§1. ALGORITHMICS Lecture | Page 1

Lecture |
OUTLINE OF ALGORITHMICS

We assume the student is familiar with computer programraimjhas a course in data structures
and some background in discrete mathematics. Problemsdsosing computers can be roughly classi-
fied into problems-in-the-large and problems-in-the-$nfdle former is associated with large software
systems such as an airline reservation system, compilgexbeditors. The lattéris identified with
mathematically well-defined problems such as sorting, iplyibg two matrices or solving a linear pro-
gram. The methodology for studying such “large” and “smpti8blems are quite distinct: Algorithmics Algorithmicsabout
is the study of the small problems and their algorithmic 8ofu In this introductory lecture, we presentsmall” problems
an outline of this enterprise. Throughout this boomputational problems (or simply “problems”)
refer to problems-in-the-small. It is the only kind of prebii we address.

READING GUIDE: This chapter is mostly informal and dependssome prior understanding of
algorithms. The rest of this book has no dependency on thigteln, save the definitions§8 concerning
asymptotic notations. Hence a light reading may be sufficife recommend re-reading this chapter
after finishing the rest of the book, when many of the remaeks may take on more concrete meaning.

§1. What is Algorithmics?

Algorithmics is the systematic study of efficient algorithms for compotadl problems; it includes
techniques of algorithm design, data structures, and nmradtieal tools for analyzing algorithms.

Why is algorithmics important? Because algorithms is aftcitve of all applications of computers.
These algorithms are the “computational engines” thatediavger software systems. Hence it is im-
portant to learn how to construct algorithms and to analigent Although algorithmics provide the
building blocks for large application systems, the corttan of such systems usually require additional
non-algorithmic techniques (e.g., database theory) wdieloutside our scope.

We can classify algorithmics according to its applicationsubfields of the sciences and mathe-
matics: thus we have computational geometry, computdtiopalogy, computational number theory,
computer algebra, computational statistics, computatifimance, computational physics, and compu-
tational biology, etc. More generally, we have “computaéibX” where X can be any discipline. But
another way to classify algorithmics is to look at the gemé&vbls and techniques that are largely in-
dependent any discipline. Thus, we have sorting technjgyraph searching, string algorithms, string
algorithms, dynamic programming, numerical PDE, etc, thi$ across individual disciplines. A good
way to represent these two orthogonal classification is écaumatrix:

=T
AEEFIFIELE:
S|l S22 |0
g|s| 8| 2|e|o
DL |E|a|a|®
sorting VIV IVIVI VY
graph searching v v v
string algorithms v Ve s
dynamic programming| v/ v IV
numerical PDE V|V

Chee-Keng Yap Basic Version January 21, 2011

§2. COMPUTATIONAL PROBLEMS Lecture | Page 2

Computer Science is
row-oriented
So each computational X is represented by a column in thisixpand each computational tech-

nigue is represented by a row. Each checkmark indicatestpatticular computational technique is
used in a particular discipline X. Individual scientific dijslines take a column-oriented view, but Com-
puter Science takes the row-oriented view. These row latagide classified into four basic themes:

(a) data-structures (e.qg, linked lists, stacks, search trees)
(b) algorithmic techniques (e.g., divide-and-conquer, dyicgrogramming)
(c) basic computational problems (e.g., sorting, graph-$e@aint location)

(d) analysis techniques (e.g., recurrences, amortizatiodoraized analysis)

These themes interplay with each other. For instance, s@tsgestructures naturally suggest certain
algorithmic techniques (e.g., graphs requires graphebe@chniques). Or, an algorithmic technique
may entail certain analysis methods (e.g., divide-andyaenalgorithms require recurrence solving).
The field of complexity theory in computer science providesie unifying concepts for algorithmics;
but complexity theory is too abstract to capture many finstimtions we wish to make. Thus algorith-
mics often makes domain-dependentassumptions. For egaimthe subfield of computer algebra, the
complexity model takes each algebraic operation as a pvanithile in the subfield of computational
number theory, these algebraic operations are reducedrte bit-complexity model primitives. In this
sense, algorithmics is more like combinatorics (which ls&ec) than group theory (which has a unified
framework).

§2. What are Computational Problems?

Despite its name, the starting point for algorithmicg@nputational problems not algorithms.
But what are computational problems? We mention three naggories.

(A) Input-output problems. Such problems are the simplest to understandcofputational
problem is a precise specification of input and output formats, an@éch input instancg, a descrip-
tion of the set of possible output instances= O(7). Standard 1/0 prob-
lems

The word “formats” emphasizes the fact the input and outpptesentation is part and parcel of
the problem. In practice, standard representations magkes tfor granted (e.g., numbers are assumed
to be in binary and set elements are arbitrarily listed with@petition). Note that the input-output
relationship need not be functional: a given input may haveal acceptable outputs.

| Example: (Al) SORTING PROBLEM: Input is a sequence of numbefs, ..., a,) and
output is a rearrangement of these numlgefs. . ., /) in non-decreasing order. An input instance is
(2,5,2,1,7), with corresponding output instan¢g 2, 2,5, 7).

| Example: (A2) PRIMALITY TESTING: Input is a natural numbet and output is either
YES (if n is prime) or NO (ifn is composite). Numbers are assumed to be encoded in binarg. T
is an example oflecision or recognition problem where the outputs have only two possible answers
(YES/NO,0/1, Accept/Reject). One can generalize this to problems whaggut comes from a finite
set. Forinstance, in computational geometry, the decfgioblems tend to have three possible answers:

1If problems-in-the-large is macro-economics, then thdjems-in-the-small is micro-economics.

Chee-Keng Yap Basic Version January 21, 2011

§2. COMPUTATIONAL PROBLEMS Lecture | Page 3

Positive/Negative/Zero or IN/OUT/ON. For instance, fflwent classification problemis where we are
given a point and some geometric object such as a triangleelt.aThe point is either inside the cell,
outside the cell or on the boundary of the cell.

(B) Preprocessing problems.A generalization of input-output problems is what we gatpro-
cessing problem given a setS of objects, construct a data structufe(.S) such that for an arbitrary
‘query’ (of a suitable type) abouff, we can usé(.S) to efficiently answer the queryhere are two dis-
tinct stages in such problems: preprocessing stage anahdifne” stage. Usually, the sétis “static”
meaning that membership fidoes not change under querying. Two-staged problems

| Example: (B1) RANKING PROBLEM: preprocessing input is a sétof numbers. A query
on S is a number for which we like to determine its rank ifi. The rank ofg is S is the number of
items inS that are smaller than or equal4o A standard solution to this problem is thanary search
treedata structuré(S) and the binary search algorithm @n(S).

| Example: (B2) PosT OFFICE PROBLEM: Many problems in computational geometry and
database search are the preprocessing type. The followiagieometric-database illustration: given
a setS of points in the plane, find a data structup§.S) such that for any query point, we find an
element inS that is closest t@. (Think of S as a set of post offices and we want to know the nearest
post office to any positiop). Note that the 1-dimensional version of this problem isely allied to
the ranking problem.

Two algorithms are needed to solve a preprocessing probdemto construcD(S) and another
to answer queries. They correspond to the two stages of datiu an initialpreprocessing stage
to constructD(.S), and a subsequeqterying stagein which the data structur®(S) is used. There
may be a tradeoff between tipeeprocessing complexityand thequery complexity: D, (.S) may be
faster to construct than an alternatitdg(.5), but answering queries usirdg; (S) may be less efficient
thanD4(S). But our general attitude to prefér,(S) over Dy (S) in this case: we prefer data structures
D(S) that support the fastest possible query complexity. Outudt is often justified because the
preprocessing complexity is a one-time cost.

Preprocessing problems are a special caggdfal evaluation problems. In such problems, we
construct partial answers or intermediate structurescbasgart of the inputs; these partial answers or
intermediate structures must anticipate all possiblerssioms of the partial inputs.

(C) Dynamization and Online problems. Now assume the inpuf is a set, or more generally
some kind of aggregate object like a databaseS tfan be modified under queries, then we have a
dynamization problem: with S and D(S) as above, we must now design our solution with an eye to
the possibility of modifyingS (and hence(5)). Typically, we want to insert and delete elements§in
while at the same time, answer queries/ofS) as before. A set whose members can vary over time
is called adynamic setand hence the name for this class of problems.

Here is another formulationwe are given a sequen¢ey, s, ..., r,) of requests where a request
is one of two types: either ampdate or a query. We want to ‘preprocess’ the requests in an online
fashion, while maintaining a time-varying data structupe for each update request, we modifyand
for each query request, we uskto compute and retrieve an answdp fnay be modified as a result).

In the simplest case, updates are either “insert an obje¢tiaete an object” while queries are “is
objectx in S?”. This is sometimes called tleet maintenance problem Preprocessing problems can
be viewed as a set maintenance problem in which we first ps@esquence of insertions (to build up
the setS), followed by a sequence of queries.

Chee-Keng Yap Basic Version January 21, 2011

§3. COMPUTATIONAL MODEL Lecture | Page 4

| Example: (C1) DyNAMIC RANKING PROBLEM: Any preprocessing problem can be sys-
tematically converted into a set maintenance problem. i&iance, the ranking problem turns into the
dynamic ranking problem in which we dynamically maintain the sétsubject to intermittent rank
queries. The data structures in solutions to this problenuanally calledlynamic search trees

| Example: (C2) GRAPH MAINTENANCE PROBLEMS: Dynamization problems on graphs
are more complicated than set maintenance problems (thmgyhban still view it as maintaining a set
of edges). One such problem is thgnamic connected component problemupdates are insertion
or deletion of edges and/or vertices. Queries are pairsrtites in the current graph, and we want to
know if they are in the same component. The graphs can beelrec undirected.

(D) Pseudo-problems. Let us illustrate what we regard to be a pseudo-problem fivenview-
point of our subject. Suppose your boss asks your IT depaittoe'build an integrated accounting
system-cum-employee database”. This may be a real wortthsioebut it is not a legitimate topic for
algorithmics because part of the task is to figure out whairtpat and output of the system should
be, and there are probably other implicit non-quantifiabieeda (such as available technology and
economic realities).

63. Computational Model: How do we solve problems?

Once we agree on the computational problem to be solved, v& chwose the tools for solving
it. This is given by thecomputational model Any conventional programming languages suclCas
or Java (suitably abstracted, so that it does not have finite spaceds etc) can be regarded as a
computational model. A computational model is specified by

(a) the kind of data objects that it deals with
(b) the primitive operations to operate on these objects

(c) rules for composing primitive operations into larger uc@fiedprograms.

Programs can be viewed as individual instances of a compngtmodel. For instance, the Turing
model of computation is an important model in complexitydtyeand the programs here are called
Turing machines.

