are
non-decreasing.

The idea is as follows: what should the first output element be? Well, it is the minimum ofx1 and
y1. Assume this output isx1. What is the next one? Well, it must be eitherx2 or y1. So the general
picture is that we have outputx1, . . . , xi−1, and we have outputy1, . . . , yj−1 (for somei, j ≥ 1). The
next output element is eitherxi or yj , and this is determined by a comparison,xi : yj. This invariant is
easy to maintain. When one list is exhausted, we simply output the remaining elements in the other list.
Here then is our algorithm, written in style of a pseudo-programming language:

MERGE ALGORITHM

Input: (x1, . . . , xm) and(y1, . . . , yn), sorted in non-decreasing order.
Output: The merger(z1, . . . , zm+n) of these two lists, in non-decreasing order.

⊲ Initialize:
i← 1, j ← 1, k ← 1.

⊲ Loop:
if (xi ≤ yj)

zk ← xi, i← i + 1, k← k + 1.
else

zk ← yj , j ← j + 1, k ← k + 1.
⊲ Terminate:

if (i > m) ⊳ Thex’s are exhausted, output the remainingy’s
(zk, . . . , zm+n)← (yj , . . . , yn).

else ⊳ They’s are exhausted, output the remainingx’s
(zk, . . . , zm+n)← (xi, . . . , xm).

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§4. COMPLEXITY MODEL Lecture I Page 7

The student should note the conventions used in our programs, such as illustrated here. First, we Program conventions!
like to use pseudo-code which explains in English what is intended. This improves understanding (and
exploits what humans understand). Of course, computers arenot smart enough to compile our programs.
That is alright because our programs are intended for human consumption, not computers. Second, we
use indentation for program blocks – this reduces clutter, improves readability. Third, we use two kinds
of comments: (⊲ forward comments) and (⊳ backward comments).

This Merge Algorithm is a uniform algorithm for merging two lists. For eachm, n, this algo-
rithm can be “unwounded” into a comparison treeTm,n for merging two sorted lists of sizesm and
n (Exercise). Hence the uniform Merge Algorithm uniquely determines a non-uniform algorithm
{Tm,n : m, n ∈ N} for merging two lists.

¶11. Program Correctness. This has to do with the relationship between an program and a compu-
tational problem.A program that is correct relative to a problem is, by definition, an algorithm for that
problem.It is usual to divide correctness into two parts: partial correctness and halting. Partial correct-
ness says that the algorithm gives the correct output provided it halts. In some algorithms, correctness
may be trivial but this is not always true.

EXERCISES

Exercise 3.1: What problems do the programs in Figure 1(a) and (b) solve, respectively? You have
some leeway in giving them suitable interpretations. ♦

Exercise 3.2: (a) Extend the program in Figure 1(a) so that it sorts three input elements{x, y, z}.
(b) In general, define what it means to say that a comparison tree program sorts a set{x1, . . . , xn}
of elements. ♦

Exercise 3.3: Design a tree program to find the second largest of the elementsa, b, c, d. The height of
your tree should be4 (the optimum). ♦

Exercise 3.4: Design a tree program to merge two sorted lists(x, y, z) and(a, b, c, d). The height of
your tree should be6 (the optimum). ♦

Exercise 3.5: It is important to understand what we mean by “unwinding” an algorithm into a com-
parison tree: draw the tree program corresponding to unwinding the Merge Algorithm on input
(x1, x2) and(y1, y2, y3, y4). This is calledT2,4 in the text. ♦

END EXERCISES

§4. Complexity Model: How to assess algorithms?

We now have a suitable computational model for solving our problem. What is the criteria to choose
among different algorithms within a model? For this, we needto introduce acomplexity model.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§4. COMPLEXITY MODEL Lecture I Page 8

In most computational models, there are usually natural notions of time and space. These are
two examples ofcomputational resources. Naturally, resources are scarce and algorithms consume
resources when they run. We want to choose algorithms that minimize the use of resources. In our
discussions, we focus on only one resource at a time, usuallytime (occasionally space). So we avoid
issues of trade-offs between two resources.

Next, for each primitive operation executing on a particular data, we need to know how much of the
resource is consumed. For instance, inJava, we could define each execution of the addition operation
on two numbersa, b to use timelog(|a|+|b|). But it would be simpler to say that this operation takes unit
time, independent ofa, b. This simpler version is our choice throughout these lectures:each primitive
operation takes unit time, independent of the actual arguments to the operation.

How is the running time for sorting1000 elements related to the running time for sorting10 ele-
ments? The answer lies in viewing running time as a function of the number of input elements, the
“input size”. In general, problems usually have a natural notion of “input size” and this is the basis for
understanding the complexity of algorithms.

So we want a notion ofsizeon the input domain, and measure resource usage as a functionof input
size. The sizesize(I) of an input instanceI is a positive integer. We make a general assumption about
the size function:there are inputs of arbitrarily large size.

For our running example of the sorting problem, it may seem natural to define the size of an input
(a1, . . . , an) to ben. But actually, this is only natural because we usually use computational models
that compares a pair of numbers in unit time. For instance, ifwe must encode the input as binary strings
(as in the Turing machine model), then input size is better taken to be

∑n

i=1(1 + log(1 + |ai|)).

SupposeA is an algorithm for our problemP . For any input instanceI, let TA(I) be the total
amount of time used byA on inputI. Naturally,TA(I) = ∞ if A does not halt onI. Then we define
theworst case running timeof A to be the functionTA(n) where

TA(n) := max{TA(I) : size(I) = n}

Using “max” here illustrates one way to “aggregate” the set of numbers{TA(I) : size(I) = n}.
Another possibility is to take the average. In general, we may apply some functionG,

TA(n) = G({TA(I) : size(I) = n})

For instance, ifG is the average function and we getaverage time complexity.

To summarize: acomplexity model is a specification of
(a) the computational resource,
(b) the input size function,
(c) the unit of resource, and
(d) the methodG of aggregating.
Once the complexity model is fixed, we can associate to each algorithmA acomplexity function TA.

¶12. Example (T1). Complexity of Sorting. Consider the Comparison Tree Model for sorting. If
A is a tree program to sortn elements, then the worst case complexity of just the height of the treeA,
i.e., TA is the height ofA. From the definition ofTA, we can define a very interesting function: let
S(n) := infA TA whereA ranges over all comparison trees that sortn elements. The functionS(n)
captures theinherent complexity of sorting in our computational model. It is “inherent” because it is
not a function of a single algorithm, but speaks to all possible algorithms for sorting.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§4. COMPLEXITY MODEL Lecture I Page 9

We now prove our first non-trivial result. Start with the simple observation:any tree programA
to sortn elements must have at leastn! leaves.This is becauseA must have at least one leaf for each
possible sorting outcome, and there aren! outcomes when the input elements are all distinct. But a
binary treeA of heighth has at most2h leaves. Hence2h ≥ n! or h ≥ lg(n!). This proves:

LEMMA 1 (Information-Theoretic Bound).Every tree program for sortingn elements has height at
leastlg(n!), i.e.,

S(n) ≥ ⌈lg(n!)⌉ . (1)

In Fraleigh’s book,A
First Course in

Abstract Algebra
(Addison-Wesley

1969), I learned his
great wisdom:“Never

underestimate a
theorem that counts
something”(p. 93).

This extends to
inequalities like ITB.

This lower bound is called theInformation Theoretic Bound (ITB) for sorting. For instance,
S(3) ≥ ⌈lg(3!)⌉ = 3 andS(4) ≥ ⌈lg(4!)⌉ = 5. This deceptively simple result is quite deep: to
appreciate this fact, try to prove by direct arguments that it would be impossible to sort four elements
with only four comparisons in the worst case.

How good is the ITB lower bound onS(n)? Let us check this for the simplest case, wheren = 3.
It is easy to see that you can sort three elements in at most 3 comparisons: if you are given distinct
x, y, z then you can begin by comparingx : y andx : z. If you are lucky, this might end up sorting the
elements (eithery > x > z or z > x > y). Otherwise one more comparisony : z will sort the input.
This provesS(3) ≤ 3. Combined with the ITB, we conclude thatS(3) = 3.

OK, you ought to
checkn = 2 yourself

Note carefully how the proof ofS(3) = 3 requires two distinct arguments: an upper bound argument
S(3) ≤ 3 amounts to providing an algorithm. The lower bound argumentS(3) ≥ 3 comes from ITB. Complexity Theory in

a nutshell!In a small way, this is what complexity theory is all about – getting good upper (by studying algorithms)
and lower bounds (by devising impossibility arguments) on computational problems.

¶13. Example (T2). In our RAM model (real or integer version), let the computational resource be
time, where each primitive operation takes unit time. The input size function is the number of registers
used for encoding the input. The aggregation method is the worst case (for any fixed input size). This is
called theunit time complexity model.

¶14. Complexity of Merging. Recall thatS(n) captures the complexity of sorting in the comparison
tree model. We now do the same for the complexity of merging: defineM(m, n) to be the minimum
height of any comparison tree for merging two sorted lists ofsizesm andn, respectively. Let us prove
the following upper and lower bounds:

M(m, n) ≤ m + n− 1 (2)

M(m, n) ≥ 2 min{m, n} − δ(m, n) (3)

whereδ(m, n) = 1 if m = n andδ(m, n) = 0 otherwise. The upper bound comes from the algorithm
for merging described in§3. The proof ideas is that each comparison results in at leastone output. More
formally, we devise a simplecharging schemewhereby each comparison that the algorithm makes is
“charged” to the element that is output as a result of the comparison. But you cannot charge more than
the number of output elements. This gives an upper bound of≤ m + n comparisons. We improve this
bound by observing that the last element can be output without any comparison. Hence we obtain the
sharper upper bound ofm + n − 1. This charging argument is a very elementary example of whatwe
call anamortized analysisin Chapter 6.

