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Dice, used with a plural verb, means small cubes marked with one to six dots, used in
gambling games. Dice, used with a singular verb, means a gambling game in which
these cubes are used. Dice (plural) can also refer to any small cubes, especially cube-
shaped pieces of food (Cut the cheese into dice).

– MSN Encarta

Lecture VIII

QUICK PROBABILITY

We review the basic concepts of probability theory, using the axiomatic approach first ex-
pounded by A. Kolmogorov. His classic [6] is still an excellent introduction. The axiomatic
approach is usually contrasted to the empirical or “Bayesian” approach that seeks to predict real
world phenomenon with probabilistic models. Other source books for the axiomatic approach
include Feller [3] or the approachable treatment of Chung [2]. Students familiar with probability
may simply use this lecture as a reference.

Probability in algorithmics arises in two main ways. In one situation, we have a deterministic
algorithm whose input space has some probability distribution. We seek to analyze, say, the
expected running time of the algorithm. The other situation is when we have an algorithm that
makes random choices, and we analyze its behaviour on any input. The first situation is considered
less important in algorithmics because we typically do not know the probability distribution on an
input space (even if such a distribution exists). By the same token, the second situation derives
its usefulness from avoiding any probabilistic assumptions about the input space. Algorithms that
make random decisions are said to be randomized and comes in two varieties. In one form, the
algorithm may make a small error but its running time is worst-case bounded; in another, the
algorithm has no error but only its expected running time is bounded. These are known as Monte
Carlo and Las Vegas algorithms, respectively.

There is an understandable psychological barrier to the acceptance of unbounded worst-case
running time or errors in randomized algorithms. However, it must be realized that the errors in
randomized algorithms are controllable by the user – we can make them as small as we like at the
expense of more computing time. Should we accept an algorithm with error probability of 2−99?
In daily life, we accept and act on information with a much greater uncertainty or likelihood of
error than this.

More importantly, randomization is, in many situations, the only effective computational tool
available to attack intransigent problems. Until recently, the standard example of a problem not
known to be in the class P (of deterministic polynomial time solvabale problems), but which
admits a randomized polynomial-time algorithm is the Primality Problem. Since August 2002,
Manindra Agrawal, Neeraj Kayal and Nitin Saxeena, in a major breakthrough, has shown that
this problem is in P . The current best algorithm for Primality Testing is O(n7.5), so it is still not
very practical. Thus randomized primality remains the useful in practice. Note that the related
problem of factorization of integers does not even have a randomized polynomial time algorithm.

c© Chee-Keng Yap Basic Version May 5, 2008



§1. Axiomatic Probability Lecture VIII Page 2

§1. Axiomatic Probability

All probabilistic phenomena occur in a probabilistic space, which we now formalize (axioma-
tize).

¶1. Sample space. Let Ω be any non-empty set, possibly infinite. We call Ω the sample space
and elements in Ω are called sample points.

We use the following running examples of sample spaces:

(E1) Ω = {H, T } (coin toss). This represents a probabilistic space where there are two outcomes.
Typically we identify these outcomes with the results of tossing a coin – head (H) or tail
(T ).

(E2) Ω = {1, . . . , 6} (dice roll). This is a slight variation of (E1) representing the outcomes of the
roll of dice, with six possible outcomes.

(E3) Ω = N (the natural numbers). This is a significant extension of (E1) since there is a countably
infinite number of outcomes.

(E4) Ω = R (the real numbers). This is a profound extension because we have gone from discrete
space to continuous space.

¶2. Event space. Sample spaces becomes more interesting when we give it some structure to
form event spaces.

Let Σ ⊆ 2Ω be a subset of the power set of Ω. The pair (Ω, Σ) is called an event space
provided three axioms hold:

(A0) Ω ∈ Σ.

(A1) A ∈ Σ implies that its complement is in Σ, Ω−A ∈ Σ.

(A2) If A1, A2, . . . is a countable sequence of sets in Σ then ∪i≥1Ai is in Σ.

We call A ∈ Σ an event and singleton sets in Σ are called elementary events. Thus the axioms
(A0) and (A1) imply that ∅ and Ω are events (the “impossible event” and “inevitable event”), and
the complement of an event is an event. Thus, events are closed under countable unions (by (A2)) Great, a non-

event is an
event!

and also countable intersections using de Morgan’s law:

⋂

i

Ai =
⋃

i

Ai.

In some contexts, an event space is also1 called a Borel field or sigma field

We now show two basic ways to construct event spaces:
(i) Construction from generator set: let Ω be any set and G ⊆ 2Ω. Then there is a smallest (by the Axiom

of Choice)
1Sometimes, “ring” is used instead of “field”.
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event space G containing G; we call this the event space generated by G. For example, let
Ω = {1, . . . , 6} (dice example, E2). If G = {{1, 2, 3} , {3, 4, 5, 6}} then

G = {∅, {3} , {1, 2} , {1, 2, 3} , {4, 5, 6} , {3, 4, 5, 6} , {1, 2, 4, 5, 6} , {1, 2, 3, 4, 5, 6}} .

(ii) Subspace construction: if (Ω, Σ) is an event space and A ∈ Σ, then we obtain a new event
space (A, Σ ∩ 2A), which is the subspace of (Ω, Σ) induced by A.

Let A and B be events. There are two standard notations for events which we will use. First,
we will write “Ac” or “A” for the complementary event Ω \ A. Also, we write “AB” for the
event A ∩B (why is this an event?). This is called the joint event of A and B. Two events A, B
are mutually exclusive if AB = ∅.

¶3. Event Spaces in the Running Examples. One choice of Σ is

Σ = 2Ω. (1)

We call this the discrete sample space, which is the typical choice for countable sample spaces
such as the running examples (E1), (E2) and (E3). In example (E2) the event {3, 4, 5, 6} ∈ Σ
may be read: “the event that roll is at least 3”. What is wrong in assuming (1) in all situations?
This choice certainly gives an event space. The problem arises when need to assign probabilities
to events (see next). When Ω is infinite, the choice (1) admits many events for which it is unclear
how to assign probabilities. This issue is severe when Ω is uncountable.

We illustrate the standard way to create an event space for Ω = R, via a generating set G ⊆ 2Ω.
Let G comprise the half-lines

Hr := {x ∈ R : x ≤ r}
for each r ∈ R. This generates an event space G that is extremely important. It is called the Definition of

B1 = B1(R)Euclidean Borel field and denoted B1 or B1(R). An element of B1 is called an Euclidean
Borel set. These sets are not easy to describe explicitly, but let us see that some natural sets
belongs to B1. We first show that singletons {r}, r ∈ R, belong to B1:

{r} = Hr ∩
⋂

n≥1

Hc
r+(1/n).

Then (A2) implies that any countable set belongs to B1. Furthermore, any open or closed interval
belongs to B1.

¶4. Probability space. So far, we have described concepts that probability theory shares in
common with measure theory. Probability properly begins with the next definition: a probability Measure the-

ory is the
foundation in-
tegral calculus

space is a triple
(Ω, Σ, Pr)

where (Ω, Σ) is an event space and Pr : Σ → [0, 1] (the unit interval) is a function satisfying the
following two axioms:

(P0) Pr(Ω) = 1.

(P1) if A1, A2, . . . are a countable sequence of pairwise disjoint events then Pr(∪i≥1Ai) =
∑

i≥1 Pr(Ai).
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We simply call Σ the probability space when Pr is understood. The number Pr(A) is the proba-
bility of A. A null event is one with zero probability. Clearly, the empty set ∅ is a null event. It
is important to realize that when Ω is infinite, we typically have null events different from ∅. We
deduce that Pr(Ω−A) = 1− Pr(A) and if A ⊆ B are events then Pr(A) ≤ Pr(B).

The student should learn to set up the probabilistic space underlying any probabilistic
analysis. Whenever there is discussion of probability, you should ask: what is Ω, what is
Σ? This is especially important since probabilists almost never do this explicitly! For finite
sample spaces in which each sample point is an event, Pr is completely specified when we
assign probabilities to these (elementary) events.

¶5. Probability in the Running Examples. Recall that we have specified Σ for each of our
running examples (E1)–(E4). We now assign probabilities to events.

In example (E1), we choose Pr(H) = p for some 0 ≤ p ≤ 1. Hence Pr(T ) = 1− p. If p = 1/2,
we say the coin is fair. In example (E2), let the probability of an elementary event be 1/6.

In general, when Ω is a finite set, and Pr(A) = |A|/|Ω| for all A ∈ Σ, we see that the probabilistic
framework is simply a convenient language for counting the number of elements in the sets A ∈ Σ.
The space (Ω, 2Ω, Pr) where Pr(ω) = 1/|Ω| for all ω ∈ Ω may called the uniform probability
model for Ω.

For (E3), we may choose Pr(i) = pi ≥ 0 (i ∈ Ω = N) subject to

∞
∑

i=0

pi = 1.

An explicit example is illustrated by pi = 2−(i+1), since
∑∞

i=0 pi = 2
∑∞

i=0 2−i = 1.

