
Lecture IV Page 1

“Read Euler, read Euler, he is our master in everything”
– Pierre-Simon Laplace (1749–1827)

Lecture IV

PURE GRAPH ALGORITHMS

Graph Theory is said to have originated with Euler (1707–1783). The citizens of the city1 of
Königsberg asked him to resolve their favorite pastime question: is it possible to traverse all the
7 bridges joining two islands in the river Pregel and the mainland, without retracing any path?
See Figure 1(a) for a schematic layout of these bridges. Euler recognized2 in this problem the
essense of Leibnitz’s earlier interest in founding a new kind of mathematics called “analysis situs”.
This can be interpreted as topological or combinatorial analysis in modern language. A graph
corresponding to the 7 bridges and their interconnections is shown in Figure 1(b). Computational
graph theory has a relatively recent history. Among the earliest papers on graph algorithms are
Prim’s minimum spanning tree algorithm (1957) and Dijkstra’s shortest path algorithm (1959).
Tarjan is one of the first to systematically design and analyze many of the basic graph algorithms,
including applications of DFS which we will study.

(a) (b)

C

D
B

A

Figure 1: The 7 Bridges of Konigsberg

Graphs are useful for modeling abstract mathematical relations in computer science as well as
in many other disciplines. Here are some examples of graphs:

Adjacency between Countries Figure 2(a) shows a political map of 7 countries. Figure 2(b)
represents a graph with vertex set V = {1, 2, . . . , 7} representing these countries. An edge i−j
represents the relationship between countries i and j that share a continuous (i.e., connected)
common border. Note that countries 2 and 3 share two continuous common borders, and so
we have two copies of the edge 2−3.

1This Prussian city is also called Kaninsgrad in Russian
2His paper was entitled “Solutio problematis ad geometriam situs pertinentis” (The solution of a problem relating

to the geometry of position).

c© Chee-Keng Yap Basic Version March 27, 2008

§1. Varieties of Graphs Lecture IV Page 2

Flight Connections A graph can represent the flight connections of a particular airline, with the
set V representing the airports and the set E representing the flight segments that connect
pairs of airports. Each edge will typically have auxiliary data associated with it. For example,
the data may be numbers representing flying time of that flight segment.

Hypertext Links In hypertext documents on the world wide web, a document will generally have
links (“hyper-references”) to other documents. We can represent these linkages structure by
a graph whose vertices V represent individual documents, and each edge (u, v) ∈ V × V
indicates that there is a link from document u to document v.

(a) (b)

1
2

3

4

5
7

6 64

1 2

7

3

5

Figure 2: (a) Political map of 7 countries (b) Their adjacency relationship

A graph is fundamentally a set of mathematical relations (called incidence relations) connecting
two sets, a vertex set V and an edge set E. In Figure 1(b), the vertex set is V = {A, B, C, D}
and the edges are the 7 arcs connecting pairs of vertices. A simple notion of an edge e ∈ E is
where e is a pair of vertices u, v ∈ V . The pair can be ordered e = (u, v) or unordered e = {u, v},
leading to two different kinds of graphs. We shall denote3 such a pair by “u−v”, and rely on
context to determine whether an ordered or unordered edge is meant. For unordered edges, we
have u−v = v−u; but for ordered edges, u−v 6= v−u unless u = v. Note that this simple model of
edges (as ordered or unordered pairs) is unable to model the Konigsberg graph Figure 1(b) since
it has two copies of the edge between A and B. Such multiple copies of edges can be captured by
the concept of multi-edges.

In many applications, our graphs have associated data such as numerical values (“weights”)
attached to the edges and vertices. These are called weighted graphs. The flight connection
graph above is an example of this. Graphs without such numerical values are called pure graphs.
In this chapter, we restrict attention to pure graph problems; weighted graphs will be treated in
later chapters. Many algorithmic issues of pure graphs relate to the concepts of connectivity and What can

be impure of
graphs?

paths. Many of these algorithms can be embedded in one of two graph searching strategies called
depth-first search (DFS) and breadth-first search (BFS).

Some other important problems of pure graphs are: testing if a bigraph is planar, finding a
maximum matching in a bigraph, and testing isomorphism of bigraphs. Tarjan [4] was one of
the first to systematically study the DFS algorithm and its applications. A lucid account of basic
graph theory is Bondy and Murty [1]; for a more algorithmic treatment, see Sedgewick [3].

§1. Varieties of Graphs

3We have taken this highly suggestive notation from [3].

c© Chee-Keng Yap Basic Version March 27, 2008

§1. Varieties of Graphs Lecture IV Page 3

In this book, “graphs” refer to either directed graphs (“digraphs”) or undirected
graphs (“bigraphs”). Additional basic graph terminology is collected in Lecture
I (Appendix A) for reference.

¶1. Set-Theoretic Notations for Simple Graphs. Although there are many varieties of
graph concepts studied in the literature, two main ones are emphasized in this book. These corre-
spond to graphs whose edges u−v are directed or undirected. Graphs with directed edges are
called directed graphs or simply, digraphs. Undirected edges are also said to be bidirectional,
and the corresponding graphs are known as undirected graphs or bigraphs.

A graph G is basically given by two sets, V and E. These are called the vertex set and
edge set, respectively. We focus on the “simple” versions of three main varieties of graphs. The
terminology “simple” will become clear below.

For any set V and integer k ≥ 0, let

V k, 2V ,

(

V

k

)

(1)

denote, respectively, the k-fold Cartesian product of V , power set of V and the set of k-
subsets of V . The first two notations (V k and 2V) are standard notations; the last one is less so.
These notations have a certain “umbral quality” because they satisfy the following equations on
set cardinality:

∣

∣V k
∣

∣ = |V |k,
∣

∣2V
∣

∣ = 2|V |,

∣

∣

∣

∣

(

V

k

)
∣

∣

∣

∣

=

(

|V |

k

)

.

We can define our 3 varieties of simple graphs as follows:

• A hypergraph is a pair G = (V, E) where E ⊆ 2V .

• A directed graph (or simply, digraph) is a pair G = (V, E) where E ⊆ V 2.

• A undirected graph (or4 simply, bigraph) is a pair G = (V, E) where E ⊆
(

V
2

)

.

In all three cases, the elements of V are called vertices. Elements of E are called directed edges

for digraphs, undirected edges for bigrpahs, and hyperedges for hypergraphs. Formally, a
directed edge is an ordered pair (u, v), and an undirected edge is a set {u, v}. But we shall also
use the notation u−v to represent an edge which can be directed or undirected, depending on
the context. This convention is useful because many of our definitions cover both digraphs and So u−v can

mean (u, v) or
{u, v}!

bigraphs. Similarly, the term graph will cover both digraphs and bigraphs. Hypergraphs are
sometimes called set systems (see matroid theory in Chapter 5).

An edge u−v is said to be incident on u and v; conversely, we say u and v bounds the edge
{u, v}. This terminology comes from the geometric interpretation of edges as a curve segment
whose endpoints are vertices. In case u−v is directed, we call u the start vertex and v the stop

vertex.

If G = (V, E) and G′ = (V ′, E′) are graphs such that V ⊆ V ′ and E ⊆ E′ then we call G a
subgraph of G′. When E = E′ ∩

(

V
2

)

, we call G′ the subgraph of G that is induced by V .

4While the digraph terminology is fairly common, the bigraph terminology is peculiar to this book. We hope
that this convenient and suggestive terminology find wider adoption.

c© Chee-Keng Yap Basic Version March 27, 2008

§1. Varieties of Graphs Lecture IV Page 4

¶2. Graphical Representation of Graphs. Bigraphs and digraphs are “linear graphs” in
which each edge is incident on one or two vertices. Such graphs have natural graphical (i.e.,
pictorial) representation: elements of V are represented by points (small circles, etc) in the plane
and elements of E are represented by finite curve segments connecting these points.

(a) bigraph (b) digraph

a

b c

d

e

4

5

2 3

6

1

Figure 3: Two graphs

In Figure 3(a), we display a bigraph (V, E) where V = {a, b, c, d, e} and E =
{a−b, b−c, c−d, d−a, c−e, b−d}. In Figure 3(b), we display a digraph (V, E) where V =
{1, 2, . . . , 6} and E = {1−5, 5−4, 4−3, 3−2, 2−1, 1−6, 2−6, 3−6, 4−6, 5−6, 5−2, 5−3, 2−3}. We
display a digraph edge u−v by drawing an arrow from the start vertex u to the stop vertex
v. E.g., in Figure 3(b), vertex 6 is the stop vertex of each of the edges that it is incident on. So
all these edges are “directed” towards vertex 6. In contrast, the curve segments in bigraphs are
undirected (bi-directional).