The lower bound comes from the following input instance: assume the input isx1 < x2 < · · · < xm

andy1 < · · · < yn wherem ≥ n and

x1 < y1 < x2 < y2 < x3 < · · · < xn < yn.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§4. COMPLEXITY MODEL Lecture I Page 10

Let us rename these2n elements as

z1 < z2 < z3 < z4 < z5 < · · · < z2n−1 < z2n

wherez2i−1 = xi andz2i = yi (i = 1, . . . , n). Note that the comparisonzi : zi+1 must be made for
eachi = 1, . . . , 2n− 1.

Why? Because these relationshipszi < zi+1 are primitive relationships. This is
based on an important fact about partial orders (see Appendix for definition). A
relationshipx < y in a partial orderP is primitive if it cannot be deduced from
other relationships inP . In the comparison model, every primitive relation must be
determined by a comparison.
These primitive relationships constitute the edges of a directed graph called the
Hasse diagramof P . In practice, it is very helpful to draw such diagrams to
representP for small examples.

This yields a lower bound of2n − 1 comparions. In casem > n, there is at least one more
comparison to be made, betweenyn andxn+1. So if m > n, we need at least2n comparisons. This
provesM(m, n) ≥ 2n − δ(m, n), wheren = min{m, n}. This method of proving lower bounds is
simple form of what are calledadversary argumentsin Lecture 12, where you imagine a 2-player
game between the algorithm and an adversary.

A corollary of the above upper and lower bounds are some exactbounds for the complexity of
merging:

M(m, m) = 2m− 1

and
M(m, m + 1) = 2m.

Thus the uniform algorithm is optimal in these cases. More generally,M(m, m + k) = 2m + k− 1 for
k = 0, . . . , 4 andm ≥ 6 (see [3] and Exercise). These bounds are for inputs where|m− n| is a small
constant. Now consider the other extreme situation where|m − n| are large as possible:M(m, 1). In
this case, the information theoretic bound says thatM(m, 1) ≥ ⌈lg(m + 1)⌉ (why?). Also, by binary
search, this lower bound is tight. Hence we now know another exact value:

M(m, 1) = ⌈lg(m + 1)⌉ .

A non-trivial result from Hwang and Lin says

M(2, n) = ⌈lg 7(n + 1)/12⌉+ ⌈lg 14(n + 1)/17⌉ .

In analogy to (1), theinformation-theoretic bound (ITB) says

M(m, n) ≥ lg

(
m + n

m

)
(4)

since there are
(
m+n

n

)
ways of merging the two sorted lists, and any To see this, imagine that we already

have the sorted list ofm+n elements: but which of these elements come from the list of sizem? There
are
(
m+n

m

)
ways of choosing these elements.

Thus we have two distinct methods for proving lower bounds onM(m, n): the adversary method is
better when|m− n| is small, and the information theoretic bound is better whenthis gap is large. The
exact value ofM(m, n) is known for several other cases, but a complete descriptionof this complexity
function remains an open problem.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§4. COMPLEXITY MODEL Lecture I Page 11

¶15. Other Complexity Measures. There are complexity models. For instance, in computational
geometry, it is useful to take the output size into account. The complexity function would now take at
least two arguments,T (n, k) wheren is the input size, butk is the output size. This is theoutput-
sensitive complexity model.

Remarks:
1. Another kind of complexity measure is thesizeof a program. In the RAM model, this can be the
number of primitive instructions. We can measure the complexity of a problemP in terms of the size
s(P ) of the smallest program that solvesP . This complexity measure assigns a single numbers(P ), not
a complexity function, toP . Thisprogram size measureis an instance ofstatic complexity measure;
in contrast, time and space are examples ofdynamic complexity measures. Here “dynamic” (“static”)
refers to fact that the measure depends (does not depend) on the running of a program. Complexity
theory is mostly developed for dynamic complexity measures.
2. The comparison tree complexity model ignores all the other computational costs except comparisons.
In most situations this is well-justified. But it is possible2 to create conjure up ridiculous algorithms
which minimize the comparison cost, at an exorbitant cost inother operations.
3. The size measure is relative to representation. Perhaps the key property of size measures is thatthere
are only finitely many objects up to any given size. Without this, we cannot develop any complexity
theory. If the input set are real numbers,R, then it is very hard to give a suitable size function with this
property. This is the puzzle of real computation.

EXERCISES

Exercise 4.1: How many comparisons are required in the worst case to sort10 elements? Give a lower
bound in the comparison tree model. Note: to do the computation by hand, it is handy to know
that10! = 3, 628, 800 and220 = 1, 048, 576. ♦

Exercise 4.2: How good is the information theoretic lower bound?

In other words, can you find upper bounds that matches the information-theoretic lower bound?
Repeat this exercise for4 and5 elements. ♦

Exercise 4.3: The following is a variant of the previous exercise. Is it always possible to sortn elements
using a comparison tree withn! leaves? Check this out forn = 3, 4, 5. ♦

Exercise 4.4: (a) Consider a variant of the unit time complexity model for the integer RAM model,
called thelogarithmic time complexity model. Each operand takes time that is logarithmic in
the address of the register and logarithmic in the size of itsoperands. What is the relation between
the logarithmic time and the unit time models?
(b) Is this model realistic in the presence of the arithmeticoperators (ADD, SUB, MUL, DIV).
Discuss. ♦

Exercise 4.5: Describe suitable complexity models for the “space” resource in integer RAM models.
Give two versions, analogous to the unit time and logarithmic time versions. What about real
RAM models? ♦

2My colleague, Professor Robert Dewar suggests the following example: givenn numbers to be sorted, we first search for
all potential comparison trees for sortingn elements. To make this search finite, we only evaluate comparison trees of height at
mostn ⌈lg n⌉. Among those trees that we have determined to be able to sort,we pick one of minimum height. Now we run this
comparison tree on the given input.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§5. ALGORITHMIC TECHNIQUES Lecture I Page 12

Exercise 4.6: Justify the claim thatM(m, 1) = ⌈lg(m + 1)⌉. ♦

Exercise 4.7: Using direct arguments, give your best upper and lower bounds forM(2, 10). ♦

Exercise 4.8: Prove thatM(m, m + i) = 2m + i− 1 for i = 2, 3, 4 for m ≥ 6. ♦

Exercise 4.9: Prove thatM(k, m) ≥ k lg2(m/k) for k ≤ m. HINT: split the list of lengthm into three
sublists of roughly equal sizes. ♦

Exercise 4.10:Open problem: determineM(m, 3) andM(m, m + 5) for all m. ♦

Exercise 4.11:With respect to the comparator circuit and tree program models in §3, describe suitable
complexity models for each. ♦

Exercise 4.12:SupposeX1, . . . , Xn aren sorted lists, each withk elements. Show that the complexity
of sorting the setX =

⋃n

i=1 Xi is Θ(nk log n). ♦

END EXERCISES

§5. Algorithmic Techniques: How to design efficient algorithms

Now that we have some criteria to judge algorithms, we begin to design algorithms that are
“efficient” according to these criteria. There emerges somegeneral paradigms of algorithms design: (i)
Divide-and-conquer (e.g., merge sort)
(ii) Greedy method (e.g., Kruskal’s algorithm for minimum spanning tree)
(iii) Dynamic programming (e.g., multiplying a sequence ofmatrices)
(iv) Incremental method (e.g., insertion sort)

Let us briefly outline the merge sort algorithm to illustratedivide-and-conquer: Suppose you want
to sort an arrayA of n elements. Here is the Merge Sort algorithm on inputA:

MERGE SORT ALGORITHM

Input: An arrayA with n ≥ 1 numbers.
Output: The sorted arrayA containing these numbers in non-decreasing order.
0. (Basis) Ifn = 1, return the arrayA.
1. (Divide) Divide the elements ofA into two subarraysB andC of sizes⌊n/2⌋ and⌈n/2⌉ each.
2. (Recurse) Recursively, call the Merge Sort algorithm onB. Do the same forC.
3. (Conquer) Merge the sorted arraysB andC into the arrayA

There is only one non-trivial step in this algorithm, the Conquer Step which merges two sorted
arrays. The subalgorithm for merging was already present in¶10.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§6. ANALYSIS Lecture I Page 13

There are many variations or refinements of these paradigms.E.g., Kirkpatrick and Seidel [2] intro-
duced a form of divide-and-conquer (called “marriage-before-dividing”) that leads to an output-sensitive
convex hull algorithm. There may be domain specific versionsof these methods. E.g., plane sweep is
an incremental method suitable for problems on points in Euclidean space.

Closely allied with the choice of algorithmic technique is the choice ofdata structures. A data
structure is a representation of a complex mathematical structure (such as sets, graphs or matrices),
together with algorithms to support certain querying or updating operations. The following are some
basic data structures.

(a) Linked lists: each list stores a sequence of objects together with operations for (i) accessing the
first object, (ii) accessing the next object, (iii) inserting a new object after a given object, and (iv)
deleting any object.

(b) LIFO, FIFO queues: each queue stores a set of objects under operations for insertion and deletion
of objects. The queue discipline specifies which object is tobe deleted. There are two3 basic
disciplines: last-in first-out (LIFO) or first-in first-out (FIFO). Note that recursion is intimately
related to LIFO.

(c) Binary search trees: each tree stores a set of elements from a linear ordering together with the
operations to determine the smallest element in the set larger than a given element. A dynamic
binary search tree supports, in addition, the insertion anddeletion of elements.

(d) Dictionaries: each dictionary stores a set of elements and supports the operations of (i) inserting a
new element into the set, (ii) deleting an element, and (iii)testing if a given element is a member
of the set.

(e) Priority queues: each queue stores a set of elements from a linear ordering together with the oper-
ations to (i) insert a new element, (ii) delete the minimum element, and (iii) return the minimum
element (without removing it from the set).

EXERCISES

Exercise 5.1: (a) Design an incremental sorting algorithm based on the following principle: assuming
that the firstm elements have been sorted, try to add (“insert”) them + 1st element into the first
m elements to extend the inductive hypothesis. Moreover, assume that you do all these operations
using only the space in the original input array.

