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Lecture |
OUTLINE OF ALGORITHMICS

We assume the student is familiar with computer programraimjhas a course in data structures
and some background in discrete mathematics. Problemsdsosing computers can be roughly classi-
fied into problems-in-the-large and problems-in-the-$nfdle former is associated with large software
systems such as an airline reservation system, compilgexbeditors. The lattéris identified with
mathematically well-defined problems such as sorting, iplyibg two matrices or solving a linear pro-
gram. The methodology for studying such “large” and “smpti8blems are quite distinct: Algorithmics Algorithmicsabout
is the study of the small problems and their algorithmic 8ofu In this introductory lecture, we presentsmall” problems
an outline of this enterprise. Throughout this boomputational problems (or simply “problems”)
refer to problems-in-the-small. It is the only kind of prebl we address. This chapter presents a broad
but systematic account of the field of algorithmics.

READING GUIDE: The chapters in this book are organized indot®ns
denotedi1, §2, §3, etc. Occasionally, we have subsections suckBals §3.2,
etc. But independent of the sections and subsections, welabeled parg
graphs, denoted1, 92, 93, etc. This first chapter is mostly informal. The
rest of this book has no dependency on this chapter, savesfmétions in§8
concerning asymptotic notations. Hence a light reading neesufficient. We
recommend re-reading this chapter after finishing the resteobook, whe
many of the remarks here may take on more concrete meaning.

§1. What is Algorithmics?

Algorithmics is the systematic study of efficient algorithms for compotadl problems; it includes
techniques of algorithm design, data structures, and mradtieal tools for analyzing algorithms.

Why is algorithmics important? Because algorithms is aftcitve of all applications of computers.
These algorithms are the “computational engines” thatediavger software systems. Hence it is im-
portant to learn how to construct algorithms and to analigent Although algorithmics provide the
building blocks for large application systems, the corttan of such systems usually require additional
non-algorithmic techniques (e.g., database theory) wdieloutside our scope.

We can classify algorithmics according to its applicationsubfields of the sciences and mathe-
matics: thus we have computational geometry, computdtiopalogy, computational number theory,
computer algebra, computational statistics, computatifimance, computational physics, and compu-
tational biology, etc. More generally, we have “computaéibX” where X can be any discipline. But
another way to classify algorithmics is to look at the gemé&rbls and techniques that are largely in-
dependent any discipline. Thus, we have sorting technjgyraph searching, string algorithms, string
algorithms, dynamic programming, numerical PDE, etc, th&s$ across individual disciplines. A good
way to represent these two orthogonal classification is écaumatrix:

1If problems-in-the-large is macro-economics, then thédjems-in-the-small is micro-economics.
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Computer Science is

row-oriented
So each computational X is represented by a column in thisixpanhd each computational tech-
nique is represented by a row. Each checkmark indicatesatpatticular computational technique is
used in a particular discipline X. Individual scientific dijslines take a column-oriented view, but Com-
puter Science takes the row-oriented view. These row ladagide classified into four basic themes:

(a) data-structures (e.qg, linked lists, stacks, search trees)
(b) algorithmic techniques (e.qg., divide-and-conquer, dyicgrogramming)
(c) basic computational problems (e.g., sorting, graph-$e@aint location)

(d) analysis techniques (e.g., recurrences, amortizatiodoraized analysis)

These themes interplay with each other. For instance, s@tsgestructures naturally suggest certain
algorithmic techniques (e.g., graphs requires graphebe@chniques). Or, an algorithmic technique
may entail certain analysis methods (e.g., divide-andyaenalgorithms require recurrence solving).
The field of complexity theory in computer science providesie unifying concepts for algorithmics;
but complexity theory is too abstract to capture many finstimitions we wish to make. Thus algorith-
mics often makes domain-dependentassumptions. For egaimthe subfield of computer algebra, the
complexity model takes each algebraic operation as a pvanithile in the subfield of computational
number theory, these algebraic operations are reducedre bit-complexity model primitives. In this
sense, algorithmics is more like combinatorics (which ls&ec) than group theory (which has a unified
framework).

§2. What are Computational Problems?

Despite its name, the starting point for algorithmics isadgbrithms, butomputational problems
But what are “computational problems”? We mention threemcaiegories.

(A) Input-output problems. Such problems are the simplest to understandcofputational
problem is a precise specification of input and output formats, an@éch input instancg, a descrip-

tion of the set of possible output instances= O(7). Standard 1/O
lems

The word “formats” emphasizes the fact the input and outpptasentation is part and parcel of
the problem. In practice, standard representations magkes tfor granted (e.g., numbers are assumed
to be in binary and set elements are arbitrarily listed with@petition). Note that the input-output
relationship need not be functional: a given input may hawesal acceptable outputs.
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91. Example (Al) Sorting Problem. Inputis a sequence of numbetrs, ..., a,) and outputis a re-
arrangement of these numbéts, . . ., a},) in non-decreasing order. An input instanc¢2s5, 2,1, 7),
with corresponding output instan¢e 2,2, 5, 7).

92. Example (A2) Primality Testing. Inputis a natural number and output is either YES (it is
prime) or NO (ifn is composite). Numbers are assumed to be encoded in binaig.isTan exam-
ple of decision or recognition problem where the outputs have only two possible answers (YES/NO,
0/1, Accept/Reject). One can generalize this to problems whboggut comes from a finite set. For
instance, in computational geometry, the decision problend to have three possible answers: Pos-
itive/Negative/Zero or INOUT/ON. For instance, tpeint classification problemis where we are
given a point and some geometric object such as a triangleelt.aThe point is either inside the cell,
outside the cell or on the boundary of the cell.

(B) Preprocessing problems.A generalization of input-output problems is what we gatpro-
cessing problem given a setS of objects, construct a data structuf(.S) such that for an arbitrary
‘query’ (of a suitable type) abouff, we can usé)(.9) to efficiently answer the queryhere are two dis-
tinct stages in such problems: preprocessing stage and&itng” stage. Usually, the sétis “static”
meaning that membership fidoes not change under querying. Two-staged problems

3. Example (B1) Ranking Problem. preprocessing input is a s€tof numbers. A query oi¥' is
a numberg for which we like to determine its rank if. The rank ofq is S is the number of items in
S that are smaller than or equal o A standard solution to this problem is thiary search treelata
structureD(.S) and the binary search algorithm @nS).

4. Example (B2) Post Office Problem. Many problems in computational geometry and database
search are the preprocessing type. The following is a ge@yddtabase illustration: given a sgtof
points in the plane, find a data structupé.S) such that for any query point we find an element in

S that is closest t@. (Think of S as a set of post offices and we want to know the nearest post offic
to any positiory). Note that the 1-dimensional version of this problem isely allied to the ranking
problem.

Two algorithms are needed to solve a preprocessing probdemto construcD(S) and another
to answer queries. They correspond to the two stages of datimu an initialpreprocessing stage
to constructD(.S), and a subsequeqterying stagein which the data structur®(S) is used. There
may be a tradeoff between tipeeprocessing complexityand thequery complexity: D, (.S) may be
faster to construct than an alternatitdg(.S), but answering queries usirg, (S) may be less efficient
thanD4(S). But our general attitude to prefér, (S) over Dy (S) in this case: we prefer data structures
D(S) that support the fastest possible query complexity. Outudt is often justified because the
preprocessing complexity is a one-time cost.

Preprocessing problems are a special caggdfal evaluation problems. In such problems, we
construct partial answers or intermediate structurescbasgart of the inputs; these partial answers or
intermediate structures must anticipate all possiblerskbas of the partial inputs.

(C) Dynamization and Online problems. Now assume the inpuf is a set, or more generally
some kind of aggregate object like a databaseS tfan be modified under queries, then we have a
dynamization problem: with .S and D(S) as above, we must now design our solution with an eye to
the possibility of modifyingS (and hence(.5)). Typically, we want to insert and delete elements'in
while at the same time, answer queriesioft) as before. A se$ whose members can vary over time
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is called adynamic setand hence the name for this class of problems.

Here is another formulatiowe are given a sequenc¢e, ro, . .., r,,) of requests where a request
is one of two types: either ampdate or a query. We want to ‘preprocess’ the requests in an online
fashion, while maintaining a time-varying data structupe for each update request, we modifyand
for each query request, we uskto compute and retrieve an answép (nay be modified as a result).

In the simplest case, updates are either “insert an objecttalete an object” while queries are “is
objectz in S?”. This is sometimes called tlset maintenance problem Preprocessing problems can
be viewed as a set maintenance problem in which we first psacesquence of insertions (to build up
the setS), followed by a sequence of queries.

95. Example (C1) Dynamic Ranking Problem. Any preprocessing problem can be systematically
converted into a set maintenance problem. For instanceatiiéng problem turns into theynamic
ranking problem in which we dynamically maintain the s8tsubject to intermittent rank queries. The
data structures in solutions to this problem are usuallgdalynamic search trees

6. Example (C2) Graph Maintenance Problems. Dynamization problems on graphs are more
complicated than set maintenance problems (though onditanesv it as maintaining a set of edges).
One such problem is théynamic connected component problemupdates are insertion or deletion
of edges and/or vertices. Queries are pairs of verticesitirent graph, and we want to know if they
are in the same component. The graphs can be directed oeatetir

(D) Pseudo-problems. Let us illustrate what we regard to be a pseudo-problem fioenview-
point of our subject. Suppose your boss asks your IT depaitttoe'build an integrated accounting
system-cum-employee database”. This may be a real wortthsoebut it is not a legitimate topic for
algorithmics because part of the task is to figure out whairipat and output of the system should
be, and there are probably other implicit non-quantifiabieda (such as available technology and
economic realities).

§3. Computational Model: How do we solve problems?

Once we agree on the computational problem to be solved, vat chwose the tools for solving
it. This is given by thecomputational model Any conventional programming languages suclCas
or Java (suitably abstracted, so that it does not have finite spaceds) etc) can be regarded as a
computational model. A computational model is specified by

(a) the kind of data objects that it deals with
(b) the primitive operations to operate on these objects

(c) rules for composing primitive operations into larger uciédledprograms.

Programs can be viewed as individual instances of a compngtmodel. For instance, the Turing
model of computation is an important model in complexitydtyeand the programs here are called
Turing machines.
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q7. Models for Sorting. To illustrate computational models, we consider the pnobté sorting.

The sorting problem has been extensively studied sinceagmbing of Computer Science (from the

1950's). It turns out that there are several computatiormdels underlying this simple problem, each

giving rise to distinct computational issues. We brieflyatése just three of them: theomparison

tree model thecomparator circuit model, and thetape model In each models, the data objects are

elements from a linear order. 3 sorting models

The first model, comparison trees, has only one primitiver@jien, viz., comparing the two ele-
mentsz, y resulting in one of two outcomes < y or x > y. Such a comparison is usually denoted
“x : y". We compose these primitive comparisons intivege program by putting them at the internal
nodes of binary tree. Tree programs represent flow of coatrdlare more generally calletcision
trees Figure 1(a) illustrates a comparison tree on inpytg, z.