¶3. Non-Simple Graphs. Our definition of bigraphs, digraphs and hypergraphs is not the only
reasonable one, obviously. To distinguish them from other possible approaches, we call the graphs
of our definition “simple graphs”. Let us see how some non-simple graphs might look like. An edge
of the form u−u is called a loop. For bigraphs, a loop would correspond to a set {u, u} = {u}. But
such edges are excluded by definition. If we want to allow loops, we must define E as a subset of
(

V
2

)

∪
(

V
1

)

. Note that our digraphs may have loops, which is at variance with some other definitions
of “simple digraphs”. In Figures 1(b) and in 2(b), we see the phenemenon of multi-edges (also
known as parallel edges). These are edges that can occur more than once in the graph.

More generally, we view E as a multiset. A multiset S is an ordinary set S together with a
function µ : S → N. We call S the underlying set of S and µ(x) is the multiplicity of x ∈ S.
E.g., if S = {a, b, c} and µ(a) = 1, µ(b) = 2, µ(c) = 1, then we could display S as {a, b, b, c}, and
this is not the same as the multiset {a, b, b, b, c}, for instance.

¶4. Special Classes of Graphs. First consider bigraphs. Planar graphs are those bigraphs
with an embedding in the Euclidean plane such that no two edges cross. Planar graphs have many
special properties: for instance, a planar graph with n vertices has at most 3n− 6 edges. The two
smallest examples of non-planar graphs are the graphs K5 and K3,3 in Figure 4.

Bipartite graphs are those whose vertex set V can be partitioned in two sets A⊎B = U such
that each edge is incident on some vertex in A and on some vertex in B.

In Appendix (Lecture I), we defined the complete graph Kn and the complete bipartite graph
Km,n for all m, n ∈ N. The two special cases of K5 and K3,3 are notable: these are the Kuratowski

c© Chee-Keng Yap Basic Version March 27, 2008

§1. Varieties of Graphs Lecture IV Page 5

(d)

1 2 3 4

4

21

3

(a) (b)

(c)

Figure 4: (a) K5, (b) K3,3, (c) L4, (d) C4

graphs, and they are non-planar. See Figure 4(a,b). We can also define the line graphs Ln whose
nodes are {1, . . . , n}, with edges i−i + 1 for i = 1, . . . , n− 1. Closely related is the cyclic graphs

Cn which is obtained from Ln by adding the extra edge n−1. These are illustrated in Figure 4(c,d).

These graphs, Kn, Km,n, Ln, Cn are usually viewed as bigraphs, but there are obvious digraphs
versions.

Graph Isomorphism. The concept of graph isomorphism (see Appendix,
Lecture I) is important to understand. It is implicit in many of our discussions
that we are only interested in graphs up to isomorphism. For instance, we
defined Kn (n ∈ N) as “the complete graphs on n vertices” (Appendix, Lecture
I). But we never specified the vertex set of Kn. This is because Kn is really an
isomorphism class. For instance, G = (V, E) where V = {a, b, c, d} and E =

(

V

2

)

and G′ = (V ′, E′) where V ′ = {1, 2, 3, 4} and E′ =
(

V ′

2

)

are isomorphic to each
other. Both belong to the isomophism class K4. There is usually a way to
avoid isomorphism classes, but picking a canonical representative. In the case
of Kn, we can just view it as a bigraph whose vertex set is a particular set,
Vn = {1, 2, . . . , n}. Then the edge set (in case of Kn) is completely determined.

¶5. Auxiliary Data Convention. We may want to associate some additional data with a
graph. Suppose we associate a real number W (e) for each e ∈ E. Then graph G = (V, E; W) is
called weighted graph with weight function W : E → R. Again, suppose we want to designate
two vertices s, t ∈ V as the source and destination, respectively. We may write this graph as
G = (V, E; s, t). In general, auxiliary data such as W, s, t will be separated from the pure graph
data by a semi-colon, G = (V, E; · · ·). Alternatively, G is a graph, and we want to add some
additional data d, d′, we may also write (G; d, d′), etc.

Exercises

Exercise 1.1: (Euler) Prove that there is no way to traverse all seven bridges in Figure 1(a)
without going any bridge twice. ♦

c© Chee-Keng Yap Basic Version March 27, 2008

§2. Path Concepts Lecture IV Page 6

Exercise 1.2: Suppose we have a political map as in Figure 2(a), and its corresponding adjacency
relation is a multigraph G = (V, E) where E is not a multiset whose underlying set is a subset
of

(

V
2

)

.
(a) Suppose vertex u has the property that there is a unique vertex v such that u−v is an
edge. What can you say about the country corresponding to u?
(b) Suppose u−v has multiplicity ≥ 2. Consider the set W = {w ∈ V : w−v ∈ E, w−u ∈ E}.
What can you say about the set W? ♦

Exercise 1.3: Prove or disprove: there exists a bigraph G = (V, E) where |V | is odd and the
degree of each vertex is odd. ♦

Exercise 1.4:

(i) How many bigraphs, digraphs, hypergraphs are there on n vertices?
(ii) How many non-isomorphic bigraphs, digraphs, hypergraphs are there on n vertices?
Estimate these with upper and lower bounds. ♦

Exercise 1.5: A trigraph is G = (V, E) where E ⊆
(

V
3

)

. An element f ∈ E is called a face (not

“edge”). A pair {u, v} ∈
(

V
2

)

is called an edge provided {u, v} ⊆ f for some face f ; in this
case, we say f is incident on e, and e bound f). The trigraph is an (abstract) surface if
each edge bounds exactly two faces. How many nonisomorphic surfaces are there on n = |V |
vertices? First consider the case n = 4, 5, 6. ♦

End Exercises

§2. Path Concepts

We now go into some of these concepts in slightly more detail. Most basic concepts of pure
graphs revolve around the notion of a path.

Let G = (V, E) be a graph (i.e., digraph or bigraph). If u−v is an edge, we say that v is
adjacent to u, and also u is adjacent from v. The typical usage of this definition of adjacency
is in a program loop:

for each v adjacent to u,
do “ . . . v . . .”

Let p = (v0, v1, , . . . , vk), (k ≥ 0) be a sequence of vertices. We call p a path if vi is adjacent
to vi−1 for all i = 1, 2, . . . , k. In this case, we can denote p by (v0−v1− · · · −vk).

The length of p is k (not k + 1). The path is trivial if it has length 0, p = (v0). Call v0 is
the source and vk the target of p. Both v0 and vk are endpoints of p. We also say p is a path
from v0 to vk The path p is closed if v0 = vk and it is simple if all its vertices, with the possible
exception of v0 = vk, are distinct. Note that a trivial path is closed and simple. The reverse of
p = (v0−v1− · · ·−vk) is the path

pR := (vk−vk−1− · · · −v0).

In a bigraph, p is a path iff pR is a path.

c© Chee-Keng Yap Basic Version March 27, 2008

§2. Path Concepts Lecture IV Page 7

¶6. The Link Distance Metric. Define δG(u, v), or simply δ(u, v), to be the minimum length
of a path from u to v. If there is no path from u to v, then δ(u, v) = ∞. We also call δ(u, v)
the link distance from u to v; this terminology will be useful when δ(u, v) is later generalized to
weighted graphs, and when we still need to refer to the ungeneralized concept. The following is
easy to see:

• (Non-negativity) δ(u, v) ≥ 0, with equality iff u = v.

• (Triangular Inequality) δ(u, v) ≤ δ(u, w) + δ(w, v).

• (Symmetry) When G is a bigraph, then δ(u, v) = δ(v, u).

These three properties amount to saying that δ(u, v) is a metric on V in the case of a bigraph. If
δ(u, v) <∞, we say v is reachable from u.

¶7. Subpaths. Let p and q be two paths:

p = (v0−v1− · · · −vk), q = (u0−u1− · · · −uℓ),

If p terminates at the vertex where path q begins, i.e., vk = u0, then the operation of concatena-

tion is well-defined. The concatenation of p and q gives a new path, written

p; q := (v0−v1− · · · −vk−1−vk−u1−u2− · · · −uℓ).

Note that the common vertex vk and u0 are “merged” in p; q. Clearly concatenation of paths
is associative: (p; q); r = p; (q; r), which we may simply write as p; q; r. We say that a path p
contains q as a subpath if p = p′; q; p′′ for some p′, p′′. If in addition, q is a closed path, we can
excise q from p to obtain the path p′; p′′. Whenever we write a concatenation expression such as
“p; q”, it is assume that the operation is well-defined.

¶8. Cycles. Two paths p, q are cyclic equivalent if there exists paths r, r′ such that

p = r; r′, q = r′; r.