(b) If the numbern of elements to be sorted is small (sayn < C), this approach can lead to a
sorting algorithm that is faster than Merge Sort. Intuitively it is because Merge Sort uses recursion
that has non-trivial overhead cost. So a practical implementation of Merge Sort might switch an
incremental sorting method as in part(a) whenn < C. Design such a hybrid algorithm that
combines the Merge Sort algorithm with your solution in (a).

(c) Implement the Merge Sort Algorithm, your incremental sorting algorithm of part(a), and the
hybrid algorithm in part(b). Try to see if you can experimentally verify our remarks in (b), and
determine the constantC. ♦

END EXERCISES

3A discipline of a different sort is called GIGO, or, garbage-in garbage-out. This is really a law of nature.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§7. ASYMPTOPIA Lecture I Page 14

§6. Analysis: How to estimate complexity

We have now a measureTA of the complexity of our algorithmA, relative to some complexity
model. Unfortunately, the functionTA is generally too complex to admit a simple description, or tobe
expressed in terms of familiar mathematical functions. Instead, we aim to give upper and lower bounds
on TA. This constitutes the subject ofalgorithmic analysis which is a major part of this book. The
tools for this analysis depends to a large extent on the algorithmic paradigm or data structure used by
A. We give two examples.

¶16. Example (D1) Divide-and-Conquer. If we use divide-and-conquer then it is likely we need to
solve some recurrence equations. In our Merge Sort algorithm, assumingn is a power of2, we obtain
the following recurrence:

T (n) = 2T (n/2) + Cn

for n ≥ 2 andT (1) = 1, andC ≥ 1 is some constant determined by the complexity of merging.
HereT (n) = TA(n) is the (worst case) number of comparisons needed by our algorithm A to sortn
elements. The solution isT (n) = Θ(n log n). In the next chapter, we study techniques to obtain such
solutions.

¶17. Example (D2) Amortization. If we employ certain data-structures that might be described as
“lazy” then amortization analysis might be needed. Let us illustrate this with the problem of maintaining
a binary search tree under repeated insertion and deletion of elements. Ideally, we want the binary tree
to have heightO(log n) if there aren elements in the tree. There are a number of known solutions for
this problem (see Chapter 3). Such a solution achieves the optimal logarithmic complexity foreach
insertion/deletion operation. But it may be advantageous to be lazy about maintaining this logarithmic
depth property: such laziness may be rewarded by a simpler coding or programming effort. The price
for laziness is that our complexity may be linear for individual operations, but we may still hope to
achieve logarithmic cost in an “amortized” sense (thought of as a kind of averaging). To illustrate this
idea, suppose we allow the tree to grow to non-logarithmic depth as long as it does not cost us anything
(i.e., there are no queries on a leaf with big depth). But when we have to answer a query on a “deep
leaf”, we take this opportunity to restructure the tree so that the depth of this leaf is now reduced (say
halved). Thus repeated queries to this leaf will make it shallow. The cost of a single query could be
linear time, but we hope that over a long sequence of such queries, the cost is amortized (averaged)
to something small (say logarithmic). This technique prevents an adversary from repeated querying of
a “deep leaf”. But how do we account for the first few queries into some “deep leaves” which have
linear costs? To anticipate such expenses, the idea is to “pre-charge” those initial insertions that lead to
this inordinate depth. Using a financial paradigm, we put thepre-paid charges into some bank account.
Then the “deep queries” can be paid off by withdrawing from this account. Amortization is both an
algorithmic paradigm as well as an analysis technique. Thiswill be treated in Chapter 6.

§7. Asymptotics: How robust is the model?

This section contains important definitions for the rest of the book.

We started with a problem (§2), selected a computational model (§3) and an associated complexity
model (§4), designed an algorithm (§5) and managed to analyze its complexity (§6). Looking back
at this process, we are certain to find some arbitrariness in our choices. For instance, would a simple

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§7. ASYMPTOPIA Lecture I Page 15

change in the set of primitive operations change the complexity of your solution? Or what if we charge
two units of time for some of the operations? Of course, thereis no end to such revisionist afterthoughts.
What we are really seeking is a certain robustness or invariance in our results.

¶18. What is a complexity function? In this book, we call a partial function of the form

f : Rn → R

a complexity function. Usually, we haven = 1. We use complexity functions to quantify the the
complexity of our algorithms. But why do we considerpartial functions? For one thing, many functions
of interest are only defined on positive integers. For example, the running timeTA(n) of an algorithmA
that takes discrete inputs is a partial real function (normally defined only whenn is a natural number).
Of course, if the domain ofTA is taken to beN, thenTA(n) would be total. So why do we think
of R as the domain ofTA(n)? Again, we often use functions suchf(n) = n/2 or f(n) =

√
n, to

bound our complexity functions, and these are naturally defined on the real domain; all the tools of
analysis and calculus becomes available to analyze such functions. Many common real functions such
asf(n) = 1/n or f(n) = log n are partial functions because1/n is undefined atn = 0 and log n
is undefined forn ≤ 0. If f(n) is not defined atn, we writef(n) =↑, otherwisef(n) =↓. Since

↑ could be viewed as a
special value, but↓

cannot be viewed this
way: it is a surrogate

for all other values
complexity functions are partial, we have to be careful about operations such as functional composition.
The general rule for partial functions is thatf(g(x)) =↑ if g(x) =↑.

¶19. Partial Predicates. For any setS, a functionP : S → {0, 1} is called apredicate over S.
Usually, we say the predicateP holds at x ∈ S if P (x) = 1. So1 is the “true” value and0 is the
“false” value. The predicateP is valid if it holds at allx ∈ S. But we needpartial predicates where
P : S → {0, 1} is a partial function. Then we say the predicateP is valid if for all x ∈ S, either
P (x) =↑ or P (x) = 1. If P (x) =↑ for all x ∈ S, then we sayP is vacuouslyvalid. Partial predicates
arise naturally from relations among partial functions. Iff, g are complexity functions, then the relation
“f ≤ g” represents the partial predicateP : R → {0, 1} whereP (x) =↑ if f(x) =↑ or g(x) =↑;
otherwise,P (x) =↓. Naturally, whenP (x) =↓, we haveP (x) = 1 iff f(x) ≤ g(x). Quantification
over partial predicates is defined as follows: ifP : S → {0, 1} is a partial predicate, then(∀x ∈ S)P (x)
holds iff for all x ∈ S, eitherP (x) =↑ or P (x) = 1. Similarly (∃x ∈ S)P (x) holds iff there is some
x ∈ S such thatP (x) = 1. This can be generalized to nested quantifiers.

¶20. Designated variable and Anonymous functions. In general, we will write “n2” and “log x” to
refer to the functionsf(n) = n2 or g(x) = log x, respectively. Thus, the functions denotedn2 or log x
areanonymous(or self-naming). This convention is very convenient, but it relies on an understanding
that “n” in n2 or “x” in log x is thedesignated variablein the expression. For instance, the anonymous
complexity function2xn is a linear function ifn is the designated variable, but an exponential function
if x is the designated variable.The designated variable in complexity functions, by definition, range over
real numbers.This may be a bit confusing when the designated variable is “n” since in mathematical
literature,n is usually a natural number. n might be a real

variable!

¶21. Robustness or Invariance issue. Let us return to the robustness issue which motivated this
section. The motivation was to state complexity results that have general validity, or independent of
many apparently arbitrary choices in the process of deriving our results. There are many ways to achieve
this: for instance, we can specify complexity functions up to “polynomial smearing”. Two real functions
f, g,arepolynomially equivalent in this sense if for somec > 0, f(n) ≤ cg(n)c andg(n) ≤ cf(n)c

for all n large enough. Thus,
√

n andn3 are polynomially equivalent according to this definition. This
is extremelyrobust but alas, too coarse for most purposes. The most widely accepted procedure is to
take two smaller steps:

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§7. ASYMPTOPIA Lecture I Page 16

• Step 1: We are interested in the eventual behavior of functions (e.g., ifT (n) = 2n for n ≤ 1000
andT (n) = n for n > 1000, then we want to regardT (n) as a linear function).

• Step 2: We distinguish functions only up to multiplicative constants (e.g.,n/2, n and10n are
indistinguishable),

These two decisions give us most of the robustness properties we desire, and are captured in the follow-
ing language of asymptotics.

¶22. Eventuality. This is Step 1 in our search for invariance. Given two functions, we say “f ≤ g
eventually”, written

f ≤ g (ev.), (5)

if f(x) ≤ g(x) holds for allx large enough. More precisely, this means there is somex0 such that the
following statement is valid:

(∀x)[x ≥ x0 ⇒ f(x) ≤ g(x)]. (6)

By not caring about the behavior of complexity function oversome initial values, our complexity bounds
becomes robust against the followingtable-lookup trick . If A is any algorithm, relative to to any given
finite setS of inputs, we can modifyA so that ifx ∈ S, then the answer forx is obtained by a table
lookup; otherwise, the answer is computed by runningA on x. The modified algorithmA′ might be
much faster thanA for all x ∈ S, but it will have the same “eventual” complexity asA. Thus, the
complexity ofA andA′ are indistinguishable using our eventuality criterion.

To explicitly show the role of the variablex, we may also write (5) as

f(x) ≤ g(x) (ev.x).

A related notion is this: sayf ≤ g infinitely often , written “f(x) ≤ g(x) (i.o.x)”, if there are infinitely
manyx such thatf(x) =↓, g(x) =↓, andf(x) ≤ g(x). If g ≤ f (ev.) andf ≤ g (ev.), then clearly
g = f (ev.). Most natural functionsf in complexity satisfy some rather natural properties:

• f is eventually defined,f(x) =↓ (ev.).

• f is eventually non-negative,f ≥ 0 (ev.).

When these properties fails, our intuitions about complexity functions may go wrong.