What is the output of the cmparison-tree? The outputs of tmeparison tree is specified at each
leaf. For instance, if the tree is used for sorting, we outpetsorted order of the input elements
determined at each leaf. Again, if the tree is used to find theimum element of the input set, then
each leaf would specify the maximum element. But this idydmgging the question: surely we cannot
write arbitrary outputs at each leaffituitively, the output at each leaf must be completely rieiteed
from the set of relations collected along the edges of thik fmathe leaf.Let us expand this idea: each
edge of the comparison tree represents a relationship dbthexr < y orz > y. The set of all these
relationships along a path to a leaforms a partial orde”(v) on the input set. Then we want the
answer to our problem to be determined Byw). In the sorting problemP(v) must determine the
linear ordering on the input set, and in the maximum elemestilpm, it must determine an elemaerit
such that for all other elemept 2* > y must be a relationship if*(v).

T max Lmax.
y— m"i \ﬁ n__ ./
!

@) (b)

Figure 1: (a) A comparison tree and (b) a comparator circuit

In the comparator circuit model, we also have one primitigeration which takes two input ele-
mentse, y and returns two outputs: one outpuhisx{x, y }, the othemin{x, y}. These are composed
into circuits which are directed acyclic graphs withinput nodes (in-degre@) andn output nodes
(out-degred) and some number of comparator nodes (in-degree and outaldg In contrast to tree
programs, the edges (calladres) in such circuits represent actual data movement. Figueshows
a comparator circuit on inputs v, z. Depending on the problem, the output of the comparatouitirc
may be the set of all output lines’( 3/, 2’ in Figure 1(b)) or perhaps some subset of these lines.

A third model for sorting is the tape model. A tape is a storagéelium which allows slow, sequential
access to its data. We can use several tapes and limited awfonmain memory, and the goal is to
minimize the number of passes over the entire data. We willetaborate on this model, but [3] is
a good reference. Tape storage was the main means of masgestorthe early days of computing.
Curiously, some variant of this model (the “streaming dat@et”) is becoming important again because
of the vast amounts of data to be process in our web-age.
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€8. Algorithms versus programs. To use a computational model to solve a given problem, we must
make sure there is a match between the data objects in thieprapecification and the data objects
handled by the computational model. If not, we must spediye suitable encoding of the former
objects by the latter. Similarly, the input and output fotsnaf the problem must be represented in some
way. After making explicit such encoding conventions, weyrall A analgorithm for P if, if the
programA indeed computes a correct output for every legal inpuPofThus the term algorithm is a
semantic concept, signifying a program in its relation tmegroblem. In contrast, programs may be
viewed as purely syntactic objects. E.g., the programs urdid.(a,b) are both algorithms to compute
the maximum ofz, y, z. But what is the output convention for these two algorithms?

€9. Uniform versus Non-uniform Models. While problems generally admit inputs of arbitrarily
large sizes (see discussion of size below), some compuéghtiodels define programs that admit inputs
of a fixed size only. This is true of the decision tree and d¢irmodels of computation. In order to
solve problems of infinite sizes, we must take a sequenceogrgmsP = (Py, P, Ps,...) whereP,
admits inputs of sizeé. We call such a progra? a non-uniform program since we have né priori
connections between the differeits. For this reason, we call the models whose programs adrtyit o
finite size inputsnon-uniform models. The next section will introduce aniform model called the
RAM Model. Pointer machines (see Chapter 6) and Turing nmashare other examples of uniform
models. The relationship between complexity in uniform gle@nd in non-uniform models is studied
in complexity theory.

€10. Problem of Merging Two Lists. Let us illustrate the difference between uniform and non-
uniform algorithms. A subproblem that arises in sorting lig¢ mmerge problem where we are
given two sorted listSz1, 22, ..., %) and (y1,y2,...,y,) and we want to produce a sorted list
(21,22, Zm4n) Where{z1, ..., zmin} = {21, .., Zm, Y1, .., yn}. ASSUmMe these sorted lists are
non-decreasing.

The idea is as follows: what should the first output elemeftWell, it is the minimum ofr; and
y1. Assume this output is;. What is the next one? Well, it must be eitheror y;. So the general
picture is that we have output, ..., 2;—1, and we have outpufy, . .., y;—: (for somei, j > 1). The
next output element is eithet, or y;, and this is determined by a comparisop; y;. This invariant is
easy to maintain. When one list is exhausted, we simply ddiy@remaining elements in the other list.
Here then is our algorithm, written in style of a pseudo-pangming language:

MERGEALGORITHM
Input: (x1,...,x,)and(y,. .., yn), sorted in non-decreasing order.
Output: The mergeKzy, ..., z,,4,) Of these two lists, in non-decreasing order.
> Initialize:
i— 1,51,k 1.
> Loop:
if (v <y;)
2p — Tit— 1+ 1, k—k-+1.
else
2y — Y, J—J+1LkE—kE+1
> Terminate:
if (i>m) < Theux's are exhausted, output the remainig'g
(Zks s Zman) < (Y, Yn)-
else <« They's are exhausted, output the remaining
(Zhs v oy Zman) — (Tiye ooy Tin)-
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The student should note the conventions used in our progrsunah as illustrated here. First, we Program conventions!
like to use pseudo-code which explains in English what isrided. This improves understanding (and
exploits what humans understand). Of course, computersasmart enough to compile our programs.
That is alright because our programs are intended for humasuenption, not computers. Second, we
use indentation for program blocks — this reduces cluttgproves readability. Third, we use two kinds
of comments:if forward commenjsand & backward commens

This Merge Algorithm is a uniform algorithm for merging twists. For eachn,n, this algo-
rithm can be “unwounded” into a comparison trgg ,, for merging two sorted lists of sizes and
n (Exercise). Hence the uniform Merge Algorithm uniquelyetetines a non-uniform algorithm
{Tyn,n : m,n € N} for merging two lists.

911. Program Correctness. This has to do with the relationship between an program arudrgpa-
tational problemA program that is correct relative to a problem is, by defimitj an algorithm for that
problem.It is usual to divide correctness into two parts: partiakeoiness and halting. Partial correct-
ness says that the algorithm gives the correct output peoviichalts. In some algorithms, correctness
may be trivial but this is not always true.

EXERCISES

Exercise 3.1: What problems do the programs in Figure 1(a) and (b) solspeively? You have
some leeway in giving them suitable interpretations. &

Exercise 3.2: (a) Extend the program in Figure 1(a) so that it sorts thrpatielementgx, y, z}.
(b) In general, define what it means to say that a compariserptrogram sorts a sgt1, ..., z,}
of elements. &

Exercise 3.3: Design a tree program to find the second largest of the elemehtc, d. The height of
your tree should bé (the optimum). &

Exercise 3.4: Design a tree program to merge two sorted liatsy, z) and(a, b, ¢, d). The height of
your tree should bé (the optimum). &

Exercise 3.5: It is important to understand what we mean by “unwinding” &odthm into a com-
parison tree: draw the tree program corresponding to uringnithe Merge Algorithm on input
(x1,22) and(y1, y2, y3, y4). This is calledl’ 4 in the text. &

END EXERCISES

84. Complexity Model: How to assess algorithms?

We now have a suitable computational model for solving oabfam. What is the criteria to choose
among different algorithms within a model? For this, we nieidtroduce acomplexity model
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In most computational models, there are usually naturabnstof time andspace These are
two examples otomputational resources Naturally, resources are scarce and algorithms consume
resources when they run. We want to choose algorithms thatmizie the use of resources. In our
discussions, we focus on only one resource at a time, ustiraly(occasionally space). So we avoid
issues of trade-offs between two resources.

Next, for each primitive operation executing on a particdtata, we need to know how much of the
resource is consumed. For instance] @&va, we could define each execution of the addition operation
on two numbers, b to use timdog(|a|+|b|). Butit would be simpler to say that this operation takes unit
time, independent af, b. This simpler version is our choice throughout these lestigach primitive
operation takes unit time, independent of the actual argus® the operation.

How is the running time for sorting000 elements related to the running time for sortiriyele-
ments? The answer lies in viewing running time as a functiothe number of input elements, the
“input size”. In general, problems usually have a naturaiamoof “input size” and this is the basis for
understanding the complexity of algorithms.

So we want a notion adizeon the input domain, and measure resource usage as a fuatirgut
size. The sizeize(I) of an input instancé is a positive integer. We make a general assumption about
the size functionthere are inputs of arbitrarily large size

For our running example of the sorting problem, it may seetumahto define the size of an input
(ai,...,ay) to ben. But actually, this is only natural because we usually usamgdational models
that compares a pair of numbers in unit time. For instanageimust encode the input as binary strings
(as in the Turing machine model), then input size is betteerido bed " | (1 + log(1 + |a,|)).

SupposeA is an algorithm for our problen®. For any input instancé, let 74 (1) be the total
amount of time used byl on input/. Naturally,T4(I) = oo if A does not halt od. Then we define
theworst case running timeof A to be the functiorf'4 (n) where

Ta(n) := max{Ta(I) : size(I) = n}

Using “max” here illustrates one way to “aggregate” the set of numH&rs(l) : size(l) = n}.
Another possibility is to take the average. In general, wg agply some functioid,

Ta(n) = G{Ta(I) : size(I) =n})

For instance, if7 is the average function and we gafterage time complexity

To summarize: @omplexity modelis a specification of
(a) the computational resource,
(b) the input size function,
(c) the unit of resource, and
(d) the method~ of aggregating.
Once the complexity model is fixed, we can associate to egchitim A a complexity function 7'4.

912. Example (T1). Complexity of Sorting. Consider the Comparison Tree Model for sorting. If
Ais a tree program to sort elements, then the worst case complexity of just the heifjtiteotree A,
i.e., T4 is the height ofA. From the definition ofl’4, we can define a very interesting function: let
S(n) := inf4 T4 whereA ranges over all comparison trees that soglements. The functiof(n)
captures thénherent complexity of sorting in our computational model. It is “inherent” because it is
not a function of a single algorithm, but speaks to all pdesatgorithms for sorting.
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We now prove our first non-trivial result. Start with the simpbservationany tree programA
to sortn elements must have at leadtleaves.This is becausel must have at least one leaf for each
possible sorting outcome, and there ateoutcomes when the input elements are all distinct. But a

binary treeA of heighth has at mos2” leaves. Hence" > n! or h > Ig(n!). This proves: In Fraleigh's bookA

First Course in

LeEmMA 1 (Information-Theoretic Bound)Every tree program for sorting. elements has height at Abst_ract Algebra
leastlg(n!), i.e., (Addison-Wesley
S(n) > [lg(n!)]. (1) 1969), | learned his

great wisdom*Never

underestimate a

This lower bound is called thinformation Theoretic Bound (ITB) for sorting. For instance, theorem that counts
S(3) > [lg(3h)] = 3 andS(4) > [lg(4!)] = 5. This deceptively simple result is quite deep: to something”(p. 93).

appreciate this fact, try to prove by direct arguments thabuld be impossible to sort four elements This extends to
with only four comparisons in the worst case. inequalities like ITB.