We write p ≡ q in this case.

For instance, the following four closed paths are cyclic equivalent:

(1−2−3−4−1) ≡ (2−3−4−1−2) ≡ (3−4−1−2−3) ≡ (4−1−2−3−4).

The first and the third closed paths are cyclic equivalent because of the following decomposition:

(1−2−3−4−1) = (1−2−3); (3−4−1), (3−4−1−2−3) = (3−4−1); (1−2−3).

If p = r; r′ and r′; r is defined, then p must be a closed path because the source of r and the
target of r′ must be the same, and so the source and target of p are identical. Similarly, q must
be a closed path.

It is easily checked that cyclic equivalence is a mathematical equivalence relation. We define a
cycle as an equivalence class of closed paths. If the equivalence class of p is the cycle Z, we call p
a representative of Z; if p = (v0, v1, . . . , vk) then we write Z as

Z = [p] = [v1−v2− · · ·−vk] = [v2−v3− · · ·−vk−v1].

c© Chee-Keng Yap Basic Version March 27, 2008

§2. Path Concepts Lecture IV Page 8

Note that if p has k + 1 vertices, then [p] is written with only k vertices since the last vertex may
be omitted. In case of digraphs, we can have self-loops of the form u−u and p = (u, u) is a closed
path. The corresponding cycle is [u]. However, the trivial path p = (v0) gives rise to the cycle
which is an empty sequence Z = []. We call this the trivial cycle. Thus, there is only one trivial
cycle, independent of any choice of vertex v0.

Path concepts that are invariant under cyclic equivalence are “transferred” to cycles automat-
ically. Here are some examples: let Z = [p] be a cycle.

• The length of Z is the length of p.

• Say Z is simple if p is simple.

• We may speak of subcycles of Z: if we excise zero or more closed subpaths from a closed
path p, we obtain a closed subpath q; call [q] a subcycle of [p]. In particular, the trivial
cycle is a subcycle of Z. For instance, [1−2−3] is a subcycle of

[1−2−a−b−c−2−3−d−e−3].

• The reverse of Z is the cycle which has the reverse of p as representative.

• A cycle Z = [p] is trivial if p is a trivial path. So a trivial cycle is written [(v0)] = [].

We now define the notion of a “cyclic graph”. For a digraph G, we say it is cyclic if it contains
any nontrivial cycle. But for bigraphs, this simple definition will not do. To see why, we note that
every edge u−v in a bigraph gives rise to the nontrivial cycle [u, v]. Hence, to define cyclic bigraphs,
we proceed as follows: first, define a closed path p = (v0−v1− · · · −vk−1, v0) to be reducible if
k ≥ 2 and for some i = 1, . . . , k,

vi−1 = vi+1

where subscript arithmetic are modulo k (so vk = v0 and vk+1 = v1). Otherwise p is said to be
irreducible. A cycle Z = [p] is reducible iff any of its representative p is reducible. Finally, a
bigraph is said to be cyclic if it contains some irreducible non-trivial cycle.

Let us explore some consequences of these definitions on bigraphs: by definition, the trivial
path (v0) is irreducible. Hence the trivial cycle [] is irreducible. There are no cycles of length
1, and any cycle [u, v] of length 2 is always reducible. Hence, irreducible non-trivial cycles have
length at least 3. If a closed path (v0, . . . , vk−1, v0) is reducible and k ≥ 3, then it is a non-simple
path.

¶9. Connectivity. Let G = (V, E) be a graph (either di- or bigraph). Two vertices u, v in G
are connected if there is a path from u to v and a path from v to u. Equivalently, δ(u, v) and
δ(v, u) are both finite. Clearly, connectedness is an equivalence relation on V . A subset C of V
is a connected component of G if it is an equivalence class of this relation. For short, we may
simply call C a component of G. Alternatively, C is a non-empty maximal subset of vertices in
which any two are connected. Thus V is partitioned into disjoint components. If G has only one
connected component, it is said to be connected. When |C| = 1, we call it a trivial component.
The subgraph of G induced by C is called a component graph of G. NOTE: It is customary we
may add the qualifier “strong” when discussing components of digraphs. Thus strong components
is always a reference to digraphs.

For example, the graph G6 in Figure 5(a) has C = {2, 3, 5} as a component. The component
graph corresponding to C is shown in Figure 5(b). The other components of G are {1}, {4}, {6},
all trivial.

c© Chee-Keng Yap Basic Version March 27, 2008

§2. Path Concepts Lecture IV Page 9

(b)(a) (c)

2

1 4

6

2

4

6

5

3

5

3

1

2, 3, 5

Figure 5: (a) Digraph G6, (b) Component graph of C = {2, 3, 5}, (c) Reduced graph Gc
6

Given G, we define the reduced graph Gc = (V c, Ec) whose vertices comprise the components
of G, and whose edges are (C, C′) ∈ Ec such that there exists an edge from some vertex in C to
some vertex in C′. This is illustrated in Figure 5(c).

CLAIM: Gc is acycic. In proof, suppose there is a non-trivial cycle Zc in Gc. This translates
into a cycle Z in G that involves at least two components C, C′. The existence of Z contradicts
the assumption that C, C′ are distinct components.

Although the concept of connected components is meaningful for bigraphs and digraphs, the
concept of reduced graph is trivial for bigraphs: this is because there are no edges in Gc when
G is a bigraph. Hence the concept of reduced graphs will be reserved for digraphs only. For
bigraphs, we will introduce another concept called biconnected components below. When
G is a bigraph, the notation Gc will be re-interpreted using biconnectivity.

¶10. DAGs and Trees. We have defined cyclic bigraphs and digraphs. A graph is acyclic if
it is not cyclic. The common acronym for a directed acyclic graph is DAG. A tree is a DAG
in which there is a vertex u0 called the root such that there exists a unique path from u0 to any
other vertex. Clearly, the root is unique. Trees, as noted in Lecture III, are ubiquitous in computer
science. Our motto

is “know thy
tree”A free tree is a connected acyclic bigraph. Such a tree it has exactly |V |−1 edges and for every

pair of vertices, there is a unique path connecting them. These two properties could also be used
as the definition of a free tree. A rooted tree is a free tree together with a distinguished vertex
called the root. We can convert a rooted tree into a directed graph in two ways: by directing each
of its edges away from the root (so the edges are child pointers), or by directing each edge towards
the root (so the edges are parent pointers).

Exercises

Exercise 2.1: Let u be a vertex in a graph G.
(a) Can u be adjacent to itself if G is a bigraph?
(b) Can u be adjacent to itself if G is a digraph?
(c) Let p = (v0, v1, v2, v0) be a closed path in a bigraph. Can p be non-simple? ♦

c© Chee-Keng Yap Basic Version March 27, 2008

§3. Graph Representation Lecture IV Page 10

Exercise 2.2: Define N(m) to be the largest value of n such that there is a connected bigraph
G = (V, E) with m = |E| edges and n = |V | vertices. For instance, N(1) = 2 since with one
edge, you can have at most 2 nodes in the connected graph G. We also see that N(0) = 1.
What is N(2)? Prove a general formula for N(m).

♦

Exercise 2.3: Give an algorithm which, given two closed paths p = (v0−v1− · · · −vk) and q =
(u0−u1− · · · −uℓ), determine whether they represent the same cycle (i.e., are equivalent). The
complexity of your algorithm should be O(k2) in general, but O(k) for when q is a simple
cycle. NOTE: Assume that vertices are integers, and the closed path p = (v0− · · · −vk) is
represented by an array of integers p[0..k], where p[i] = vi and p[0] = p[k]. ♦

End Exercises

§3. Graph Representation

The representation of graphs in computers is relatively straightforward if we assume array
capabilities or pointer structures. The three main representations are:

• Edge list: this consists of a list of the vertices of G, and a list of the edges of G. The lists
may be singly- or doubly-linked. If there are no isolated vertices, we may omit the vertex
list. E.g., the edge list representations of the two graphs in Figure 3 would be “a−b” denotes

an edge
{a−b, b−c, c−d, d−a, d−b, c−e}

and
{1−6, 2−1, 2−3, 2−6, 3−2, 3−6, 4−3, 4−6, 5−2, 5−3, 5−6}.

• Adjacency list: a list of the vertices of G and for each vertex v, we store the list of vertices
that are adjacent to v. If the vertices adjacent to u are v1, v2, . . . , vm, we may denote an
adjacency list for u by u : (v1, v2, . . . , vm). E.g., the adjacency list representation of the
graphs in Figure 3 are

{a : (b, d), b : (a, d, c), c : (b, d, e), d : (a, b, c), e : (c)}

and
{1 : (5, 6), 2 : (1, 3, 6), 3 : (2, 6), 4 : (3, 6), 5 : (4, 6), 6 : ()}

Typically, we have an array A[1..n] indexed by the vertices. Each array entry A[v] points to
the adjacency list for vertex v, represented by a linked list.