¶23. Domination. We now take Step 2 towards invariance. We sayg dominatesf , written

f � g,

if there existsC > 0 such thatf ≤ C · g (ev.). The symbol ‘�’ is intended to evoke the ‘≤’ connection.
Thus, it suggests the transitivity property:f � g andg � h impliesf � h. Of course, the reflexivity
property holds:f � f . We can also write “f � g” instead ofg � f . If f � g andg � f then we write

f ≍ g.

Clearly≍ is an equivalence relation. The equivalence classes off is (essentially) theΘ-order of f ;
more on this below. Iff � g but notg � f then we write

f ≺ g.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§7. ASYMPTOPIA Lecture I Page 17

E.g., 1 + 1
n
≺ n ≺ n2. Thus the triplet of notations�,≺,≍ for real functions correspond to the

binary relations≤, <, = for real numbers. The basic properties of domination are suggested by this
correspondence: sincex ≤ y andy ≤ z impliesx ≤ z, we might expectf � g andg � h to imply
f � h (this is true).

Domination provides “implementation platform independence” for our complexity results: it does
not matter whether you implement a given algorithm in a high level program language likeJava or
in assembly language. The complexity of your algorithm in these implementations (if done correctly)
will be dominated by each other (i.e., sameΘ-order). This also insulates our complexity results against
Moore’s Law: over a limited time period, the timing of our algorithms keeps the sameΘ-order.

One form of Moore’s
law predicts that the

speed of hardware will
keep doubling every 18
months (the end is not

in sight yet).
¶24. The Big-Oh Notation. We write

O(f)

(and readorder of f or big-Oh of f ) to denote the set of all complexity functionsg such that

0 � g � f.

Note that each function inO(f) dominates0, i.e., is eventually non-negative. Thus, restricted to The key asymptotic
notation to know!functions that are eventually non-negative, the big-Oh notation (viewed as a binary relation) is equivalent

to domination. big-Oh is almost the
same as domination

We can unroll the big-Oh notation as follows: To proveg = O(f), you
need to show someC > 0 andx0 such that for allx ≥ x0, if g(x) =↓
andf(x) =↓ then0 ≤ g(x) ≤ Cf(x). Remember your delta-epsilon
argument in Calculus? The Computer Science analogue is thisC andx0

argument!

δ : ǫ :: C : x0

E.g., The setO(1) comprises all functionsf that is bounded and eventually non-negative. The
function1 + 1

n
is a member ofO(1).

The simplest usage of thisO-notation is as follows: we write

g = O(f)

(and read ‘g is big-Oh of f ’ or ‘ g is order of f ’) to meang is a member of the setO(f). The equality
symbol ‘=’ here is “uni-directional”:g = O(f) does not mean the same thing asO(f) = g. Below, we
will see how to interpret the latter expression. The equality symbol in this context is called aone-way
equality. Why not just use ‘∈’ for the one-way equality? A partial explanation is that onecommon use
of the equality symbol has a uni-directional flavor where we transform a formula from an unknown form
into a known form, separated by an equality symbol. Our one-way equality symbol forO-expressions
lends itself to a similar manipulation. For example, the following sequence of one-way equalities

f(n) =

n∑

i=1

(i +
n

i
) =

(
n∑

i=1

i

)
+

(
n∑

i=1

n

i

)
= O(n2) +O(n log n) = O(n2)

may be viewed as a derivation to showf is at most quadratic.

¶25. Big-Oh Expressions. The expression ‘O(f(n))’ is an example of anO-expression, which we
now define. In anyO-expression, there is adesignated variablewhich is the real variable that goes4 to

4More generally, we can considerx approaching some other limit, such as0.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§7. ASYMPTOPIA Lecture I Page 18

infinity. For instance, theO-expressionO(nk) would be ambiguous were it not for the tacit convention
that ‘n’ is normally the designated variable. Hencek is assumed to be constant. We shall defineO-
expressionsas follows:

(Basis) If f is the symbol for a function, thenf is anO-expression. Ifn is the designated variable for
O-expressions andc a real constant, then both ‘n’ and ‘c’ are alsoO-expressions.

(Induction) If E, F areO-expressions andf is a symbol denoting a complexity function then the
following areO-expressions:

O(E), f(E), E + F, EF, −E, 1/E, EF .

EachO-expressionE denotes a set̃E of partial real functions in the obvious manner: in the basiscase,
a function symbolf denotes the singleton setf̃ = {f}. Inductively, the expressionE+F (for instance)

denotes the set̃E + F of all functionsf + g wheref ∈ Ẽ andg ∈ F̃ . Similarly for

f̃(E), ẼF , −̃E, ẼF .

The set1̃/E is defined as
{
1/g : g ∈ Ẽ) & 0 � g

}
. The most interesting case is the expressionO(E),

called a “simple big-Oh expression”. In this case,

Õ(E) =
{
f : (∃g ∈ Ẽ)[0 � f � g]

}
.

Examples ofO-expressions:

2n −O(n2 log n), nn+O(log n), f(1 +O(1/n))− g(n).

Note that in general, the set of functions denoted by anO-expression need not dominate0. If E, F
are twoO-expressions, we may write

E = F

to denoteẼ ⊆ F̃ , i.e., the equality symbol stands for set inclusion! This generalizes our earlier “f =
O(g)” interpretation. Some examples of this usage:

O(n2)− 5O(log n) = O(nlog n), n + (log n)O(
√

n) = nlog log n, 2n = O(1)n−O(1).

An ambiguity arises from the fact that ifO does not occur in anO-expression, it is indistinguishable
from an ordinary expression. We must be explicit about our intention, or else rely on the context in
such cases. Normally, at least one side of the one-sided equation ‘E = F ’ contains an occurrence of
‘O’, in which case, the other side is automatically assumed to be anO-expression. Some common
O-expressions are:

• O(1), the bounded functions.

• 1±O(1/n), a set of functions that tends to1±.

• O(n), the linearly bounded functions.

• nO(1), the functions bounded by polynomials.

• O(1)n or 2O(n), the functions bounded by simple exponentials.

• O(log n), the functions bounded by some multiple of the logarithm.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§7. ASYMPTOPIA Lecture I Page 19

¶26. Extensions of Big-Oh Notations. We note some simple extensions of theO-notation:
(1) Inequality interpretation: ForO-expressionsE, F , we may writeE 6= F to mean that the set of
functions denoted byE is not contained in the set denoted byF . For instance,f(n) 6= O(n2) means
that for allC > 0, there are infinitely manyn such thatf(n) > Cn2.
(2) Subscripting convention:We can subscript the big-Oh’s in anO-expression. For example,

OA(n), O1(n
2) +O2(n log n). (7)

The intent is that each subscript (A, 1, 2) picks out a specific but anonymous function in (the set de-
noted by) the unsubscriptedO-notation. Furthermore, within a given context, two occurrences of an
identically subscriptedO-notation are meant to refer to the same function. For subscripted expressions,
it now makes sense to use inequalities, as in “f ≥ OA(g)” or “ f ≤ O1(g)”.

For instance, ifA is a linear time algorithm, we may say that “A runs in timeOA(n)” to indicate
that the choice of the functionOA(n) depends onA. Further, all occurrences of “OA(n)” in the same
discussion will refer to the same anonymous function. Again, we may write

n2k = Ok(n), n2k = On(2k)

depending on one’s viewpoint. Especially useful is the ability to do “in-line calculations”. As an
example, we may write

g(n) = O1(n log n) = O2(n
2)

where, it should be noted, the equalities here are true equalities of functions.

(3) Another possible extension is to multivariate real functions. For instance consider the notation
“f(x, y) = O(g(x, y))” where we view bothx andy are designated variables. I.e., there exist constants
C > 0, x0, y0 such that for allx > x0, y > y0, f(x, y) > Cg(x, y). In practice, such extension is
seldom needed.

¶27. Related Asymptotic Notations. The above discussion extends in a natural way to several other
related notations.

Big-Omega notation: Ω(f) is the set of all complexity functionsg such that for some constantC > 0,

C · g ≥ f ≥ 0 (ev.).

Of course, this can be compactly written asg � f � 0. Note thatΩ(f) is empty unless it is
eventually non-negative. Clearly, big-Omega is just the reverse of the big-Oh relation:g is in
Ω(f) iff f = O(g).

Theta notation: Θ(f) is the intersection of the setsO(f) andΩ(f). Sog is in Θ(f) iff g ≍ f .

Small-oh notation: o(f) is the set of all complexity functionsg such that for allC > 0,
The point is,C can be

arbitrarily small!

C · f ≥ g ≥ 0 (ev.).

As usual, we writeg = o(f) to meang ∈ o(f). For instance, withf(x) = 1/x andg(x) = 1,
we conclude that1/x = o(1). Also, we have the relationo(f) ⊆ O(f). It is sometimes useful to
have the a binary relation symbol for Small-oh that is the analogous to� for Big-Oh. Thus, let
us define

g ≺≺ f

to mean that for allC > 0, C · f ≥ g (ev.). ≺≺ corresponds to ‘≪’

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§7. ASYMPTOPIA Lecture I Page 20

An alternative definition of small-oh found in the literature is this: “g = o(f)” (in quotes) if
g(x)/f(x)→ 0 asx→∞. This definition is equivalent to ours iff(x) > 0 (ev.). Our definition
avoids the use of limits and seems easier to use. A related notation is this: we say

f ∼ g

if f = g ± o(g) or f(x) = g(x)[1 ± o(1)]. This says thatf andg approximates each other with
relative error ofo(1). Son ∼ n + lg n.

Small-omega notation: ω(f) is the set of all functionsg such that for allC > 0,

C · g ≥ f ≥ 0 (ev.).

Clearlyω(f) ⊆ Ω(f). Again, the usual limit-based definition of “g = ω(f)” (in quotes) is that
g(x)/f(x)→∞ asx→∞.

For each of these notations, we again define the◦-expressions (◦ ∈ {Ω, Θ, o, ω}), use the one-way
inequality instead of set-membership or set-inclusion, and employ the subscripting convention. Thus,
we write “g = Ω(f)” instead of saying “g is in Ω(f)”. We call the set◦(f) the◦-order of f . Here are
some immediate relationships among these notations:

• f = O(g) iff g = Ω(f).