For (E4), it is more intricate to define a probability space. We begin with the Euclidean Borel
field B1 = (Ω, Σ), but use the subspace construction (above) to restrict B1 to a finite interval
[a, b] ⊆ R. The resulting sample space is denoted

B1[a, b] = ([a, b], Σ ∩ 2[a,b])

and it is generated by the intervals [r, b] = Hr ∩ [r, b], for all r ≤ c ≤ b. The uniform probability
function for B1[a, b] is given by

Pr([r, b]) := (b − r)/(b − a) (2)

for all generators [r, b] of B1[a, b]. It is not hard to see that Pr(A) = 0 for every countable A ∈ Σ.
Thus all countable sets are null events.

We could modify this construction to give a probability function for the original B1(R) since
B1(R) can be identified with B1[−1, 1] in a natural way.

¶6. Constructing Probability Spaces. We give a product construction for probability spaces:
let Σi ⊆ 2Ωi (i = 1, 2) be sample spaces. Let Ω = Ω1 × Ω2 and

G = {A1 ×A2 : Ai ∈ Σi, i = 1, 2} .
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Note that in A1 ×A2 is empty if A1 or A2 is empty. The event space (Ω, G) generated by G will
be denoted Σ1 × Σ2. If Pri is a probability function for Σi, then we get a probability function for
Σ1 × Σ2 where

Pr(A1 ×A2) = Pr1(A1) Pr2(A).

We leave it as an exercise to show this Pr can be extended into a probability function for Σ1×Σ2.

We may denote Σ×Σ by Σ2. For n ≥ 3, let Σn denote the event space (Σn−1)×Σ. Using this
construction, the simple case Ω = {H, T } leads to the event space for a sequence of n coin tosses.
We can also let n =∞ and consider Σ∞. This corresponds to sequences of unbounded length: for
instance, imagine tossing a coin until we see a head.

An important type of sample space is based on “decision trees”. Assuming a finite tree, the
sample points are identified with identified with leaves of the tree and the sample space is 2Ω. with
the set of leaves below each node. How do we assign probabilities? Let assume that at a node of
degree d, the probability of taking any of its child is 1/d. Then the probability of any path is just
the product of the probility of taking each edge of the path.

¶7. Quicksort Example. We can generalize the sample space of decision trees above. Let us
consider the probability space of Quicksort. Fix any input to Quicksort with n distinct numbers.
Consider the following tree Tn that has two kinds of internal nodes: AND-node and OR-node.
The root of Tn is an OR-node with degree n. In general, an OR-node with degree d ≥ 2 is called
an d-node. If d = 0 or d = 1, then the d-node is simply a leaf (no children). For d ≥ 2, each
of the children of the d-node is an AND-node of degree exactly 2. Moreover, the ith child (for
i = 1, . . . , d) has two children which are an (i − 1)-node and a (n − i)-node. This completes the
description of Tn. Using Tn, we now define the sample space S(Tn).

FIGURE

A sample point ω ∈ S(Tn) is a subtree of Tn, containing the following nodes: the root (which
is the unique n-node of Tn) belongs to ω. In general, suppose u ∈ ω. If u is an AND-node, then
every child of u is in ω. If u is an OR-node, then exactly one child of u is in ω. This completes the
description. What is the probability Pr(ω)? If ω has only one node, then Pr(ω) = 1. Otherwise,
let ω1, ω2 be subtrees of ω, where the roots of ω1, ω2 are the grandchild of the root of ω. Then the
probabilities Pr(ω1), Pr(ω2) have been defined, and we have

Pr(ω) =
1

n
Pr(ω1) Pr(ω2).

This completely describes S(Tn). There is another way to describe S(Tn), as the set of all
binary trees with exactly n nodes (internal or leaves). This is just a more compact way to encode
the tree ω above.

Exercises

Exercise 1.1: Show that the method of assigning (uniform) probability to events in B1[a, b] is
well-defined. ♦

Exercise 1.2: Let Ω = R. In the text, the event space defined Ω was restricted to a finite interval
[a, b]. Define a probability space on Ω in which the entire real line is used in an essential way.

♦
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Exercise 1.3: Consider the following randomized process, which is a sequence of steps. At each
step, we roll a dice that has one of six possible outcomes: 1, 2, 3, 4, 5, 6. In the i-th step, if
the outcome is less than i, we stop. Otherwise, we go to the next step. The first step is
i = 1. For instance, we never stop after first step, and surely stop by the 7-th step. Let T
be the random variable corresponding to the number of steps.
(a) Set up the sample space, the event space, and the probability function for T .
(b) Compute the expected value of T . ♦

Exercise 1.4: J. Quick felt that the sample space Sn we constructed for Quicksort is unnecessarily
complicated: why don’t we define Sn to be the set of all permutations on the n input numbers.
The probability of each permutation in Sn is 1/n!. What is wrong with this suggestion? ♦

Exercise 1.5: Give simple upper and lower bounds on the size C(n) of the sample space in
Quicksort on n input numbers. Note that C(n) are the Catalan numbers in Chapter 6 (see
also Exercise there). ♦

Exercise 1.6: (Probabilistic Counters) Recall the counter problem where, given a binary counter
C which is initially 0, you can perform the operation inc(C) to increments its value by 1.
Now we want to do probabilistic counting: each time you call inc(C), it will flip a fair
coin. If heads, the value of C is incremented and otherwise the value of C is unchanged.
Now, at any moment you could call look(C), which will return twice the current value of C.
Let Xm be the value of look(C) after you have made m calls to inc(C).
(a) Note that Xm is a random variable. What is the sample space Ω here?
(b) Let Pm(i) be the probability that look(C) = 2i after m inc’s. State a recurrence equation
for Pm(i) involving Pm−1(i) and Pm−1(i− 1).
(c) Give the exact formula for Pm(i) using binomial coefficients. HINT: you can either use
the model in (a) to give a direct answer, or you can try to solve the recurrence of (b). You
may recall that binomial identity

(

m
i

)

=
(

m−1
i

)

+
(

m−1
i−1

)

.
(d) In probabilistic counting we are interested in the expected value of look(C), namely
E[Xm]. What is the expected value of Xm? HINT: express E[Xm] using Pm(i) and do some
simple manipulation involving binomial coefficients. If you do not see what is coming out,
try small examples like m = 2, 3 to see what the answer is.

Remarks: The expected value of Xm can be odd even when the actual value returned is
always even. What have we gained by using this counter? We saved 1-bit! But, by a
generalization of these ideas, you can probabilistically count to 22n

with an n-bit counter,
thus saving exponentially many bits. ♦

Exercise 1.7: Let us prove the formula (??). To do this, consider the generating function

G(x) =

∞
∑

n=0

C(n)xn.

Show that G(x) = xG(x)2 +1 and hence G(x) = (1−
√

1− 4x)/2x. Use the Taylor expansion
of G(x) at x = 0. ♦

End Exercises

§2. Independence and Conditioning
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Intuitively, the outcomes of two tosses of a coin ought to be “independent” of each other. In
rolling a pair of dice, the probability of the event “the sum is at least 8” must surely be “conditioned
by” the knowledge about the outcome of one of the dice. For instance, knowing that one of the
dice is 1 or not critically affects this probability. We formalize such ideas of independence and
conditioning.

Let B ∈ Σ be any non-null event (i.e., Pr(B) > 0). Such an event B induces a probability
space which we denote by Σ|B. The sample space of Σ|B is B and event space is {A∩B : A ∈ Σ}.
The probability function PrB of the induced space is given by

PrB(A ∩B) =
Pr(A ∩B)

Pr(B)
.

It is conventional to write
Pr(A|B)

instead of PrB(A ∩ B), and to call it the conditional probability of A given B. Note that
Pr(A|B) is undefined if Pr(B) = 0.

Two events A, B ∈ Σ are independent if Pr(AB) = Pr(A) Pr(B).

Note that, for the first time, we have multiplied two probabilities! This is
significant – in general whenever you multiply probabilities, there must be
some independence requirement. Just as the product of two numbers x, y is
usually written as xy with the × operator implicit, the intersection A ∩ B
of two events is usually written AB. This analogy between intersection and
multiplication is clarified through the concept of independence.
Until now, we have only added probabilities, Pr(A)+Pr(B). The conditions for
adding probabilities are some disjointness requirement on events: A ∩ B = ∅.
The combination of adding and multiplying probabilities therefore brings a
ring-like structure (involving +,×) into play, and greatly enriches the subject.

It follows that if A, B are independent then Pr(A|B) = Pr(A). More generally, a set S ⊆ Σ of
events is k-wise independent if for every subset {B1, . . . , Bm} ⊆ S of m (2 ≤ m ≤ k) distinct
events, Pr(∩m

i=1Bi) =
∏m

i=1 Pr(Bi). If k = 2, we say S is pairwise independent. If k = |S|, we
simply say S is independent.

¶8. Bayes’ Formula. Suppose A1, . . . , An are mutually exclusive events such that Ω = ∪n
i=1Ai.