1. Models for Sorting. To illustrate computational models, we consider the pnobté sorting.

The sorting problem has been extensively studied sincedgmbing of Computer Science (from the

1950's). It turns out that there are several computatiormdels underlying this simple problem, each

giving rise to distinct computational issues. We brieflyatése just three of them: theomparison-

tree model thecomparator circuit model, and thetape model In each models, the data objects are

elements from a linear order. 3 sorting models

The first model, comparison-trees, has only one primitiveragon, viz., comparing the two ele-
mentsz, y resulting in one of two outcomes < y or z > y. Such a comparison is usually denoted
“x : y". We compose these primitive comparisons intivege program by putting them at the internal
nodes of binary tree. Tree programs represent flow of coatrdlare more generally calletcision
trees Figure 1(a) illustrates a comparison-tree on inputg, z. The output of the decision tree is spec-
ified at each leaf. For instance, if the tree is used for sgrtive would want to write the sorted order

Chee-Keng Yap Basic Version January 21, 2011

§3. COMPUTATIONAL MODEL Lecture | Page 5

. max | max_ s
y— mm>(i :l//
z Z

(a) (b)

Figure 1: (a) A comparison-tree and (b) a comparator circuit

of the input elements in each leaf. If the tree is used to fiedhtlaximum element of the input set, then
each leaf would specify the maximum element.

In the comparator circuit model, we also have one primitigeration which takes two input ele-
mentse, y and returns two outputs: one outpuhisx{z, y }, the othemin{x, y}. These are composed
into circuits which are directed acyclic graphs withinput nodes (in-degre@) andn output nodes
(out-degred) and some number of comparator nodes (in-degree and outaldg In contrast to tree
programs, the edges (calladres) in such circuits represent actual data movement. Figueshows
a comparator circuit on inputs v, z. Depending on the problem, the output of the comparatouitirc
may be the set of all output lines’(3/, 2’ in Figure 1(b)) or perhaps some subset of these lines.

A third model for sorting is the tape model. A tape is a storagéelium which allows slow, sequential
access to its data. We can use several tapes and limited awfonrain memory, and the goal is to
minimize the number of passes over the entire data. We willetaborate on this model, but [3] is
a good reference. Tape storage was the main means of masgestorthe early days of computing.
Curiously, some variant of this model (the “streaming dat@et”) is becoming important again because
of the vast amounts of data to be process in our web-age.

92. Algorithms versus programs. To use a computational model to solve a given problem, we must
make sure there is a match between the data objects in thieprapecification and the data objects
handled by the computational model. If not, we must spediye suitable encoding of the former
objects by the latter. Similarly, the input and output fotsnaf the problem must be represented in some
way. After making explicit such encoding conventions, weymall A analgorithm for P if, if the
programA indeed computes a correct output for every legal inpuPofThus the term algorithm is a
semantical concept, signifying a program in its relatiosdme problem. In contrast, programs may be
viewed as purely syntactic objects. E.g., the programs urdid.(a,b) are both algorithms to compute
the maximum oft, y, z. But what is the output convention for these two algorithms?

€3. Uniform versus Non-uniform Computational Models. While problems generally admit inputs
of arbitrarily large sizes (see discussion of size belowines computational models define programs
that admit inputs of a fixed size only. This is true of the diecigree and circuit models of computation.
In order to solve problems of infinite sizes, we must take aisege of program® = (P, P, Ps, .. .)
where P; admits inputs of sizeé. We call such a program? a non-uniform program since we have
noa priori connections between the differefts. For this reason, we call the models whose programs
admit only finite size inputson-uniform models. The next section will introduce @aniform model
called the RAM Model. Pointer machines (see Chapter 6) amohgumachines are other examples of
uniform models. The relationship between complexity infamm models and in non-uniform models
is studied in complexity theory.

Chee-Keng Yap Basic Version January 21, 2011

§3. COMPUTATIONAL MODEL Lecture | Page 6

94. Problem of Merging Two Sorted Lists. Let us illustrate the difference between uniform and
non-uniform algorithms. A subproblem that arises in sagrtie the merge problem where we are
given two sorted listSz1, 22, ...,2,) and (y1,y2,...,y,) and we want to produce a sorted list
(21,22, .+ Zm4n) Where{z1, ..., zmin} = {21, .., Zm, Y1, .., yn}. ASSume these sorted lists are
non-decreasing. Here is a algorithm for this problem, @mitin a generic conventional programming
language:

MERGEALGORITHM
Input: (x1,...,2,)and(y,. .., y,), sorted in non-decreasing order.
Output: The merger of these two lists, in non-decreasing order.
> Initialize
1—1,7 1.
> Loop
Outputf;) andi « i + 1.
else
Outputfy;) andj «— j + 1.
> Terminate
if i>m < Thexz's are exhausted
Output the rest of thg's.
else <« They's are exhausted
Output the rest of the’s.

The student should note the conventions used in this progvaimh will be used throughout. First, Program conventions
we use indentation for program blocks. Second, we use twdskafi comments:{ forward comments
) and & backward commenys

This Merge Algorithm is a uniform algorithm for merging twists. For eachn, n, this algorithm
can be “unwounded” into a comparison-tfEg ,, for merging two sorted lists of sizes andn (Exer-
cise). Hence family{ T, ,, : m,n € N} is a non-uniform algorithm for merging two lists.

95. Program Correctness. This has to do with the relationship between an program archgpata-
tional problem.A program that is correct relative to a problem is, by defmitj an algorithm for that
problem.lIt is usual to divide correctness into two parts: partiareomess and halting. Partial correct-
ness says that the algorithm gives the correct output pedvichalts. In some algorithms, correctness
may be trivial but this is not always true.

EXERCISES

Exercise 3.1: What problems do the programs in Figure 1(a) and (b) solspeively? You have
some leeway in giving them suitable interpretations. &

Exercise 3.2: (a) Extend the program in Figure 1(a) so that it sorts thrpatielementgx, y, z}.
(b) In general, define what it means to say that a comparigmptogram sorts a set1, ..., x, }
of elements. &

Exercise 3.3: Design a tree program to find the second largest of the elemehtc, d. The height of
your tree should bé (the optimum). &

Chee-Keng Yap Basic Version January 21, 2011

§4. COMPLEXITY MODEL Lecture | Page 7

Exercise 3.4: Design a tree program to merge two sorted liatsy, z) and(a, b, ¢, d). The height of
your tree should b& (the optimum). O

Exercise 3.5: Draw the tree program corresponding to unwinding the Mardgothm on input
(1, x2) and(y1,y2,ys, y4). Thisis calledl: 4 in the text. O

END EXERCISES

84. Complexity Model: How to assess algorithms?

We now have a suitable computational model for solving oabfam. What is the criteria to choose
among different algorithms within a model? For this, we nteidtroduce acomplexity model

In most computational models, there are usually naturabnstof time andspace These are
two examples otomputational resources Naturally, resources are scarce and algorithms consume
resources when they run. We want to choose algorithms thatmizie the use of resources. In our
discussions, we focus on only one resource at a time, ustiraly(occasionally space). So we avoid
issues of trade-offs between two resources.

Next, for each primitive operation executing on a particdlata, we need to know how much of the
resource is consumed. For instance] @&va, we could define each execution of the addition operation
on two numbers, b to use timdog(|a|+|b|). Butit would be simpler to say that this operation takes unit
time, independent af, b. This simpler version is our choice throughout these lestigach primitive
operation takes unit time, independent of the actual data.

How is the running time for sorting000 elements related to the running time for sortiryele-
ments? The answer lies in viewing running time as a functiothe number of input elements, the
“input size”. In general, problems usually have a naturaiamoof “input size” and this is the basis for
understanding the complexity of algorithms.

So we want a notion adizeon the input domain, and measure resource usage as a fuatimgut
size. The sizeize(I) of an input instancé is a positive integer. We make a general assumption about
the size functionthere are inputs of arbitrarily large size

For our running example of the sorting problem, it may seetumahto define the size of an input
(ai,...,ay) to ben. But actually, this is only natural because we usually usamgdational models
that compares a pair of numbers in unit time. For instanaeeimust encode the input as binary strings
(as in the Turing machine model), then input size is betteerido be) " | (1 + log(1 + |a,|)).

SupposeA is an algorithm for our problen®. For any input instancé, let 74 (1) be the total
amount of time used byl on input/. Naturally,T4(I) = oo if A does not halt od. Then we define
theworst case running timeof A to be the functiorf'4 (n) where

Ta(n) := max{Ta(I) : size(I) = n}

Using “max” here is only one way to “aggregate” the set of numid@rs(7) : size(I) < n}. Another
possibility is to take the average. In general, we may appiyesfunction,

Ta(n) = G{Ta(I) : size(I) < n})

Chee-Keng Yap Basic Version January 21, 2011

§4. COMPLEXITY MODEL Lecture | Page 8

For instance, if7 is the average function and we gaterage time complexity

To summarize: @omplexity modelis a specification of
(a) the computational resource,
(b) the input size function,
(c) the unit of resource, and
(d) the method~ of aggregating.
Once the complexity model is fixed, we can associate to egchitim A a complexity function 7'4.

| Example: (T1) Consider the Comparison Tree Model for sorting. Tét) be the worst
case number of comparisons needed tos@ements. Any tree program to sarelements must have
at leastn! leaves, since we need at least one leaf for each possibiegsoritcome. Since a binary tree
with n! leaves has height at ledsg(n!)].

LEmMMmA 1. Every tree program for sorting. elements has height at leaflg(n!)], i.e., T'(n) >

[g(n!)].
This lower bound is called thaformation Theoretic Lower Bound for sorting.

| Example: (T2) In our RAM model (real or integer version), let the cortgtional resource be
time, where each primitive operation takes unit time. Thpuirsize function is the number of registers
used for encoding the input. The aggregation method is thistwase (for any fixed input size). This is
called theunit time complexity model.

96. Complexity of Merging. Define M (m,n) to be the minimum height of any comparison tree for
merging two sorted lists of sizes andn, respectively. We can prove the following bounds

M(m,n)<m-+n-1

and
M(m,n) > 2min{m,n} — §(m, n)

whered(m,n) = 1if m = n andd(m,n) = 0 otherwise. The upper bound comes from the algorithm Someedsting stuff
for merging described if3: each comparison results in at least one output. But thelasent can be at last!

output without any comparison. Hence we never make more adsgms thamn + n — 1. The lower

bound comes from the following example: assume the inptis xo < -+ <z, andy; < -+ <y,

wherem > n. We assume that

1 <Y1 < T2 <Y <3< Ty <Yp < Tpy1 <+ Ty

Note that eachy; must be compared to; andx;; (fori = 1,...,n — 1). Moreover,y, must be
compared ta:,,, and in casé(m, n) = 0, y, must also be compared 19, 1. This provesM (m,n) >

2n — §(m, n), wheren = min{m,n}. This method of proving lower bounds is called gdversary
argument.