• f = Θ(g) iff f = O(g) andf = Ω(g).

• f = O(f) andO(O(f)) = O(f).

• f + o(f) = Θ(f).

• o(f) ⊆ O(f).

• g = ω(f) iff f = o(g).

¶28. The Varieties of Lower Bounds. It is instructive to explore the notions of a lower bound —
one motivation is that lower bounds concepts are often misused in the literature. In the following, let us
assume thatf, g ≥ 0 (ev.). How can we express lower bounds on a complexity functionf?

• One way is to say thatg is a lower bound onf is f = Ω(g). This translates into f = Ω(g)

(∃C > 0)(∃n0)(∀n > n0)[f(n) > Cg(n)]. (8)

• But we could also negate the upper bound statementf = O(g). Thus the statementf 6= O(g)
gives another kind of lower bound onf : f 6= O(g)

(∀C > 0)(∀n0)(∃n > n0)[f(n) > Cg(n)]. (9)

• Using the small-omega and small-oh notations, we have two other ways to state lower bounds.
Thusf = ω(g) translates into f = ω(g)

(∀C > 0)(∃n0)(∀n > n0)[f(n) > Cg(n)]. (10)

• And finally f 6= o(g) translates into f 6= o(g)

(∃C > 0)(∀n0)(∃n > n0)[f(n) > Cg(n)]. (11)

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§7. ASYMPTOPIA Lecture I Page 21

Notice that the matrix ‘[f(n) > g(n)]’ is common to all the lower bound statements (8)–(11). We can
also check that

f = Ω(g)⇒ f 6= o(g) (12)

and
f = ω(g)⇒ f 6= O(g) (13)

See Exercises to see how these are used in practice. For example, let us prove that for allk < k′,

nk′ 6= O(nk).

Supposenk′

= O(nk). Then there is aC > 0 such thatnk′ ≤ Cnk (ev.). That meansnk′−k ≤ C (ev.).
This is a contradiction becausenε is unbounded for anyε > 0.

¶29. Discussion. There is some debate over the best way to define the asymptoticconcepts. There is
considerable divergence in the literature on the details. Here we note just two alternatives:
1. Perhaps the most common definition follows Knuth [4, p. 104] who defines “g = O(f)” to mean
there is someC > 0 such that|f(x)| dominatesC|g(x)|. Using this definition, bothO(−f) and−O(f)
would mean the same thing asO(f). Our definition, on the contrary, allows us to distinguish5 between
1 + O(1/n) and1 − O(1/n). Note thatg = 1 − O(f) amounts to1 − Cf ≤ f ≤ 1 (ev.). When an
big-Oh expression appears in negated form as in−O(1/n), it is really a lower bound
2. Again, we could have defined “O(f)” more simply, as comprising thoseg such thatg � f . That
is, we omit the requirement0 � g from our original definition. This alternative definition isattractive
for its simplicity. But the drawback of “O(f)” is that it contains arbitrarily negative functions. The
expression1 − O(1/n) is useful as an upper and lower bound under our official notation. But with
the simplified definition, the expression “1 − O(1/n)” has no value as an upper bound. Our official
definition opted for something that is intermediate betweenthis simplified version and Knuth’s.

We are following Cormen et al [1] in restricting the elementsof O(f) to complexity functions that
dominate0. This approach has its own burden: thus whenever we say “g = O(f)”, we have to check
thatg dominates0 (cf. exercise 1 below). In practice, this requirement is notmuch of a burden, and is
silently passed over.

A common abuse is to use big-Oh notations in conjunction withthe less-than or greater-than symbol:
it is very tempting to write “f(n) ≤ O(g)” instead of “f(n) = O(g)”. At best, this is redundant. The
problem is that, once this notation is admitted, one may in the course of a long derivation eventually
write “f(n) ≥ O(E)” which is not very meaningful. Hence we regard any use of≤ or ≥ symbols in
O-notations as illegitimate (but this is legitimate again under the subscripting convention (7)).

Perhaps most confusion (and abuse) in the literature arisesfrom the variant definitions of theΩ-
notation. For instance, one may have only shown a lower boundof the formf 6= O(g) or f 6= o(g)
result, but this this viewed as a proof off = Ω(g) or g = ω(g). We see from (12) and (13) that these
are quite different.

Evidently, these asymptotic notations can be intermixed. E.g.,o(nO(log n) − Ω(n). However, they
can be tricky to understand and there seems to be little need for them. Another generalization with
some applications are multivariate complexity functions such asf(x, y). They do arise in discussing
tradeoffs between two or more computational resources suchas space-time, area-time, etc. In recently
years, the study of “parametrized complexity” has given example of multivariate complexity functions
where some of the size variables controls the “parameters” of the problem.

5On the other hand, there is no easy way to recover Knuth’s definition using our definitions. It may be useful to retain Knuth’s
definition by introducing a special notation “|O|(f(n))”, etc.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§7. ASYMPTOPIA Lecture I Page 22

EXERCISES

Exercise 7.1: Assumef(n) ≥ 1 (ev.).
(a) Show thatf(n) = nO(1) iff there existsk > 0 such thatf(n) = O(nk). This is mainly an
exercise in unraveling our notations!
(b) Show a counter example to (a) in casef(n) ≥ 1 (ev.) is false. ♦

Exercise 7.2: Prove or disprove:f = O(1)n iff f = 2O(n). ♦

Exercise 7.3: If Pi : S → {0, 1} are partial predicates(i = 0, 1) over some domainS, then so are
¬Pi, P0 ∨P1 andP0 ∧P1 where we use the rule that¬P0(x), P0(x)∨P1(x), P0(x)∧P1(x) are
all undefined whenP0(x) =↑. Show that de Morgan’s law for quantifiers hold:¬(∀x)P (x) is
equivalent to(∃x)¬P (x) and¬(∃x)P (x) is equivalent to(∀x)¬P (x). ♦

Exercise 7.4: Unravel the meaning of theO-expression:1 − O(1/n) + O(1/n2) − O(1/n3). Does
theO-expression have any meaning if we extend this into an infinite expression with alternating
signs? ♦

Exercise 7.5: For basic properties of the logarithm and exponential functions, see the appendix in the
next lecture. Show the following (remember thatn is the designated variable). In each case, you
must explicitly specify the constantsn0, C, etc, implicit in the asymptotic notations.
(a) (n + c)k = Θ(nk). Note thatc, k can be negative.
(b) log(n!) = Θ(n logn).
(c) n! = o(nn).
(d) ⌈log n⌉! = Ω(nk) for anyk > 0.
(e)⌈log log n⌉! ≤ n (ev.). ♦

Exercise 7.6: Provide either a counter-example when false or a proof when true. The baseb of loga-
rithms is arbitrary but fixed, andb > 1. Assume the functionsf, g are arbitrary (do not assume
thatf andg are≥ 0 eventually).
(a)f = O(g) impliesg = O(f).
(b) max{f, g} = Θ(f + g).
(c) If g > 1 andf = O(g) thenln f = O(ln g). HINT: careful!
(d) f = O(g) impliesf ◦ log = O(g ◦ log). Assume thatg ◦ log andf ◦ log are complexity
functions.
(e)f = O(g) implies2f = O(2g).
(f) f = o(g) implies2f = O(2g).
(g) f = O(f2).
(h) f(n) = Θ(f(n/2)). ♦

Exercise 7.7: Re-solve the previous exercise, assuming thatf, g ≥ 2 (ev.). ♦

Exercise 7.8: Let f(x) = sinx andg(x) = 1.
(i) Provef � g or its negation.
(ii) Proveg � f or its negation.

HINT: To prove thatf 6� g, you need to show that forall choices ofC > 0 andx0 > 0, some
relationship betweenf andg fails. ♦

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§8. TWO DICTUMS Lecture I Page 23

Exercise 7.9: This exercise shows three (increasingly strong) notions oflower bounds. SupposeTA(n)
is the running time of an algorithmA.
(a) Suppose you have constructed an infinite sequence of inputsI1, I2, . . . of sizesn1 < n2 < · · ·
such thatA onIi takes time more thanf(ni). How can you express this lower bound result using
our asymptotic notations?
(b) In the spirit of (a), what would it take to prove a lower bound of the formTA(n) 6= O(f(n))?
What must you show about of your constructed inputsI1, I2, . . ..
(c) What does it take to prove a lower bound of the formTA(n) = Ω(f(n))?

♦

Exercise 7.10:Show some examples where you might want to use “mixed” asymptotic expressions.
♦

Exercise 7.11:Discuss the meaning of the expressionsn −O(log n) andn +O(log n) under (1) our
definition, (2) Knuth’s definition and (3) the “simplified definition” in the discussion. ♦

END EXERCISES

§8. Two Dictums of Algorithmics

We discuss two principles in algorithmics. They justify many of our procedures and motivate some
of the fundamental questions we ask.

(A) Complexity functions are determined only up toΘ-order. This recalls our motivation for intro-
ducing asymptotic notations, namely, concern for robust complexity results. For instance, we might
prove a theorem that the running timeT (n) of an algorithm is “linear time”,T (n) = Θ(n). Then
simple and local modifications to the algorithm, or reasonable implementations on different platforms,
should not affect the validity of this theorem.

There are of course several caveats: A consequence of this dictum is that a “new” algorithm is not
considered significant unless its asymptotic order is less than previous known algorithms. This attitude
could be counter-productive if it is abused. Often, an asymptotically superior algorithm may be inferior
when compared to another slower algorithm on all inputs of realistic sizes. For special problems, we
might be interested in constant multiplicative factors.

(B) Problems with complexity that are polynomial-bounded are feasible. Moreover, there is an
unbridgeable gap between polynomial-bounded problems andthose that are not polynomial-bounded.
This principle goes back to Cobham and Edmonds in the late sixties and relates to theP versusNP
question. Hence, the first question we ask concerning any problem is whether it is polynomially-
bounded. The answer may depend on the particular complexitymodel. E.g., a problem may be
polynomial-bounded in space-resource but not in time-resource, although at this moment it is unknown
if this possibility can arise. Of course, polynomial-bounded complexityT (n) = nc is not practical
except for smallc (typically less than6). In many applications, evenc = 2 is not practical. So the
“practically feasible class” is a rather small slice ofP .