Then for any event B, we have

Pr(B) = Pr(⊎n
i=1B ∩Ai) =

n
∑

i=1

Pr(B|Ai) Pr(Ai). (3)

Consider Pr(Aj |B) = Pr(BAj)/ Pr(B). If we replace the numerator by Pr(B|Aj) Pr(Aj), and the
denominator by (3), we obtain Bayes’ formula,

Pr(Aj |B) =
Pr(B|Aj) Pr(Aj)

∑n
i=1 Pr(B|Ai) Pr(Ai)

. (4)

In other words, this is a formula for inversion of conditional probability: given that you know B
has occurred, you can determine the probability that any (mutually exclusive) Aj also occurred
if you know Pr(B|Ai) for all i. This formula is the starting point for Bayesian probability, the
empirical or predictive approach mentioned in the introduction. The goal of Bayesian probability
is to use observations to predict the future.
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¶9. Formula for Joint Events. From the definition of conditional probability, we have
Pr(A1A2) = Pr(A1) Pr(A2|A1), or more generally,

Pr(A1A2|B) = Pr(A1|B) Pr(A2|A1B).

This formula is generalized to: suppose B, A1, A2, . . . , An are events. Then

Pr(

n
⋂

i=1

Ai|B) =

n
∏

i=1

Pr(Ai|A1A2 · · ·Ai−1B). (5)

In proof, simply expand the ith factor as Pr(A1A2, . . . , Ai−1B)/ Pr(A1A2, . . . , AiB), and cancel
common factors in the numerator and denominator. If B = Ω, this reduces to

Pr(

n
⋂

i=1

Ai) =

n
∏

i=1

Pr(Ai|A1A2 · · ·Ai−1).

E.g., Pr(ABCD) = Pr(A) Pr(B|A) Pr(C|AB) Pr(D|ABC). This formula is “extensible” in that
the formula for Pr(A1 · · ·An) is derived from formula for Pr(A1 · · ·An−1), by appending an extra
factor.

Exercises

Exercise 2.1: Construct a set of events that is pairwise independent but not independent. HINT:
Let Ω = {1, 2, 3, 4}. Use the counting probability model for Ω, and consider the events
A = {1, 2}, B = {1, 3}, C = {1, 4}. ♦

Exercise 2.2: In a popular TV game-show2 called “Let’s Make a Deal”, there are three veiled
stages. A prize car is placed behind one of these veils. Each contestant hopes to pick the
stage with the car. The rules of the game are as follows: initially, the contestant picks one
of the stages. Then the game-master selects one of the other two stages to be unveiled – this
unveiled stage is inevitably car-less. The game-master now asks the contestent if he or she
wishes to switch the original pick. There are two strategies to be analyzed: always-switch or
never-switch. The never-switch strategy is easy to analyze: you have 1/3 chance of winning.
Here are three conflicting claims about the always-switch strategy:
CLAIM I: your chance of winning is is 1/3, nothing has changed since the start.
CLAIM II: your chance of winning is 1/2, since the car is behind one of the two veiled stages.
CLAIM III: your chance of winning is 2/3, since it is the complement of the never-switch
strategy.
(a) Find flaws in two of the claims.
(b) Set up a model to justify the unflawed claim. HINT: set up a sample space in which the
sample points are paths in a tree and levels of the tree corresponds to various choices and
decisions in the problem.
(c) Do we need the assumption that whenever the game-master has a choice of two stages to
unveil, he picks either one with equal probability? ♦

Exercise 2.3: The above 2 strategies are deterministic. Actually, there is another reasonable
strategy to examine. That is to flip a coin, and to switch only if it is heads. Analyze this
randomized strategy. ♦

2This problem has generated some public interest, including angry letters by professional mathematicians to the
New York Times claiming that there ought to be no difference in the two strategies described in the problem.
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Exercise 2.4: Let us generalize the above game. The game begins with a car hidden behind one
of m ≥ 4 possible stages. After you make your choice, the game-master unveils all but two
stages. Of course, the unveiled stages are all empty, and the two veiled stages always include
one you picked.
(a) Analyze the always-switch strategy under the assumption that the game-master randomly
picks the other stage.
(b) Suppose you want to assume the game-master is really trying to work against you. How
does your analysis change? ♦

Exercise 2.5: The kind of probability space used in the above analysis is quite specialized in that
it can be organized into a finite decision tree. The nodes at a given level ℓ ≥ 0 correspond to
a decision variable xℓ. Each decision variable has a binary outcome (for simplicity). There
are two players (0 and 1) corresponding who must make decisions at alternate levels. Player
0 (resp. player 1) correspond to the even (resp., odd) levels. There is a win/loss function
w(σ) that decides for each sequence of decisions whether player 1 wins. Suppose the game
plan of player 0 is completely known (it can be probabilistic or deterministic). Does there
always exist an optimal strategy for player 1? ♦

End Exercises

§3. Random Functions and Variables

The concepts so far have not risen much above the level of “gambling and parlor games” (the
pedigree of our subject). Probability theory really takes off after we introduce the concept of
random variables. Example of a random variable: using running example (E1), it is simply a
function of the form X : Ω → R where X(H) = 1 and X(T ) = 0. This random variable X
has an expected (=average) value, namely, E[X ] = Pr{X = H} · X(H) + Pr{X = T } · X(T ) =
p · 1 + (1− p) · 0 = p.

But random variables are just a special kind “random function”. Let D be a set and (Ω, Σ, Pr)
a probability space. A random function over D is a function

f : Ω→ D

such that for each x ∈ D, the set f−1(x) is an event. So that we may speak of the probability of
x, viz., Pr(f−1(x)). We also call (Ω, Σ, Pr) the underlying probability space of f . We say f
is uniformly distributed on D if Pr(f−1(x)) = Pr(f−1(y)) for all x, y ∈ D. We sometimes use
bold fonts (f instead of f , etc) to denote random functions.

The most important random functions arise as follows: a random variable (r.v.) of a proba-
bility space (Ω, Σ, Pr) is an real function

X : Ω→ R

such that for all c ∈ R,
X−1(Hc) = {ω ∈ Ω : X(ω) ≤ c}

belongs to Σ, where Hc is a generator of the Euclidean Borel field B1. Sometimes the range of X
is the extended reals R ∪ {±∞}. It follows that for any Euclidean Borel set A ∈ B1, the set

X−1(A) = {ω ∈ Ω : X(ω) ∈ A} (6)
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is an event. This event is usually written

{X ∈ A}. (7)

In particular, X−1(c) is an event for all c ∈ R, and so a r.v. is, a fortiori, a random object. In
fact, a r.v. is just “a random real number”.

Convention. Writing (7) for (6) illustrates the habit of probabilists to avoid
explicitly mentioning sample points. More generally, probabilists will specify
events by writing {. . .X . . . Y . . .} where “. . .X . . . Y . . .” is some predicate on
r.v.’s X, Y , etc. This really denotes the event {ω ∈ Ω : . . . X(ω) . . . Y (ω) . . .}.
For instance, {X ≤ 5, X + Y > 3} refers to the event {ω ∈ Ω : X(ω) ≤
5, X(ω) + Y (ω) > 3}. Moreover, instead of writing Pr({. . .}), we simply write
Pr{. . .}, where the pair of curly brackets reminds that {. . .} is a set (which
happens to be an event).

If X, Y are r.v.’s then so are

min(X, Y ), max(X, Y ), X + Y, XY, XY , X/Y

where Y 6= 0 in the last case.

All random variables in probability theory are either discrete or continuous, which we now
define. A r.v. X is discrete if the range of X is countable (this is automatic if Ω is countable).
The special case3 where the range is {0, 1} is called a Bernoulli r.v.. We call X the indicator
function of an event E if X(ω) = 1 if ω ∈ E and X(ω) = 0 else. Thus Bernoulli functions and
indicator functions are basically synonymous.

A r.v. X is continuous if there exists a nonnegative function f(x) defined for all x ∈ R such
that for any Euclidean Borel set A ∈ B1,

Pr{X ∈ A} =

∫

A

f(x)dx

(cf. (7)). It follows that for any real a ≤ b, Pr{a ≤ X ≤ b} =
∫ b

a f(x)dx and hence Pr{X = a} = 0.
We call f(x) the density function of X .

As examples of random variables, suppose in running example (E1), if we define X(H) =
1, X(T ) = 0 then X is the indicator function of the “head event”. For (E2), let us define X(i) = i
for all i = 1, . . . , 6. If we have a game in which a player is paid i dollars whenever the player rolls
an outcome of i, then X represents “payoff function”.

¶10. Analysis of QuickSort. We re-visit the Quicksort algorithm from Lecture II.