A corollary of the above upper and lower bounds are some éb@ands for the complexity of
merging:
M(m,m)=2m—1

and
M(m,m+ 1) =2m.

Thus the uniform algorithm is optimal in these cases. Moresgally, M (m, m + k) = 2m + k — 1 for
k=0,...,4andm > 6 (see [3] and Exercise).

Chee-Keng Yap Basic Version January 21, 2011

§4. COMPLEXITY MODEL Lecture | Page 9

Now consider the other extreme where the two input lists ardigparate in lengths as possible:
M (m,1). In this case, the information theoretic bound says tdin, 1) > [lg(m + 1)] (why?).
Also, by binary search, this lower bound is tight. Hence we know another exact value:

M(m,1) = [lg(m +1)].
A non-trivial result from Hwang and Lin says
M(2,n) = [lg7(n +1)/12] + [lg14(n + 1)/17] .

More generally, thénformation-theoretic bound says

2 16(7)

since there arém:") ways of merging the two sorted lists. To see this, imaginéweaalready have
the sorted list oin + n elements: but which of these elements come from the listzefisi? There are
(™*™) ways of choosing these elements.

Thus we have two distinct methods for proving lower boundd&mn, n): the adversary method is
better wherjm — n| is small, and the information theoretic bound is better witengap is large. The
exact value of\/ (m, n) is known for several other cases, but a complete descripfitiis complexity
function remains an open problem.

q7. Other Complexity Measures. There are complexity models. For instance, in computationa
geometry, it is useful to take the output size into accoulie domplexity function would now take at
least two argumentd(n, k) wheren is the input size, buk is the output size. This is theutput-
sensitive complexity model

Remarks:
1. Another kind of complexity measure is thizeof a program. In the RAM model, this can be the
number of primitive instructions. We can measure the corifyl®f a problemP in terms of the size
s(P) of the smallest program that solvEs This complexity measure assigns a single nursbg), not
a complexity function, ta”. Thisprogram size measurds an instance oftatic complexity measure
in contrast, time and space are exampledysfamic complexity measuresHere “dynamic” (“static”)
refers to fact that the measure depends (does not depent¥anrnning of a program. Complexity
theory is mostly developed for dynamic complexity measures
2. The comparison tree complexity model ignores all theratbemputational costs except comparisons.
In most situations this is well-justified. But it is possibke create conjure up ridiculous algorithms
which minimize the comparison cost, at an exhorbitant aostfier operations.
3. The size measure is relative to representation. Perhap®y property of size measures is ttredre
are only finitely many objects up to any given si¥#ithout this, we cannot develop any complexity
theory. If the input set are real numbeRs,then it is very hard to give a suitable size function withsthi
property. This is the puzzle of real computation.

EXERCISES

Exercise 4.1: How many comparisons are required in the worst case tol8@tements? Give a lower
bound in the comparison tree model. Note: to do the compmurtdty hand, it is handy to know
that10! = 3,628,800 and2?° = 1,048, 576. O

2My colleague, Professor Robert Dewar suggests the folipwexample: givem numbers to be sorted, we first search for
all potential comparison trees for sortingelements. To make this search finite, we only evaluate cdsgratrees of height at
mostn [lgn]. Among those trees that we have determined to be able toremgick one of minimum height. Now we run this
comparison tree on the given input.

Chee-Keng Yap Basic Version January 21, 2011

§5. ALGORITHMIC TECHNIQUES Lecture | Page 10

Exercise 4.2: How good is the information theoretic lower bound for sagtdrelements a sharp bound?
In other words, can you find upper bounds that matches theniaftion-theoretic lower bound?
Repeat this exercise fdrand5 elements. &

Exercise 4.3: The following is a variant of the previous exercise. |s itaj\s possible to sortelements
using a comparison tree withl leaves? Check this out far= 3,4, 5. &

Exercise 4.4: (a) Consider a variant of the unit time complexity model foe integer RAM model,
called thelogarithmic time complexity model. Each operand takes time that is logarithmic in
the address of the register and logarithmic in the size @jdesands. What is the relation between
the logarithmic time and the unit time models?

(b) Is this model realistic in the presence of the arithmepierators (ADD, SUB, MUL, DIV).
Discuss. &

Exercise 4.5: Describe suitable complexity models for the “space” reseun integer RAM models.
Give two versions, analogous to the unit time and logarithtime versions. What about real

RAM models? &
Exercise 4.6: Justify the claim thab/ (m, 1) = [lg(m + 1)]. &
Exercise 4.7: Using direct arguments, give your best upper and lower bstord\/ (2, 10). &
Exercise 4.8: Prove thatM (m,m + i) = 2m +1i — 1 fori = 2,3,4form > 6. O

Exercise 4.9: Prove thatV/ (k, m) > klg,(m/k) for k < m. HINT: split the list of lengthmn into three
sublists of roughly equal sizes. &

Exercise 4.10: Open problem: determink/ (m, 3) andM (m, m + 5) for all m. O

Exercise 4.11: With respect to the comparator circuit and tree program risadé3, describe suitable

complexity models for each. &
Exercise 4.12: SupposeX, .. ., X,, aren sorted lists, each with elements. Show that the complexity
of sorting the sefX = JI'_, X; is ©(nklogn). %

END EXERCISES

§5. Algorithmic Techniques: How to design algorithms

Now that we have some criteria to judge algorithms, we begitesign algorithms. There emerges
some general paradigms of algorithms design: (i) Dividé-amnquer (e.g., merge sort)

Chee-Keng Yap Basic Version January 21, 2011

§5. ALGORITHMIC TECHNIQUES Lecture | Page 11

(ii) Greedy method (e.qg., Kruskal’s algorithm for minimugesining tree)
(iif) Dynamic programming (e.g., multiplying a sequencentdtrices)
(iv) Incremental method (e.g., insertion sort)

Let us briefly outline the merge sort algorithm to illustrdieide-and-conquer: Suppose you want
to sort an arrayl of n elements. Assume is a power of2. Here is the Merge Sort algorithm on input
A:

1. (Basis) Ifn is 1 simply return the array.
2. (Divide) Divide the elements of into two subarray®3 andC of sizen/2 each.
3. (Recurse) Recursively, call the Merge Sort algorithnorDo the same fo€.

4. (Conquer) Merge the sorted arraysandC' and put the result back into arraly

There is only one non-trivial step, the merging of two sodedys. We leave this as an exercise.

There are many variations or refinements of these paradigmgs.Kirkpatrick and Seidel [2] intro-
duced a form of divide-and-conquer (called “marriage-befdividing”) that leads to an output-sensitive
convex hull algorithm. There may be domain specific versfithese methods. E.g., plane sweep is
an incremental method suitable for problems on points ifiEie&n space.

Closely allied with the choice of algorithmic technique lie tchoice ofdata structures A data
structure is a representation of a complex mathematicattsire (such as sets, graphs or matrices),
together with algorithms to support certain querying oratpd) operations. The following are some
basic data structures.

(a) Linked lists: each list stores a sequence of objects together with opasator (i) accessing the
first object, (ii) accessing the next object, (iii) insegtia new object after a given object, and (iv)
deleting any object.

(b) LIFO, FIFO queues: each queue stores a set of objects under operations fotiamsand deletion
of objects. The queue discipline specifies which object ibetaleleted. There are tdibasic
disciplines: last-in first-out (LIFO) or first-in first-ouE(FO). Note that recursion is intimately
related to LIFO.

(c) Binary search trees: each tree stores a set of elements from a linear orderinghegeith the
operations to determine the smallest element in the setfdingn a given element. A dynamic
binary search tree supports, in addition, the insertiondstetion of elements.

(d) Dictionaries: each dictionary stores a set of elements and supports thatapes of (i) inserting a
new element into the set, (ii) deleting an element, andtég}ing if a given element is a member
of the set.

(e) Priority queues: each queue stores a set of elements from a linear orderiethiemgwith the oper-
ations to (i) insert a new element, (ii) delete the minimuenatnt, and (iii) return the minimum
element (without removing it from the set).

EXERCISES

3A discipline of a different sort is called GIGO, or, garbadgegarbage-out. This is really a law of nature.

Chee-Keng Yap Basic Version January 21, 2011

§7. ANALYSIS Lecture | Page 12

Exercise 5.1: (a) Give a pseudo-code descriptiondferge(B, C, A) which, given two sorted arrays
B andC of sizen each, returns their merged (hence sorted) result into tlhg drof size2n.
(b) Why did we assume is a power of2 in the description of merge sort? How can we justify
this assumption in theoretical analysis? How can we hahileassumption in practice? <

Exercise 5.2: Design an incremental sorting algorithm based on the fatigyrinciple: assuming that
the firstm elements have been sorted, try to add (“insert”)/the- 1st element into the first,
elements to extend the inductive hypothesis. &

END EXERCISES

66. Analysis: How to estimate complexity

We have now a measufg, of the complexity of our algorithmi, relative to some complexity
model. Unfortunately, the functiofi, is generally too complex to admit a simple description, doe¢o
expressed in terms of familiar mathematical functionstead, we aim to give upper and lower bounds
onT4. This constitutes the subject afgorithmic analysis which is a major part of this book. The
tools for this analysis depends to a large extent on the igihgoic paradigm or data structure used by
A. We give two examples.

| Example: (D1) (Divide-and-conquer) If we use divide-and-conquertit is likely we need
to solve some recurrence equations. In our Merge Sort dfigrassuming is a power o2, we obtain
the following recurrence:
T(n)=2T(n/2)+ Cn

forn > 2andT'(1) = 1. HereT'(n) is the (worst case) number of comparisons needed by ouritdgor
to sortn elements. The solution B(n) = O(nlogn). In the next chapter, we study the solutions of
such equations.

| Example: (D2) (Amortization) If we employ certain data-structurkattmight be described
as “lazy” then amortization analysis might be needed. Ldtustrate this with the problem of maintain-
ing a binary search tree under repeated insertion and dieletielements. Ideally, we want the binary
tree to have heigh®(log n) if there aren elements in the tree. There are a number of known solutions
for this problem (see Chapter 3). Such a solution achievesptimal logarithmic complexity foeach
insertion/deletion operation. But it may be advantageousetlazy about maintaining this logarithmic
depth property: such laziness may be rewarded by a simptingor programming effort. The price
for laziness is that our complexity may be linear for indivad operations, but we still logarithmic cost
in the amortized sense To illustrate this idea, suppose we allow the tree to growdo-logarithmic
depth as long as it does not cost us anything, (there are no queries on a leaf with big depth). But
when we have to answer a query on a “deep leaf”, we take thisroyopty to restructure the tree so that
the depth of this leaf is now reduced (say halved). Thus tepeperies to this leaf will make it shallow.
The cost of a single query could be linear time, but we hopedber a long sequence of such queries,
the cost is amortized to something small (say logarithmit)s technique prevents an adversary from
repeated querying of a “deep leaf”. Unfortunately, thisas @nough because the very first query into a
“deep leaf” has to be amortized as well (since there may baihsesjuent queries). To anticipate this
amortization cost, we “pre-charge” the requests (inses)ithat lead to this inordinate depth. Using a
financial paradigm, we put the pre-paid charges into somk Aecount. Then the “deep queries” can
be paid off by withdrawing from this account. Amortizati@aoth an algorithmic paradigm as well as
an analysis technique. This will be treated in Chapter 6.