Despite the caveats, these two dictums turn out to be extremely useful. The landscape of compu-
tational problems is thereby simplified and made “understandable”. The quest for asymptotically good

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§8. TWO DICTUMS Lecture I Page 24

algorithms helps us understand the nature of the problem. Often, after a complicated but asymptotically
good algorithm has been discovered, we find ways to achieve the same asymptotic result in a simpler
(practical) way.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§A. APPENDIX: GENERAL NOTATIONS Lecture I Page 25

§A. APPENDIX: General Notations

We gather some general notations used throughout this book.Use this as reference. If there is a
notation you do not understand from elsewhere in the book, this is a first place to look. Bookmark this ap-

pendix to come back
often!§A.0 Definitions.

We use the symbol:= to indicate the definition of a term: we will writeX := . . . Y . . . when defining
a termX in terms of. . . Y . . .. For example, we define the sign function as follows:

sign(x) :=





1 iff x > 0
0 iff x = 0
−1 iff x < 0

Or, to define the special symbol for logarithm to base2, we writelg x := log2 x.

§A.1 Numbers.
Denote the set of natural numbers6 by N = {0, 1, 2, . . .}, integers byZ = {0,±1,±2, . . .}, rational
numbers byQ = {p/q : p, q ∈ Z, q 6= 0}, the realsR and complex numbersC. Thus we have

N ⊆ Z ⊆ Q ⊆ R ⊆ C.

The positive and non-negative reals are denotedR>0 andR≥0, respectively. The set of integers{i, i +
1, . . . , j − 1, j} wherei, j ∈ N is denoted[i..j]. So the size of[i..j] is max{0, j − i + 1}. If r is a real
number, let itsceiling ⌈r⌉ be the smallest integer greater than or equal tor. Similarly, itsfloor ⌊r⌋ is the
largest integer less than or equal tor. Clearly,⌊r⌋ ≤ r ≤ ⌈r⌉. For instance,⌊0.5⌋ = 0, ⌊−0.5⌋ = −1
and⌈−2.3⌉ = −2.

§A.2 Sets.
Thesizeor cardinality of a setS is the number of elements inS and denoted|S|. The empty set is
∅. A set of size one is called asingleton. The disjoint union of two sets is denotedX ⊎ Y . Thus,
X = X1 ⊎X2 ⊎ · · · ⊎Xn to denote a partition ofX into n subsets. IfX is a set, then2X denotes the
set of all subsets ofX . TheCartesian product X1 × · · · ×Xn of the setsX1, . . . , Xn is the set of all
n-tuples of the form(x1, . . . , xn) wherexi ∈ Xi. If X1 = · · · = Xn then we simply write this asXn.
If n ∈ N then an-set refers to one with cardinalityn, and

(
X
n

)
denotes the set ofn-subsets ofX .

Sometimes, we need to considermultisets. These are sets whose elements need not be distinct.
E.g., the multisetS = {a, a, b, c, c, c} has6 elements but only three of them are distinct. There are
two copies ofa and three copies ofc in S. Note thatS is distinct from the set{a, b, c}, and we use set
notations for multisets. Alternatively, a multiset can be viewed as a functionµ : S → N whose domain
is a standard setS. Intuitively, µ(a) is the multiplicity of eacha ∈ S.

§A.3 Relations and Order.
An n-ary relation on a setX is a set of the formR ⊆ Xn. The most important case isn = 2, when we
have binary relations. Instead of saying(a, b) ∈ R, we like to writeaRb, read as “a is R-related tob”.

Let a, b, c ∈ X . A binary relationR is reflexive if aRa, transitive if aRb andbRc impliesaRc,
symmetric if aRb impliesbRa, anti-symmetric if aRb andbRa impliesa = b. A pre-order R is a
reflexive and transitive binary relation. A pre-orderR that is alsosymmetric is anequivalencerelation.
Equivalence relations is extremely important concept in all of mathematics, and it induces a partition
of X into disjoint subsets, called equivalence classes. A pre-orderR that isanti-symmetric (aRb and
bRa impliesa = b) is anpartial order relation.

6Zero is considered natural here, although the ancients do not consider it so. The symbolZ comes from the German ‘zahlen’,
to count.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§A. APPENDIX: GENERAL NOTATIONS Lecture I Page 26

LEMMA 2. LetR ⊆ X2 be a preorder.
(i) The setX := {x : x ∈ X} wherex = {y ∈ X : xRy, yRx} forms a partition ofX .

(ii) The relationR ⊆ X
2

wherexRy if xRy is a partial order onX.

Proof. (i) Supposex ∩ y is non-empty for somex, y ∈ X . Then there is az ∈ x ∩ y. We prove
thatx ⊆ y: for u ∈ x impliesuRx. But xRz andzRy, so by transitivity,uRxRzRy or uRy. We can
similarly showyRu. Thusu ∈ y. This provesx ⊆ y. Again by symmetry, we can show thaty ⊆ x.
Thusx = y. This proves that the setsx in X are pairwise disjoint. Moreover, everyx ∈ X belongs to
x ∈ X. This concludes our proof thatX is a partition ofX .
(ii) We must prove reflexivity, antisymmetry and transitivity of R. Reflexivity comes fromxRx since
xRx holds in a pre-order. Antisymmetry comes fromxRy andyRx impliesy ∈ x and hencey = x.
Transitivity ofR follows easily from the transitivity ofR. Q.E.D.

§A.4 Functions.
If f : X → Y is a partial function, then writef(x) =↑ if f(x) is undefined andf(x) =↓ otherwise. If
for all x, f(x) ↓, thenf a total function. Some authors usef : X ≻Y to indicate partial functions, and
reserve “f : X → Y ” for total functions. Function composition will be denotedf ◦ g : X → Z where
g : X → Y andf : Y → Z. Thus(f ◦ g)(x) = f(g(x)). We need the special rule that wheng(x) =↑
thenf(g(x)) =↑. We say a total functionf is injective or 1 − 1 if f(x) = f(y) impliesx = y; it is
surjective or onto if f(X) = Y ; it is bijective if it is both injective and surjective.

The special functions of exponentiationexpb(x) and logarithmlogb(x) to baseb > 0 are more fully
described in the Appendix of Chapter 2. Although these functions can be viewed as complex functions,
we will exclusively treat them as real functions in this book. In particular, it meanslogb(x) is undefined
for x ≤ 0. When the baseb is not explicitly specified, it is assumed to be some constantb > 1. Two
special bases7 deserve their own notations:lg x and lnx refer to logarithms to baseb = 2 and base
b = e = 2.718..., respectively. In computer science,lg x is immensely useful. For any reala, we write
loga x as short hand for(log x)a. E.g.,log2 x = (log x)2. For any natural numberi, let log(i) x denote
thei-fold application of thelog-function. E.g.,log(2) x = log(log x)) = log log x andlog(0) x = x. In
fact, this notation can be extended to any integeri, wherei < 0 indicates the|i|-fold application ofexp.

§A.5 Logic.
We assume the student is familiar with Boolean (or propositional) logic. In Boolean logic, each variable
A, B stands for a proposition that is either true or false. Boolean logic deals with Boolean combinations
of such variables:¬A, A ∨ B, A ∧ B. Note thatA ⇒ B is logical implication, and is equivalent to
¬A ∨B.

But mathematical facts goes beyond propositional logic. Here is an example8 of a mathematical
assertionP (x, y) wherex, y are real variables:

P (x, y) : There exists a realz such that eitherx ≥ y or x < z < y. (14)

The student should know how to parse such assertions. The assertionP (x, y) happens to be true. This
is logically equivalent to

(∀x, y ∈ R)[P (x, y)]. (15)

All mathematical assertions are of this nature. Note that wehave passed from propositional logic to
quantifier (first order) logic. It is said that mathematical truths are universal: truthhood does not allow
exceptions. If an assertionP (x, y) has exceptions, and we can explicitly characterize the exceptions
E(x, y): then the new statementP (x, y) ∨ E(x, y) constitute a true assertion.

7Of courselnx has the (well-deserved) appellation “natural logarithm”,but lg x has no special name. But it could be called
the “computer science logarithm”.

8When we formalize the logical language of discussion, what is called “assertion” here is often called “formula”.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§A. APPENDIX: GENERAL NOTATIONS Lecture I Page 27

Assertions contain variables: for example,P (x, y) in (14) containsx, y, z. Each variable has an
implied or explicit range (x, y, z range over “real numbers”), and each variable is eitherquantified
(either by “for all” or “there exists”) orunquantified. Alternatively, they are eitherboundedor free.
In our exampleP (x, y), z is bounded whilex, y are free. It is conventional to display the free variables
as functional parameters of an assertion. The symbol∀ stands for “for all” and is called theuniversal
quantifier . Likewise, the symbol∃ stands for “there exists” and is called theexistential quantifier.
Assertions with no free variables are calledstatements. We can always convert an assertion into a
statement by adding some prefix to quantify each of the free variables. Thus,P (x, y) can be converted
into statements such as in (15) or as in(∃x ∈ R)(∀y ∈ R)[P (x, y)]. In general, ifA and B are
statements, so is any Boolean combinations ofA andB, such asA∧B and¬A or A∨B. However, all
statements can be transformed into the form

(Q1)(Q2) · · · (Qn) [. . . predicate . . .]

whereQi is theith quantifier part. Such a form, where all the quantifiers appear before the predicate
part, is said to be inprenex form.

In the above discussion, we make the conventional assumption that when the variables in an asser-
tions are instantiated, then the assertion is either true orfalse. But in our discussion of partial functions,
we need to generalize this to the setting that for some instances ofx, y, the assertionP (x, y) might be
undefined (neither true nor false). We callP a partial assertion (or partial predicate). The quantified
form (∀x)P (x) is then true if for allx in the domain, eitherP (x) is undefined orP (x) is true; similarly,
(∃x)P (x) is true if there is somex in the domain such thatP (x) is defined and true. This extends
naturally to predicates with more than one free variable.