How good is the ITB lower bound ofi(n)? Let us check this for the simplest case, where 3.
It is easy to see that you can sort three elements in at mosmparisons: if you are given distinct
x,y, z then you can begin by comparing: y andx : z. If you are lucky, this might end up sorting the
elements (eithey > = > z or z > = > y). Otherwise one more comparisgn z will sort the input.

This provesS(3) < 3. Combined with the ITB, we conclude th&if3) = 3. OK, you ought to

checkn = 2 yourself

Note carefully how the proof of(3) = 3 requires two distinct arguments: an upper bound argument . .
S(3) < 3 amounts to providing an algorithm. The lower bound argun$4a) > 3 comes from ITB. omplexity Theory in
In a small way, this is what complexity theory is all about +tige) good upper (by studying algorithms) a nutshell
and lower bounds (by devising impossibility arguments) omputational problems.

913. Example (T2). In our RAM model (real or integer version), let the compuiaél resource be
time, where each primitive operation takes unit time. Thauirsize function is the number of registers
used for encoding the input. The aggregation method is thistwase (for any fixed input size). This is
called theunit time complexity model.

914. Complexity of Merging. Recall thatS(n) captures the complexity of sorting in the comparison
tree model. We now do the same for the complexity of mergirejing A/ (m, n) to be the minimum
height of any comparison tree for merging two sorted listsibésm andn, respectively. Let us prove
the following upper and lower bounds:

M(m,n) < m+4+n-—1 (2)
M(m,n) > 2min{m,n} —d(m,n) 3

whered(m,n) = 1if m = n andd(m,n) = 0 otherwise. The upper bound comes from the algorithm
for merging described if3. The proof ideas is that each comparison results in atde@sdutput. More
formally, we devise a simpleharging schemewhereby each comparison that the algorithm makes is
“charged” to the element that is output as a result of the @ispn. But you cannot charge more than
the number of output elements. This gives an upper bourdef + n comparisons. We improve this
bound by observing that the last element can be output withiopcomparison. Hence we obtain the
sharper upper bound eof + n — 1. This charging argument is a very elementary example of wieat
call anamortized analysisin Chapter 6.

The lower bound comes from the following input instanceuassthe inputis; < zo < - -+ < a,,
andy; < --- < y, wherem > n and

1 <Y1 < X2 <Y <3<+ < Ty < Yn-
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Let us rename thes® elements as
21 <2< 23<24<25< < 2op—1< Zop

wherezo; 1 = z; andze; = y; (i = 1,...,n). Note that the comparison : z;,1; must be made for
eachi=1,...,2n—1.

Why? Because these relationships< z;.; are primitive relationships. This |s
based on an important fact about partial orders (see Appdaddefinition). A
relationshipr < y in a partial orderP is primitive if it cannot be deduced from
other relationships i#®. In the comparison model, every primitive relation must be
determined by a comparison.
These primitive relationships constitute the edges of actiéd graph called the
Hasse diagramof P. In practice, it is very helpful to draw such diagrams to
represenf’ for small examples.

This yields a lower bound ofn — 1 comparions. In casex > n, there is at least one more
comparison to be made, betwegnandzx, 1. So if m > n, we need at leastn comparisons. This
provesM (m,n) > 2n — §(m,n), wheren = min{m,n}. This method of proving lower bounds is
simple form of what are calleddversary argumentsin Lecture 12, where you imagine a 2-player
game between the algorithm and an adversary.

A corollary of the above upper and lower bounds are some é@ands for the complexity of
merging:
M(m,m)=2m—1
and
M(m,m+ 1) =2m.

Thus the uniform algorithm is optimal in these cases. Moresgally, M (m, m + k) = 2m + k — 1 for
k=0,...,4andm > 6 (see [3] and Exercise). These bounds are for inputs wihere n| is a small
constant. Now consider the other extreme situation where n| are large as possibléd (m, 1). In
this case, the information theoretic bound says Main, 1) > [lg(m + 1)] (why?). Also, by binary
search, this lower bound is tight. Hence we now know anotkactevalue:

M(m,1) = [lg(m +1)].
A non-trivial result from Hwang and Lin says
M(2,n) = [lg7(n +1)/12] + [Ig14(n + 1)/17] .

In analogy to (1), thénformation-theoretic bound (ITB) says
Mim 216 (" ") @
m

since there ar(am:{") ways of merging the two sorted lists, and any To see this, inegtpat we already
have the sorted list ofi + n elements: but which of these elements come from the liszefsl? There
are("™*™) ways of choosing these elements.

Thus we have two distinct methods for proving lower bounddfimn, n): the adversary method is
better wherjm — n| is small, and the information theoretic bound is better witengap is large. The
exact value of\/ (m, n) is known for several other cases, but a complete descripfitiis complexity
function remains an open problem.
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915. Other Complexity Measures. There are complexity models. For instance, in computationa
geometry, it is useful to take the output size into accoulie domplexity function would now take at
least two argumentd(n, k) wheren is the input size, buk is the output size. This is theutput-
sensitive complexity model

Remarks:
1. Another kind of complexity measure is thizeof a program. In the RAM model, this can be the
number of primitive instructions. We can measure the corifyl®f a problemP in terms of the size
s(P) of the smallest program that solvEs This complexity measure assigns a single nursbg), not
a complexity function, ta”. Thisprogram size measurds an instance oftatic complexity measure
in contrast, time and space are exampledysfamic complexity measuresHere “dynamic” (“static”)
refers to fact that the measure depends (does not dependeanrining of a program. Complexity
theory is mostly developed for dynamic complexity measures
2. The comparison tree complexity model ignores all theratbemputational costs except comparisons.
In most situations this is well-justified. But it is possibke create conjure up ridiculous algorithms
which minimize the comparison cost, at an exorbitant costlier operations.
3. The size measure is relative to representation. Perhap®y property of size measures is ttregre
are only finitely many objects up to any given si¥#ithout this, we cannot develop any complexity
theory. If the input set are real numbeRs,then it is very hard to give a suitable size function withsthi
property. This is the puzzle of real computation.

EXERCISES

Exercise 4.1: How many comparisons are required in the worst case tol8@tements? Give a lower
bound in the comparison tree model. Note: to do the compurtdity hand, it is handy to know
that10! = 3, 628, 800 and22° = 1,048, 576. O

Exercise 4.2: How good is the information theoretic lower bound?

In other words, can you find upper bounds that matches theniration-theoretic lower bound?
Repeat this exercise fdrand5 elements. &

Exercise 4.3: The following is a variant of the previous exercise. |s itajs possible to sortelements
using a comparison tree wittl leaves? Check this out far = 3, 4, 5. &

Exercise 4.4: (a) Consider a variant of the unit time complexity model foe integer RAM model,
called thelogarithmic time complexity model. Each operand takes time that is logarithmic in
the address of the register and logarithmic in the size ojiezands. What is the relation between
the logarithmic time and the unit time models?

(b) Is this model realistic in the presence of the arithmepierators (ADD, SUB, MUL, DIV).
Discuss. &

Exercise 4.5: Describe suitable complexity models for the “space” reseun integer RAM models.
Give two versions, analogous to the unit time and logarithtime versions. What about real
RAM models? &

2My colleague, Professor Robert Dewar suggests the folipwexample: givem numbers to be sorted, we first search for
all potential comparison trees for sortingelements. To make this search finite, we only evaluate cdsgratrees of height at
mostn [lgn]. Among those trees that we have determined to be able toremgick one of minimum height. Now we run this
comparison tree on the given input.
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Exercise 4.6: Justify the claim thaf\/ (m, 1) = [lg(m + 1)]. O
Exercise 4.7: Using direct arguments, give your best upper and lower bstord\/ (2, 10). &
Exercise 4.8: Prove thatM (m, m + i) = 2m +1i — 1 fori = 2,3,4 form > 6. O

Exercise 4.9: Prove thatV/ (k, m) > klgy(m/k) for k < m. HINT: split the list of lengthmn into three
sublists of roughly equal sizes. %

Exercise 4.10: Open problem: determink/ (m, 3) andM (m, m + 5) for all m. $

Exercise 4.11: With respect to the comparator circuit and tree program risade&3, describe suitable

complexity models for each. &
Exercise 4.12: SupposeXy, .. ., X,, aren sorted lists, each with elements. Show that the complexity
of sorting the sefX = |J!"_, X; is ©(nklogn). O

END EXERCISES

§5. Algorithmic Techniques: How to design efficient algorithms

Now that we have some criteria to judge algorithms, we begimdsign algorithms that are
“efficient” according to these criteria. There emerges sgereeral paradigms of algorithms design: (i)
Divide-and-conquer (e.g., merge sort)

(ii) Greedy method (e.qg., Kruskal’s algorithm for minimugesining tree)
(iii) Dynamic programming (e.g., multiplying a sequencedtrices)
(iv) Incremental method (e.g., insertion sort)

Let us briefly outline the merge sort algorithm to illustrdieide-and-conquer: Suppose you want
to sort an arrayl of n elements. Here is the Merge Sort algorithm on ingut

MERGE SORT ALGORITHM
Input: An array A with n > 1 numbers.
Output: The sorted arrayl containing these numbers in non-decreasing order.

0. (Basis) Ifn = 1, return the arrayl.

1. (Divide) Divide the elements of into two subarray$3 andC of sizes|n/2] and[n/2] each,
2. (Recurse) Recursively, call the Merge Sort algorithnorDo the same fo€'.

3. (Conquer) Merge the sorted arraysaandC' into the arrayA

There is only one non-trivial step in this algorithm, the Qoar Step which merges two sorted
arrays. The subalgorithm for merging was already presefitth
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There are many variations or refinements of these paradigmgs.Kirkpatrick and Seidel [2] intro-
duced a form of divide-and-conquer (called “marriage-befdividing”) that leads to an output-sensitive
convex hull algorithm. There may be domain specific versfithese methods. E.g., plane sweep is
an incremental method suitable for problems on points ifieie&n space.

Closely allied with the choice of algorithmic technique liee tchoice ofdata structures A data
structure is a representation of a complex mathematicattsire (such as sets, graphs or matrices),
together with algorithms to support certain querying oratpd) operations. The following are some
basic data structures.

(a) Linked lists: each list stores a sequence of objects together with opasator (i) accessing the
first object, (ii) accessing the next object, (iii) insegtia new object after a given object, and (iv)
deleting any object.

(b) LIFO, FIFO queues: each queue stores a set of objects under operations fotiamsand deletion
of objects. The queue discipline specifies which object ibaaleleted. There are twdasic
disciplines: last-in first-out (LIFO) or first-in first-ouE(FO). Note that recursion is intimately
related to LIFO.

(c) Binary search trees: each tree stores a set of elements from a linear orderinghegeith the
operations to determine the smallest element in the setfdingn a given element. A dynamic
binary search tree supports, in addition, the insertiondstetion of elements.

(d) Dictionaries: each dictionary stores a set of elements and supports thatapes of (i) inserting a
new element into the set, (ii) deleting an element, andtéa}ing if a given element is a member
of the set.