Chee-Keng Yap Basic Version January 21, 2011

§7. ASYMPTOPIA Lecture | Page 13

§7. Asymptotics: How robust is the model?

‘ This section contains important definitions for the resthefbook. ‘

You may forget the

rest of this chapter,
We started with a problem, selected a computational modelanassociated complexity modelput not this part!

designed an algorithm and managed to analyze its complexitgking back at this process, we are
certain to find arbitrariness in our choices. For instanagjld/a simple change in the set of primitive
operations change the complexity of your solution? Or whaticharge two units of time for some of

the operations? Of course, there is no end to such revisiaftésthoughts. What we are really seeking
is a certain robustness or invariance in our results.

€8. What is a complexity function? In this book, we call a partial real function
fR—=R

acomplexity function (or simply, “function”). We use complexity functions to qutdy the complexity
of our algorithms. Why do we considpartial functions? For one thing, many functions of interest are
only defined on positive integers. For example, the runnimg "4 (n) of an algorithmA that takes
discrete inputs is a partial real function (normally defioadtly whenn is a natural number). Of course,
if the domain of7’4 is taken to beN, thenT'4 (n) would be total. So why do we think @ as the domain
of T'4(n)? Again, we often use functions su¢fn) = n/2 or f(n) = y/n, to bound our complexity
functions, and these are naturally defined on the real dgnadlinhe tools of analysis and calculus
becomes available to analyze such functions. Many commalrfuactions such ag(n) = 1/n or
f(n) =logn are partial functions becaus¢n is undefined at = 0 andlog n is undefined forn < 0.

If f(n) is not defined at, we write f(n) =1, otherwisef(n) =|. Since complexity functions are
partial, we have to be careful about operations such asiumradtcomposition.

99. Designated variable and Anonymous functions. In general, we will write 2" and “log z” to
refer to the functiong (n) = n? or g(z) = log z, respectively. Thus, the functions denotédor log =
areanonymous(or self-naming). This convention is very convenient, buelies on an understanding
that “n” in n? or “z” in log z is thedesignated variablein the expression. For instance, the anonymous
complexity functior2®n is a linear function ifn is the designated variable, but an exponential function
if 2 is the designated variabl€he designated variable in complexity functions, by défimjrange over
real numbers.This may be a bit confusing when the designated variable’isihce in mathematical
literature,n is usually a natural number.

910. Robustness or Invariance issue. Let us return to the robustness issue which motivated this
section. The motivation was to state complexity results tizae general validity, or independent of
many apparently arbitrary choices in the process of degiour results. There are many ways to achieve
this: for instance, we can specify complexity functionsaifjolynomial smearing”. Two real functions

f, g,arepolynomially equivalent in this sense if for some > 0, f(n) < cg(n)¢ andg(n) < cf(n)¢

for all n large enough. Thus/n andn? are polynomially equivalent according to this definitiornig

is extremelyrobust but alas, too coarse for most purposes. The mostydéadelepted procedure is to
take two smaller steps:

e Step 1: We are interested in the eventual behavior of funst{e.g., ifT’(n) = 2™ for n < 1000
andT'(n) = n for n > 1000, then we want to regarfi(n) as a linear function).

Chee-Keng Yap Basic Version January 21, 2011

§7. ASYMPTOPIA Lecture | Page 14

e Step 2: We distinguish functions only up to multiplicativenstants (e.gx/2, n and10n are
indistinguishable),

These two decisions give us most of the robustness proparéelesire, and are captured in the follow-
ing language of asymptotics.

911. Eventuality. This is Step 1 in our search for invariance. Given two funtdiove say f < g
eventually’, written

f<g(ev), 1)

if f(z) < g(x) holds for allz large enough. More precisely, this means there is segreaich that the
following statement is true:

(Va)lz = zo = f(z) < g(2)].)

By not caring about the behaviour of complexity function oseme initial values, our complexity
bounds becomes robust against the following table-lookak. tGiven any algorithm, it is conceivable
that for any finite set of inputs, the algorithm store theis\aars in a table. This modified algorithm
only has to do a table-lookup to provide answers for thesescamnd otherwise it operates as before.
But this table-lookup algorithm has the same “eventual” ptaxity as the original algorithm.

REMARK: We must be careful with (2what does “f(z) < g(z)” mean
when eitherf(z) or g(x) may be undefinedThe answer depends on the
quantifier that bounds (i.e., that controls) whetherz is bounded by an
existential quantifier or by a universal quantifier. If a wrsal quantifief
(asin (1)), we declare the predicatg(t) < g(x)”to be true if eitherf (x)
or g(z) is undefined. If an existential quantifier, we declare theljoae
“f(z) < g(z)" to be false if eitherf(x) or g(x) is undefined. So (2) c4q
be expanded into:

(Vo)[(z = zo A flz) =] Aglz) =]). = .(f(z) < g(2))].

We generalize this treatment of quantification: bygaatial predicate on
real numbers, we mean a partial functih: R — {0,1}. In the pre-
vious example,P(z) is just “f(z) < g(x)”. The universally sentenge
“(Vz)[P(x)]" should be interpreted as saying “for alle R, if P(z) is de-
fined thenP () is true”. Similarly, the existentially sentencgdx)[P(z)]"
says “there exists someec R such thatP(x) is defined and?(z) is true”.
Note that the sentence P{x) holds eventually” has the form
“(Jy)(Vz)[R(x,y)]” where R(z,y) = (z > y = P(x)). More gen-
erally, let R(x,y) be a partial predicate. Let us say that is “eligible
in the first argument” if there exists somg such thatR(zo,y) is de-
fined. We can similarly define eligibility in the second argmh Then
“(Vz)(3y)[R(z,y)]" means that “for allz eligible in the first argumen
there existg such thatR(x,y) is defined and is true”. In particular, |i
there are nac eligible in the first argument, the sentence is true. On the
other hand, (3z)(Vy)[R(x,y)]” means that “there is an eligible in the
first argument, for aly, if R(x,y) is defined therR(x, y) is true”. In this
case, there is at least one eligiblén the first argument. This treatmegnt
extends easily to any partial predicates on any number afnaegts and
quantifiers.

>

=

To show the role of the variable, we may also write (1) as

f(z) < g(z) (ev.x).

Chee-Keng Yap Basic Version January 21, 2011

§7. ASYMPTOPIA Lecture | Page 15

Clearly, this is a transitive relation.

The “eventually” terminology is quite general: if a predied®(z) is parametrized by in some
real domainD C R, and R(z) holds for allz € D larger than some, then we sayR(x) holds
eventually (abbreviated, ev.). We can also extend this to predic&tesy, =) on several variables. A
related notion is this: if2(x) holds for infinitely many values of € D, we sayR(z) holds infinitely
often (abbreviated, i.0.).

If g < f(ev)andf < g (ev), then clearly

g=f (ev).

Thus meang (z) = g(«) for sufficiently larger, whenever both sides are defined.

REMARK. Most natural functiong in complexity satisfies some rather natural propertiesileat
normally take for granted:

e fis eventually definedf(z) | (ev.).

e f is eventually non-negative, > 0 (ev.).

When these properties fails, our intuitions often goes \gron

€12. Domination. We now take Step 2 towards invariance. We gapminates f, written

=g,

if there existsC > 0 such thatf < C - g (ev.). Equivalently,f < ¢ is written asg > f. This notation
naturally suggests the transitivity properiy= g andg < h implies f < h. Of course, the reflexivity
property holds;f < f. If f < gandg < f then we write

f=ag.

Clearly =< is an equivalence relation. The equivalence classgsi®talled the9-order of f; more on
this below. If f < g but notg < f then we write

[=g

E.g.,1+ £ <n=<n?

In short, the triplet of notations, <, = for real functions correspond to the binary relatighs<, =
for real numbers. The basic properties of domination argasigd by this correspondence: since y
andy < z impliesz < z, we might expecf < g andg < hto imply f < h (this is true).

Domination provides “implementation platform” robustaés our complexity results: it does not
matter whether you implement a given algorithm in a high liggregram language likdava or in
assembly. The complexity of your algorithm in these implatagons (if done correctly) will be dom-
inated by each other (i.e., sareorder). This also insulates our complexity results agdifsore’s
Law which predicts that the speed of hardware will keep iasireg over time (the end is not in sight

yet).

Chee-Keng Yap Basic Version January 21, 2011

§7. ASYMPTOPIA Lecture | Page 16

€13. The Big-Oh Notation. We write
o(f)

(and readbrder of f or big-Oh of f) to denote the set of all complexity functiopsuch that
0=xg=/f

Note that each function i@ (f) dominates), i.e. is eventually non-negative. Thus, restricted to The keyngmsotic
functions that are eventually non-negative, the big-Oltiah (viewed as a binary relation) is equivalemotation to know!
to domination. big-Oh is almost the
same as domination

We can unroll the big-Oh notation as follows: To spay= O(f) means
that there is somé&' > 0 andz, such that for alke > =, if g(x) =] and
f(z) =] then0 < g(z) < Cf(x).

Remember your delta-epsilon arguments in Calculus? Wedl,Gom-
puter Science analogue is tiéandz, arguments!

6:¢:C:x

E.g., The setO(1) comprises all functiong that is bounded and eventually non-negative. The
function1 + 1 is a member 0O(1).

The simplest usage of thi@@-notation is as follows: we write

g=0(f)

(and read ¢ is big-Oh of f* or ‘ ¢ is order of f’) to meang is a member of the s€?(/). The equality
symbol ‘=" here is “uni-directional”.g = O(f) does not mean the same thing@a&f) = g. Below, we
will see how to interpret the latter expression. The equaliimbol in this context is called @ne-way
equality. Why not just use¢’ for the one-way equality? A partial explanation is that @eenmon use
of the equality symbol has a uni-directional flavor where r@s$form a formula from an unknown form
into a known form, separated by an equality symbol. Our oag-@&guality symbol foD-expressions
lends itself to a similar manipulation. For example, thédiwing sequence of one-way equalities

fn)=> (i+ %) = <Z z) + <Z %) = 0(n?) + O(nlogn) = O(n?)

i=1 =1 =1

may be viewed as a derivation to shgvis at most quadratic.