§A.6 Proofs and Induction.
Constructing proofs or providing counter examples to mathematical statements is a basic skill to culti-
vate. Three kinds of proofs are widely used: (i) case analysis, (ii) induction, and (iii) contradiction.

A proof by case analysis is often a matter of patience. But sometimes a straightforward enumeration
of the possibilities will yield too many cases; clever insights may be needed to compress the argument.
Induction is sometimes mechanical as well but very complicated inductions can also arise (Chapter 2
treats induction). Proofs by contradiction usually has a creative element: you need to find an assertion
to be contradicted!

In proofs by contradiction, you will need to routinely negate a logical statement. Let us first consider
the simple case of propositional logic. Here, you basicallyapply what is called De Morgan’s Law: ifA
areB are truth values, then¬(A ∨ B) = (¬A) ∧ (¬B) and¬(A ∧ B) = (¬A) ∨ (¬B). For instance
suppose you want to contradict the propositionA⇒ B. You need to first know thatA⇒ B is the same
as(¬A) ∨B. Negating this by de Morgan’s law gives usA ∧ (¬B).

Next consider the case of quantified logic. De Morgan’s law becomes the following:¬((∀x)P ) is
equivalent to(∃x)(¬P ); ¬((∃x)P ) is equivalent to(∀x)(¬P ). A useful place to exercise these rules is
to do some proofs involving the asymptotic notation (big-Oh, big-Omega, etc). See Exercise.

§A.7 Formal Languages.
An alphabet is a finite setΣ of symbols. A finite sequencew = x1x2 · · ·xn of symbols fromΣ is
called aword or string overΣ; the length of this string isn and denoted9 |w|. Whenn = 0, this is
called theempty string or word and denoted with the special symbolǫ. The set of all strings overΣ is
denotedΣ∗. A languageoverΣ is a subset ofΣ∗.

§A.8 Graphs.
9This notation should not be confused with the absolute valueof a number or the size of a set. The context will make this

clear.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§A. APPENDIX: GENERAL NOTATIONS Lecture I Page 28

A hypergraph is a pairG = (V, E) whereV is any set andE ⊆ 2V . We call elements ofV vertices
and elements ofE hyper-edges. In caseE ⊆

(
V
k

)
, we callG a k-graph. The casek = 2 is important

and is called abigraph (or more commonly,undirected graph). A digraph or directed graph is
G = (V, E) whereE ⊆ V 2 = V × V . For any digraphG = (V, E), its reverseis the digraph(V, E′)
where(u, v) ∈ E iff (v, u) ∈ E′. In this book, the word “graph” shall refer to a bigraph or digraph;
the context should make the intent clear. The edges of graphsare often written ‘(u, v)’ or ‘ uv’ where
u, v are vertices. We will prefer10 to denote edge-hood by the notationu−v. Of course, in the case of
bigraphs,u−v = v−u.

Often a graphG = (V, E) comes with auxiliary data, sayd1, d2, etc. In this case we denote the
graph by

G = (V, E; d1, d2, . . .)

using the semi-colon to mark the presence of auxiliary data.For example:
(i) Often one or two vertices inV are distinguished. Ifs, t ∈ V are distinguished, we might write
G = (V, E; s, t). This notation might be used in shortest path problems wheres is the source andt is
the target for the class of paths under consideration.
(ii) A “weight” function W : V → R, and we denote the corresponding weighted graph byG =
(V, E; W ).
(iii) Another kind of auxiliary data isvertex coloring of G, i.e., a functionC : V → S whereS is any
set. ThenC(v) is called thecolor of v ∈ V . If |S| = k, we callC ak-coloring. Thechromatic graph
is therefore given by the tripleG = (V, E; C). An edge coloringis similarly defined,C : E → S.

We introduce terminology for some special graphs: IfV is the empty set, A graphG = (V, E)
is called theempty graph. If E is the empty set,G = (V, E) is called thetrivial graph . Hence
empty graphs are necessarily trivial but not vice-versa.Kn = (V,

(
V
2

)
) denotes thecomplete graphon

n = |V | vertices. Abipartite graph G = (V, E) is a digraph such thatV = V1 ⊎V2 andE ⊆ V1×V2.
It is common to writeG = (V1, V2, E) in this case. Thus,Km,n = (V1, V2, V1 × V2) denotes the
complete bipartite graph wherem = |V1| andn = |V2|.

Two graphsG = (V, E), G′ = (V ′, E′) areisomorphic if there is some bijectionφ : V → V ′ such
thatφ(E) = E′ (the notationφ(E) has the obvious meaning).

If G = (V, E), G′ = (V ′, E′) whereV ′ ⊆ V andE′ ⊆ E then we callG′ a subgraph of G. In
caseE′ is the restriction ofE to the edges inV ′, i.e., E′ = E∩V ′×V ′, then we sayG′ is the subgraph
of G induced byV ′, or G′ is therestriction of G to V ′. We may writeG|V ′ for G′.

A path (from v1 to vk) is a sequence(v1, v2, . . . , vk) of vertices such that(vi, vi+1) is an edge.
Thus, we may also denote this path as(v1−v2− · · · −vk). A path isclosed if v1 = vk andk > 1.
Two closed paths arecyclic equivalent if the sequence of edges they pass through are the same up to
cyclic reordering. A cyclic equivalence class of closed paths is called acycle. The length of a cycle is
just the length of any of its representative closed paths. For bigraphs,we further require cycles to have
representative closed paths of the form(v1−v2−v3− · · · −v1) wherev1, v2, v3 are all distinct.Without
this requirement, every edgeu−v in a bigraph would give us a cycle whose representatives is(u, v, u).
A graph isacyclic if it has no cycles. Sometimes acyclic bigraphs are calledforests, and acyclic digraph
are calleddags(“directed acyclic graph”).

Two verticesu, v areconnectedif there is a path fromu to v, and a path fromv to u. (Note that
in the case of bigraphs, there is a path fromu to v iff there is a path fromv to u.) We shall sayv is
adjacent to u if u−v. Connectivity is a symmetric binary relation for all graphs; adjacency is also a
symmetric binary relation for bigraphs. It is easily seen that connectivity is also reflexive and transitive.
This relation partitions the set of vertices intoconnected components.

10When we writeu−v, it is really an assertion that the(u, v) is an edge. So it is redundant to say “u−v is an edge”.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§A. APPENDIX: GENERAL NOTATIONS Lecture I Page 29

In a digraph,out-degreeand in-degreeof a vertex is the number of edges issuing (respectively)
from and into that vertex. Theout-degree(resp.,in-degree) of a digraph is the maximum of the out-
degrees (resp., in-degrees) of its vertices. The vertices of out-degree0 are calledsinks and the vertices
of in-degree0 are calledsources. Thedegreeof a vertex in a bigraph is the number of adjacent vertices;
thedegreeof a bigraph is the maximum of degrees of its vertices.

See Chapter 4 for further details on graph-related matters.

§A.9 Trees.
A connected acyclic bigraph is called afree tree. A digraph such that there is a unique source vertex
(called theroot) and all the other vertices have in-degree1, is called11 a tree. The sinks in a tree
are calledleavesor external nodesand non-leaves are calledinternal nodes. In general, we prefer a
terminology in which the vertices of trees are callednodes. Thus there is a unique path from the root
to each node in a tree. Ifu, v are nodes inT thenu is adescendantof v if there is a path fromv to
u. Every nodev is a descendant of itself, called theimproper descendantof v. All other descendants
of v are calledproper. We may speak of thechild or grandchild of any node in the obvious manner.
The reverse of the descendant binary relation is theancestorrelation; thus we haveproper ancestors,
parent andgrandparent of a node.

Thesubtreeat any nodeu of T is the subgraph ofT obtained by restricting to the descendants ofu.
Thedepth of a nodeu in a treeT is the length of the path from the root tou. So the root is the unique
node of depth0. Thedepth of T is the maximum depth of a node inT . Theheight of a nodeu is just
the depth of the subtree atu; alternatively, it is the length of the longest path fromu to its descendants.
Thusu has height0 iff u is a leaf iff u has no children. The collection of all nodes at depthi is also
called theith level of the tree. Thus level zero is comprised of just the root. We normally draw a tree
with the root at the top of the figure, and edges are implicitlydirection from top to bottom.

See Chapter 3 for further details on binary search trees.

§A.10 Programs.
In this book, we present algorithms in an informal unspecified programming language that combines
mathematical notations with standard programming language constructs. For lack of better name, we
call this languagepseudo-PL. The basic goal in the presentation of pseudo-PL programs isto expose

pseudo-PL is
appropriately

amorphous by designthe underlying algorithmic logic. It is not to produce code that can compile in any conventional pro-
gramming language! And yet, it is often easy to transcribe pseudo-PL into compilable code in languages
such asC++ orJava. There are two good reasons why we stop short of writing compilable code – first,
it is easier to understand, and second, it would be programming language-dependent.

Programming languages are harder to understand because it is intended for machine consumption,
and that could get in the way of human understanding. A major advantage of writing compilable code
is that it could be given to a computer for execution. Unfortunately, the “half-life” of programming
languages tend to be rather short compared to that of naturallanguages. Informally, say the half-life
of a programming language is the time it takes before most programs in the language will no longer
compile; similarly, the half-life of a natural language or pseudo-code is the time it takes before most
people find hard to understand algorithmic descriptions.

Here is the quick run-down on pseudo-PL:

11One can also define trees in which the sense of the edges are reversed: the root is a sink and all the leaves are sources. We
will often go back and forth between these two view points without much warning. E.g., we might speak of the “path from a node
to the root”. While it is clear what is meant here, but to be technically correct, we ought to speak awkwardly of the path in the
“reverse of the tree”.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§A. APPENDIX: GENERAL NOTATIONS Lecture I Page 30

• We use standard programming constructs such as if-then-else, while-loop, return statements, etc.
no clutter language

• To reduce clutter, we indicate the structure of programmingblocks by indentation and newlines
only. In particular, we avoid explicit block markers such as“begin...end”, “...”, etc.