• Adjacency matrix: this is a n× n Boolean matrix where the (i, j)-th entry is 1 iff vertex j is
adjacent to vertex i. E.g., the adjacency matrix representation of the graphs in Figure 3 are

a
b
c
d
e

0 1 0 1 0
1 0 1 1 0
0 1 0 1 1
1 1 1 0 0
0 0 1 0 0

a b c d e

,

1
2
3
4
5
6

0 0 0 0 1 1
1 0 1 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 1 1 1 0 1
0 0 0 0 0 0

1 2 3 4 5 6 .

Note that the matrix for bigraphs are symmetric. The adjacency matrix can be generalized
to store arbitrary values to represent weighted graphs.

c© Chee-Keng Yap Basic Version March 27, 2008

§3. Graph Representation Lecture IV Page 11

¶11. Size Parameters. Two size parameters are used in measuring the computational com-
plexity of graph problems: |V | and |E|. These are typically denoted by n and m. Thus the running
time of graph algorithms are typically denoted by a function of the form T (n, m). A linear time
algorithm would have T (n, m) = O(m + n). It is clear that n, m are not independent, but satisfy
the bounds 0 ≤ m ≤ n2. Thus, the edge list and adjacency list methods of representing graphs
use O(m + n) space while the last method uses O(n2) space.

If m = o(n2) for graphs in a family G, we say G is a sparse family of graphs; otherwise the
family is dense. Thus the adjacency matrix representation is not a space-efficient way to represent
sparse graphs. Some algorithms can exploit sparsity of input graphs. For example, the family G of
planar bigraphs is sparse because (as noted earlier) m ≤ 3n− 6 in such graphs (Exercise). Planar
graphs are those that can be drawn on the plane without any crossing edges.

¶12. Arrays and Attributes. If A is an array, and i ≤ j are integers, we write A[i..j] to
indicate that the array A has j − i + 1 elements which are indexed from i to j. Thus A contains
the set of elements {A[i], A[i + 1], . . . , A[j]}.

In description of graph algorithms, it is convenient to assume that the vertex set of a graph is
V = {1, 2, . . . , n}. The list structures can now be replaced by arrays indexed by the vertex set,
affording great simplification in our descriptions. Of course, arrays also has more efficient access
and use less space than linked lists. For instance, arrays allows us to iterate over all the vertices
using an integer variable.

Often, we want to compute and store a particular attribute (or property) with each vertices.
We can use an array A[1..n] where A[i] is the value of the A-attribute of vertex i. For instance, if
the attribute values are real numbers, we often call A[i] the “weight” of vertex i. If the attribute
values are elements of some finite set, we may call A[i] the “color” of vertex i.

¶13. Coloring Scheme. In many graph algorithms we need to keep track of the processing
status of vertices. Initially, the vertices are unprocessed, and finally they are processed. We may
need to indicate some intermediate status as well. Viewing the status as colors, we then have a
three-color scheme: white or gray or black. They correspond to unprocessed, partially processed
and completely processed statuses. Alternatively, the three colors may be called unseen, seen and
done (resp.), or 0, 1, 2. Initially, all vertices are unseen or white or 0. The color transitions of each
vertex are always in this order:

white ⇒ gray ⇒ black,
unseen ⇒ seen ⇒ done

0 ⇒ 1⇒ 2.
(2)

For instance, let the color status be represented by the integer array color[1..n], with the conven-
tion that white/unseen is 0, gray/seen is 1 and black/done is 2. Then color transition for vertex
i is achieved by the increment operation color[i]++. Sometimes, a two-color scheme is sufficient:
in this case we omit the gray color or the done status.

Exercises

Exercise 3.1: The following is a basic operation for many algorithms: given a digraph G rep-
resented by adjacency lists, compute the reverse digraph Grev in time O(m + n). Recall

c© Chee-Keng Yap Basic Version March 27, 2008

§4. Breadth First Search Lecture IV Page 12

(Lecture 1, Appendix) that u−v is an edge of G iff v−u is an edge of Grev. Show that your
algorithm has the stated running time. ♦

Exercise 3.2: Let G is a planar bigraph.
(a) Show that if a planar embedding of G has f faces, then v− e + f = n−m + f = 2 where
v = n = |V |, e = m = |E|. Thus, f is independent of the choice of embedding. HINT: use
induction on f . Note that when f = 1, G is a free tree.
(b) Show that 2e ≥ 3f . HINT: Count the number of (edge-face) incidences in two ways: by
summing over all edges, and by summing over all faces.
(c) Conclude that e ≤ 3v − 6. When is equality attained? ♦

Exercise 3.3: The average degree of vertices in a planar bigraph is less than 6. ♦

Exercise 3.4: Let G be a planar bigraph with 60 vertices. What is the maximum number of
edges it may have? ♦

Exercise 3.5: Prove that K3,3 is nonplanar. HINT: Use the fact that every face of an embedding
of K3,3 is incident on at least 4 edges. NOTE: In a previous Exercises (Chapter 1, Appendix)
we proved that K5 is nonplanar. ♦

End Exercises

§4. Breadth First Search

A graph traversal is any systematic method to “visit” each vertex and each edge of a graph.
In this section, we study two main traversal methods, known as BFS and DFS. The graph traversal Hey, haven’t

we seen this
before for
trees?

problem may be traced back to the Greek mythology about threading through mazes (Theseus
and the Minotaur legend), and to Trémaux’s cave exploration algorithm in the 19th Century [3].
Tarjan’s 1972 paper on DFS was seminal in Computer Science.

Here is the generic graph traversal algorithm:

Generic Graph Traversal:
Input: G = (V, E; s0) where s0 is source node

Color all vertices as initially unseen.
Mark s0 as seen, and insert into Q
While Q is non-empty

u← Q.Remove()
For each vertex v adjacent to u

If v is unseen,
color it as seen
Q.insert(v)

This algorithm will reach all nodes that are reachable from the source s0. To visit all nodes,
we can use another driver routine which invokes this traversal routine with different choices for
source nodes (see Below).

c© Chee-Keng Yap Basic Version March 27, 2008

§4. Breadth First Search Lecture IV Page 13

The set Q is stored in some container data-structure. There are two standard containers: either
a queue or a stack. These two data structures give rise to the two algorithms for graph traversal:
Breadth First Search (BFS) and Depth First Search (DFS), respectively.

Both traversal methods apply to digraphs and bigraphs. However, BFS is often described for
bigraphs only and DFS for digraphs only. We generally follow this tradition. In both algorithms,
the input graph G = (V, E; s0) is represented by adjacency lists, and s0 ∈ V is called the source

for the search.

The idea of BFS is to systematically visit vertices that are nearer to s0 before visiting those
vertices that are further away. For example, suppose we start searching from vertex s0 = a in the
bigraph of Figure 3(a). From vertex a, we first visit the vertices b and d which are distance 1 from
vertex a. Next, from vertex b, we find vertices c and d that are distance 1 away; but we only visit
vertex c but not vertex d (which had already been visited). And so on. The trace of this search
can be represented by a tree as shown in Figure 6(a). It is called the “BFS tree”.

a

b d

e

c

a

b d

e

c

(a) (b)

Figure 6: (a) BFS tree. (b) Non-tree edges.

More precisely, recall that δ(u, v) denote the (link) distance from u to v in a graph. The
characteristic property of the BFS algorithm is that we will visit u before v whenever

δ(s0, u) < δ(s0, v) <∞. (3)

If δ(s0, u) =∞, then u will not be visited from s0. The BFS algorithm does not explicitly compute
the relation (3) to decide the next node to visit: we will prove below that this is a consequence of
using the queue data structure.

The key to the BFS algorithm is the queue ADT which supports the insertion and deletion
of an item following the First-In First-Out (FIFO) discipline. If Q is a queue and x an item, we
denote the insert and delete operations by

Q.enqueue(x), x← Q.dequeue(),

respectively. To keep track of the status of vertices we will use the color scheme in the previous
section (see (2)). We could use three colors, but for our current purposes, two suffice: white/gray
or unseen/seen.