914. Big-Oh Expressions. The expression®(f(n))’ is an example of aQ-expression, which we
now define. In any)-expression, there isdesignated variablewhich is the real variable that gde®
infinity. For instance, thé-expressior®O(n*) would be ambiguous were it not for the tacit convention
that ‘n’ is normally the designated variable. Henkés assumed to be constant. We shall defihe
expressionsas follows:

(Basis) If f is the symbol for a function, thepiis anO-expression. I is the designated variable for
O-expressions anda real constant, then both™and ‘¢’ are alsoO-expressions.

(Induction) If E, F are O-expressions and is a symbol denoting a complexity function then the
following areO-expressions:

O(E), f(E), E+F, FEF, —-E, 1/E, EF.

4More generally, we can considerapproaching some other limit, suchs

Chee-Keng Yap Basic Version January 21, 2011

§7. ASYMPTOPIA Lecture | Page 17

EachO-expressiorE denotes a selt of partial real functions in the obvious manner: in the baaise,
a function symbo}f denotes the singleton sg¢t= { f}. Inductively, the expressioli + F (for instance)

denotes the se?f/ﬁ'” of all functionsf + g wheref < E andg € F. Similarly for

e

f(E)7 E/\}%7 E? /E\E'

The setlA/E is defined a{l/g 1g € E) &0 = g} . The most interesting case is the expressigik),
called a “simple big-Oh expression”. In this case,

O(E)={f:(Gge B0 = f =g)}.

Examples of0-expressions:

2" — O(n?logn), prtOlogn) J+0(1/n)) —g(n).

Note that in general, the set of functions denoted byaexpression need not dominatelf £, F
are two(-expressions, we may write
E=F

to denoteF’ C F, i.e, the equality symbol stands for set inclusion! This gerieealour earlier f =
O(g)" interpretation. Some examples of this usage:

O(TLQ) _ 5(’)(logn) _ O(nlogn)7 n —+ (logn)O(\/ﬁ) _ nloglogn’ on — O(l)nf(?(l)

An ambiguity arises from the fact that@ does not occur in atd-expression, it is indistinguishable
from an ordinary expression. We must be explicit about oterition, or else rely on the context in
such cases. Normally, at least one side of the one-sidediequa’ = F’ contains an occurrence of
‘O, in which case, the other side is automatically assumedetarO-expression. Some common
O-expressions are:

e (O(1), the bounded functions.

e 1+ O(1/n), aset of functions that tends t6.
e O(n), the linearly bounded functions.

e n°W the functions bounded by polynomials.

e O(1)™ or2°(, the functions bounded by simple exponentials.

O(logn), the functions bounded by some multiple of the logarithm.

q15. Extensions of Big-Oh Notations. We note some simple extensions of thenotation:

(1) Inequality interpretation: For O-expressiongr, F', we may writeE! # F' to mean that the set of
functions denoted by is not contained in the set denoted By For instancef(n) # O(n?) means
that for allC' > 0, there are infinitely many such thatf (n) > Cn?.

(2) Subscripting convention: We can subscript the big-Oh’s in &hexpression. For example,

Oa(n), O1(n?) + Oz(nlogn). 3)

The intent is that each subscript,(1, 2) picks out a specific but anonymous function in (the set de-
noted by) the unsubscripte@-notation. Furthermore, within a given context, two oceages of an

Chee-Keng Yap Basic Version January 21, 2011

§7. ASYMPTOPIA Lecture | Page 18

identically subscripted-notation are meant to refer to the same function. How, itesadense to use
inequalities, as inf > O 4(g)” or“ f < O1(g)".

For instance, ifA is a linear time algorithm, we may say that funs in timeQO 4 (n)” to indicate
that the choice of the functio® 4 (n) depends om. Further, all occurrences ot?4(n)” in the same
discussion will refer to the same anonymous function. Agammay write

n2% = Or(n), n2*=0,(2%)

depending on one’s viewpoint. Especially useful is theigbtb do “in-line calculations”. As an
example, we may write
g(n) = Ox(nlogn) = Oa(n?)

where, it should be noted, the equalities here are true iggalf functions.

(3) Another possible extension is to multivariate real fiows. For instancef(x,y) = O(g(z,y))”
seems to be clear enough. In practice, this extension sémaéeded.

916. Related Asymptotic Notations. The above discussion extends in a natural way to several othe

related notations.

Big-Omega notation: Q(f) is the set of all complexity functionssuch that for some constafit> 0,
C-g>f=>0(ev,).

Of course, this can be compactly written@s- f = 0. Note thatQ(f) is empty unless it is
eventually non-negative. Clearly, big-Omega is just theerge of the big-Oh relationg is in

Q(f)iff £ = O(g).

Theta notation: O(f) is the intersection of the set3(f) andQ(f). Sogisin©(f) iff g < f.

Small-oh notation: o(f) is the set of all complexity functiongsuch that for alt” > 0,
C-f>g>0(ev,).

As usual, we writey = o(f) to meang € o(f). For instance, witlf (x) = 1/z andg(z) = 1,

So C' can be arbitrar-

we conclude that /2 = o(1). Also, we have the relation(f) C O(f). ily small!

Contrast our definition with the more usual definition of f)": say that ‘g = o(f)” (in quotes)
if g(x)/f(z) — 0asz — oo. Thus, our definition avoids the use of limits. A related tiotais
this: we say

f~yg
if f=g=zxo0(g)orf(zx)=g(x)[l=£o(l)]. We might say thaf andg approximates each other

with relative error ofo(1). Son ~n+Ign.

Small-omega notation: w(f) is the set of all functiong such that for allC' > 0,
C-g>f=>0(ev,).

Clearlyw(f) C Q(f). Again, the usual limit-based definition of ‘= w(f)” (in quotes) is that
g(x)/f(z) = oo asz — oo.

Chee-Keng Yap Basic Version January 21, 2011

§7. ASYMPTOPIA Lecture | Page 19

For each of these notations, we again definestiestpressionsdq € {2, ©, 0,w}), use the one-way
inequality instead of set-membership or set-inclusiom, @mploy the subscripting convention. Thus,
we write “g = Q(f)” instead of saying § is in Q(f)”. We call the seb(f) theo-order of f. Here are
some immediate relationships among these notations:

o [=0(g)iff g =Q(f).
o [=06(g)iff f=0(g)andf = Q(g).
e [=0(f)andO(O(f)) = O(f).

917. Lower Bounds. We can negate the statemeht= O(g) by writing f # O(g). This statement
is a way of stating a lower bound g sincef = O(g) states an upper bound gh Thus we have the
following three ways to state lower bounds on a complexityction f (n):

Each lower bound orf is less stringent than the previous. See Exercise for hogetlage used in
practice.

For example, let us prove that for &ll< &/,
n¥ O(n").

Suppose*” = O(n*). Thenthereis & > 0 such that*" < Cn* (ev.). That means* —* < C (ev.).
This is a contradiction becaugé is unbounded for any > 0.

€18. Discussion. There is some debate over the best way to define the asympbotiepts. There is
considerable divergence in the literature on the detaiésekve note just two alternatives:

1. Perhaps the most common definition follows Knuth [4, p.]MMo defines § = O(f)” to mean
there is somé€' > 0 such that f(z)| dominateg”|g(z)|. Using this definition, boti®(— f) and—O(f)
would mean the same thing éX f). Our definition, on the contrary, allows us to distinggisletween
1+ 0O(1/n)andl — O(1/n). Note thaty = 1 — O(f) amountsta — Cf < f <1 (ev.).

Note that when an big-Oh expression appears in negated f®im-a0(1/n), it is really a lower
bound
2. Again, we could have define@(f) more simply, as comprising thogesuch thaty < f. That
is, we omit the requiremerit < ¢ in our original definition. This definition is attractive kacse of
its simplicity. But with this “simplified definition”,O(f) contains arbitrarily negative functions. The

50n the other hand, there is no easy way to recover Knuth'sitiefirusing our definitions. It may be useful to retain Knsth’
definition by introducing a special notatioh®|(f(n))”, etc.

Chee-Keng Yap Basic Version January 21, 2011

§7. ASYMPTOPIA Lecture | Page 20

expressionl — O(1/n) is useful as an upper and lower bound under our official rmtaBut with the
simplified definition, the expressidn— O(1/n) has no value as an upper bound. Our official definition
opted for something that is intermediate between this sfiraglversion and Knuth's.

We are following Cormen et al [1] in restricting the elemeot®)(f) to complexity functions that
dominate0. This approach has its own burden: thus whenever we gay ©O(f)”, we have to check
thatg dominated) (cf. exercise 1 below). In practice, this requirement ismatch of a burden, and is
silently passed over.

A common abuse is to use big-Oh notations in conjunction thigHess-than or greater-than symbol:
it is very tempting to write f(n) < O(g)” instead of “f(n) = O(g)". At best, this is redundant. The
problem is that, once this is admitted, one may in the coufse long derivation eventually write
“f(n) > O(FE)” which is not very meaningful. Hence we regard any use<odr > symbols inO-
notations as illegitimate (but see below, (3)).

Perhaps most confusion (and abuse) in the literature drisasthe variant definitions of the-
notation. For instance, one may have only shown a lower bofitite formg(n) # O(f(n)) butthis is
claimed as g(n) = Q(f(n)) result. In other words, the expressian= Q(f)” is interpreted to mean
that there exists (or for all)’ > 0 such that for infinitely many, g(z) > C f(x).

Evidently, these asymptotic notations can be intermixed.,B(n®(1°¢™) — Q(n). However, they
can be tricky to understand and there seems to be little ree¢lddm. Another generalization with some
applications are multivariate complexity functions suslf &, y). They do arise in discussing tradeoffs
between two or more computational resources such as spaegarea-time, etc. In recently years, the
study of “parameterized complexity” is gives another exbna bivariate complexity functions (one of
the size variables controls the “parameters” of the proplem

EXERCISES

Exercise 7.1: Assumef(n) > 1 (ev.).
(a) Show thatf (n) = n©M) iff there existsk > 0 such thatf(n) = O(n*). This is mainly an
exercise in unraveling our notations!
(b) Show a counter example to (a) in cgde) > 1 (ev,) is false. &

Exercise 7.2: Prove or disprovef = O(1)" iff f = 20(n) &

Exercise 7.3: Unravel the meaning of th@-expression:l — O(1/n) + O(1/n?) — O(1/n?). Does
the O-expression have any meaning if we extend this into an iefiexipression with alternating
signs? &

Exercise 7.4: For basic properties of the logarithm and exponential fionst see the appendix in the
next lecture. Show the following (remember thiaits the designated variable). In each case, you
must explicitly specify the constantg, C', etc, implicit in the asymptotic notations.