• Single line comments in a program are indicated in two ways:
⊲ This is a forward comment
⊳ This is a backward commentThese comments either precede (in case of forward comment)
or follows (in case of backward comment) the code that it describes. We have little need for
multiline comments in pseudo-PL because all code is supplemented by off-line explanations that
serve the same purpose.

• Programming variables are undeclared, and implicitly introduced through their first use. They
are not explicitly typed, but the context should make this clear. This is in the spirit of modern
scripting languages such asPerl, and consistent with our clutter-free spirit.

• Normally, each line is a command, so we need not end it with thetraditional semicolon (;) or
a full stop. (We use both semicolon and full stops – if the explanation is more “Englishy” we
prefer full stops.) But if we put two or commands on one line, we could still separate them with
semicolons. What if a command needs more than one line? In many computer languages, the
continuation symbol is\. But in our effort to produce more human friendly programs, we could
use ellipsis “. . .” at the end of a line to indicate its continuation to the next line. But if the line is
an English sentence, we can even drop the ellipsis and indentthe continuation line appropriately.

• Informally, the equality symbol “=” is often overloaded to indicate the assignment operator as
well as the equality test. We will use← for assignment operator, and preserve12 “=” for equality
test.

• In the style ofC or Java, we write “x++” (resp., “++x”) to indicate the increment of an integer
variablex. The value of this expression is the value ofx before (resp., after) incrementing. There
is an analogous notation for decrementing,x-- and--x.

Here is a recursive program written in pseudo-PL to compute the Factorial function:

FIB(n):
Input: natural numbern.
Output: n!
⊲ Base Case

1. If n ≤ 1 Return(n)
⊲ General Case

2. Return(n · FIB(n− 1)) ⊳ This is a recursive call

§A.11 How to answer algorithmic exercises.
In our exercises, whenever we ask you to give an algorithm, itis best to write in pseudo code. We
suggest you emulate our pseudo-PL form of presentation. Students invariably ask about what level of
detail is sufficient. The general answer isas much detail as one needs to know how to reduce it to
compilable programs in a conventional programming language. Here is a checklist you can use:

Rule 0 Specify your input and output.This cannot be emphasized enough. We cannot judge your
algorithm if we do not know what to expect from its output! sine qua non!

12Programmers often use “=” for assignment and “==” for equality test. Our choice preserves the original meaning of “=”.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§A. APPENDIX: GENERAL NOTATIONS Lecture I Page 31

Rule 1 Take advantage of well-known algorithms.For instance, if you need to to sort, you should
generally be able to just13 invoke a suitable sorting routine.

Rule 2 Reduce all operations toO(1) time operations.Do this when Rule 1 does not apply. Sometimes,
achievingO(1) time may depend on a suitable choice of data structures. If so, be sure to explain
this.

Rule 3 Use progressive algorithm development.Even pseudo code may be incomprehensible without
a suitable orientation – it is never wrong to precede your pseudo code with some English expla-
nation of what the basic idea is. In more complicated situations, do this in 3 steps: explain basic
ideas, give pseudo code, further explain certain details inthe pseudo code.

Rule 4 Use standard algorithmic paradigms.In this book, we will see well-known paradigms such as
divide-and-conquer, greedy methods, dynamic programming, etc. Another important paradigm is
the notion of shell-programming (see tree and graph traversals, Lectures III and IV).

Rule 5 Explain and initialize all variables and data structures.Most non-trivial algorithms has some
data structures, possibly the humble array. Critical variables (counters, coloring schemes) ought
to be explained too. You must show how to initialize them.

Rule 6 The control structure of your algorithms should be evident.All the algorithms you design
should have simple control structures – typically a simple loop or a doubly-nested loops. Triply-
nested loops do arise (e.g., dynamic programming) but deeper nesting is seldom needed. Each
loop should use standard programming constructs (for-loop, while-loop, do-loop, etc). It is an
axiom14 that if a problem can be solved, then it is solvable by clean loop structures.

Rule 7 Correctness.This is an implicit requirement of all algorithms. All the algorithms we study
requires that the algorithm halts on all inputs. Correctness of such algorithms is traditionally split
into two distinct requirements:
(1) The algorithm halts.
(2) The output is correct when it halts. This part is sometimes calledpartial correctness.
Even when we do not ask you to explicitly prove correctness, you should check this yourself. A
simple method to prove partial correctness is this: at the beginning of each iteration of a loop,
you should be able to attach a suitableinvariant (called assertion in standard programming
languages). Partial correctness follows easily if the appropriate invariants hold.

Rule 8 Analysis and Efficiency.This is considered a more advance requirement. But since this is what
algorithmics is about, we view it as part and parcel of any algorithm in this book. You should
always be able to give a big-Oh analysis of your algorithm. Inmost cases, non-polynomial time
solutions are regarded as unnecessarily inefficient.

EXERCISES

Exercise A.1: The following is a useful result about iterated floors and ceilings.
(a) Let n, b be positive integers. LetN0 := n and for i ≥ 0, Ni+1 := ⌊Ni/b⌋. Show that
Ni =

⌊
n/bi

⌋
. Similarly for ceilings. HINT: use the fact thatNi+1 ≤ Ni/b + (b− 1)/b.

(b) Let u0 = 1 andui+1 = ⌊5ui/2⌋ for i ≥ 0. Show that fori ≥ 4, 0.76(5/2)i < ui ≤
0.768(5/2)i. HINT: ri := ui(2/5)i is non-increasing; give a lower bound onri (i ≥ 4) based on
r4. ♦

13In computing, this is known as “code reuse”. Others call this“not reinventing the wheel”.
14There are theorems about the universality of loop-programs(Meyer and McCreight) and the possibility of avoiding “go-to”

statements.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§A. APPENDIX: GENERAL NOTATIONS Lecture I Page 32

Exercise A.2: Let x, a, b be positive real numbers. Show that

⌊x/ab⌋ ≥ ⌊⌊x/a⌋ /b⌋ . (16)

When is this an equality? ♦

Exercise A.3: Consider the following sentence:

(∀x ∈ Z)(∃y ∈ R)(∃z ∈ R)
h

(x > 0) ⇒ ((y < x < y
−1) ∧ (z < x < z

2) ∧ (y < z))
i

(17)

Note that the range of variablex is Z, not R. This is called auniversal sentencebecause the
leading quantifier is the universal quantifier (∀). Similarly, we haveexistential sentence.
(i) Negate the sentence (17), and then apply De Morgan’s law to rewrite the result as an existential

sentence.

(ii) Give a counter example to (17).

(iii) By changing the clause “(x > 0)”, make the sentence true. Indicate why it would be true.
♦

Exercise A.4: Suppose you want to prove that

f(n) 6= O(f(n/2))

wheref(n) = (log n)log n.
(a) Using de Morgan’s law, show that this amounts to saying that for allC > 0, n0 there existsn
such that

(n ≥ n0) ∧ f(n) > Cf(n/2).

(b) Complete the proof by finding a suitablen for any givenC, n0. ♦

Exercise A.5: The following statement is a fact:a planar graph onn vertices has at most3n−6 edges.
Let us restate it as follows:

(G is a planar graph and hasn vertices)⇒ (G has≤ 3n− 6 edges).

(i) State the contra-positive of this statement.
(ii) The complete graph on5 vertices, denoted byK5 is shown in Figure 2. Using the contra-
positive statement in part (i), prove thatK5 is not planar. ♦

Figure 2:K5, the complete graph on5 vertices

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011



§A. APPENDIX: GENERAL NOTATIONS Lecture I Page 33

Exercise A.6: Prove these basic facts about binary trees: assumen ≥ 1.
(a) A full binary tree onn leaves hasn− 1 internal nodes.
(b) Show that every binary tree onn nodes has height at least⌈lg(1 + n)⌉ − 1. HINT: define
M(h) to be the maximum number of nodes in a binary tree of heighth.
(c) Show that the bound in (b) is tight for eachn.
(d) Show that a binary tree onn ≥ 1 leaves has height at least⌈lg n⌉. HINT: use a modified
version ofM(h).
(e) Show that the bound in (d) is tight for eachn. ♦

Exercise A.7: (Erdös-Rado) Show that in any 2-coloring of the edges of thecomplete graphKn, there
is a monochromatic spanning tree ofKn. HINT: use induction. ♦

Exercise A.8: Let T be a binary tree onn nodes.
(a) What is the minimum possible number of leaves inT?
(b) Show by strong induction on the structure ofT thatT has at most

⌊
n+1

2

⌋
leaves. This is an

exercise in case analysis, so proceed as follows: first letn be odd (say,n = 2N + 1) and assume
T hask = 2K + 1 children in the left subtree. There are 3 other cases.
(c) Give an alternative proof of part (b): show the result forn by a weaker induction onn− 1 and
n− 2.
(d) Show that the bound in part (b) is the best possible by describing a T with

⌊
n+1

2

⌋
leaves.

HINT: first show it whenn = 2t − 1. Alternatively, consider binary heaps. ♦

Exercise A.9:
(a) A binary tree with a key associated to each node is a binarysearch tree iff the in-order listing
of these keys is in non-decreasing order.
(b) Givenboththe post-order and in-order listing of the nodes of a binary tree, we can reconstruct
the tree. ♦

END EXERCISES

References

[1] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algorithms. The MIT
Press and McGraw-Hill Book Company, Cambridge, Massachusetts and New York, second edition,
2001.

[2] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM J. Comput.,
15:287–299, 1986.

[3] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-
Wesley, Boston, 1972.

[4] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1. Addison-
Wesley, Boston, 2nd edition edition, 1975.

Chee-Keng Yap Fundamental Algorithms, Spring 2011: Basic Version February 21, 2011