(e) Priority queues: each queue stores a set of elements from a linear orderiethimgwith the oper-
ations to (i) insert a new element, (ii) delete the minimuemadnt, and (iii) return the minimum
element (without removing it from the set).

EXERCISES

Exercise 5.1: (a) Design an incremental sorting algorithm based on tHeviiahg principle: assuming
that the firstn elements have been sorted, try to add (“insert"ythe- 1st element into the first
m elements to extend the inductive hypothesis. Moreoveuyasthat you do all these operations
using only the space in the original input array.

(b) If the numbem of elements to be sorted is small (say< ), this approach can lead to a
sorting algorithm that is faster than Merge Sort. Intuipieis because Merge Sort uses recursion
that has non-trivial overhead cost. So a practical impleateamn of Merge Sort might switch an
incremental sorting method as in part(a) when< C. Design such a hybrid algorithm that
combines the Merge Sort algorithm with your solution in (a).

(c) Implement the Merge Sort Algorithm, your incrementattisg algorithm of part(a), and the
hybrid algorithm in part(b). Try to see if you can experinmadlytverify our remarks in (b), and
determine the constant. &

END EXERCISES

3A discipline of a different sort is called GIGO, or, garbadgegarbage-out. This is really a law of nature.
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66. Analysis: How to estimate complexity

We have now a measufg, of the complexity of our algorithmi, relative to some complexity
model. Unfortunately, the functiofi, is generally too complex to admit a simple description, doe¢o
expressed in terms of familiar mathematical functionstead, we aim to give upper and lower bounds
onT4. This constitutes the subject afgorithmic analysis which is a major part of this book. The
tools for this analysis depends to a large extent on the idihgoic paradigm or data structure used by
A. We give two examples.

916. Example (D1) Divide-and-Conquer. If we use divide-and-conquer then it is likely we need to
solve some recurrence equations. In our Merge Sort algoriflssuming: is a power of2, we obtain
the following recurrence:

T(n)=2T(n/2)+ Cn

forn > 2and7T(1) = 1, andC > 1 is some constant determined by the complexity of merging.
HereT'(n) = Ta(n) is the (worst case) number of comparisons needed by ourithigod to sortn
elements. The solution iB(n) = ©(nlogn). In the next chapter, we study techniques to obtain such
solutions.

917. Example (D2) Amortization. If we employ certain data-structures that might be desdrise
“lazy” then amortization analysis might be needed. Letlusitate this with the problem of maintaining
a binary search tree under repeated insertion and deldtielerments. Ideally, we want the binary tree
to have heigh©O(log n) if there aren elements in the tree. There are a number of known solutians fo
this problem (see Chapter 3). Such a solution achieves thimalpogarithmic complexity foreach
insertion/deletion operation. But it may be advantageousetlazy about maintaining this logarithmic
depth property: such laziness may be rewarded by a simpting@r programming effort. The price
for laziness is that our complexity may be linear for indivéd operations, but we may still hope to
achieve logarithmic cost in an “amortized” sense (thoudlasoa kind of averaging). To illustrate this
idea, suppose we allow the tree to grow to non-logarithmgtlilas long as it does not cost us anything
(i.e., there are no queries on a leaf with big depth). But when we h@aanswer a query on a “deep
leaf”, we take this opportunity to restructure the tree s the depth of this leaf is now reduced (say
halved). Thus repeated queries to this leaf will make itlshal The cost of a single query could be
linear time, but we hope that over a long sequence of suchegjehe cost is amortized (averaged)
to something small (say logarithmic). This technique pres@n adversary from repeated querying of
a “deep leaf”. But how do we account for the first few querigs isome “deep leaves” which have
linear costs? To anticipate such expenses, the idea iseecimarge” those initial insertions that lead to
this inordinate depth. Using a financial paradigm, we puptteepaid charges into some bank account.
Then the “deep queries” can be paid off by withdrawing frons #iccount. Amortization is both an
algorithmic paradigm as well as an analysis technique. Whidbe treated in Chapter 6.

§7. Asymptotics: How robust is the model?

‘ This section contains important definitions for the resheflbook. ‘

We started with a problent?2), selected a computational mod&B) and an associated complexity
model §4), designed an algorithn§g) and managed to analyze its complexigg); Looking back
at this process, we are certain to find some arbitrarinesarictoices. For instance, would a simple
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change in the set of primitive operations change the contglekyour solution? Or what if we charge
two units of time for some of the operations? Of course, tieene end to such revisionist afterthoughts.
What we are really seeking is a certain robustness or invegian our results.

€18. What is a complexity function? In this book, we call a partial function of the form
f:R" =R

a complexity function. Usually, we have. = 1. We use complexity functions to quantify the the

complexity of our algorithms. But why do we consigertial functions? For one thing, many functions

of interest are only defined on positive integers. For exantpk running tim@ 4 (n) of an algorithmA

that takes discrete inputs is a partial real function (ndisntkefined only whem: is a natural number).

Of course, if the domain of 4 is taken to beN, thenT4(n) would be total. So why do we think

of R as the domain of’4(n)? Again, we often use functions suglin) = n/2 or f(n) = /n, to

bound our complexity functions, and these are naturallynéefion the real domain; all the tools of

analysis and calculus becomes available to analyze suckidns. Many common real functions such? could be viewed as a
asf(n) = 1/nor f(n) = logn are partial functions becausén is undefined ak = 0 andlogn special value, but
is undefined fom < 0. If f(n) is not defined ak, we write f(n) =1, otherwisef(n) =|. Since  cannot be viewed this
complexity functions are partial, we have to be careful dloperations such as functional composition. way: it is a surrogate
The general rule for partial functions is th&tg(z)) =1 if g(x) =1. for all other values

919. Partial Predicates. For any setS, a functionP : S — {0,1} is called apredicate over S.
Usually, we say the predicaf holds atz € S if P(z) = 1. Sol is the “true” value and) is the
“false” value. The predicat® is valid if it holds at allz € S. But we needpartial predicates where
P : S — {0,1} is a partial function. Then we say the predic&tas valid if for all = € S, either
P(z) =t orP(x) = 1. If P(x) =1 forall z € S, then we sayP is vacuouslyvalid. Partial predicates
arise naturally from relations among partial functionsf,I§ are complexity functions, then the relation
“f < g¢" represents the partial predicaie: R — {0,1} where P(z) =1 if f(z) =1 or g(x) =T1;
otherwise,P(x) =|. Naturally, whenP(x) =], we haveP(z) = 1iff f(z) < g(z). Quantification
over partial predicates is defined as followsPit S — {0, 1} is a partial predicate, theivz € S)P(z)
holds iff for all z € S, eitherP(z) =1 or P(z) = 1. Similarly (3z € S)P(z) holds iff there is some
x € S suchthatP(x) = 1. This can be generalized to nested quantifiers.

920. Designated variable and Anonymous functions. In general, we will write 2" and “log «” to
refer to the functiong (n) = n? or g(x) = log z, respectively. Thus, the functions denotedor log
areanonymous(or self-naming). This convention is very convenient, buelies on an understanding
that “n” in n? or “z” in log z is thedesignated variablein the expression. For instance, the anonymous
complexity functior2®n is a linear function ifn is the designated variable, but an exponential function
if 2 is the designated variabl€he designated variable in complexity functions, by défimjrange over
real numbers.This may be a bit confusing when the designated variable’isihce in mathematical

literature,n is usually a natural number. n might be a real

variable!

921. Robustness or Invariance issue. Let us return to the robustness issue which motivated this
section. The motivation was to state complexity results ttzve general validity, or independent of
many apparently arbitrary choices in the process of degiour results. There are many ways to achieve
this: for instance, we can specify complexity functionsaifjolynomial smearing”. Two real functions

f, g,arepolynomially equivalent in this sense if for some > 0, f(n) < cg(n)¢ andg(n) < cf(n)¢

for all n large enough. Thus/n andn? are polynomially equivalent according to this definitiornig

is extremelyrobust but alas, too coarse for most purposes. The mostywaelepted procedure is to
take two smaller steps:
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e Step 1: We are interested in the eventual behavior of funst{e.g., ifT’(n) = 2™ for n < 1000
andT'(n) = n for n > 1000, then we want to regarfi(n) as a linear function).

e Step 2: We distinguish functions only up to multiplicativenstants (e.gx/2, n and10n are
indistinguishable),

These two decisions give us most of the robustness proparéielesire, and are captured in the follow-
ing language of asymptotics.

922. Eventuality. This is Step 1 in our search for invariance. Given two funtdiove say f < ¢
eventually’, written

f<g(ev), (5)

if f(z) < g(x) holds for allz large enough. More precisely, this means there is segreaich that the
following statement is valid:

(Va)lz = w0 = f(z) < g()]. (6)

By not caring about the behavior of complexity function oseme initial values, our complexity bounds
becomes robust against the followitadple-lookup trick . If A is any algorithm, relative to to any given
finite setS of inputs, we can modify so that ifx € S, then the answer far is obtained by a table
lookup; otherwise, the answer is computed by runnihgn z. The modified algorithmd’ might be
much faster tham for all z € S, but it will have the same “eventual” complexity as Thus, the
complexity of A and A’ are indistinguishable using our eventuality criterion.

To explicitly show the role of the variable we may also write (5) as

f(z) < g(z) (ev.z).

Arelated notion is this: say < g infinitely often, written “f (z) < g() (i.0.z)", if there are infinitely
manyz such thatf(x) =, g(z) =], andf(z) < g(z). If ¢ < f (ev) andf < g (ev.), then clearly
g = f (ev.). Most natural functiong in complexity satisfy some rather natural properties:

e fis eventually definedf(z) =] (ev.).

e f is eventually non-negative, > 0 (ev.).

When these properties fails, our intuitions about compyexinctions may go wrong.

€23. Domination. We now take Step 2 towards invariance. We gapminates f, written

[ =g,

if there exista” > 0 such thatf < C'-g¢ (ev.). The symbol <’ is intended to evoke the<’ connection.
Thus, it suggests the transitivity propertf:< g andg < h implies f < h. Of course, the reflexivity
property holds;f < f. We can also write f = ¢” instead ofg < f. If f < gandg < f then we write

=g

Clearly < is an equivalence relation. The equivalence classesisf(essentially) thé-order of f;
more on this below. Iff < g but notg < f then we write

[ =g
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E.g., 1+ % < n < n?. Thus the triplet of notation, <, < for real functions correspond to the
binary relations<, <, = for real numbers. The basic properties of domination argasigd by this
correspondence: since< y andy < z impliesz < z, we might expecff < g andg < h to imply

f = h (this is true).

Domination provides “implementation platform indepenckehfor our complexity results: it does
not matter whether you implement a given algorithm in a higtel program language likéava or )
: : . L . : One form of Moore’s
in assembly language. The complexity of your algorithm iestlhimplementations (if done correctly) .