(@) (n + ¢)* = ©(n*). Note thatr, k can be negative.

(b) log(n!) = ©(nlogn).

(c)n! = o(n™).

(d) [logn]! = Q(n*) for anyk > 0.

(e) [loglogn]! <n (ev.). O

Chee-Keng Yap Basic Version January 21, 2011

§8. Two DICTUMS Lecture | Page 21

Exercise 7.5: Provide either a counter-example when false or a proof when The basé of loga-
rithms is arbitrary but fixed, andl > 1. Assume the functiong, g are arbitrary (do not assume
that f andg are> 0 eventually).

(2) f = O(g) impliesg = O(f).

(b) max{f, g} = O(f +g).

(©)If g > 1andf = O(g) thenln f = O(ln g). HINT: careful!

(d) f = O(g) implies f o log = O(g o log). Assume thay o log and f o log are complexity
functions.

(e) f = O(g) implies2f = O(29).

(f) f = o(g) implies2f = O(29).

@) f = O(f?).
(h) f(n) = ©(f(n/2)). ¢
Exercise 7.6: Re-solve the previous exercise, assuming fhat> 2 (ev.). &

Exercise 7.7: Let f(x) = sinz andg(z) = 1.
(i) Prove f < g or its negation.
(ii) Proveg < f or its negation.

HINT: To prove thatf £ g, you need to show that fall choices ofC' > 0 andzy > 0, some
relationship betweerf andg fails. &

Exercise 7.8: This exercise shows three (increasingly strong) notiofsvweér bounds. Suppogg, (n)
is the running time of an algorithm.
(a) Suppose you have constructed an infinite sequence dbifpus, . .. of sizesn; < ny < - --
such thatA on I; takes time more thafi(n;). How can you express this lower bound result using
our asymptotic notations?
(b) In the spirit of (a), what would it take to prove a lower Inolof the formT's (n) # O(f(n))?
What must you show about of your constructed inplytds,
(c) What does it take to prove a lower bound of the faf(n) = Q(f(n))? O

Exercise 7.9: Show some examples where you might want to use “mixed” asyticfgxpressions.

Exercise 7.10: Discuss the meaning of the expressians O(logn) andn + O(log n) under (1) our
definition, (2) Knuth'’s definition and (3) the “simplified defion” in the discussion. &

END EXERCISES

68. Two Dictums of Algorithmics

We discuss two principles in algorithmics. They justify ipari our procedures and motivate some
of the fundamental questions we ask.

(A) Complexity functions are determined only ugterder. This recalls our motivation for intro-
ducing asymptotic notations, namely, concern for robustfexity results. For instance, we might
prove a theorem that the running tirfi&n) of an algorithm is “linear time”T'(n) = ©(n). Then

Chee-Keng Yap Basic Version January 21, 2011

§8. Two DICTUMS Lecture | Page 22

simple and local modifications to the algorithm, or reast@abplementations on different platforms,
should not affect the validity of this theorem.

There are of course several caveats: A consequence of ¢tisrdis that a “new” algorithm is not
considered significant unless its asymptotic order is le@s previous known algorithms. This attitude
could be counter-productive if it is abused. Often, an agpitigally superior algorithm may be inferior
when compared to another slower algorithm on all inputs afisgc sizes. For special problems, we
might be interested in constant multiplicative factors.

(B) Problems with complexity that are polynomial-boundeel feasible. Moreover, there is an
unbridgeable gap between polynomial-bounded problemsfamsk that are not polynomial-bounded.
This principle goes back to Cobham and Edmonds in the latesiand relates to the versusN P
qguestion. Hence, the first question we ask concerning anglgmois whether it is polynomially-
bounded. The answer may depend on the particular complexgel. E.g., a problem may be
polynomial-bounded in space-resource but not in timeresg although at this moment it is unknown
if this possibility can arise. Of course, polynomial-boedccomplexity?’(n) = n€ is not practical
except for smalk (typically less thar6). In many applications, even = 2 is not practical. So the
“practically feasible class” is a rather small slicefof

Despite the caveats, these two dictums turn out to be exlyameful. The landscape of compu-
tational problems is thereby simplified and made “undedsate”. The quest for asymptotically good
algorithms helps us understand the nature of the probletenCdfter a complicated but asymptotically
good algorithm has been discovered, we find ways to achievedme asymptotic result in a simpler
(practical) way.

Chee-Keng Yap Basic Version January 21, 2011

§A. APPENDIX: GENERAL NOTATIONS Lecture | Page 23

6A. APPENDIX: General Notations

We gather some general notations used throughout this bdeé&.this as reference. If there is a

notation you do not understand from elsewhere in the bodékigfa first place to look. Bookmark this ap-
pendix to come back
§A.0 Definitions. again!
We use the symbok= to indicate the definition of a term: we will writ& := ... Y ... when defining
atermX intermsof...Y For example, we define the sign function as follows:
1 iff >0
sign(z) =4 0 iff z=0
-1 iff z<0

Again, to define the special symbol for logarithm to basee will say: letlg x := log, .

8A.1 Numbers.

Denote the set of natural numb®tsy N = {0,1,2,...}, integers byZ = {0,+1,+2,.. .}, rational
numbers byQ = {p/q : p,q € Z,q # 0}, the realsR and complex number§. The positive and
non-negative reals are denof@d, andRR>, respectively. The set of integefgi + 1,...,5 — 1,5}
wherei,j € N is denoted:..j]. So the size ofi..j] is max{0,j — i + 1}. If is a real number, let
its ceiling [r] be the smallest integer greater than or equal. t&imilarly, itsfloor |r| is the largest
integer less than or equal to Clearly, || < r < [r]. Forinstance|0.5] = 0, |-0.5] = —1 and
[—2.3] = —2.

8A.2 Sets.
Thesizeor cardinality of a setS is the number of elements isi and denotedS|. The empty set is
(). A set of size one is called singleton The disjoint union of two sets is denotédw Y. Thus,
X =X, ¥ XWX, todenote a partition ok into n subsets. IfX is a set, the?X denotes the
set of all subsets oK. TheCartesian product X; x --- x X,, of the setsXy, ..., X, is the set of all
n-tuples of the form(xy, ..., z,) wherez; € X;. If X; = --. = X,, then we simply write this aX™.
If n € N then an-set refers to one with cardinality, and(f) denotes the set of-subsets ofX .

Sometimes, we need to considaultisets. These are sets whose elements need not be distinct.
E.g., the multisetS = {a,a,b,c,c,c} has6 elements but only three of them are distinct. There are
two copies ofu and three copies afin S. Note thatS is distinct from the sefa, b, ¢}, and we use set
notations for multisets. Alternatively, a multiset can iewed as a functiop : S — N whose domain
is a standard sef. Intuitively, u(a) is the multiplicity of eachu € S.

§A.3 Relations and Order.
An n-ary relation on a seX is a set of the fornR C X™. The most important casesis= 2, when we
have binary relations. Instead of sayifigb) € R, we like to writeaRb, read as & is R-related toh”.

Leta,b,c € X. A binary relationR is reflexive if aRa, transitive if aRb andbRc impliesaRe,
symmetric if aRb impliesbRa, anti-symmetric if aRb andbRa impliesa = b. A pre-order R is a
reflexive and transitive binary relation. A pre-ordethat is alssymmetric is anequivalencerelation.
Equivalence relations is extremely important concept imfimathematics, and it induces a partition
of X into disjoint subsets, called equivalence classes. A pderdr that isanti-symmetric (e Rb and
bRa impliesa = b) is anpartial order relation.

LEMMA 2. LetR C X2 be a preorder.
() The setX := {7 : x € X} wherez = {y € X : xRy, yRx} forms a partition ofX.

(i) The relationR C X’ wherez Ry if Ry is a partial order onX.

6Zero is considered natural here, although the ancients tcomsider it so. The symbd comes from the German ‘zahlen’,
to count.

Chee-Keng Yap Basic Version January 21, 2011

§A. APPENDIX: GENERAL NOTATIONS Lecture | Page 24

Proof. (i) Supposer N 7 is non-empty for some,y € X. Then thereisa € N 7y. We prove
thatz C 7. for u € T impliesuRz. ButzRz andz Ry, so by transitivityu Rz Rz Ry or uRy. \We can
similarly showyRu. Thusu € 3. This provest C 3. Again by symetry, we can show thatC 7.
ThusZ = 7. This proves that the seisin X are pairwise disjoint. Moreover, everyc X belongs to
7 € X. This concludes our proof tha is a partition ofX.

(i) We must prove reflexity, antisymmetry and transitivitf 2. Reflexivity comes fronE Rz since
xRz holds in a pre-order. Antisymmetry comes framty andy Rz impliesy € 7 and hencg/ = 7.
Transitivity of R follows easily from the transitivity oR. Q.E.D.

§A.4 Functions.
If f:X — Y is a partial function, then writ¢(z) 1 if f(z) is undefined and (z) | otherwise. If for
all z, f(z) |, thenf a total function. Some authors uge X -->Y to indicate partial functions, and
reserve f : X — Y for total functions. Function composition will be denotga g : X — Z where
g: X —=Yandf:Y — Z. Thus(fog)(x) = f(g(x)). We say a total functioif is injective or 1 — 1
if f(x) = f(y) implesa = y; itis surjective orontoif f(X) =Y itis bijective if it is both injective
and surjective.

The special functions of exponentiatiexp, () and logarithmog, () to baseh > 0 are more fully
described in the Appendix of Chapter 2. Although these fonstcan be viewed as complex functions,
we will exclusively treat them as real functions in this botikparticular, it meankg, (x) is undefined
for z < 0. When the basé is not explicitly specified, it is assumed to be some congtantl. Two
special basésdeserve their own notationdg = andIn x refer to logarithms to base = 2 and base
b= e = 2.718..., respectively. In computer sciendg,r is immensely useful. For any real we write
log® z as short hand foflog z)*. E.g.,log? = = (log z)2. For any natural number letlog(” = denote
the-fold application of thdog-function. E.g.Jlog® z = log(log z)) = loglog x andlog® z = z. In
fact, this notation can be extended to any inteégeherei < 0 indicates the:|-fold application ofexp.

8A.5 Logic.
We assume the student is familiar with Boolean (or propasdt) logic. In Boolean logic, each variable
A, B stands for a proposition that is either true or false. Bavolegic deals with Boolean combinations
of such variables=A, A v B, A A B. Note thatA = B is logical implication, and is equivalent to
-AV B.