We formulate the BFS algorithm as a “skeleton” or shell routine:

c© Chee-Keng Yap Basic Version March 27, 2008

§4. Breadth First Search Lecture IV Page 14

BFS Algorithm
Input: G = (V, E; s0) a graph (bi- or di-).
Output: This is application specific.
⊲ Initialization:

0 INIT (G, s0) ⊳ If this is standalone, then color all vertices except s0 as unseen

1 Initialize the queue Q to contain just s0.

2 VISIT (s0, nil) ⊳ Visit v as root
⊲ Main Loop:

while Q 6= ∅ do

3 u← Q.dequeue(). ⊳ Begin processing u
4 for each v adjacent to u do ⊳ Process edge u−v

5 PREVISIT (v, u) ⊳ Previsit v from u
6 if v is unseen then

7 Color v seen

8 VISIT (v, u) ⊳ Visit v from u
9 Q.enqueue(v).

10 POSTVISIT (u)

Our shell program contains the following shell macros

INIT, PREVISIT, VISIT and POSTVISIT (4)

which will application-specific. These macros may be assumed5 to be null operations unless other-
wise specified. The term “macro” also suggests only small and local (i.e., O(1) time) modications.
An application of BFS will amount to filling these shell macros with actual code. We can usually
omit the PREVISIT step, but see §6 for an example of using this macro.

Note that VISIT(v, u) represents visiting v from u; a similar interpretation holds for
PREVISIT(v, u). We allow u = nil in case v is the root of a BFS tree. If this BFS algorithm
is a standalone code, then INIT(G, s0) may be expected to initialize the color of all vertices to
unseen, and s0 has color seen. Otherwise, the initial coloring of vertices must be done before
calling BFS.

There is an underlying tree structure in each BFS computation: the root is s0. If v is seen

from u (see Line 6 in the BFS Algorithm), then the edge u−v is an edge in this tree. This tree is
called the BFS tree (see Figure 6(a)). A BFS listing at s0 is a list of all the vertices reachable
from s0 in which a vertex u appears before another vertex v in the list whenever (3) holds. E.g.,
let G be the bigraph in Figure 3(a) and s0 is vertex a. Then two possible BFS listing at a are

(a, b, d, c, e) and (a, d, b, c, e). (5)

We can produce such a listing just by enumerating the vertices of the BFS tree in the order they
are visited.

¶14. Applications of BFS. We now show how to program the shell macros in BFS to solve a
variety of problems:

5Alternatively, we could fold the coloring steps into these macros, so that they may be non-null. But we choose
to expose these coloring steps in our BFS shell.

c© Chee-Keng Yap Basic Version March 27, 2008

§4. Breadth First Search Lecture IV Page 15

• Suppose you wish to print a BFS listing of the vertices reachable from s0. Then
POSTVISIT(u) simply prints the key (or some identifier or name) at u. Other macros
can remain null operations.

• Suppose you wish to compute the BFS tree T . If we view T as a set of edges, then INIT(G, s0)
could initialize the set T to be empty. In VISIT(v, u), we add the edge u−v to T .

• Suppose you wish to determine the depth d[u] of each vertex u in the BFS Tree. Then
INIT(G, s0) could initialize

d[u] =

{

∞ if u 6= s0,
0 if u = s0.

and in VISIT(v, u), we set d[v] = 1 + d[u]. Also, the coloring scheme (unseen/seen) could
be implemented using the array d[1..n] instead of having a separate array. More precisely,
we simply use the special value d[i] = −1 to indicate unseen vertices; seen vertices satisfy
d[i] ≥ 0.

¶15. BFS Analysis. We shall derive basic properties of the BFS algorithm. These results will
apply to both bigraphs and digraphs unless otherwise noted. The following two properties are
often taken for granted:

Lemma 1.
(i) The BFS algorithms terminates.
(ii) Starting from source s0, the BFS algorithm visits every node reachable from s0.

We leave its proof for an Exercise. For instance, this assures us that each vertex of the BFS
tree will eventually become the front element of the queue.

Let δ(v) ≥ 0 denote the depth of a vertex v in the BFS tree. Note that if v is visited from u,
then δ(v) = δ(u) + 1. We prove a key property of BFS:

Lemma 2 (Monotone 0 − 1 Property). Let the vertices in the queue Q at some time instance be
(u1, u2, . . . , uk) for some k ≥ 1, with u1 the earliest enqueued vertex and uk the last enqueued
vertex. The following invariant holds:

δ(u1) ≤ δ(u2) ≤ · · · ≤ δ(uk) ≤ 1 + δ(u1). (6)

Proof. The result is clearly true when k = 1. Suppose (u1, . . . , uk) is the state of the queue
at the beginning of the while-loop, and (6) holds. In Line 3, we removed u1 and assign it to the
variable u. Now the queue contains (u2, . . . , uk) and clearly, it satisfies the corresponding inequality

δ(u2) ≤ δ(u3) ≤ · · · ≤ δ(uk) ≤ 1 + δ(u2).

Suppose in the for-loop, in Line 9, we enqueued a node v that is adjacent to u = u1. Then Q
contains (u2, . . . , uk, v) and we see that

δ(u2) ≤ δ(u3) ≤ · · · ≤ δ(uk) ≤ δ(v) ≤ 1 + δ(u2)

holds because δ(v) = 1 + δ(u1) ≤ 1 + δ(u2). In fact, every vertex v enqueued in this for-loop
preserves this property. This proves the invariant (6). Q.E.D.

This lemma shows that δ(ui) is monotone non-decreasing. Indeed, δ(ui) will remain constant
throughout the list, except possibly for a single jump to the next integer. Thus, it has this “0− 1
property”, that εj := δ(uj+1)− δ(uj) = 0 or 1 for all j = i, . . . , k − 1. Moreover, there is at most
one j such that εj = 1. From this lemma, we deduce other basic properties the BFS algorithm:

c© Chee-Keng Yap Basic Version March 27, 2008

§4. Breadth First Search Lecture IV Page 16

Lemma 3. For each vertex u in the BFS Tree,

δ(u) = δ(s0, u),

i.e., δ(u) is the link distance from s0 to u.

Proof. Let π : (u0−u1−u2− · · · −uk) be a shortest path from u0 = s0 to uk = u of length k ≥ 1.
It is sufficient to prove that δ(uk) = k. For i ≥ 1, lemma 2 tells us that δ(ui) ≤ δ(ui−1) + 1. This
implies δ(uk) ≤ k + δ(u0) = k. On the other hand, the inequality δ(uk) ≥ k is immediate because,
δ(s0, uk) = k by our choice of π, and δ(uk) ≥ δ(s0, uk) because there is a path of length δ(uk) from
s0 to uk. Q.E.D.

As corollary: if we print the vertices u1, u2, . . . , uk of the BFS tree, in the order that they are
enqueued, this would represent a BFS listing. This is because δ(ui) is non-decreasing with i, and
δ(ui) = δ(s0, ui).

Another basic property is:

Lemma 4. If δ(u) < δ(v) then u is VISITed before v is VISITed, and u is POSTVISITed before v
is POSTVISITed.

¶16. Classification of bigraph edges. Let us now consider the case of a bigraph G. The
edges of G can be classified into the following types by the BFS Algorithm (cf. Figure 6(b)):

• Tree edges: these are the edges of the BFS tree.

• Level edges: these are edges between vertices in the same level of the BFS tree. E.g., edge
bd in Figure 6(b).

• Cross-Level edges: these are non-tree edges that connect vertices in two different levels.
But note that the two levels differ by exactly one. E.g., edge cd in Figure 6(b).

• Unseen edges: these are edges that are not used during the computation. The involved
vertices not reachable from s0.

Each of these four types of edges can arise (see Figure 6(b) for tree, level and cross-level edges).
But is the classification complete (i.e., exhaustive)? It is, because any other kind of edges must
connect vertices at non-adjacent levels of the BFS tree, and this is forbidden by Lemma 3. Hence
we have:

Theorem 5. If G is a bigraph, the above classification of edges is complete.

We will leave it as an exercise to fill in our BFS shell macros to produce the above classification
of edges.

¶17. Driver Program. In our BFS algorithm we assume that a source vertex s0 ∈ V is given.
This is guaranteed to visit all vertices reachable from s0. What if we need to process all vertices,
not just those reachable from a given vertex? In this case, we write a “driver program” that
repeatedly calls our BFS algorithm. We assume a global initialization which sets all vertices to
unseen. Here is the driver program:

c© Chee-Keng Yap Basic Version March 27, 2008

§4. Breadth First Search Lecture IV Page 17

BFS Driver Algorithm
Input: G = (V, E) a graph.
Output: Application-dependent.
⊲ Initialization:

1 Color all vertices as unseen.

2 GLOBAL INIT (G)
⊲ Main Loop:

3 for each vertex v in V do

4 if v is unseen then

5 call BFS((V, E; v)).

Note that with the BFS Driver, we add another shell macro called GLOBAL INIT to our
collection (4).