: . ) . : . ?/ law predicts that the
will be dominated by each other (i.e., safeorder). This also insulates our complexity results againg

Moore’s Law: over a limited time period, the timing of our atghms keeps the sant&-order. speed of hgrdware will
keep doubling every 18

months (the end is not
in sight yet).
€24. The Big-Oh Notation. We write
o(f)

(and readbrder of f or big-Oh of f) to denote the set of all complexity functiopsuch that
0=g=/

Note that each function id(f) dominates), i.e., is eventually non-negative. Thus, restricted to The key asymptotic

functions that are eventually non-negative, the big-Olatio (viewed as a binary relation) is equivalent . notation to know:
to domination. big-Oh is almost the

same as domination

We can unroll the big-Oh notation as follows: To praye= O(f), you
need to show som@ > 0 andz, such that for allz > z, if g(z) =]
and f(z) =] then0 < g(z) < Cf(x). Remember your delta-epsilpn
argument in Calculus? The Computer Science analogue i€ tlisd .z
argument!

6:¢: C:x

E.g., The setO(1) comprises all functiong that is bounded and eventually non-negative. The
function1 + 1 is a member 0O(1).

The simplest usage of thi@@-notation is as follows: we write

9= 0(f)

(and read ¢ is big-Oh of f* or * g is order of f’) to meang is a member of the s€?( f). The equality
symbol ‘=" here is “uni-directional”.g = O(f) does not mean the same thing@a&f) = g. Below, we
will see how to interpret the latter expression. The equalimbol in this context is called @ne-way
equality. Why not just use¢’ for the one-way equality? A partial explanation is that @eenmon use
of the equality symbol has a uni-directional flavor where r@@s$form a formula from an unknown form
into a known form, separated by an equality symbol. Our oag-&quality symbol fo)-expressions
lends itself to a similar manipulation. For example, thédwing sequence of one-way equalities

fn)=> (i+ %) = <Z z) + <Z %) = O(n*) + O(nlogn) = O(n?)

i=1 =1 =1

may be viewed as a derivation to shgvis at most quadratic.

925. Big-Oh Expressions. The expression®(f(n))’ is an example of arQ-expression, which we
now define. In any)-expression, there isdesignated variablewhich is the real variable that gde®

4More generally, we can considerapproaching some other limit, suchs
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infinity. For instance, th&-expressiorO(n*) would be ambiguous were it not for the tacit convention
that ‘n’ is normally the designated variable. Henkés assumed to be constant. We shall defihe
expressionsas follows:

(Basis) If f is the symbol for a function, thefiis anO-expression. If is the designated variable for
O-expressions anda real constant, then both™and ‘¢’ are alsoO-expressions.

(Induction) If E, F are O-expressions and is a symbol denoting a complexity function then the
following areO-expressions:

O(E), f(E), E+F, FEF, —E, 1/E, EF.

EachO-expressiorE’ denotes a selt of partial real functions in the obvious manner: in the baaise,
a function symbo} denotes the singleton sg¢t= { f}. Inductively, the expressioli + F (for instance)

denotes the se?f/ﬁ'” of all functionsf + g wheref < E andg € F. Similarly for
The setlA/E is defined a{l/g LgeB) &0 = g} . The most interesting case is the expressiji),
called a “simple big-Oh expression”. In this case,

O(B)={f:(Bge B0 = f=g)}.

Examples ofD-expressions:

2" — O(n?logn), prtOUogn) J(+0(1/n)) —g(n).

Note that in general, the set of functions denoted byaexpression need not dominatelf £, F’
are two(-expressions, we may write
E=F

to denoteF C F, i.e, the equality symbol stands for set inclusion! This gerieealour earlier f =
O(g)" interpretation. Some examples of this usage:

O(TLQ) _ 5(’)(logn) _ (Q(TLlogn)7 n 4+ (1ogn)(9(\/ﬁ) _ nloglogn’ on — O(l)nf(?(l).

An ambiguity arises from the fact that@ does not occur in af-expression, it is indistinguishable
from an ordinary expression. We must be explicit about oterition, or else rely on the context in
such cases. Normally, at least one side of the one-sidediequa’ = F’ contains an occurrence of
‘@', in which case, the other side is automatically assumedetamO-expression. Some common
O-expressions are:

e (O(1), the bounded functions.

1+ O(1/n), a set of functions that tends t&.

O(n), the linearly bounded functions.

n®M) the functions bounded by polynomials.

e O(1)™ or2°(), the functions bounded by simple exponentials.

O(logn), the functions bounded by some multiple of the logarithm.
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926. Extensions of Big-Oh Notations. We note some simple extensions of thenotation:

(1) Inequality interpretation: For O-expressiond’, F', we may writeE # F' to mean that the set of
functions denoted by is not contained in the set denoted By For instancef(n) # O(n?) means
that for allC > 0, there are infinitely many such thatf (n) > Cn?.

(2) Subscripting convention: We can subscript the big-Oh’s in &@texpression. For example,

Oa(n), O1(n?) + Oz(nlogn). )

The intent is that each subscript,(1, 2) picks out a specific but anonymous function in (the set de-
noted by) the unsubscript&@-notation. Furthermore, within a given context, two oceuges of an
identically subscripted-notation are meant to refer to the same function. For siyisdrexpressions,

it now makes sense to use inequalities, asfi’* O 4(g)" or “ f < O1(g)".

For instance, ifA is a linear time algorithm, we may say that funs in timeO 4 (n)” to indicate
that the choice of the functio® 4 (n) depends om. Further, all occurrences ot?4(n)” in the same
discussion will refer to the same anonymous function. Agammay write

n2% = Op(n), n2*=0,(2%)

depending on one’s viewpoint. Especially useful is theigbtb do “in-line calculations”. As an
example, we may write
g(n) = Ox(nlogn) = Oa(n?)

where, it should be noted, the equalities here are true iiggaif functions.

(3) Another possible extension is to multivariate real tiots. For instance consider the notation
“f(z,y) = O(g(x,y))” where we view bothr andy are designated variables. I.e., there exist constants
C > 0,z0,yo such that for ale > z¢,y > yo, f(z,y) > Cg(z,y). In practice, such extension is
seldom needed.

€27. Related Asymptotic Notations. The above discussion extends in a natural way to several othe
related notations.

Big-Omega notation: Q(f) is the set of all complexity functionssuch that for some constafit> 0,
C-g>f=>0(ev).

Of course, this can be compactly written@s- f = 0. Note thatQ(f) is empty unless it is
eventually non-negative. Clearly, big-Omega is just theerse of the big-Oh relationg is in

Q(f) iff f = O(g).

Theta notation: O(f) is the intersection of the se€3(f) andQ(f). Sogisin©(f)iff g < f.

The pointis,C can be

Small-oh notation: o(f) is the set of all complexity functiongsuch that for alt” > 0, arbitrarily smalll

C-f>g>0(ev).

As usual, we writgy = o(f) to meang € o(f). For instance, witlf (x) = 1/x andg(z) = 1,
we conclude that /2 = o(1). Also, we have the relation(f) C O(f). Itis sometimes useful to
have the a binary relation symbol for Small-oh that is thd@gaus to= for Big-Oh. Thus, let
us define

g=<=f
to mean that foralC' > 0, C - f > g (ev.). << corresponds tok’
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An alternative definition of small-oh found in the literaguis this: ‘g = o(f)” (in quotes) if
g(z)/f(z) — 0 asx — oo. This definition is equivalent to ours ff(z ) > 0 (ev.). Our definition
avoids the use of limits and seems easier to use. A relatediois this: we say

[~y

if f=g+o0(g)orf(x)=g(xz)[l=+o(1)]. This says thaf andg approximates each other with
relative error ofo(1).

Small-omega notation: w( f) is the set of all functiong such that for allC' > 0,
C-g>f>0(ev,).

Clearlyw(f) C Q(f). Again, the usual limit-based definition of ‘= w(f)” (in quotes) is that
g(x)/ f(x) — oo asz — oc.

For each of these notations, we again definestlestpressionso € {2, ©, 0,w}), use the one-way
inequality instead of set-membership or set-inclusiom, @mploy the subscripting convention. Thus,
we write “g = Q(f)” instead of saying § is in Q(f)”. We call the seb(f) theo-order of f. Here are
some immediate relationships among these notations:

o f=0(g)iff g=Q(f).
o f=0(g)iff f=0(g)andf = Q(g).
e f=0(f)andO(O(f)) = O(f).

€28. The Varieties of Lower Bounds. It is instructive to explore the notions of a lower bound —
one motivation is that lower bounds concepts are often ragsusthe literature. In the following, let us
assume that, g > 0 (ev.). How can we express lower bounds on a complexity fongt

e One way is to say thatis a lower bound orf is f = Q(g). This translates into

(3C > 0)(Fno)(Yn > no)[f (n) > Cy(n)]. (8)

e But we could also negate the upper bound statenfieatO(g). Thus the statement # O(g)
gives another kind of lower bound gh

(VC > 0)(VYno)(3n > no)[f(n) > Cg(n)]. (9)

e Using the small-omega and small-oh notations, we have teratays to state lower bounds.
Thusf = w(g) translates into

(VC > 0)(3no)(Yn > no)[f(n) > Cg(n)]. (10)

e And finally f # o(g) translates into

(3C > 0)(Yno)(3n > no)[f (n) > Cy(n)]. (11)
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Notice that the matrix['f(n) > g(n)]" is common to all the lower bound statements (8)—(11). We can
also check that

f=Q(g) = f #o(g) (12)
and

f=wlg) = f+#0(9) (13)

See Exercises to see how these are used in practice. For lexéghps prove that for alt < &/,
n* £ 0n").

Suppose*” = O(n*). Thenthereis & > 0 such that*" < Cn* (ev.). That means* —* < C (ev.).
This is a contradiction becausé is unbounded for any > 0.

€29. Discussion. There is some debate over the best way to define the asympootiepts. There is
considerable divergence in the literature on the detaiésekve note just two alternatives:

1. Perhaps the most common definition follows Knuth [4, p.]MMo defines § = O(f)” to mean
there is somé€' > 0 such thatf(x)| dominateg”|g(z)|. Using this definition, boti®(— f) and—O(f)
would mean the same thing éX f). Our definition, on the contrary, allows us to distingdisletween
1+ O(1/n)andl — O(1/n). Note thaty = 1 — O(f) amountstol — Cf < f < 1 (ev.). When an
big-Oh expression appears in negated form as@1/n), it is really a lower bound

2. Again, we could have defined{ f)” more simply, as comprising thogesuch thaty < f. That
is, we omit the requiremeifit < g from our original definition. This alternative definitionastractive
for its simplicity. But the drawback ofO(f)” is that it contains arbitrarily negative functions. The
expressionl — O(1/n) is useful as an upper and lower bound under our official ramtatBut with
the simplified definition, the expressiom  O(1/n)" has no value as an upper bound. Our official
definition opted for something that is intermediate betwibénsimplified version and Knuth’s.

We are following Cormen et al [1] in restricting the elemeatt®)( f) to complexity functions that
dominated. This approach has its own burden: thus whenever we gay O(f)", we have to check
thatg dominated) (cf. exercise 1 below). In practice, this requirement ismatch of a burden, and is
silently passed over.