But mathematical facts goes beyond propositional logicreHg an exampfeof a mathematical
assertionP(z, y) wherex, y are real variables:

P(z,y) : There exists a real such that ifx < y thenz < z < y. 4)

The student should know how to parse such assertions. Theiass”(z,y) happens to be true. This
is logically equivalent to
(Vz,y € R)[P(z,y)]. (5)

All mathematical assertions are of this nature. Note thahese passed from propositional logic to
quantifier (first order) logic. It is said that mathematicatls are universal: truthhood does not allow
exceptions. If an assertioR(z,y) has exceptions, and we can explicitly characterize theptiares
E(z,y): then the new stateme®t(x, y) V E(x, y) constitute a true assertion.

Assertions contain variables: for example(z,y) in (4) containse, y, z. Each variable has an
implied or explicit range £, y, z range over “real numbers”), and each variable is eithentified
(either by “for all” or “there exists”) ounquantified. Alternatively, they are eithdsounded or free.

In our exampleP(x, y), z is bounded whilex, y are free. Itis conventional to display the free variables

70f courseln z has the (well-deserved) appellation “natural logarithnitlg = has no special name. Perhdpgs: should be
called the “computational logarithm”.
8When we formalize the logical language of discussion, whatlled “assertion” here is often called “formula”.

Chee-Keng Yap Basic Version January 21, 2011

§A. APPENDIX: GENERAL NOTATIONS Lecture | Page 25

as functional parameters of an assertion. The symilsténds for “for all” and is called theniversal
quantifier. Likewise, the symboB stands for “there exists” and is called thgistential quantifier.
Assertions with no free variables are callsédtements We can always convert an assertion into a
statement by adding some prefix to quantify each of the freables. ThusP(z,y) can be converted
into statements such as in (5) or agiix € R)(Vy € R)[P(x,y)]. Ingeneral, ifA andB are statements,
S0 is any Boolean combinations dfand B, such asA A B and—A or A v B. However, all statements
can be transformed into the form

(Q1)(Q2) - (Qn) [. .. predicate . . |

where(); is theith quantifier part. Such a form, where all the quantifiers appefore the predicate
part, is said to be iprenex form.

For a course in Algorithmics, there is a natural place to fizaguantifier logic: in the asymptotic
notations.

8A.6 Proofs and Induction.
Constructing proofs or providing counter examples to mathtecal statements is a basic skill to culti-
vate. Three kinds of proofs are widely used: (i) case amgly®) induction, and (iii) contradiction.

A proof by case analysis is often a matter of patience. Butetiones a straightforward enumeration
of the possibilities will yield too many cases; clever irggmay be needed to compress the argument.
Induction is sometimes mechanical as well but very comfditénductions can also arise (Chapter 2
treats induction). Proofs by contradiction usually haseative element: you need to find an assertion
to be contradicted!

In proofs by contradiction, you will need to routinely negatlogical statement. Let us first consider
the simple case of propositional logic. Here, you basicatlgly what is called De Morgan’s Law: #
are B are truth values, then(A v B) = (=A) A (-B) and—(A A B) = (-A) V (=B). For instance
suppose you want to contradict the propositibes B. You need to first know thal = B is the same
as(—A) Vv B. Negating this by de Morgan’s law gives dsA (—B).

Next consider the case of quantified logic. De Morgan’s lawooees the following=—((Vx) P) is
equivalent ta3x)(—P); —((3x)P) is equivalent taVx) (—P). A useful place to exercise these rules is
to do some proofs involving the asymptotic notation (big-Bil3-Omega, etc). See Exercise.

§A.7 Formal Languages.
An alphabetis a finite sett of symbols. A finite sequence = zixs - - - 2, of symbols fromX is
called aword or string overY; the length of this string isn and denoteti|w|. Whenn = 0, this is
called theempty string or word and denoted with the special symholThe set of all strings ovex. is
denoted-*. A languageovery. is a subset oE*.

§A.8 Graphs.

A hypergraph is a pairG = (V, E) whereV is any set andz C 2V. We call elements of vertices
and elements of’ hyper-edges In caseE’ C (‘2) we callG a k-graph. The casg = 2 is important
and is called aigraph (or more commonlyundirected graph). A digraph or directed graph is
G = (V,E) whereE C V2 =V x V. For any digraplz = (V, E), its reverseis the digrapHV, E’)
where(u,v) € Eiff (v,u) € E’. In this book, the word “graph” shall refer to a bigraph orrdigh;
the context should make the intent clear. The edges of graghsften written (u, v)’ or ‘uv’ where
u,v are vertices. We will prefé? to denote edge-hood by the notatierv. Of course, in the case of

bigraphsu—v = v—u.

9This notation should not be confused with the absolute vafite number or the size of a set. The context will make this
clear.
10When we writeu—, it is really an assertion that the, v) is an edge. So it is redundant to say-“v is an edge”.

Chee-Keng Yap Basic Version January 21, 2011

§A. APPENDIX: GENERAL NOTATIONS Lecture | Page 26

Often a graphi? = (V, E) comes with auxiliary data, say, d», etc. In this case we denote the
graph by
G=(V,E;dy,do,...)

using the semi-colon to mark the presense of auxiliary dadaexample:

(i) Often one or two vertices iV are distinguished. 1§,¢t € V are distinguished, we might write
G = (V, E;s,t). This notation might be used in shortest path problems whese¢he source andis
the target for the class of paths under consideration.

(i) A “weight” function W : V' — R, and we denote the corresponding weighted grapldby:
(V. E;W).

(iii) Another kind of auxiliary data ivertex coloring of G, i.e., a functionC : V' — S whereS is any
set. ThenC'(v) is called thecolor of v € V. If | S| = k, we callC ak-coloring. Thechromatic graph
is therefore given by the triple' = (V, E; C'). An edge coloringis similarly defined(' : E — S.

We introduce terminology for some special graphsVlis the empty set, A grapty = (V, E)
is called theempty graph. If E is the empty setG = (V, E) is called thetrivial graph . Hence
empty graphs are necessarily trivial but not vice-vefsa.= (V, (‘2/)) denotes theomplete graphon
n = |V| vertices. Abipartite graph G = (V, E) is a digraph such thaf = V; WV, andE C V; x Va.
It is common to writeG = (V1, Vs, E) in this case. Thusk,,, = (V1,V2, Vi x V2) denotes the
complete bipartite graph wherem = |V] andn = |V3|.

Two graphs = (V, E), G’ = (V’, E') areisomorphic if there is some bijectios : V' — V' such
that¢(E) = E’ (the notationy(E) has the obvious meaning).

If G =(V,E),G' = (V',E") whereV’ C V andE’ C E then we callG’ asubgraph of G. In
caseF’ is the restriction ofZ to the edgesiv’,i.e, E' = ENV’ x V', then we say? is the subgraph
of G induced by V’, or G’ is therestriction of G to V'. We may writeGG|V"’ for G'.

A path (from v; to v) is a sequencévy, ve, ..., v) Of vertices such thafv;, v;+1) is an edge.
Thus, we may also denote this path(@s—uvs— - - - —vg). A path isclosedif v; = v, andk > 1.
Two closed paths areyclic equivalentif the sequence of edges they pass through are the same up to
cyclic reordering. A cyclic equivalence class of closechgas called aycle The length of a cycle is
just the length of any of its representative closed pathsblgpaphswe further require cycles to have
representative closed paths of the fofta—ve—v3— - - - —v1) wherevy , vo, v3 are all distinct. Without
this requirement, every edge-v in a bigraph would give us a cycle whose representativés, is, u).
A graphisacyclicif it has no cycles. Sometimes acyclic bigraphs are cdtiegsts and acyclic digraph
are calleddags(“directed acyclic graph”).

Two verticesu, v areconnectedif there is a path from: to v, and a path fromv to u. (Note that
in the case of bigraphs, there is a path fraro v iff there is a path fromv to u.) We shall say is
adjacent tou if u—v. Connectivity is a symmetric binary relation for all graphsljacency is also a
symmetric binary relation for bigraphs. It is easily seeat tonnectivity is also reflexive and transitive.
This relation partitions the set of vertices irtonnected components

In a digraph,out-degreeandin-degreeof a vertex is the number of edges issuing (respectively)
from and into that vertex. Theut-degree(resp.,in-degreé of a digraph is the maximum of the out-
degrees (resp., in-degrees) of its vertices. The vertiteatedegred) are calledsinks and the vertices
of in-degred) are calledsources Thedegreeof a vertex in a bigraph is the number of adjacent vertices;
thedegreeof a bigraph is the maximum of degrees of its vertices.

See Chapter 4 for further details on graph-related matters.

8A.9 Trees.

Chee-Keng Yap Basic Version January 21, 2011

§A. APPENDIX: GENERAL NOTATIONS Lecture | Page 27

A connected acyclic bigraph is calledrae tree. A digraph such that there is a unique source vertex
(called theroot) and all the other vertices have in-degreeis called! a tree. The sinks in a tree
are calledeavesor external nodesand non-leaves are calléaternal nodes. In general, we prefer a
terminology in which the vertices of trees are caltemtles Thus there is a unique path from the root
to each node in a tree. 1f, v are nodes irf’ thenw is adescendentof v if there is a path from to

u. Every nodev is a descendent of itself, called theproper descendentof v. All other descendents
of v are calledoroper. We may speak of thehild or grandchild of any node in the obvious manner.
The reverse of the descendent binary relation isatiheestorrelation; thus we havproper ancestors
parent andgrandparent of a node.

Thesubtreeat any node: of T is the subgraph df’ obtained by restricting to the descendents of
Thedepth of a nodeu in a treeT” is the length of the path from the rootto So the root is the unique
node of deptt). Thedepth of 7" is the maximum depth of a nodein Theheight of a nodeu is just
the depth of the subtree af alternatively, it is the length of the longest path frano its descendents.
Thuswu has height iff « is a leaf iff u has no children. The collection of all nodes at depih also
called theith level of the tree. Thus level zero is comprised of just the root. \Menally draw a tree
with the root at the top of the figure, and edges are implicithgction from top to bottom.

See Chapter 3 for further details on binary search trees.

8A.10 Programs.
In this book, we present algorithms in an informal unspegifieogramming language that combines
mathematical notations with standard programming languagstructs. For lack of better name, we
call this languag@seudo-PL The basic goal in the presentation of pseudo-PL prograntségpose pseudo-PL is appro-
the underlying algorithmic logic. It is not to produce cotiattcan compile in any conventional propriately amorphous
gramming language! And yet, it is often easy to transcritsigs-PL into compilable code in languageby design
such a<C++ orJava. There are two good reasons why we stop short of writing ctabla code — first,
it is easier to understand, and second, it would be progragptanguage-dependent.