¶18. Time Analysis. Let us determine the time complexity of the BFS Algorithm and the
BFS Driver program. We will discount the time for the application-specific macros; but as long as
these macros are O(1) time, our complexity analysis remains valid. Also, it is assumed that the
Adjacency List representation of graphs is used. The time complexity will be given as a function
of n = |V | and m = |E|.

Here is the time bound for the BFS algorithm: the initialization is O(1) time and the main
loop is Θ(m′) where m′ ≤ m is the number of edges reachable from the source s0. This giving a
total complexity of Θ(m′).

Next consider the BFS Driver program. The initialization is Θ(n) and line 3 is executed n
times. For each actual call to BFS, we had shown that the time is Θ(m′) where m′ is the number
of reachable edges. Summing over all such m′, we obtain a total time of Θ(m). Here we use the
fact the sets of reachable edges for different calls to the BFS routine are pairwise disjoint. Hence
the Driver program takes time Θ(n + m).

¶19. Application: Computing Connected Components. Suppose we wish to compute
the connected components of a bigraph G. Assuming V = {1, . . . , n}, let us encode this task
as computing an integer array C[1..n] satisfying the property C[u] = C[v] iff u, v belongs to the
same component. Intuitively, C[u] is the name of the component that contains u. The component
number is arbitrary.

To accomplish this task, we assume a global variable called count that is initialized to 0 by
GLOBAL INIT(G). Inside the BFS algorithm, the INIT(G, s0) macro simply increments the count
variable. Finally, the VISIT(v, u) macro is simply the assignment, C[v]← count. The correctness
of this algorithm should be clear. If we want to know the number of components in the graph, we
can output the value of count at the end of the driver program.

¶20. Application: Testing Bipartiteness. A graph G = (V, E) is bipartite if V can be
partititioned into V = V1⊎V2 such that E ⊆ (V1×V2)∪(V2×V1). Note that this definition applies
to digraphs as well as bigraphs. It is clear that all cycles in a bipartite graphs must be even (i.e.,
has an even number of edges). The converse is shown in an Exercise: if G has no odd cycles then
G is bipartitite. We use the Driver Driver to call call BFS(V, E; s) for various s. It is sufficient to

c© Chee-Keng Yap Basic Version March 27, 2008

§4. Breadth First Search Lecture IV Page 18

show how to detect odd cycles in the component of s. If there is a level-edge (u, v), then we have
found an odd cycle: this cycle comprise the tree path from the root to u, the edge (u−v), and
the tree path from v back to the root. In the exercise, we ask you to show that all odd cycles is
represented by such level-edges. It is now a simple matter to modify BFS to detect level-edges.

In trying to implement the Bipartitite Test above, and especially in recursive
routines, it is useful to be able to jump out of nested macro and subroutine
calls. For this, the Java’s ability to throw exceptions and to catch ex-

ceptions is very useful. In our bipartite test, BFS can immediately throw an
exception when its finds a level-edge. This exception is caught by the BFS
Driver program.

Exercises

Exercise 4.1: Prove Lemma 1: that the BFS algorithm terminates, and every vertex that is
reachable from s0 will be seen by BFS(s0). ♦

Exercise 4.2: Show that each node is VISITed and POSTVISITed at most once. Is this true for
PREVISIT as well? ♦

Exercise 4.3: Assume u−v.
(a) Show that δ(v) ≤ 1 + δ(u).
(b) Show that in digraphs, the inequality in (a) can be arbitarily far from an equality.
(c) Show that in bigraphs, |δ(u)− δ(v)| ≤ 1. ♦

Exercise 4.4: Reorganize the BFS algorithm so that the coloring steps are folded into the shell
macros of INIT, VISIT, etc. ♦

Exercise 4.5: Fill in the shell macros so that the BFS Algorithm will correctly classify every edge
of the input bigraph. ♦

Exercise 4.6: Classification the edges of a digraph relative to a given BFS tree. ♦

Exercise 4.7: Let G = (V, E; λ) be a connected bigraph in which each vertex v ∈ V has an
associated value λ(v) ∈ R.
(a) Give an algorithm to compute the sum

∑

v∈V λ(v).
(b) Give an algorithm to label every edge e ∈ E with the value |λ(u)−λ(v)| where e = u−v.

♦

Exercise 4.8: Give an algorithm that determines whether or not a bigraph G = (V, E) contains
a cycle. Your algorithm should run in time O(|V |), independent of |E|. You must use the
shell macros, and also justify the claim that your algorithm is O(|V |). ♦

c© Chee-Keng Yap Basic Version March 27, 2008

§5. Simple Depth First Search Lecture IV Page 19

Exercise 4.9: The text sketched an algorithm for testing if a graph is bipartite. We verify some
of the assertions there:
(a) Prove that if a bigraph has no odd cycles, then it is bipartite.
(b) Prove that if a connected graph has an odd cycle, then BFS search from any source vertex
will detect a level-edge.
(c) Write the pseudo code for bipartite test algorithm outlined in the text. This algorithm
is to return YES or NO only. You only need to program the shell routines.
(d) Modify the algorithm in (c) so that in case of YES, it returns a Boolean array B[1..n]
such that V0 = {i ∈ V : B[i] = false} and V1 = {i ∈ V : B[i] = true} is a witness to the
bipartiteness of G. In the case of NO, it returns an odd cycle. ♦

Exercise 4.10: Let G be a digraph. A global sink is a node u such that for every node v ∈ V ,
there is path from v to u. A global source is a node u such that for every node v ∈ V ,
there is path from u to v.
(a) Assume G is a DAG. Give a simple algorithm to detect if G has a global sink and a global
source. Your algorithm returns YES if both exists, and returns NO otherwise. Make sure
that your algorithm takes O(m + n) time.
(b) Does your algorithm work if G is not a DAG? If not, give a counter example which makes
your algorithm fail. ♦

Exercise 4.11: Let k ≥ 1 be an integer. A k-coloring of a bigraph G = (V, E) is a function
c : V → {1, 2, . . . , k} such that for all u−v in E, c(u) 6= c(v). We say G is k-colorable if
G has a k-coloring. We say G is k-chromatic if it is k-colorable but not (k − 1)-colorable.
Thus, a graph is bipartite iff it is 2-colorable.
(a) How do you test the 3-colorability of bigraphs if every vertex has degree ≤ 2?
(b) What is the smallest graph which is not 3-colorable?
(c) The subdivision of an edge u−v is the operation where the edge is deleted and replaced
by a path u−w−v of length 2 and w is a new vertex. Call G′ a subdivision of another graph
G if G′ is obtained from G be a finite sequence of edge subdivisions. Dirac (1952) shows
that G is 4-chromatic, then it contains a subdivision of K4. Is there a polynomial time to
determine if a given connected bigraph G contains a subdivision of K4? ♦

End Exercises

§5. Simple Depth First Search

The DFS algorithm turns out to be more subtle than BFS. In some applications, however, it
is sufficient to use a simplified version that is as easy as the BFS algorithm. In fact, it might even
be easier because we can exploit recursion.

Here is an account of this simplified DFS algorithm. As in BFS, we use a 2-color scheme:
each vertex is unseen or seen. We similarly define a DFS tree underlying any particular DFS
computation: the edges of this tree are precisely those u−v such that v is seen from u. Starting
the search from the source s0, the idea is to go as deeply as possibly along any path without visiting
any vertex twice. When it is no longer possible to continue a path, we backup towards the source
s0. But we only backup enough for us to go forward in depth again.

In illustration, suppose G is the digraph in Figure 3(b), and s0 is vertex 1. One possible deepest
path from vertex 1 is (1−5−2−3−6). From vertex 6, we backup to vertex 2, from where we can

c© Chee-Keng Yap Basic Version March 27, 2008

§5. Simple Depth First Search Lecture IV Page 20

advance to vertex 3. Again we need to backup, and so on. The DFS tree is a trace of this search
process; this tree is shown in Figure 7(a). The non-tree edges of the graph are shown in dashed
lines. For the same graph, if we visit adjacent nodes in a different order, we get a different DFS
tree, as in Figure 7(b). However, the DFS tree in Figure 7(a) is the unique solution if we follow
our usual convention of visiting vertices with smaller indices first.

1

5

2

6

4

3

(a) (b)

1

5

2

3

6

4

Figure 7: Two DFS Trees for the digraph in Figure 3(b).