A common abuse is to use hig-Oh notations in conjunction thigHess-than or greater-than symbol:
it is very tempting to write f(n) < O(g)” instead of “f(n) = O(g)”". At best, this is redundant. The
problem is that, once this notation is admitted, one may éndburse of a long derivation eventually
write “ f(n) > O(FE)” which is not very meaningful. Hence we regard any usecadr > symbols in
O-notations as illegitimate (but this is legitimate agaimlenthe subscripting convention (7)).

Perhaps most confusion (and abuse) in the literature drisasthe variant definitions of the-
notation. For instance, one may have only shown a lower bofitide form f # O(g) or f # o(g)
result, but this this viewed as a proof pf= Q(g) or g = w(g). We see from (12) and (13) that these
are quite different.

Evidently, these asymptotic notations can be intermixed.,B(n®(°¢™) — Q(n). However, they
can be tricky to understand and there seems to be little reethém. Another generalization with
some applications are multivariate complexity functionstsasf (z,y). They do arise in discussing
tradeoffs between two or more computational resources asigipace-time, area-time, etc. In recently
years, the study of “parametrized complexity” has givernepia of multivariate complexity functions
where some of the size variables controls the “parametéitsieqproblem.

50n the other hand, there is no easy way to recover Knuth'sitiefirusing our definitions. It may be useful to retain Knsth’
definition by introducing a special notatioh®|(f(n))”, etc.
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EXERCISES

Exercise 7.1: Assumef(n) > 1 (ev.).
(a) Show thatf (n) = n©M) iff there existsk > 0 such thatf(n) = O(n*). This is mainly an
exercise in unraveling our notations!
(b) Show a counter example to (a) in cgda) > 1 (ev.) is false. O

Exercise 7.2: Prove or disprovef = O(1)" iff f = 20("), O

Exercise 7.3:1f P, : S — {0,1} are partial predicate§ = 0, 1) over some domaity, then so are
—P;, PyV P, andPy A P, where we use the rule thatP, (x), Py(x) V Py (z), Po(z) A Py (x) are
all undefined wherPy(xz) =17. Show that de Morgan’s law for quantifiers hold(Vz)P(z) is
equivalent toq3z)-P(z) and—(3z) P(x) is equivalent tqVz)—~P(x). &

Exercise 7.4: Unravel the meaning of th@-expressionl — O(1/n) + O(1/n?) — O(1/n?). Does
the O-expression have any meaning if we extend this into an iefimiression with alternating
signs? %

Exercise 7.5: For basic properties of the logarithm and exponential fionst see the appendix in the
next lecture. Show the following (remember thais the designated variable). In each case, you
must explicitly specify the constantsg, C, etc, implicit in the asymptotic notations.

(@) (n + ¢)¥ = ©(n*). Note thate, k can be negative.

(b) log(n!) = ©(nlogn).

(c) n! = o(n™).

(d) [logn]! = Q(n*) for anyk > 0.

(e) [loglogn]! < n (ev.,). O

Exercise 7.6: Provide either a counter-example when false or a proof when {The basé of loga-
rithms is arbitrary but fixed, andl > 1. Assume the functiong, g are arbitrary (do not assume
that f andg are> 0 eventually).

(2) f = O(g) impliesg = O(f).

(b) max{f,g} = O(f + g).

(©)If g > 1andf = O(g) thenln f = O(ln g). HINT: careful!

(d) f = O(g) implies f o log = O(g o log). Assume thay o log and f o log are complexity
functions.

(e) f = O(g) implies2f = O(29).

(f) f = o(g) implies2/ = O(29).

@) f =O(f?).
(h) f(n) = ©(f(n/2)). o
Exercise 7.7: Re-solve the previous exercise, assuming fhat> 2 (ev.). &

Exercise 7.8: Let f(x) = sinz andg(z) = 1.
(i) Prove f < g or its negation.
(ii) Proveg < f or its negation.

HINT: To prove thatf 4 ¢, you need to show that fall choices ofC > 0 andz, > 0, some
relationship betweeffi andg fails. &
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Exercise 7.9: This exercise shows three (increasingly strong) notiofswaér bounds. Suppoges (n)
is the running time of an algorithm.
(a) Suppose you have constructed an infinite sequence dbifpus, . .. of sizesn; < ny < - -
such thatA on I; takes time more thayi(n;). How can you express this lower bound result using
our asymptotic notations?
(b) In the spirit of (a), what would it take to prove a lower Inolof the formT's (n) # O(f(n))?
What must you show about of your constructed inplytds, . . ..
(c) What does it take to prove a lower bound of the fafg(n) = Q(f(n))?

Exercise 7.10: Show some examples where you might want to use “mixed” asyticpexpressions.

&

Exercise 7.11:Discuss the meaning of the expressians O(logn) andn + O(log n) under (1) our
definition, (2) Knuth's definition and (3) the “simplified defion” in the discussion. &

END EXERCISES

68. Two Dictums of Algorithmics

We discuss two principles in algorithmics. They justify ipari our procedures and motivate some
of the fundamental questions we ask.

(A) Complexity functions are determined only ugtarder. This recalls our motivation for intro-
ducing asymptotic notations, namely, concern for robustfexity results. For instance, we might
prove a theorem that the running tirfi&n) of an algorithm is “linear time”T'(n) = ©(n). Then
simple and local modifications to the algorithm, or reast@abplementations on different platforms,
should not affect the validity of this theorem.

There are of course several caveats: A consequence of ¢tisrdis that a “new” algorithm is not
considered significant unless its asymptotic order is le@s previous known algorithms. This attitude
could be counter-productive if it is abused. Often, an agptigally superior algorithm may be inferior
when compared to another slower algorithm on all inputs afisgc sizes. For special problems, we
might be interested in constant multiplicative factors.

(B) Problems with complexity that are polynomial-boundee feasible. Moreover, there is an
unbridgeable gap between polynomial-bounded problemsfamsk that are not polynomial-bounded.
This principle goes back to Cobham and Edmonds in the latesiand relates to the versusN P
guestion. Hence, the first question we ask concerning anglgmois whether it is polynomially-
bounded. The answer may depend on the particular complexiigel. E.g., a problem may be
polynomial-bounded in space-resource but not in timeresg although at this moment it is unknown
if this possibility can arise. Of course, polynomial-boedccomplexity?’(n) = n€ is not practical
except for smalk (typically less thar6). In many applications, even = 2 is not practical. So the
“practically feasible class” is a rather small slicefof

Despite the caveats, these two dictums turn out to be exlyameful. The landscape of compu-
tational problems is thereby simplified and made “undedsate”. The quest for asymptotically good
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algorithms helps us understand the nature of the probletenCdfter a complicated but asymptotically
good algorithm has been discovered, we find ways to achievedme asymptotic result in a simpler
(practical) way.
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6A. APPENDIX: General Notations

We gather some general notations used throughout this bdeé&.this as reference. If there is a

notation you do not understand from elsewhere in the bodékigfa first place to look. Bookmark this ap-
pendix to come back
§A.0 Definitions. often!
We use the symbok= to indicate the definition of a term: we will writ& := ... Y ... when defining

atermX intermsof...Y .... For example, we define the sign function as follows:

1 iff >0
sign(z) =4 0 iff ©=0
-1 iff x<0

Or, to define the special symbol for logarithm to baseve writelg = := log, x.

8A.1 Numbers.
Denote the set of natural numbglsy N = {0,1,2,...}, integers byZ = {0,41,+2,...}, rational
numbers bYQ = {p/q : p,q € Z, q # 0}, the realR and complex numberS. Thus we have

NCZCQCcRcC

The positive and non-negative reals are denéted andR >, respectively. The set of integefs i +
1,...,5— 1,7} wherei, j € Nis denoted:..j]. So the size ofi..j] ismax{0,j — i + 1}. If r isareal
number, let itxeiling [r] be the smallest integer greater than or equal ®imilarly, itsfloor | 7] is the
largest integer less than or equabtoClearly,|r] < r < [r]. Forinstance|0.5] =0, |[-0.5| = —1
and[—-2.3] = —2.

8A.2 Sets.
The sizeor cardinality of a setS is the number of elements it and denotedS|. The empty set is
(. A set of size one is called singleton The disjoint union of two sets is denotédw Y. Thus,
X = X; WX, 4--- ¥ X, to denote a partition ok into n subsets. IfX is a set, theX denotes the
set of all subsets oK. TheCartesian product X; x --- x X,, of the setsX;, ..., X,, is the set of all
n-tuples of the form(xy, ..., z,) wherez; € X;. If X; = --. = X,, then we simply write this a&X™.
If n € N then an-set refers to one with cardinality, and(f) denotes the set of-subsets ofX .

Sometimes, we need to considaultisets. These are sets whose elements need not be distinct.
E.g., the multisetS = {a,a,b,c,c,c} has6 elements but only three of them are distinct. There are
two copies ofu and three copies afin S. Note thatS is distinct from the sefa, b, ¢}, and we use set
notations for multisets. Alternatively, a multiset can iewed as a functiop : S — N whose domain
is a standard sef. Intuitively, x(a) is the multiplicity of eachu € S.

§A.3 Relations and Order.
An n-ary relation on a seX is a set of the fornR C X™. The most important casesis= 2, when we
have binary relations. Instead of sayifigb) € R, we like to writeaRb, read as & is R-related toh”.

Leta,b,c € X. A binary relationR is reflexive if aRa, transitive if aRb andbRc impliesaRc,
symmetric if aRb impliesbRa, anti-symmetric if aRb andbRa impliesa = b. A pre-order R is a
reflexive and transitive binary relation. A pre-ordethat is alsssymmetric is anequivalencerelation.
Equivalence relations is extremely important concept imfamathematics, and it induces a partition
of X into disjoint subsets, called equivalence classes. A pderdr that isanti-symmetric (aRb and
bRa impliesa = b) is anpartial order relation.

6Zero is considered natural here, although the ancients tcomsider it so. The symbd comes from the German ‘zahlen’,
to count.
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LEMMA 2. LetR C X2 be a preorder.
() The setX := {7 : x € X} wherez = {y € X : xRy, yRx} forms a partition ofX.

(i) The relation® C X~ wherez Ry if Ry is a partial order onX.

Proof. (i) Supposer N 7 is non-empty for some,y € X. Then thereisa € z N7y. We prove
thatz C 7: for u € T impliesuRz. ButzRz andz Ry, so by transitivityu Rz Rz Ry or uRy. We can
similarly showyRu. Thusu € 7. This provest C 3. Again by symmetry, we can show thatC 7.
Thusz = 7. This proves that the seisin X are pairwise disjoint. Moreover, everyc X belongs to
7 € X. This concludes our proof tha is a partition ofX.

(i) We must prove reflexivity, antisymmetry and transitywof R. Reflexivity comes fronkRZ since
xRz holds in a pre-order. Antisymmetry comes framky andy Rz impliesy € 7 and hencej = 7.
Transitivity of R follows easily from the transitivity of. Q.E.D.