Programming languages are harder to understand becasisgdtided for machine consumption,
and that could get in the way of human understanding. A majesuatage of writing compilable code
is that it could be given to a computer for execution. Unfoately, the “half-life” of programming
languages tend to be rather short compared to that of ndamgliages. Informally, say the half-life
of a programming language is the time it takes before mograros in the language will no longer
compile; similarly, the half-life of a natural language @epido-code is the time it takes before most
people find hard to understand algorithmic descriptions.

Here is the quick run-down on pseudo-PL:

e \We use standard programming constructs such as if-thenveltsle-loop, return statements, etc.
no clutter language

e To reduce clutter, we indicate the structure of programnhbiogks by indentation and newlines
only. In particular, we avoid explicit block markers such'bsgin...end”, “...”, etc.

e Single line comments in a program are indicated in two ways:
> This is a forward comment
< This is a backward commenthese comments either precede (in case of forward comment)
or follows (in case of backward comment) the code that it dees. We have little need for

10one can also define trees in which the sense of the edges arsagythe root is a sink and all the leaves are sources. We
will often go back and forth between these two view pointdwitt much warning. E.g., we might speak of the “path from aenod
to the root”. While it is clear what is meant here, but to béntecally correct, we ought to speak awkwardly of the pathhia t
“reverse of the tree”.

Chee-Keng Yap Basic Version January 21, 2011

§A. APPENDIX: GENERAL NOTATIONS Lecture | Page 28

multiline comments in pseudo-PL because all code is supgriésal by off-line explanations that
serve the same purpose.

e Programming variables are undeclared, and implicitlyodtrced through their first use. They
are not explicitly typed, but the context should make theacl This is in the spirit of modern
scripting languages such Bsr | , and consistent with our clutter-free spirit.

e Normally, each line is a command, so we need not end it withtrditional semicolon (;) or
a fullstop. (We use both semicolon and full stops — if the arption is more “Englishy” we
prefer full stops.) But if we put two or commands on one line, ould still separate them with
semicolons. What if a command needs more than one line? liy e@nputer languages, the
continuation symbol i§. But in our effort to produce more human friendly programs,aguld
use ellipsis ¥..” at the end of a line to indicate its continuation to the nax¢| But if the line is
an English sentence, we can even drop the ellipsis and itldecontinuation line appropriately.

e Informally, the equality symbol=" is often overloaded to indicate the assignment operator as
well as the equality test. We will use- for assignment operator, and preséfe=" for equality
test.

e Inthe style ofCorJava, we write “z++” (resp., “++z”) to indicate the increment of an integer
variablex. The value of this expression is the valuerdfefore (resp., after) incrementing. There
is an analogous notation for decrementing; and- - x.

Here is a recursive program written in pseudo-PL to comphed-actorial function:

FiB(n):
Input: natural numbern.
Output: n!
> Base Case
1. If n < 1 Return(n)
> General Case
2. Return(n - FIB(n — 1)) < This is a recursive call

8A.11 How to answer algorithmic exercises.
In our exercises, whenever we ask you to give an algorithiis, liest to write in pseudo code. We
suggest you emulate our pseudo-PL form of presentatiordests invariably ask about what level of
detail is sufficient. The general answeras much detail as one needs to know how to reduce it to
compilable programs in a conventional programming langaidgdere is a checklist you can use:

Rule 0 Specify your input and outputThis cannot be emphasized enough. We cannot judge your
algorithm if we do not know what to expect from its output! sine qua noh

Rule 1 Take advantage of well-known algorithmBor instance, if you need to to sort, you should
generally be able to justinvoke a suitable sorting routine.

Rule 2 Reduce all operations t0(1) time operationsDo this when Rule 1 does not apply. Sometimes,
achievingO(1) time may depend on a suitable choice of data structures, Heseure to explain
this.

12programmers often use=" for assignment and==" for equality test. But our choice preserves the originakmiag of

13In computing, this is known as “code reuse”. Others call thist reinventing the wheel”.

Chee-Keng Yap Basic Version January 21, 2011

§A. APPENDIX: GENERAL NOTATIONS Lecture | Page 29

Rule 3 Use progressive algorithm developmeBten pseudo code may be incomprehensible without
a suitable orientation — it is never wrong to precede youugsecode with some English expla-
nation of what the basic idea is. In more complicated situresti do this in 3 steps: explain basic
ideas, give pseudo code, further explain certain detailsarpseudo code.

Rule 4 Use standard algorithmic paradigmBa this book, we will see well-known paradigms such as
divide-and-conquer, greedy methods, dynamic programyeiieg Another important paradigm is
the notion of shell-programming (see tree and graph tral®rkectures Ill and V).

Rule 5 Explain and initialize all variables and data structurdglost non-trivial algorithms has some
data structures, possibly the humble array. Critical \#@eis (counters, coloring schemes) ought
to be explained too. You must show how to initialize them.

Rule 6 The control structure of your algorithms should be evideAtl the algorithms you design
should have simple control structures — typically a simptaplor a doubly-nested loops. Triply-
nested loops do arise (e.g., dynamic programming) but deegsting is seldom needed. Each
loop should use standard programming constructs (for;ladyle-loop, do-loop, etc). It is an
axiomt* that if a problem can be solved, then it is solvable by cleap tructures.

Rule 7 Correctness.This is an implicit requirement of all algorithms. All thegalrithms we study
requires that the algorithm halts on all inputs. Corredridsuch algorithms is traditionally split
into two distinct requirements:

(1) The algorithm halts.

(2) The outputis correct when it halts. This part is somesicadledpartial correctness

Even when we do not ask you to explicitly prove correctness,should check this yourself. A
simple method to prove partial correctness is this: at tlggniméng of each iteration of a loop,
you should be able to attach a suitalleariant (called assertionin standard programming
languages). Partial correctness follows easily if the appate invariants hold.

Rule 8 Analysis and Efficiencyhis is considered a more advance requirement. But sinséstiwhat
algorithmics is about, we view it as part and parcel of anypatgm in this book. You should
always be able to give a big-Oh analysis of your algorithmmbrst cases, hon-polynomial time
solutions are regarded as unnecessarily inefficient.

EXERCISES

Exercise A.1: The following is a useful result about iterated floors andirgs.
(@) Letn, b be positive integers. LeN, := n and fori > 0, N;41 := |N;/b]. Show that
N; = |n/b*|. Similarly for ceilings. HINT: use the fact tha€; ;1 < N;/b+ (b—1)/b.
(b) Letup = 1 andwu;41 = |5u;/2] fori > 0. Show that fori > 4, 0.76(5/2)" < u; <
0.768(5/2). HINT: r; := u;(2/5)" is non-increasing; give a lower bound on(i > 4) based on
T4. <>

Exercise A.2: Let z, a, b be positive real numbers. Show that

[z/ab] = |[x/a] /b] . (6)
When is this an equality? &

14There are theorems about the universality of loop-progrévieyer and McCreight) and the possibility of avoiding “gm-t
statements.

Chee-Keng Yap Basic Version January 21, 2011

§A. APPENDIX: GENERAL NOTATIONS Lecture | Page 30

Exercise A.3: Consider the following sentence:
(Vx € Z)(Jy € R)(3z € R) [(m >0 = (y<z<y DA(z<z<z)A(y< z))] @

Note that the range of variableis Z, notR. This is called auniversal sentencebecause the

leading quantifier is the universal quantifig).(Similarly, we haveexistential sentence

(i) Negate the sentence (7), and then apply De Morgan’s law totectle result as an existential
sentence.

(i) Give a counter example to (7).
(iii) By changing the clause® > 0)”, make the sentence true. Indicate why it would be true.

O

Exercise A.4: Suppose you want to prove that

f(n) # O(f(n/2))

wheref(n) = (logn)'e™.
(a) Using de Morgan'’s law, show that this amounts to sayiagfibr all C' > 0, ng there exists
such that

(n=no) A f(n) > Cf(n/2).

(b) Complete the proof by finding a suitabldor any givenC, ny. &

Exercise A.5: The following statement is a fack planar graph om vertices has at most — 6 edges.
Let us restate it as follows:

(G is a planar graph and hasverticeg = (G has< 3n — 6 edges.

(i) State the contra-positive of this statement.
(ii) The complete graph of vertices, denoted b¥’; is shown in Figure 2. Using the contra-
positive statement in part (i), prove th&y is not planar.

Figure 2: K5, the complete graph okhvertices

Exercise A.6: Prove these basic facts about binary trees: assumd.
(a) A full binary tree om leaves has — 1 internal nodes.
(b) Show that every binary tree onnodes has height at leadg;(1 +n)] — 1. HINT: define
M (h) to be the maximum number of nodes in a binary tree of hdight
(c) Show that the bound in (b) is tight for each
(d) Show that a binary tree om > 1 leaves has height at lea8gn|. HINT: use a modified
version of M (h).
(e) Show that the bound in (d) is tight for each &

Chee-Keng Yap Basic Version January 21, 2011

§A. APPENDIX: GENERAL NOTATIONS Lecture | Page 31

Exercise A.7: (Erdds-Rado) Show that in any 2-coloring of the edges ottiraplete grapli,,, there
is a monochromatic spanning treesf,. HINT: use induction. &

Exercise A.8: LetT" be a binary tree on nodes.
(a) What is the minimum possible number of leave%'th
(b) Show by strong induction on the structureiothatT’ has at mosiL”T“J leaves. This is an
exercise in case analysis, so proceed as follows: first ket odd (sayp = 2N + 1) and assume
T hask = 2K + 1 children in the left subtree. There are 3 other cases.
(c) Give an alternative proof of part (b): show the result/idoy a weaker induction on — 1 and

n— 2.

(d) Show that the bound in part (b) is the best possible byrdesg a 7" with L”T“J leaves.

HINT: first show it whemn = 2¢ — 1. Alternatively, consider binary heaps. &
Exercise A.9:

(a) A binary tree with a key associated to each node is a beaych tree iff the in-order listing
of these keys is in non-decreasing order.

(b) Givenboththe post-order and in-order listing of the nodes of a bingeg,twe can reconstruct
the tree. &

END EXERCISES

References

[1] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stditroduction to Algorithms The MIT
Press and McGraw-Hill Book Company, Cambridge, Massadtaiaed New York, second edition,
2001.

[2] D. G. Kirkpatrick and R. Seidel. The ultimate planar cerhull algorithm? SIAM J. Comput.
15:287-299, 1986.

[3] D. E. Knuth. The Art of Computer Programming: Sorting and Searchivgume 3. Addison-
Wesley, Boston, 1972.

[4] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithrdume 1. Addison-
Wesley, Boston, 2nd edition edition, 1975.

Chee-Keng Yap Basic Version January 21, 2011