Assume the input is an array A[1..n] holding n numbers. Recall that Quicksort picks a random
r ∈ {1, . . . , n} and uses the value A[r] to partition the numbers in A[1..n] into those that are
greater than A[r] and those that are less than A[r]. An elegant solution is possible where we do
not use extra storage, and only move values within the array A. This is achieved by the following
Partition subroutine:

3In another variant, the range is {+1,−1} and is used in discrepancy theory.
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Partition(A, i, j, e):
Input: Array A[1..n] and 1 ≤ i < j ≤ n, with e occurring in A[i..j]
Output: Index k ∈ {i, . . . , j} the subarray A[i..j] is rearranged
so that A[k] = e, A[i..k − 1] ≤ e, and A[k + 1..j] ≥ e.

while j − i ≥ 1
while (i < j and A[++i] ≤ e);
while (i < j and A[--j] ≥ e);
Swap A[i]↔ A[j]

return(j)

To sort the array A[1..n], we invoke QuickSort(A, 1, n), where QuickSort is the
following recursive procedure:

QuickSort(A, i, j):
Input: Array A[1..n] and 1 ≤ i < j ≤ n.
Output: The subarray A[i..j] is sorted in non-decreasing order.

if i = j, return(A).
Randomly pick a r ∈ {i, . . . , j};
k ←Partition(A, 1, n, A[r])
QuickSort(A, i, k)
QuickSort(A, k, j)

Let us simplify the analysis by assuming the input numbers are distinct. Suppose
the set of numbers in A[1..n] is

Z := {z1, . . . , zn}

where z1 < z2 < · · · < zn. For each 1 ≤ i < j ≤ n, let

Eij = {ziis compared to zj}

denote the event that that zi and zj are compared. Let Xij be the indicator
function for Eij . If X is the random variable for the number of comparisons in
quicksort, then we have

X =

n−1
∑

i=1

n
∑

j=i+1

Xij .

The critical observation is

Lemma 1. Pr(Eij) = 2
j−i+1

From this lemma, we see that

E[X ] <
n−1
∑

i=1

2Hn < 2n lg n.

It remains to prove Lemma 1. We will prove a more general statement: let Aij

be the event that the pivot r on input Z = {1, . . . , n} satisfies the property r < i or
r > j. For all 1 ≤ i < j ≤ n, let En

ij denote the event that the comparison zi : zj

occurred on input Z = {1, . . . , n}. When i = 1 and j = n, we let

En := En
1,n.
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We claim: if 1 < i or j < n then

Pr(En
ij |Aij) = Pr(Ej−i+1). (8)

Since 1 < i or j < n, we must have n− j + i− 1 ≥ 1. We use induction on n− j + i− 1.
The result is clearly true when n− j + i− 1 = 1. Otherwise, we see that

Pr(En
ij |Aij) · Pr(Aij) = Pr(En

ijAij)
= Pr(En

ij |q < i) Pr {q < i}+ Pr(En
ij |q > j) Pr {q > j}

= Pr(Ej−i+1) Pr {q < i}+ Pr(Ej−i+1) Pr {q > j} (by induction hypothesis)

= Pr(Ej−i+1)
[

i−1
n + n−j

n

]

= Pr(Ej−i+1) Pr(Aij).

But it is immediate that

Pr(En) =
2

n

and thus Pr(En
ij) = Pr(Ej−i+1) = 2

j−i+1 . This proves Lemma 1.

¶11. Random Objects. If the elements of D are objects of some category t of
objects, we may also call the random function f : Ω → D a random t object.
Examples:

• If D is some set of graphs we call f a random graph.

• For any set S, we call f a random k-set of S if D =
(

S
k

)

. If D is the set of
permutations of S, then f is a random permutation of S.

• More generally, if D is some arbitrary set, we may call f a random D-element.

Discussion: The power of random objects is that they are composites of the in-
dividual objects of D. For all many purposes, these objects are as good as the
honest-to-goodness objects in D. Another view of this phenomenon is to use the
philosophical idea of alternative or possible worlds. Each ω ∈ Ω is a possible
world4 Then f(ω) is just the particular incarnation of f in the world ω.

Example: (Finite Field Space) Consider the uniform probability space on
Ω = F 2 where F is any finite field. For each x ∈ F , consider the random function

hx : Ω→ F,

hx(〈a, b〉) = ax + b, (〈a, b〉 ∈ Ω).

We claim that hx is a random element of F , i.e., Pr{hx = i} = 1/|F | for each i ∈ F ,
This amounts to saying that there are exactly |F | sample points 〈a, b〉 = ω such that
hx(ω) = i. To see this, consider two cases: (1) If x = 0 then clearly b = i and a can
be arbitrarily chosen. (2) If x 6= 0, then for any choice of b, there is unique choice
of a, namely a = (i− b)x−1.

Example: (Random Graphs) Fix 0 ≤ p ≤ 1 and n ≥ 2. Consider the
probability space where Ω = {0, 1}m, m =

(

n
2

)

, Σ = 2Ω and for (b1, . . . , bm) ∈ Ω,
Pr(b1, . . . , bm) = pk(1 − p)m−k where k is the number of 1’s in (b1, . . . , bm). Once checks

4Good thing too, ω can be confused with the letter w.
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that Pr as defined is a probability function. Let Kn be the complete bigraph on n
vertices whose edges are labelled with the integers 1, . . . , m. Consider the random
graph

Gn,p : Ω→ subgraphs of Kn (9)

where Gn,p(b1, . . . , bm) is the subgraph of Kn with precisely those edges that are
labeled i where bi = 1.

¶12. Random Statistics. Random variables often arise as follows. A function
C : D → R is called a statistic of D where D is some set of objects. If g : Ω → D is
a random object, we obtain the random variable Cg : Ω→ R where

Cg(ω) = C(g(ω)).

Call Cg a random statistic of g.

For example, let g = Gn,p be the random graph in equation (9). and let C count
the number of Hamiltonian cycles in a bigraph. Then the random variable

Cg : Ω→ R (10)

is defined so that Cg(ω) is the number of Hamiltonian cycles in g(ω).

¶13. k-Wise Independence. We extend some concepts of independence from events
to random variables.

A collection {X1, X2, . . . , Xn} of n r.v.’s is k-wise independent (some k ≥ 2) if for
all c1, . . . , cn ∈ R, the events {X1 ≤ c1}, . . . , {Xn ≤ cn} are k-wise independent. If
k = 2, we say K is pairwise independent. The collection K is independent if if is
k-wise independent for all k = 2, . . . , n. An infinite collection of r.v.’s is (k-wise)
independent if every finite subcollection is (k-wise) independent.

Let D be a set. A set K = {f1, . . . , fn} of random D-objects is called an ensemble
if the fi’s have a common underlying probability space. If D is finite, we say K is
k-wise independent if for any a1, . . . , ak ∈ D, Pr{f1 = a1, . . . , fk = ak} =

∏n
i=1 Pr{fi = ai}.

Example: (Finite Field Space) Recall the finite field space Ω = F 2 above.
Let

K = {hx : x ∈ F} (11)

where hx(〈a, b〉) = ax+b as before. We have shown that each hx is a random element
of F . We now claim that the elements in K are pairwise independent. Fix x, y, i, j ∈ F
and let n = |F |. Suppose x 6= y and hx = i and hy = j. This means

(

x 1
y 1

) (

a
b

)

=

(

i
j

)

.

The 2× 2 matrix is invertible and hence (a, b) has a unique solution. Hence

Pr{hx = i,hy = j} = 1/n2 = Pr{hx = i}Pr{hy = j},

as desired.
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Algorithmically, constructions of k-wise independent variables over an under-
lying probability space that is small (in this case, |Ω| = p2) is important because it
allows us to make certain probabilistic constructions effective.

Exercises

Exercise 3.1: Compute the probability of the event {Cg = 0} where Cg is given by
(10). Do this for n = 2, 3, 4. ♦

Exercise 3.2: Consider the following (silly) randomized process, which is a se-
quence of probabilistic steps. At each step, we roll a dice that has one
of six possible outcomes: 1, 2, 3, 4, 5, 6. In the i-th step, if the outcome is less
than i, we stop. Otherwise, we go to the next step. The first step is i = 1.
For instance, we never stop after first step, and surely stop by the 7-th step.
Let T be the random variable corresponding to the number of steps.
(a) Set up the sample space, the event space, and the probability function for
T .
(b) Compute the expected value of T . ♦

Exercise 3.3: Let U be a finite set, |U | = n, and Π(U) the set of permutations of U .
Let S : Ω→ 2U be a random subset of U and

P : Ω→
⋃

V ⊆U

Π(V ).

We say P is a permutation of S if P (ω) ∈ Π(S(ω)) for all ω ∈ Ω. If, for each sub-
set V ⊆ U and π ∈ Π(V ), Pr{P = π|S = V } = 1/(m!) where m = |V |, then we call P
a uniform random permutation of S. Explicitly construct a probability space
Ω and random functions P, S such that P is a uniform random permutation of
S. ♦

Exercise 3.4: Let K be the set of random elements in the finite field F given by
(11).
(a) Show that K is not 3-wise independent.
(b) Generalize the example to construct a collection of k-wise independent
random functions. ♦

Exercise 3.5: Let W (n, x) (where n ∈ N and x ∈ Zn) be a “witness” predicate for
compositeness: if n is composite, then W (n, x) = 1 for at least n/2 choices of x;
if n is prime, then W (n, x) = 0 for all x. Let W (n) be the random variable whose
value is determined by a random choice of x. Let Wt(n) be the random variable
whose value is obtained as follows: randomly choose n values x1, . . . , xn ∈ Zn

and compute each W (n, xi). If any W (n, xi) = 1 then Wt(n) = 1 but otherwise
Wt(n) = 0.
(a) If n is composite, what is the probability that Wt(n) = 1?
(b) Now we compute Wt(n) using somewhat less randomness: first assume t is
prime and larger than n. only randomly choose two values a, b ∈ Zt. Then
we define yi = a · i + b( mod t). We evaluate Wt(n) as before, except that we
use y0, . . . , yt−1( mod n) instead of the xi’s. Lower bound the probability that
Wt(n) = 1 in this new setting. ♦
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Exercise 3.6:
(a) If a collection of r.v.’s is k-wise independent, then it is also (k − 1)-wise
independent.
(b) Let f1, . . . , fn be real functions fi : R → R and {X1, . . . , Xn} is a set of
independent r.v.’s. If fi(Xi) are also r.v.’s then {f1(X1), . . . , fn(Xn)} is also
a set of independent r.v.’s. ♦

§4. Random Number Generation and Applications

Without question, the most important primitive in any computational model
that supports randomized algorithms is the random number generator. This is a
function which, when called with no arguments, returns a real number in the unit
interval [0, 1]. This defines a random variable U[0,1] which is uniformly distributed
over the unit interval. This is a purely theoretical construct. In practice, some
discrete approximation to U[0,1] is used.