The simple DFS algorithm is compactly presented using recursion as follows:

Simple DFS
Input: G = (V, E; s0) a graph (bi- or di-)

The vertices in V have been colored seen or unseen.
Output Application dependent

1 Color s0 as seen.
2 for each v adjacent to s0 do

3 PREVISIT (v, s0)
4 if v is unseen then

5 Color v seen.

6 VISIT (v, s0).
7 Simple DFS((V, E; v)) ⊳ Recursive call

8 POSTVISIT (s0).

In this recursive version, there is no INIT(G, s0) step — we do not want to initialize G with
every recursive call. Also, VISIT(v, u) is called just before each DFS call. But we could consider
a variant6 in which we do the VISIT after the recursive call (i.e., interchange lines 6 and 7). As
in BFS, we choose to expose the coloring steps rather than putting them inside the shell macros.
The first call to this DFS algorithm must be made by some DFS Driver Program which performs
the necessary setup:

6We could also entertain a visit before, and another visit after, the recursive call.

c© Chee-Keng Yap Basic Version March 27, 2008

§5. Simple Depth First Search Lecture IV Page 21

DFS Driver
Input: G = (V, E) a graph (bi- or dip)
Output: Application-specific

1 GLOBAL INIT (G)
2 Color each vertex in V as unseen.
3 for each v in V do

4 if v is unseen then

5 INIT (G, v)
6 Simple DFS(V, E; v) ⊳ recursive call

7 CLEANUP (V, E; v)

As in the BFS case, we view both the above algorithms as algorithmic skeletons, and their
complete behaviour will depend on the specification of the shell macros,

PREVISIT, VISIT, POSTVISIT, GLOBAL INIT, INIT, CLEANUP. (7)

These shell macros may be assumed to be null operations unless otherwise specified.

¶21. DFS Tree. The root of the DFS tree is s0, and the vertices of the tree are those vertices
visited during this DFS search (see Figure 7(a)). This tree can easily be constructed by appropriate
definitions of INIT(G, s0), VISIT(v−u) and POSTVISIT(u), and is left as an Exercise. We prove
a basic fact about DFS:

Lemma 6 (Unseen Path). Let u, v ∈ V . Then v is a descendent of u in the DFS tree if and only
if at the time that u was first seen, there is7 a “unseen path” from u to v, i.e., a path (u− · · · −v)
comprising only of unseen vertices.

Proof. Let t0 be the time when we first see u.

(⇒) We first prove the easy direction: if v is a descendent of u then there is an unseen path
from u to v at time t0. For, if there is a path (u−u1− · · · −uk−v) from u to v in the DFS tree, then
each ui must be unseen at the time we first see ui−1 (u0 = u and uk+1 = v). Let ti be the time
we first see ui. Then we have t0 < t1 < · · · < tk+1 and thus each ui was unseen at time t0. Here
we use the fact that each vertex is initially unseen, and once seen, will never revert to unseen.

(⇐) We use an inductive proof. The subtlety is that the DFS algorithm has its own order for
visiting vertices adjacent to each u, and your induction must somehow account for this order. We
proceed by defining a total order on all paths from u to v: If a, b are two vertices adjacent to a vertex
u and we visit a before b, then we say “a <dfs b (relative to u)”. If p = (u−u1−u2− · · · −uk−v)
and q = (u−v1−v2− · · · −vℓ−v) (where k, ℓ ≥ 0) are two distinct paths from u to v, we say
p <dfs q if there is an m (1 ≤ m < min{k, ℓ}) such that u1 = v1, . . . , um = vm and um+1 < vm+1

relative to um. Note that m is well-defined. Now define the DFS-distance between u and v to be
the length of the <dfs-least unseen path from u to v at time we first see u. By an unseen path

from u to v, we mean one
π : (u−u1− · · ·−uk−v) (8)

7If we use the white-black coloring scheme, this would be called a “white path” as in [2].

c© Chee-Keng Yap Basic Version March 27, 2008

§5. Simple Depth First Search Lecture IV Page 22

where each node u1, . . . , uk, v is unseen at time when we first see u. If there are no unseen paths
from u to v, the DFS-distance from u to v is infinite.

For any k ∈ N, let IND(k) be the statement: “If the DFS-distance from u to v has length k+1,
and (8) is the <dfs-least unseen path from u to v, then this path is a path in the DFS tree”.
Hence our goal is to prove the validity of IND(k).

BASE CASE: Suppose k = 0. The <dfs-least unseen path from u to v is just (u−v). So v
is adjacent to u. Suppose there is a vertex v′ such that v′ <dfs v (relative to u). Then there
does not exist an unseen path π′ from v′ to v; otherwise, we get the contradiction that the path
(u−v′); π′ is <dfs than than (u−v)). Hence, when we recursively visit v′, we will never color v as
seen (using the easy direction of this lemma). Hence, we will eventually color v as seen from u,
i.e., u−v is an edge of the DFS tree.

INDUCTIVE CASE: Suppose k > 0. Let π in (8) be the <dfs-least unseen path of length
k +1 from u to v. As before, if v′ <dfs u1 then we will recursively visit v′, we will never color any
of the vertices u1, u2, . . . , uk, v as seen. Therefore, we will eventually visit u1 from u at some time
t1 > t0. Moreover, the sub path π′ : (u1−u2− · · · −uk−v) is still unseen at this time. Moreover,
π′ remains the <dfs-least unseen path from u1 to v at time t1. By IND(k − 1), the subpath π′

is in the DFS tree. Hence the path π = (u−u1); π
′ is in the DFS tree. Q.E.D.

¶22. Classification of edges. First consider a digraph G. Upon calling DFS(G, s0), the edges
of G becomes classified as follows (see Figure 7(b)):

• Tree edges: these are the edges belonging to the DFS tree.

• Back edges: these are non-tree edges u−v ∈ E where v is an ancestor of u. Note: u−u is
considered a back edge. E.g., edges 2−1 and 3−2 in Figure 7(b).

• Forward edges: these are non-tree edges u−v ∈ E where v is a descendent of u. E.g., edges
1−6 and 5−6 in Figure 7(b).

• Cross edges: these are edges u−v that are not classified by the above, but where u, v are
visited. E.g., edges 4−6, 3−6 and 4−3 in Figure 7(b).

• Unseen edges: all other edges are put in this category. These are edges u−v in which u is
unseen at the end of the algorithm.

¶23. DFS of Bigraphs. As we noted, DFS applies to bigraphs as well as digraphs. There are
two ways to view such bigraphs in DFS: (1) One is to view the bigraph as a digraph whose directed
edges happen to come in pairs of the form (u, v) and (v, u), one such pair for each undirected u−v.
(2) Adopt the convention that an undirected edge {u, v} will regarded as the directed edge (u−v)
if u is seen before v. Then the other edge (v−u) will not appear as a tree or non-tree edge. If u, v
remain unseen, then {u, v} will remain undirected. Call (2) our standard treatment of bigraph
edges, and it will be assumed unless otherwise noted. The classification of bigraph edges under (2)
will be simplified; see Exercises.

Unfortunately, our simple DFS algorithm cannot easily determine these edge classification. In
particular, the bicolor scheme (seen/unseen) is no longer sufficient. E.g., we cannot distinguish a
cross edge from a forward or back edge. We will defer the problem of classifying edges of the DFS
tree to the next section.

c© Chee-Keng Yap Basic Version March 27, 2008

§5. Simple Depth First Search Lecture IV Page 23

¶24. Biconnectivity. When we discussed reduced graph above, we said that it is not a useful
concept for bigraphs. We now introduce the appropriate analogue for bigraphs.

Let G be a bigraph G = (V, E). A subset C ⊆ V is a biconnected set of G if for every
pair u, v of distinct vertices in C, there is a simple cycle of length ≥ 3 containing u and v. If, in
addition, C is not properly contained in a biconnected subset of G, then we call C a biconnected

component. If G has only one biconnected component, then G is called a biconnected graph.
Biconnectivity is clearly a strong notion of connectivity.

Trivially, any subset of size 1 is biconnected; no subset of size 2 can be biconnected. E.g., the
graph in Figure 3(a), has two biconnected components, {a, b, c, d} and {e}. E.g., the complete
graph Kn and cyclic graph Cn (see Figure 4(a),(d)) consists of a single biconnected component.

A vertex v of G is called8 a cut-vertex if the removal of v, and also all edges incident on
v, will increase the number of connected (not biconnected!) components of resulting bigraph.
Alternatively, if there exist vertices a, b (both different from v) such that all paths from a to b
must pass through v. Clearly, if G has a cut-vertex, then it is not biconnected. The converse is
also true. There is an edge analogue of cut-vertex: an edge u−v is called a bridge if the removal
of this edge will increase the number of connected components of the resulting bigraph.

E.g., in the line graph Ln (see Figure 4(c)) with vertex set V = {1, . . . , n}, a vertex i is a
cut-vertex iff 1 < i < n. Also, every edge of Ln is a bridge. The graph in Figure 3(a), has one
cut-vertex c and one bridge c−e.