§A.4 Functions.
If f: X — Y is a partial function, then writ¢(x) =1 if f(z) is undefined and'(z) =| otherwise. If
forall z, f(z) |, thenf atotal function. Some authors uge X -->Y to indicate partial functions, and
reserve f : X — Y for total functions. Function composition will be denotge g : X — Z where
g: X —=>Yandf:Y — Z. Thus(f o g)(z) = f(g9(z)). We need the special rule that whefx) =1
then f(g(x)) =1. We say a total functiorf is injective or 1 — 1if f(x) = f(y) impliesz = y; itis
surjective orontoif f(X) =Y itis bijective if it is both injective and surjective.

The special functions of exponentiatietp, (z:) and logarithmog, (z) to baseh > 0 are more fully
described in the Appendix of Chapter 2. Although these fonstcan be viewed as complex functions,
we will exclusively treat them as real functions in this botrkparticular, it meankg, (x) is undefined
for x < 0. When the basé is not explicitly specified, it is assumed to be some condgtantl. Two
special basésdeserve their own notationdg = andln x refer to logarithms to baske = 2 and base
b= e = 2.718..., respectively. In computer sciendg is immensely useful. For any real we write
log® x as short hand foflog 2)*. E.g.,log> # = (log )2. For any natural number letlog'” z denote
thei-fold application of thdog-function. E.g.Jog® z = log(log #)) = loglog z andlog® z = z. In
fact, this notation can be extended to any integemhere; < 0 indicates théi|-fold application ofexp.

8A.5 Logic.
We assume the student is familiar with Boolean (or propmsdt) logic. In Boolean logic, each variable
A, B stands for a proposition that is either true or false. Bawolegic deals with Boolean combinations
of such variables-A, A v B, A A B. Note thatA = B is logical implication, and is equivalent to
-AV B.

But mathematical facts goes beyond propositional logicreHg an exampfeof a mathematical
assertionP(z, y) wherex, y are real variables:

P(z,y) : There exists a real such that either > yorz < z < y. (14)

The student should know how to parse such assertions. Theiass”(z,y) happens to be true. This
is logically equivalent to
(Vo,y € R)[P(z,y)]. (15)

All mathematical assertions are of this nature. Note thahewe passed from propositional logic to
quantifier (first order) logic. It is said that mathematicatls are universal: truthhood does not allow
exceptions. If an assertioR(z,y) has exceptions, and we can explicitly characterize theptiares
E(z,y): then the new stateme®t(x, y) V E(x, y) constitute a true assertion.

70f courseln z has the (well-deserved) appellation “natural logarithinit lg = has no special name. But it could be called
the “computer science logarithm”.
8When we formalize the logical language of discussion, whatlled “assertion” here is often called “formula”.
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Assertions contain variables: for example(z, y) in (14) containse, y, 2. Each variable has an
implied or explicit range £, y, z range over “real numbers”), and each variable is eithentified
(either by “for all” or “there exists”) ounquantified. Alternatively, they are eithdsounded or free.

In our exampleP(x, y), z is bounded whilex, y are free. Itis conventional to display the free variables
as functional parameters of an assertion. The symilsdands for “for all” and is called theniversal
quantifier. Likewise, the symboB stands for “there exists” and is called thgistential quantifier.
Assertions with no free variables are callgiétements We can always convert an assertion into a
statement by adding some prefix to quantify each of the freables. ThusP(z,y) can be converted
into statements such as in (15) or as(tix € R)(Vy € R)[P(z,y)]. In general, ifA and B are
statements, so is any Boolean combinationd ehd B, such asA A B and—A or AV B. However, all
statements can be transformed into the form

(Q1)(Q2) -+ (Qn) [ . . predicate . . ]

where(); is theith quantifier part. Such a form, where all the quantifiers appefore the predicate
part, is said to be iprenex form.

In the above discussion, we make the conventional assumihizd when the variables in an asser-
tions are instantiated, then the assertion is either tré@®e. But in our discussion of partial functions,
we need to generalize this to the setting that for some instafz, y, the assertio(z, y) might be
undefined (neither true nor false). We cBlla partial assertion (or partial predicate). The quantified
form (Va) P(x) is then true if for allz in the domain, eitheP(z) is undefined o (x) is true; similarly,
(3z)P(x) is true if there is some: in the domain such thaP(z) is defined and true. This extends
naturally to predicates with more than one free variable.

§A.6 Proofs and Induction.
Constructing proofs or providing counter examples to nathtecal statements is a basic skill to culti-
vate. Three kinds of proofs are widely used: (i) case amglyi) induction, and (iii) contradiction.

A proof by case analysis is often a matter of patience. Butetiones a straightforward enumeration
of the possibilities will yield too many cases; clever irtggmay be needed to compress the argument.
Induction is sometimes mechanical as well but very comfditénductions can also arise (Chapter 2
treats induction). Proofs by contradiction usually haseative element: you need to find an assertion
to be contradicted!

In proofs by contradiction, you will need to routinely negatlogical statement. Let us first consider
the simple case of propositional logic. Here, you basicatlgly what is called De Morgan’s Law: #
are B are truth values, then(A Vv B) = (=A) A (-B) and—(A A B) = (-A) V (=B). For instance
suppose you want to contradict the propositibes B. You need to first know that = B is the same
as(—A) Vv B. Negating this by de Morgan’s law gives dsA (—B).

Next consider the case of quantified logic. De Morgan’s lawooees the following=—((Vx) P) is
equivalent ta3x)(—P); —((3x)P) is equivalent taVx) (—P). A useful place to exercise these rules is
to do some proofs involving the asymptotic notation (big-0il3-Omega, etc). See Exercise.

§A.7 Formal Languages.
An alphabetis a finite sett of symbols. A finite sequence = zixs - - - 2, of symbols fromX is
called aword or string overY; the length of this string isn and denoteti|w|. Whenn = 0, this is
called theempty string or word and denoted with the special symholThe set of all strings ovex. is
denoted-*. A languageovery. is a subset oE*.

§A.8 Graphs.

9This notation should not be confused with the absolute vafte number or the size of a set. The context will make this
clear.
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A hypergraph is a pairG = (V, E) whereV is any set andz C 2V. We call elements of vertices
and elements of hyper-edges In caseE C (‘,2) we callG a k-graph. The casg = 2 is important
and is called aigraph (or more commonlyundirected graph). A digraph or directed graph is
G = (V,E) whereE C V2 =V x V. For any digraplz = (V, E), its reverseis the digrapHV, E’)
where(u,v) € E iff (v,u) € E’. In this book, the word “graph” shall refer to a bigraph orrdigh;
the context should make the intent clear. The edges of grahsften written (u, v)’ or ‘uv’ where
u,v are vertices. We will preféf to denote edge-hood by the notatienv. Of course, in the case of
bigraphsu—v = v—u.

Often a graphz = (V, E) comes with auxiliary data, sa¥, do, etc. In this case we denote the
graph by
G = (V,E;dl,dg, .. )

using the semi-colon to mark the presence of auxiliary detaexample:

(i) Often one or two vertices iV are distinguished. 1§,¢t € V are distinguished, we might write
G = (V, E; s,t). This notation might be used in shortest path problems whésehe source antlis
the target for the class of paths under consideration.

(i) A “weight” function W : V. — R, and we denote the corresponding weighted grapld-by:
(V, E;W).

(iii) Another kind of auxiliary data isvertex coloring of G, i.e., a functionC : V' — S whereS is any
set. TherC'(v) is called thecolor of v € V. If |S| = k, we callC ak-coloring. Thechromatic graph
is therefore given by the triple' = (V, E'; C'). An edge coloringis similarly defined(' : £ — S.

We introduce terminology for some special graphsVlis the empty set, A grapty = (V, E)
is called theempty graph. If F is the empty setG = (V, E) is called thetrivial graph . Hence
empty graphs are necessarily trivial but not vice-vefsa.= (V, (‘2/)) denotes theomplete graphon
n = |V| vertices. Abipartite graph G = (V, E) is a digraph such thaf = V; WV, andE C V; x Va.
It is common to writeG = (V4, Vs, E) in this case. Thusk,,, = (V41,V2, V1 x V2) denotes the
complete bipartite graph wherem = |V;| andn = |V4].

Two graphs? = (V, E), G’ = (V’, E') areisomorphic if there is some bijection : V' — V' such
that¢(E) = E’ (the notationp(E) has the obvious meaning).

If G =(V,E),G' = (V',E") whereV’ C V andE’ C E then we callG’ asubgraph of G. In
caseF’ is the restriction ofF to the edgesiv’,i.e, E' = ENV’ x V’, then we say?’ is the subgraph
of G induced by V', or G’ is therestriction of G to V’. We may writeG|V” for G’.

A path (from v; to vg) is a sequencévy, ve, ..., vy) Of vertices such thafv;, v;+1) is an edge.
Thus, we may also denote this path(@s—uv.— - - - —vg). A path isclosedif v; = v, andk > 1.
Two closed paths areyclic equivalentif the sequence of edges they pass through are the same up to
cyclic reordering. A cyclic equivalence class of closedhgas called aycle The length of a cycle is
just the length of any of its representative closed pathsblgpaphswe further require cycles to have
representative closed paths of the fofth—ve—v3— - - - —v1) Wherewy , vo, v3 are all distinct. Without
this requirement, every edge-v in a bigraph would give us a cycle whose representativés, is, u).
A graphisacyclicif it has no cycles. Sometimes acyclic bigraphs are cdtieests and acyclic digraph
are calleddags(“directed acyclic graph”).

Two verticesu, v areconnectedif there is a path from: to v, and a path fromv to u. (Note that
in the case of bigraphs, there is a path frarto v iff there is a path fromv to u.) We shall sayw is
adjacent tou if u—v. Connectivity is a symmetric binary relation for all graphsljacency is also a
symmetric binary relation for bigraphs. It is easily seeat tonnectivity is also reflexive and transitive.
This relation partitions the set of vertices irtonnected components

10When we writeu—, it is really an assertion that the, v) is an edge. So it is redundant to say-“v is an edge”.
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In a digraph,out-degreeandin-degreeof a vertex is the number of edges issuing (respectively)
from and into that vertex. Theut-degree(resp.,in-degreé of a digraph is the maximum of the out-
degrees (resp., in-degrees) of its vertices. The vertiteatedegred) are calledsinks and the vertices
of in-degred) are calledsources Thedegreeof a vertex in a bigraph is the number of adjacent vertices;
thedegreeof a bigraph is the maximum of degrees of its vertices.

See Chapter 4 for further details on graph-related matters.

8A.9 Trees.
A connected acyclic bigraph is calledrae tree. A digraph such that there is a unique source vertex
(called theroot) and all the other vertices have in-degreeis called! a tree. The sinks in a tree
are calledeavesor external nodesand non-leaves are calléaternal nodes. In general, we prefer a
terminology in which the vertices of trees are caltemtles Thus there is a unique path from the root
to each node in a tree. f, v are nodes i’ thenwu is adescendantof v if there is a path from to
u. Every nodev is a descendant of itself, called tmeproper descendantof v. All other descendants
of v are callecbroper. We may speak of thehild or grandchild of any node in the obvious manner.
The reverse of the descendant binary relation isatiheestorrelation; thus we havproper ancestors
parent andgrandparent of a node.