In most programming languages, or at least in the standard libraries for the
language, there is a function called random() (or perhaps rand()) which returns
a machine representable number in the half-open interval [0, 1), and whose distri-
bution is a good approximation to the uniform distribution. Although our main
interest in random number generators is mainly in the context of randomized al-
gorithms, it has remarkably many other applications: simulation of natural phe-
nomena (computer graphics effects, weather, etc), testing of systems for defects,
sampling of populations, decision making and in recreation (dice, card games, etc).

We want to address another basic primitive: random permutations. Fix a nat-
ural number n ≥ 2. Let Sn denote the set of permutations on [1..n]. A random
permutation P of Sn is just a random function p such that Pr{p = π} = 1/n! for all
π ∈ Sn. We may choose (Ω, Σ) = (Sn, 2Ω) as the underlying event space.

Our problem is that of constructing P starting from a random number gen-
erator. Here is an extremely simple algorithm from Moses and Oakford (see [5,
p. 139]).

RandomPermutation
Input: an array A[1..n].
Output: A random permutation of Sn stored in A[1..n].
1. for i = 1 to n do // Initialize array A
2. A[i] = i.
3. for i = n downto 2 do // Main Loop
4. X ← 1 + ⌊i · random()⌋.
5. Exchange contents of A[i] and A[X ].

This algorithm takes linear time; it makes n − 1 calls to the random number
generator and makes n − 1 exchanges of a pair of contents in the array. Here is
the correctness assertion for this algorithm:

Lemma 2. Every permutation of [1..n] is equally likely to be generated.
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Proof. The proof is as simple as the algorithm. Pick any permutation σ of [1..n].
Let A′ be the value of the array A at the end of running this algorithm. So it is
enough to prove that

Pr(A′ = σ) =
1

n!
.

Let Ei be the event {A′[i] = σ(i)}, for i = 1, . . . , n. Thus

Pr(A′ = σ) = Pr(E1E2E3 · · ·En−1En).

First, note that Pr(En) = 1/n. Also, Pr(En−1|En) = 1/(n− 1). In general, we see that

Pr(Ei|EnEn−1 · · ·Ei+1) =
1

i
.

The lemma now follows from an application of (5) which shows
Pr(E1E2E3 · · ·En−1En) = 1/n!. Q.E.D.

Note that the conclusion of the lemma holds even if we initialize the array A
with any permutation of [1..n]. This fact is useful if we need to computer another
random permutation in the same array A.

While the above analysis is simple, it is instructive to ask what is the underlying
probabily space? Basically, if A′ is the value of the array at the end of the
algorithm, then A′ is a random permutation in the sense of §3. That is,

A′ : Ω→ Sn

where Ω is a suitable probability space and Sn is the set of n-permutations. We
can view Ω as the set

∏n
i=2[0, 1) where a typical ω ∈ Ω = (x2, x3, . . . , xn) tells us the

sequence of values returned by the n− 1 calls to the random() function.

Remarks: Random number generation is an extensively studied topic: Knuth [5]
is a basic reference. The concept of randomness is by no means easily pinned down.
From the complexity viewpoint, there is a very fruitful approach to randomness
called Kolmogorov Complexity. A comprehensive treatment is found in Li and
Vitányi [7].

§5. Expectation and Variance

Two important numbers are associated with a random variable: its “average
value” and its “variance” (likelihood of deviating from the average value).

If X is a discrete r.v. whose range is

{a1, a2, a3 . . .} (12)

then its expectation (or, mean) E[X ] is defined to be

E[X ] :=
∑

i≥1

ai Pr{X = ai}.

This is well-defined provided the series converges absolutely, i.e.,
∑

i≥1 |a1|Pr{X =
ai} converges. If X is a continuous r.v. with probability density f(x) then

E[X ] :=

∫ ∞

−∞

uf(u)du.
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Note that if X is the indicator variable for an event A then

E[X ] = Pr(A).

¶14. Two Remarkable Properties of Expectation. The following two elementary
properties of expectation can often yield surprising consequences.

The first property is the linearity of expectation. This means that for all r.v.’s
X, Y and α, β ∈ R:

E[αX + βY ] = αE[X ] + βE[Y ].

The remarkable fact is that X and Y are completely arbitrary – for instance,
we need no independence assumptions. In applications, we can often decompose a
r.v. X into any linear combination of r.v.s X1, X2, . . . , Xm. If we can compute the
expections of each Xi, then by linearity of expectation, we obtain the expection
of X itself. Typically, X may be the running time of a n-step algorithm and Xi is
the expected time for the ith step.

The second property is that, from expectations, we can assert the existence of
objects with certain properties.

Lemma 3. Suppose X is a discrete r. v. with finite expectation µ. If Ω is finite, then:

(i) There exists ω0, ω1 ∈ Ω such that

X(ω0) ≤ µ ≤ X(ω1). (13)

(ii) If X is non-negative, then
Pr{X ≤ 2µ} ≥ 1/2. (14)

In particular, if Pr{·} is uniform and Ω finite, then at least half of the sample points ω ∈ Ω
satisfy X(ω) ≤ 2µ.

Proof. Since X is discrete, let

µ = E[X ] =
∞
∑

i=1

ai Pr{X = ai}.

(i) If there are arbitrarily negative ai’s then clearly ω0 exists; otherwise choose
ω0 so that X(ω0) = inf{X(ω) : ω ∈ Ω}. Likewise if there are arbitrarily large ai’s
then ω1 exists, and otherwise choose ω1 so that X(ω1) = sup{X(ω) : ω ∈ Ω}. In every
case, we have chosen ω0 and ω1 so that the following inequality confirms our
lemma:

X(ω0) = X(ω0)
∑

ω∈Ω

Pr(ω) ≤
∑

ω∈Ω

Pr(ω)X(ω) ≤ X(ω1)
∑

ω∈Ω

Pr(ω) = X(ω1).

(ii) This is just Markov’s inequality. Q.E.D.

Let us apply this lemma to assert the existence of certain objects. Suppose we
set up a random D object,

g : Ω→ D
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and are interested in a certain statistic C : D → R. Define the random statistic
Cg : Ω→ R as in (10). Then there exists ω0 such that

Cg(ω0) ≤ E[Cg]

This means that the object g(ω0) ∈ D has the property C(g(ω0)) ≤ E[Cg].

Linearity of expectation amounts to saying that summing r.v.’s is commutative
with taking expectation. What about products of r.v.’s? If X, Y are independent
then

E[XY ] = E[X ]E[Y ]. (15)

The requirement that X, Y be independent is necessary. As noted earlier, all
multiplicative properties of probability depends from some form of independence.

The jth moment of X is E[Xj]. If E[X ] is finite, then we define the variance of
X to be

Var(X) := E[(X − E[X ])2].

Note that X − E[X ] is the deviation of X from its mean. It is easy to see that

Var(X) = E[X2]− E[X ]2.

The positive square-root of Var(X) is called its standard deviation and denoted
σ(X) (so Var(X) is also written σ2(X)). If X, Y are independent, then summing r.v.’s
also commutes with taking variances. More generally:

Lemma 4. Let Xi (i = 1, . . . , n) be pairwise independent random variables with finite variances.
Then

Var(

n
∑

i

Xi) =

n
∑

i=1

Var(Xi).

This is a straightforward computation, using the fact that E[XiXj ] = E[Xi]E[Xj ]
for i 6= j since Xi and Xj are independent.

¶15. Distribution and Density. For any r.v. X, we define its distribution function
to be FX : R→ [0, 1] where

FX(c) := Pr{X ≤ c}, c ∈ R.

The importance of distribution functions stems from the fact that the basic prop-
erties of random variables can be studied from their distribution function alone.

Two r.v.’s X, Y can be related as follows: we say X stochastically dominates Y ,
written

X � Y

if FX(c) ≤ FY (c) for all c. It is not hard to see (Exercise) that this implies E[X ] ≥
E[Y ] if X stochastically dominates Y . If X � Y and Y � X then we say they are
identically distributed, denoted

X ∼ Y.

A common probabilistic setting is a collection K of r.v.’s that is independent and
with all the r.v.’s in K sharing the same distribution. We then say K is independent
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and identically distributed (abbrev. i.i.d). For instance, when Xi is the outcome of
the ith toss of some fixed coin, then K = {Xi} is an i.i.d. family.

In general, a distribution function5 F (x) is a monotone non-decreasing real
function such that F (−∞) = 0 and F (+∞) = 1. Sometimes, a distribution function
F (x) is defined via a density function f(u) ≥ 0, where

F (x) =

∫ x

−∞

f(u)du.

In case X is discrete, the density function fX(u) (of its distribution function FX)
is zero at all but countably many values of u. As defined above, a continuous
r.v. X is specified by its density function.

¶16. Conditional Expectation. This concept is useful for computing expectation.
if A is an event, define the conditional expectation E[X |A] of X to be

∑

i≥1 ai Pr{X =
ai|A}. In the discrete event space, we get

E[X |A] =

∑

ω∈A X(ω) Pr(ω)

Pr(A)
.

If B is the complement of A, then

E[X ] = E[X |A] Pr(A) + E[X |B] Pr(B).

More generally, if Y is another r.v., we define a new r.v. Z = E[X |Y ] where Z(ω) =
E[X |Y = Y (ω)] for any ω ∈ Ω. Thus Z(ω) depends only on Y (ω). We can compute the
expectation of X using the formula

E[X ] = E[E[X |Y ]] (16)

=
∑

a∈R

E[X |Y = a] Pr{Y = a}. (17)

For example, let Xi’s be i.i.d., and N be a non-negative integer r.v. independent of
the Xi’s. What is the expected value of

∑N
i=1 Xi?

E[

N
∑

i=1

Xi] = E[E[

N
∑

i=1

Xi|N ]]

=
∑

n∈N

E[

N
∑

i=1

Xi|N = n] Pr{N = n}

=
∑

n∈N

nE[X1] Pr{N = n}

= E[X1]E[N ].

We can also use conditioning in computing variance, since E[X2)] = E[E[X2|Y ]].

Exercises

5Some authors calls the function Pr : Σ → [0, 1] a “(probability) distribution” on the set Ω. We avoid this
terminology.
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Exercise 5.1: Answer YES or NO to the following question. A correct answer is
worth 5 points, but a wrong answer gets you −3 points. Of course, if you do
not answer, you get 0 points. “In a True/False question, you get 5 points for
correct answer, 0 points for not attempting the question and -3 points for
an incorrect guess. Suppose have NO idea what the answer might be. Should
you attempt to answer the question?”. ♦

Exercise 5.2: You face a multiple-choice question with 4 possible choices. If you
answer the question, you get 6 points if correct and -3 if wrong. If you do
not attempt the question, you get -1 point. Should you attempt to answer
the question if you have no clue as to what the question is about? You must
justify your answer to receive any credit. NOTE: this is not a multiple choice
question. ♦

Exercise 5.3: You (as someone who is designing an examination) wants to assign
points to a multiple choice question in which the student must pick one out
of 5 possible choices. The student is not allowed to ignore the question. How
do you assign points so that (a) if a student has no clue, then the expected
score is −1 points and (b) if a student could eliminate one out of the 5 choices,
the expected score is 0 points. ♦

Exercise 5.4: Compute the expected value of the r.v. Cg in equation (10) for small
values of n (n = 2, 3, 4, 5). ♦

Exercise 5.5: Simple dice game: you are charged c dollars for rolling a dice, and
if your roll has outcome i, you win i dollars. What is the fair value of c?
HINT: what is your expected win per roll? ♦

Exercise 5.6: (a) Professor Vegas introduces a game of dice in class (strictly for
“object lesson” of course). Anyone in class can play. To play the game, you
pay $12 and roll a pair of dice. If the product of the rolled values on the
dice is n, then Professor Vegas pays you $ n. For instance, if you rolled the
numbers 5 and 6 then you make a profit of $18 = 30− 12. Student Smart would
not play, claiming: the probability of losing money is more than the probability of winning
money.
(a) What is right and wrong with Student Smart’s claim?
(b) Would you play this game? Justify. ♦

Exercise 5.7: One day, Professor Vegas forgot to bring his pair of dice. He stills
wants to play the game in the previous exercise. Professor Vegas decides
to simulate the dice by tossing a fair coin 6 times. Interpreting heads as 1
and tails as zero, this gives 6 bits which can be viewed as two binary numbers
x = x2x1x0 and y = y2y1y0. So x and y are between 0 and 7. If x or y is either 0
or 7 then the Professor returns your $12 (the game is off). Otherwise, this
is like the dice game in (a). What is the expected profit of this game? ♦

Exercise 5.8: In the previous question, we “simulate” rolling a dice by tossing
three fair coins. Unfortunately, if the value of the tosses is 0 or 7, we
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call off the game. Now, we want to continue tossing coins until we get a
value between 1 and 6.
(a) An obvious strategy is this: each time you get 0 or 7, you toss another
three coins. This is repeated as many times as needed. What is the expected
number of coin tosses to “simulate” a dice roll using this method?
(b) Modify the above strategy to simulate a dice roll with fewer coin tosses.
You need to (i) justify that your new strategy simulates a fair dice and (ii)
compute the expected number of coin tosses.
(c) Can you show what the the optimum strategy is? ♦

Exercise 5.9: In the dice game of the previous exercise, Student Smart decided to
do another computation. He sets up a sample space

S = {11, 12, . . . , 16, 22, 23, . . . , 26, 33, . . . , 36, 44, 45, 46, 55, 56, 66}.

So |S| = 21. Then he defines the r.v. X where X(ij) = i × j and computes
the expectation of X where using Pr(ij) = 1/21. What is wrong? Can you
correct his mistake without changing his choice of sample space? What is the
alternative sample space? In what sense is Smart’s choice of S is better? ♦

Exercise 5.10: Prove if X � Y then E[X ] ≥ E[Y ]. Moreover, equality holds iff X ∼ Y .
♦

Exercise 5.11: (a) Show that in any graph with n vertices and e edges, there exists
a bipartite subgraph with e/2 edges. In addition, the bipartite subgraph have
⌊n⌋ vertices on one side and ⌈n⌉ of the other. Remark: depending on your
approach, you may not be able to fulfil the additional requirement.
(b) Obtain the same result constructively (i.e., give a randomized algorithm).

♦

Exercise 5.12: (Cauchy-Schwartz Inequality) Show that E[XY ]2 ≤ E[X2]E[Y 2] assum-
ing X, Y have finite variances. ♦

Exercise 5.13: (Law of Unconscious Statistician) If X is a discrete r.v. with prob-
ability mass function fX(u), and g is a real function then

E[g(X)] =
∑

u:fX (u)>0

g(u)fX(u).

♦

Exercise 5.14: If X1, X2, . . . are i.i.d. and N ≥ 0 is an independent r.v. that is integer-
valued then E[

∑N
i=1 Xi] = E[N ]E[X1] and Var(

∑N
i=1 Xi) = E[N ]Var(X1) + E[X ]2Var(N).

♦

Exercise 5.15: Suppose we have a fair game in which you can bet any dollar amount.
If you bet $x, and you win, you receive $x; and otherwise you lose $x.
(a) A well-known “gambling technique” is to begin by betting $1. Each time
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you lose, you double the amount of the bet (to $2, $4, etc). You stop at the
first time you win. What is wrong with this scenario?
(b) Suppose you have a limited amount of dollars, and you want to devise a
strategy in which the probability of your winning is as big as possible. (We are
not talking about your “expected win”.) How would you achieve this? ♦

Exercise 5.16: [Amer. Math. Monthly] A set consisting of n men and n women are
partitioned at random into n disjoint pairs of people. Let X be the number of
male-female couples that result. What is the expected value and variance
of X? HINT: let Xi be the indicator variable for the event that the ith man
is paired with a woman. To compute the variance, first compute E[X2

i ] and
E[XiXj] for i 6= j. ♦

Exercise 5.17: [Mean and Variance of a geometric distribution] Let X be the num-
ber of coin tosses needed until the first head appears. Assume the probability
of coming up heads is p. Use conditional probability (16) to compute E[X ] and
Var(X). HINT: let Y = 1 if the first toss is a head, and Y = 0 else. ♦

§6. Families of Random Variables

We now consider families of random variables over a common probability space.
Two common situations arise.

(i) Perhaps the most important situation is when a family K of r.v.’s is i.i.d.
(ii) Another situation is when we have a family {Xt : t ∈ T } of r.v.’s where T ⊆ R

is the index set. We think of T as time and Xt as describing the behavior of a
stochastic phenomenon evolving over time. Such a family is called a stochastic
process. Usually T = R (continuous time) or T = N (discrete time).

We state two results that lay claim to being the fundamental theorems of
probability theory. Both relate to i.i.d. families. Let X1, X2, X3, . . . , be a countable
i.i.d. family of Bernoulli r.v.’s. Let Sn :=

∑n
i=1 Xi and pas Pr{X1 = 1}. It is intuitively

clear that Sn approaches np as n→∞.

Theorem 5 ((Strong) Law of Large Numbers). For any ε > 0, with probability 1, there are only
finitely many sample points in the event

|Sn − np| > ε

Theorem 6 (Central Limit Theorem). See Ross

¶17. Some probability distributions. The above theorems do not make any assump-
tions about the underlying distributions of the r.v.’s (therein lies their power).
However, certain probability distributions are quite common and it is important
to recognize them. Below we list some of them. In each case, we only need to
describe the corresponding density functions f(u). In the discrete case, it suffices
to specify f(u) at those elementary events u where f(u) > 0.