Thesubtreeat any node: of 7" is the subgraph df’ obtained by restricting to the descendants of
Thedepth of a nodeu in a treeT" is the length of the path from the rootto So the root is the unique
node of deptt). Thedepth of 7" is the maximum depth of a nodein Theheight of a nodeu is just
the depth of the subtree at alternatively, it is the length of the longest path franto its descendants.
Thuswu has height iff « is a leaf iff u has no children. The collection of all nodes at depih also
called theith level of the tree. Thus level zero is comprised of just the root. \Memally draw a tree
with the root at the top of the figure, and edges are implicithgction from top to bottom.

See Chapter 3 for further details on binary search trees.

8A.10 Programs.
In this book, we present algorithms in an informal unspegifieogramming language that combines
mathematical notations with standard programming languagstructs. For lack of better name, we pseudo-PL is
call this languag@seudo-PL The basic goal in the presentation of pseudo-PL programaesazpose appropriately
the underlying algorithmic logic. It is not to produce cottattcan compile in any conventional pro- amorphous by design
gramming language! And yet, it is often easy to transcrileigs-PL into compilable code in languages
such asC++ orJava. There are two good reasons why we stop short of writing ctaha code — first,
it is easier to understand, and second, it would be progragtanguage-dependent.

Programming languages are harder to understand becasisgdtided for machine consumption,
and that could get in the way of human understanding. A maesuatage of writing compilable code
is that it could be given to a computer for execution. Unfodtely, the “half-life” of programming
languages tend to be rather short compared to that of ndamgliages. Informally, say the half-life
of a programming language is the time it takes before mograros in the language will no longer
compile; similarly, the half-life of a natural language @epido-code is the time it takes before most
people find hard to understand algorithmic descriptions.

Here is the quick run-down on pseudo-PL:

110ne can also define trees in which the sense of the edges areg@y the root is a sink and all the leaves are sources. We
will often go back and forth between these two view pointdwitt much warning. E.g., we might speak of the “path from aenod
to the root”. While it is clear what is meant here, but to béntecally correct, we ought to speak awkwardly of the pathhia t
“reverse of the tree”.
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e \We use standard programming constructs such as if-thenveltsle-loop, return statements, etc.
no clutter language

e To reduce clutter, we indicate the structure of programnhiogks by indentation and newlines

only. In particular, we avoid explicit block markers sucH'asgin...end”, “..."”, etc.

e Single line comments in a program are indicated in two ways:
> This is a forward comment
< This is a backward commenthese comments either precede (in case of forward comment)
or follows (in case of backward comment) the code that it dess. We have little need for
multiline comments in pseudo-PL because all code is supgiésa by off-line explanations that
serve the same purpose.

e Programming variables are undeclared, and implicitlyodtrced through their first use. They
are not explicitly typed, but the context should make theacl This is in the spirit of modern
scripting languages such Ber | , and consistent with our clutter-free spirit.

e Normally, each line is a command, so we need not end it withtrdmitional semicolon (;) or
a full stop. (We use both semicolon and full stops — if the arption is more “Englishy” we
prefer full stops.) But if we put two or commands on one line,eould still separate them with
semicolons. What if a command needs more than one line? liy c@nputer languages, the
continuation symbol i§. But in our effort to produce more human friendly programs,aeuld
use ellipsis ¢..” at the end of a line to indicate its continuation to the néx¢| But if the line is
an English sentence, we can even drop the ellipsis and itldecontinuation line appropriately.

o Informally, the equality symbol=" is often overloaded to indicate the assignment operator as
well as the equality test. We will use for assignment operator, and preséfve=" for equality
test.

e Inthe style ofCorJava, we write “z++" (resp., “++z”) to indicate the increment of an integer
variablex. The value of this expression is the valuerdiefore (resp., after) incrementing. There
is an analogous notation for decrementing; and- - x.

Here is a recursive program written in pseudo-PL to comphed-actorial function:

FiB(n):
Input: natural numben.
Output: n!
> Base Case
1. If n < 1 Return(n)
> General Case
2. Return(n - FIB(n — 1)) <« Thisis a recursive call

8A.11 How to answer algorithmic exercises.
In our exercises, whenever we ask you to give an algorithiis, liest to write in pseudo code. We
suggest you emulate our pseudo-PL form of presentatiordests invariably ask about what level of
detail is sufficient. The general answeras much detail as one needs to know how to reduce it to
compilable programs in a conventional programming langaidgdere is a checklist you can use:

Rule 0 Specify your input and outputThis cannot be emphasized enough. We cannot judge your
algorithm if we do not know what to expect from its output! sine qua noh

12Programmers often use=" for assignment and=-="for equality test. Our choice preserves the original megmif “=".
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Rule 1 Take advantage of well-known algorithmBor instance, if you need to to sort, you should
generally be able to justinvoke a suitable sorting routine.

Rule 2 Reduce all operations t0(1) time operationsDo this when Rule 1 does not apply. Sometimes,
achievingO(1) time may depend on a suitable choice of data structures, Heseure to explain
this.

Rule 3 Use progressive algorithm developmeBtien pseudo code may be incomprehensible without
a suitable orientation — it is never wrong to precede youug@geeode with some English expla-
nation of what the basic idea is. In more complicated situresti do this in 3 steps: explain basic
ideas, give pseudo code, further explain certain detatlsérpseudo code.

Rule 4 Use standard algorithmic paradigma this book, we will see well-known paradigms such as
divide-and-conquer, greedy methods, dynamic programyeteg Another important paradigm is
the notion of shell-programming (see tree and graph tralgrsectures Il and V).

Rule 5 Explain and initialize all variables and data structureglost non-trivial algorithms has some
data structures, possibly the humble array. Critical \deis (counters, coloring schemes) ought
to be explained too. You must show how to initialize them.

Rule 6 The control structure of your algorithms should be evideAtl the algorithms you design
should have simple control structures — typically a simpteplor a doubly-nested loops. Triply-
nested loops do arise (e.g., dynamic programming) but deegsting is seldom needed. Each
loop should use standard programming constructs (for;ladyle-loop, do-loop, etc). It is an
axiomt* that if a problem can be solved, then it is solvable by cleap ktructures.

Rule 7 Correctness.This is an implicit requirement of all algorithms. All thegalrithms we study
requires that the algorithm halts on all inputs. Corredridsuch algorithms is traditionally split
into two distinct requirements:

(1) The algorithm halts.

(2) The output is correct when it halts. This part is somesiwedledpartial correctness

Even when we do not ask you to explicitly prove correctness,should check this yourself. A
simple method to prove partial correctness is this: at thggnming of each iteration of a loop,
you should be able to attach a suitalbleariant (called assertionin standard programming
languages). Partial correctness follows easily if the appate invariants hold.

Rule 8 Analysis and Efficiencylhis is considered a more advance requirement. But sinséstiihat
algorithmics is about, we view it as part and parcel of anypatgm in this book. You should
always be able to give a big-Oh analysis of your algorithmmbrst cases, non-polynomial time
solutions are regarded as unnecessarily inefficient.

EXERCISES

Exercise A.1: The following is a useful result about iterated floors andirngs.
(a) Letn, b be positive integers. LeN, := n and fori > 0, N;41 := | N;/b]. Show that
N; = |n/b*|. Similarly for ceilings. HINT: use the fact tha€;;; < N;/b+ (b—1)/b.
(b) Letuy = 1 andwu;11 = |5u;/2] for i > 0. Show that fori > 4, 0.76(5/2)" < wu; <
0.768(5/2). HINT: r; := u;(2/5)" is non-increasing; give a lower bound on(i > 4) based on
T4 ¢
13In computing, this is known as “code reuse”. Others call thist reinventing the wheel”.

14There are theorems about the universality of loop-progréveyer and McCreight) and the possibility of avoiding “gu-t
statements.
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Exercise A.2: Let z, a, b be positive real numbers. Show that

[z/ab] > [|x/a] /b] . (16)
When is this an equality? &

Exercise A.3: Consider the following sentence:
(Vx € Z)(Fy € R)(3z € R) [(m S0 = (y<oe<y HA(z<z<2)A(y< z))] a7

Note that the range of variableis Z, notR. This is called auniversal sentencebecause the

leading quantifier is the universal quantifie).(Similarly, we haveexistential sentence

(i) Negate the sentence (17), and then apply De Morgan'’s lawmidteghe result as an existential
sentence.

(i) Give a counter example to (17).
(iii) By changing the claus€® > 0)”, make the sentence true. Indicate why it would be true.

&

Exercise A.4: Suppose you want to prove that

f(n) # O(f(n/2))

wheref(n) = (logn)'e™.
(a) Using de Morgan'’s law, show that this amounts to sayiagfibr all C' > 0, ng there exists
such that

(n = no) A f(n) > Cf(n/2).

(b) Complete the proof by finding a suitabldor any givenC, ny. &

Exercise A.5: The following statement is a fack planar graph om vertices has at most. — 6 edges.
Let us restate it as follows:

(G is a planar graph and hasvertices = (G has< 3n — 6 edge$.
(i) State the contra-positive of this statement.

(ii) The complete graph of vertices, denoted by; is shown in Figure 2. Using the contra-
positive statement in part (i), prove th&y is not planar. &

Figure 2: K5, the complete graph ohvertices
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Exercise A.6: Prove these basic facts about binary trees: assumd.
(a) A full binary tree om leaves has — 1 internal nodes.
(b) Show that every binary tree onnodes has height at leadg;(1 +n)] — 1. HINT: define
M (h) to be the maximum number of nodes in a binary tree of hdight
(c) Show that the bound in (b) is tight for each
(d) Show that a binary tree om > 1 leaves has height at lea8gn|. HINT: use a modified
version of M (h).
(e) Show that the bound in (d) is tight for each &

Exercise A.7: (Erdds-Rado) Show that in any 2-coloring of the edges ottiraplete grapli,,, there
is a monochromatic spanning treefsf,. HINT: use induction. &

Exercise A.8: Let T be a binary tree on nodes.
(a) What is the minimum possible number of leave%'th
(b) Show by strong induction on the structurelothatT has at mosiL”T“J leaves. This is an
exercise in case analysis, so proceed as follows: first ket odd (sayp = 2N + 1) and assume
T hask = 2K + 1 children in the left subtree. There are 3 other cases.
(c) Give an alternative proof of part (b): show the result/idoy a weaker induction on — 1 and

n— 2.

(d) Show that the bound in part (b) is the best possible byrdesg a 7" with L”T“J leaves.

HINT: first show it whemn = 2¢ — 1. Alternatively, consider binary heaps. &
Exercise A.9:

(a) A binary tree with a key associated to each node is a beaych tree iff the in-order listing
of these keys is in non-decreasing order.

(b) Givenboththe post-order and in-order listing of the nodes of a bingeg,twe can reconstruct
the tree. &

END EXERCISES
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