• Binomial distribution B(n, p), with parameters n ≥ 1 and 0 < p < 1:

f(i) =

(

n

i

)

pi(1 − p)n−i, (i = 0, 1, . . . , n).
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Sometimes f(i) is also written Bi(n, p) and corresponds to the probability of
i successes out of n Bernoulli trials. In case n = 1, this is also called the
Bernoulli distribution. If X has such a distribution, then

E[X ] = np, Var(X) = npq

where q = 1− p.

• Geometric distribution with parameter p, 0 < p < 1:

f(i) = p(1− p)i−1 = pqi−1, (i = 1, 2, . . .).

Thus f(i) may be interpreted as the probability of the first success occurring
at the ith Bernoulli trial. If X has such a distribution, then E[X ] = 1/p and
Var(X) = q/p2.

• Poisson distribution with parameter λ > 0:

f(i) = e−λ λi

i!
, (i = 0, 1, . . .).

We may view f(i) as the limiting case of Bi(n, p) where n→∞ and np = λ. If X
has such a distribution, then E[X ] = Var(X) = λ.

• Uniform distribution over the real interval [a, b]:

f(u) =

{

1
b−a a < u < b

0 else.

• Exponential distribution with parameter λ > 0:

f(u) =

{

λe−λu u ≥ 0
0 else.

• Normal distribution with mean µ and variance σ2:

f(u) =
1√
2πσ

exp

[

−1

2

(

u− µ

σ

)2
]

.

In case µ = 0 and σ2 = 1, we call this the unit normal distribution.

Exercises

Exercise 6.1: Verify the values of E[X ] and Var(X) asserted for the various distri-
butions of X.

♦

Exercise 6.2: Show that the density functions f(u) above truly define distribution
functions: f(u) ≥ 0 and

∫ ∞

−∞
f(u)du = 1. Determine the distribution function in

each case. ♦

§7. Estimates and Inequalities

A fundamental skill in probabilistic analysis is estimating probabilities because
they are often too intricate to determine exactly. We list some useful inequali-
ties and estimation techniques.
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¶18. Approximating the binomial coefficients. Recall Stirling’s approximation in
Lecture II.2. Using such bounds, we can show [8] that for 0 < p < 1 and q = 1− p,

G(p, n)e−
1

12pn
− 1

12qn <

(

n

pn

)

< G(p, n) (18)

where

G(p, n) =
1√

2πpqn
p−pnq−qn.

¶19. Tail of the binomial distribution. The “tail” of the distribution B(n, p) is the
following sum

n
∑

i=λn

(

n

i

)

piqn−i.

It is easy to see the following inequality:

n
∑

i=λn

(

n

i

)

piqn−i ≤
(

n

λn

)

pλn.

To see this, note that LHS is the probability of the event A ={There are at least
λn successess in n coin tosses}. For any choice x of λn out of n coin tosses, let
Bx be the event that the chosen coin tosses are successes. Then RHS is the sum
of the probability of Bx, over all x. Clearly A = ∪xBx. But the RHS may be an
overcount because the events Bx need not be disjoint. We have the following
upper bound [3]:

n
∑

i=λn

(

n

i

)

piqn−i <
λq

λ− p

(

n

λn

)

pλnqµn

where λ > p and q = 1− p. This specializes to

n
∑

i=λn

(

n

i

)

<
λ

2λ− 1

(

n

λn

)

where λ > p = q = 1/2.

¶20. Markov Inequality. Let X be a non-negative random variable. We have the
trivial bound

Pr{X ≥ 1} ≤ E[X ]. (19)

For any real constant c > 0, Pr{X ≥ c} = Pr{X/c ≥ 1} ≤ E[X/c] = E[X ]/c. This proves6

the so-called Markov inequality,

Pr{X ≥ c} ≤ E[X ]

c
. (20)

Observe that the Markov inequality is trivial unless E[X ] is finite and we choose
c > E[X ].

6Another proof uses the Heaviside function H(x) that is the 0-1 function given by H(x) = 1 if and only if
x > 0. We have the trivial inequality H(X − c) ≤ X

c
Taking expections on both sides yields the Markov inequality

since E[H(X − c)] = Pr{X ≥ c}.
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¶21. Chebyshev Inequality. It is also called the Chebyshev-Bienaymé inequality
since it originally appeared in a paper of Bienaymé in 1853 [4, p. 73]. With any real
c > 0,

Pr{|X | ≥ c} = Pr{X2 ≥ c2} ≤ E[X2]

c2
(21)

by an application of Markov inequality. Another form of this inequality (derived
in exactly the same way) is

Pr{|X − E[X ]| ≥ c} = Pr{(X − E[X ])2 ≥ c2} ≤ Var(X)

c2
. (22)

Sometimes Pr{|X − E[X ]| ≥ c} is called the tail probability of X. By a trivial trans-
formation of parameters, equation (22) can also written as

Pr{|X − E[X ]| ≥ c
√

Var(X)} ≤ 1

c2
. (23)

This form is useful in statistics because it bounds the probability of X deviating
from its mean by some fraction of the standard deviation,

√

Var(X).

Let us give an application of Chebyshev’s inequality:

Lemma 7. Let X be a r.v. with mean E[X ] = µ ≥ 0.
(a) Then

Pr{X = 0} ≤ Var(X)

µ2
.

(b) Suppose X =
∑n

i=1 Xi where the Xi’s are pairwise independent Bernoulli r.v.s with E[Xi] = p
(and q = 1− p) then

Pr{X = 0} ≤ q

np
.

Proof. (a) Since {X = 0} ⊆ {|X − µ| ≥ µ}, we have

Pr{X = 0} ≤ Pr{|X − µ| ≥ µ} ≤ VarX

µ2

by Chebyshev.
(b) It is easy to check that Var(Xi) = pq. Since the Xi’s are independent, we have
Var(X) = npq. Also E[X ] = µ = np. Plugging into the formula in (a) yields the
claimed bound on Pr{X = 0}. Q.E.D.

Part (b) is useful in reducing the error probability in a certain class of ran-
domized algorithms called RP -algorithms. The outcome of an RP -algorithm A
may be regarded as a Bernoulli r.v. Xi which has value 1 or 0. If Xi = 1, then
the algorithm has no error. If Xi = 0, then the probability of error is at most p
(0 ≤ p < 1). We can reduce the error probability in RP -algorithms by repeating its
computation n times and output 0 iff each of the n repeated computations output
0. Then part (b) bounds the error probability of the iterated computation. We
will see several such algorithms later (e.g., primality testing in §XIX.2).

¶22. Jensen’s Inequality. Let f(x) be a real function. By definition, f is convex
means that for all n,

f(
n

∑

i=1

pixi) ≤
n

∑

i=1

pf(xi)
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where
∑n

i=1 pi = 1 and pi ≥ 0. If X and f(X) are random variables then

f(E[X ]) ≤ E[f(X)].

Let us prove this for the case when X has takes on finitely many values xi with
probability pi. Then E[X ] =

∑

i pixi and

f(E[X ]) = f(
∑

i

pixi) ≤
∑

i

pif(xi) = E[f(X)].

For instance, if r ≥ 1 then E[|X |r] ≥ (E[|X |])r.

Exercises

Exercise 7.1: Verify the equation (18). ♦

Exercise 7.2: Describe the class of non-negative random variables for which
Markov’s inequality is tight. ♦

Exercise 7.3: Chebyshev’s inequality is the best possible. In particular, show an X
such that Pr{|X − E[X ]| > e} = Var(X)/e2. ♦

§8. Chernoff Bounds

Suppose we wish an upper bound on the probability Pr{X ≥ c} where X is an arbi-
trary r.v.. To apply Markov’s inequality, we need to convert X to a non-negative
r.v. One way is to use the r.v. X2, as in the proof of Chebyshev’s inequality. The
technique of Chernoff converts X to the Markov situation by using

Pr{X ≥ c} = Pr{eX ≥ ec}.

Since eX is a non-negative r.v., we conclude from Markov’s inequality (20) that

Pr{X ≥ c} ≤ e−c
E[eX ]. (24)

We can further exploit this trick: for any positive number t > 0, we have Pr{X ≥
c} = Pr{tX ≥ tc}, and proceding as before, we obtain

Pr{X ≥ c} ≤ e−ct
E[etX ]

= E[et(X−c)].

Finally, the so-called Chernoff bound [1] is given by choosing t to minimize the
right-hand side of this inequality. This proves:

Lemma 8 (Chernoff Bound). For any r.v. X and real c,

Pr{X ≥ c} ≤ m(c). (25)

where
m(c) = mX(c) := inf

t>0
E[et(X−c)]. (26)
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More generally, any bound that are derived from (25) is also called a Chernoff
bound. We now derive some Chernoff bounds under various assumptions.

Let X1, . . . , Xn be independent and

S = X1 + · · ·+ Xn.

It is easily verified that then etX1 , . . . , etXn (for any constant t) are also indepen-
dent. Then equation (15) implies

E[etS ] = E[

n
∏

i=1

etXi ] =

n
∏

i=1

E[etXi ].

(A) Suppose that, in addition, the X1, . . . , Xn are i.i.d., and m(c) is defined as in
(26). This shows

Pr{S ≥ nc} ≤ e−nct
E[etS ], (t > 0)

≤ [m(c)]n.

This is a generalization of (25).

(B) Assume S has the distribution B(n, p). It is not hard to compute that

m(c) =
(p

c

)c
(

1− p

1− c

)1−c

. (27)

Then for any 0 < ε < 1:

Pr{S ≥ (1− ε)np} ≤
(

1

1− ε

)(1−ε)np (

1− p

1− (1 − ε)p

)n−(1+ε)np

.

We still need to make this bound more convenient for application:

Pr{S ≥ (1 + ε)np} ≤ exp(−ε2np/3) (28)

Pr{S ≤ (1− ε)np} ≤ exp(−ε2np/2) (29)

(30)

Need the ≤ and ≥ version of Chernoff bound... INCOMPLETE

(C) Now suppose the Xi’s are independent Bernoulli variables where Pr{Xi =
1} = pi (0 ≤ pi ≤ 1) and Pr{Xi = 0} = 1− pi for each i. Then

E[Xi] = pi, µ := E[S] =

n
∑

i=1

pi.

Fix any δ > 0. Then

Pr{S ≥ (1 + δ)µ} ≤ m((1 + δ)µ)

= inf
t>0

E[et(X−(1+δ)µ)]

= inf
t>0

E[etX ]

e(1+δ)µ
.
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¶23. Estimating a Probability and Hoeffding Bound. Consider the natural problem
of estimating p (0 < p < 1) where p is the probability that a given coin will show up
heads in a toss. The obvious solution is to choose some reasonably large n, toss
this coin n times, and estimate p by the ratio h/n where h is the number of times
we see heads in the n coin tosses.

This problem is still not well-defined since we have no constraints on n. So
assume our goal is to satisfy the bound

Pr{|p− (h/n)| > δ} ≤ ε (31)

where δ is the precision parameter and ε is a bound on the error probability. Given δ
and ε, (0 < δ, ε < 1), we now have a well-defined problem. This problem seems to be
solved by the Chernoff bound (B) in (28) where S = X1 + · · ·Xn is now interpreted
to be h. Then

{|p− (h/n)| > δ} = {|np− h| > nδ} = {|np− S| > nδ}

If we substitute δ with pε, then we obtain

Pr{|p− (h/n)| > δ} = Pr{|np− S| > nδ}
= Pr{|S − np| > npε}
≤ 2 exp(−

The problem is that the p that we are estimating appears on the right hand side.
Instead, we need the following Hoeffding bound:

Pr{S > np + δ} ≤ exp−nδ2/2 (32)

Pr{S < np− δ} ≤ exp−nδ2/2 (33)

Pr{|S < np| > δ} ≤ 2 exp−nδ2/2 (34)

Comparing the usual Chernoff bounds with the Hoeffding bound, we see that the
former bound the relative error in the estimate while the latter concerns abso-
lute error.

For a survey of Chernoff Bounds, see T. Hagerub and C. Rüb, “A guided tour
of Chernoff Bounds”, Information Processing Letters 33(1990)305–308.

Exercises

Exercise 8.1: Verify the equation (27). ♦

Exercise 8.2: Obtain an upper bound on Pr{X ≤ c} by using Chernoff’s technique.
HINT: Pr{X ≤ c} = Pr{tX ≥ tc} where t < 0. ♦

Exercise 8.3: Show the following:
i) Bonferroni’s inequality,

Pr(AB) ≥ Pr(A) + Pr(B)− 1.
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ii) Boole’s inequality,

Pr(∪n
i=1Ai) ≤

n
∑

i=1

Pr(Ai).

(This is trivial, and usually used without acknowledgement.) iii) For all real
x, e−x ≥ 1− x with equality only if x = 0.
iv) 1 + x < ex < 1 + x + x2 which is valid for |x| < 1.

♦

Exercise 8.4: Kolmogorov’s inequality: let X1, . . . , Xn be mutually independent
with expectation E[Xi] = mi and variance Var(Xi) = vi. Let Si = X1 + · · · + Xi,
Mi = E[Si] = m1 + · · ·+ mi and Vi = Var(Si) = v1 + · · ·+ vi. Then for any t > 0, the
probability that the n inequalities

|Si −Mi| < tVn, i = 1, . . . , n,

holds simultaneously is at least 1− t−2. ♦

Exercise 8.5: We want to process a sequence of requests on a single (initially
empty) list. Each request is either an insertion of a key or the lookup on a
key. The probability that any request is an insertion is p, 0 < p < 1. The cost
of an insertion is 1 and the cost of a lookup is m if the current list has m
keys. After an insertion, the current list contains one more key.
(a) Compute the expected cost to process a sequence of n requests.
(b) What is the approximate expected cost to process the n requests if we use
a binary search tree instead? Assume that the cost of insertion, as well as
of lookup, is log2(1 + m) where m is the number of keys in the current tree.
NOTE: If L is a random variable (say, representing the length of the cur-
rent list), assume that E[log2 L] ≈ log2 E[L], (i.e., the expected value of the log
is approximately the log of the expected value).
(c) Let p be fixed, n varying. Describe a rule for choosing between the two
datastructures. Assuming n ≫ 1 ≫ p, give some rough estimates (assume ln(n!)
is approximately n lnn for instance).
(d) Justify the approximation E[log2 L] ≈ log2 E[L] as reasonable. ♦

§9. Generating Functions

In this section, we assume that our r.v.’s are discrete with range
N = {0, 1, 2, . . .}.

This powerful tool of probabilistic analysis was introduced by Euler (1707-
1783). If a0, a1, . . . , is a denumerable sequence of numbers, then its (ordinary) gen-
erating function is the power series

G(t) := a0 + a1t + a2t
2 + · · · =

∞
∑

i=0

ait
i.

If ai = Pr {X = i} for i ≥ 0, we also call G(t) = GX(t) the generating function of
X. We will treat G(t) purely formally, although under certain circumstances, we
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can view it as defining a real (or complex) function of t. For instance, if G(t) is
a generating function of a r.v. X then

∑

i≥0 ai = 1 and the power series converges
for all |t| ≤ 1. The power of generating functions comes from the fact that we
have a compact packaging of a potentially infinite series, facilitating otherwise
messy manipulations. Differentiating (formally),

G′(t) =

∞
∑

i=1

iait
i−1,

G′′(t) =
∞
∑

i=2

i(i− 1)ait
i−2.

If G(t) is the generating function of X, then

G′(1) = E[X ], G′′(1) = E[X2]− E[X ].

It is easy to see that if G1(t) =
∑

i≥0 ait
i and G2(t) =

∑

i≥0 bit
i are the generating

functions of independent r.v.’s X and Y then

G1(t)G2(t) =
∑

i≥0

ti
i

∑

j=0

ajbi−j =
∑

i≥0

tici

where ci = Pr{X+Y = i}. Thus we have: the product of the generating functions of
two independent random variables X and Y is equal to the generating function of
their sum X +Y . This can be generalized to any finite number of independent ran-
dom variables. In particular, if X1, . . . , Xn are n independent coin tosses (running
example (E1)), then the generating function of Xi is Gi(t) = q + pt where q := 1 − p.
So the generating function of the r.v. Sn := X1 + X2 + · · ·+ Xn is

(q + pt)n =

n
∑

i=0

(

n

i

)

piqn−iti.

Thus, Pr{Sn = i} =
(

n
i

)

piqn−i and Sn has the binomial distribution B(n, p).

¶24. Moment generating function. The moment generating function of X is defined
to be

φX(t) := E[etX ] =
∑

i≥0

aie
it.

This is sometimes more convenient then the ordinary generating function. Differ-
entiating n times, we see φ

(n)
X (t) = E[XnetX ] so φ(n)(0) is the nth moment of X. For

instance, if X is B(n, p) distributed then φX(t) = (pet + q)n.

Exercises

Exercise 9.1:
(a) What is the generating function of the r.v. X where {X = i} is the event
that a pair of independent dice roll yields a sum of i (i = 2, . . . , 12)?
(b) What is the generating function of c0, c1, . . . where ci = 1 for all i? Where
ci = i for all i? ♦
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Exercise 9.2: Determine the generating functions of the following probability dis-
tributions: binomial, geometric, poisson. ♦

Exercise 9.3: Let c0 = 0 and c1 be some constant. For n ≥ 2, consider the recurrence

cn =

n
∑

i=1

cicn−i.

(a) If G(X) =
∑

i≥0 ciX
i is the generating function of the cn’s, show that

G(X) =
1±√1− 4c1X

2
.

HINT: what is the connection between G(X)2 and G(X)?
(b) Using the binomial theorem for (1−x)1/2 determine the formula for cn (as
a function of c1.
(c) What is the connection between ci and the Catalan numbers (Lecture VI).

♦

Exercise 9.4: Compute the mean and variance of the binomial distributed, expo-
nential distributed and Poisson distributed r.v.’s using generating functions.

♦
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