Note that two biconnected components of G can share at most one vertex, which is necessarily
a cut-vertex. Given a bigraph G, we define9 a bigraph Gc = (V c, Ec) such that the elements of
V c are the biconnected components of G, and (C, C′) ∈ Ec iff C ∩ C′ is non-empty. It follows
from the preceding remark that two biconnected components share at most one vertex that Gc is
acyclic. We may call Gc the reduced graph for G.

Assume G is connected, and T is a DFS tree of G. There are two ways in which a vertex u is
a cut-vertex, as shown in the following lemma:

Lemma 7. Let u be a vertex in the DFS tree T . Then u is a cut-vertex iff one of the following
conditions hold:
(i) If u is the root of T and has more than one child.
(ii) If u is not the root, but it has a child u′ such that for every descendent v of u, if v−w is an
edge, then w is also a descendent of u. Note that a node is always a descendent of itself.

If (i) or (ii) holds, it is easy to see that u must be a cut-vertex. But one can also show the
converse (Exercise).

There is another property we need: suppose v−w is a non-tree edge. Then we claim that v is a
descendent of w or vice-versa, and in fact, this edge appears as a back edge in the classification of
DFS tree edges. It is now an exercise to program the shell macros of the DFS algorithm to detect
cut-vertices, and hence recognize biconnectivity.

8Or, articulation point.
9Recall that Gc is the same notation used for the reduced graph of a digraph G. Since we will not apply the

reduced graph concept to bigraphs, and we will not apply the concept of biconnectedness to digraphs, there should
be no confusion in reusing this Gc notation.

c© Chee-Keng Yap Basic Version March 27, 2008

§5. Simple Depth First Search Lecture IV Page 24

¶25. Connection with BFS. There is a sense in which BFS and DFS are the same search
strategies except for their use of a different container ADT. Basically, recursion is an implicit way
to use the stack ADT. The stack ADT is similar to the queue ADT except that the insertion and
deletion of items into the stack are based on the Last-In-First-Out (LIFO) discipline. These two
operations are denoted

S.push(x), x← S.pop(),

where S is a stack and x an item.

It is instructive to try to make this connection between the DFS and BFS algorithms more
explicit. The basic idea is to avoid recursion in DFS, and to explicitly use a stack in implementing
DFS. Let us begin with a simple experiment: what if we simply replace the queue ADT in BFS
by the stack ADT? Here is the hybrid algorithm which we may call BDFS, obtained mutatis
mutandis from BFS algorithm:

BDFS Algorithm
Input: G = (V, E; s0) a graph.
Output: Application specific
⊲ Initialization:

0 Initialize the stack S to contain s0.

1 INIT (G, s0) ⊳ If standalone, make all vertices unseen except for s0

⊲ Main Loop:
while S 6= ∅ do

2 u← S.pop().
3 for each v adjacent to u do

4 PREVISIT (v, u)
5 if v is unseen then

6 color v seen

7 VISIT (v, u)
8 S.push(v).

9 POSTVISIT (u)

This algorithm shares properties of BFS and DFS, but is distinct from both. Many standard
computations can still be accomplished using BDFS. To write a non-recursive version of DFS using
this framework, we need to make several changes.

Let S.top() refer to the top element of the stack. The invariant is that the sequence of vertices
in the stack is path to the current vertex curr. Assume that we have two functions first(u) and
next(u, v) that gives enables us to iterate over the adjacency list of u: first(u) returns the first
vertex that is adjacent to u, and next(u, v) returns the next vertex after v that is adjacent to u
(assuming v is adjacent to u). Both functions may return a null pointer, and also next(nil, v) = nil.

c© Chee-Keng Yap Basic Version March 27, 2008

§5. Simple Depth First Search Lecture IV Page 25

Nonrecursive DFS Algorithm
Input: G = (V, E; s0) a graph.
Output: Application specific
⊲ Initialization:

0 Initialize the stack S to contain s0.

1 INIT (G, s0); ⊳ If standalone, make all vertices unseen except for s0

2 curr ← first(s0);
⊲ Main Loop:

3 while S 6= ∅ do

4 if (curr 6= nil)

5 PREVISIT (curr, S.top())
6 if curr is unseen
7 color curr seen

8 VISIT (curr, S.top())
9 S.push(curr)
10 curr ← first(curr)
11 else curr ← next(S.top(), curr)
12 else

13 curr ← S.pop()

14 POSTVISIT (curr)
15 curr ← next(S.top(), curr) ⊳ may be nil

We leave it as an exercise to prove that this code is equivalent to the Simple (recursive) DFS
algorithm.

Exercises

Exercise 5.1:

(a) Give the appropriate definitions for INIT(G), VISIT((v, u)) and POSTVISIT(u) so that
our DFS Algorithm computes the DFS Tree, say represented by a data structure T
(b) Prove that the object T constructed in (a) is indeed a tree, and is the DFS tree as defined
in the text. ♦

Exercise 5.2: Programming in the straightjacket of our shell macros is convenient when our
format fits the application. But the exact placement of these shell macros, and the macro
arguments, may sometimes require some modifications.
(a) We have defined VISIT(u, v) to take two arguments. Show that we could have defined this
it as VISIT(u), and not lost any functionality in our shell programs. HINT: take advantage
of PREVISIT(u, v).
(b) Give an example where it is useful for the Driver to call CLEANUP(u) after DFS(u).

♦

Exercise 5.3: Explore the relationship between the traversals of binary trees and DFS.
(a) Why are there not two versions of DFS, corresponding to pre- and postorder tree traver-
sal? What about inorder traversal?
(b) Give the analogue of DFS for binary trees. As usual, you must provide place holders for
shell routines. Further assume that the DFS returns some values which is processed at the
appropriate place. ♦

c© Chee-Keng Yap Basic Version March 27, 2008

§5. Simple Depth First Search Lecture IV Page 26

Exercise 5.4: Why does the following variation of the recursive DFS fail?

Simple DFS (recursive form)
Input: G = (V, E; s0) a graph.

1 for each v adjacent to s0 do

2 if v is unseen then

3 VISIT (v, s0).
4 Simple DFS((V, E; v))

5 POSTVISIT (s0).
6 Color s0 as seen.

♦

Exercise 5.5: Give an alternative proof of the Unseen Path Lemma, without explicitly invoking
the ordering properties of <dfs. Also, do not invoke properties of the Full DFS (with time
stamps). ♦

Exercise 5.6: Prove that our classification of edges for DFS is complete. ♦

Exercise 5.7: Suppose T is the DFS Tree for a connected bigraph G. Recall our standard treat-
ment of edges of a bigraph in DFS. Let u−v be an edge of G. Prove that
(a) Either u is an ancestor of v or vice-versa in the tree T .
(b) If u−v is a non-tree edge, it is a back edge.
(c) Give a complete classification of the edges as produced by the DFS algorithm. ♦

Exercise 5.8: Use the characterization of cut-vertices in Lemma 7 to design an algorithm to
detect cut-vertices in a bigraph.

HINT: Let ft(u) be the smallest value of firstTime[w], where w is a vertex that can be
reached by a back edge v−w, for some proper descendent v of u in the DFT tree; if there
is no such back edge, then we define ft(u) to be firstTime[u]. You need to address two
questions: (a) How can ft(u) help you determine whether a vertex v is a cut-vertex? (b)
How can you compute sft(u)? ♦

Exercise 5.9: Let G = (V, E) be a connected bigraph. For any vertex v ∈ V define

radius(v, G) := max
u∈V

distance(u, v)

where distance(u, v) is the length of the shortest path from u to v. The center of G is the
vertex v0 such that radius(v0, G) is minimized. We call radius(v0, G) the radius of G and
denote it by radius(G). Define the diameter diameter(G) of G to be the maximum value of
distance(u, v) where u, v ∈ V .
(a) Prove that 2 · radius(G) ≥ diameter(G).
(b) Show that for every natural number n, there are graphs Gn and Hn such that n =
radius(Gn) = diameter(Gn) and n = radius(Hn) = ⌈diameter(Hn)/2⌉.
(c) Using DFS, give an efficient algorithm to compute the diameter of a undirected tree (i.e.,
connected acyclic undirected graph). Please use shell programming. Prove the correctness
of your algorithm. What is the complexity of your algorithm? ♦

c© Chee-Keng Yap Basic Version March 27, 2008

§6. Full Depth First Search Lecture IV Page 27

Exercise 5.10: Re-do the previous question (part (c)) to compute the diameter, but instead of
using DGS, use BFS. ♦

Exercise 5.11: Prove that our nonrecursive DFS algorithm is equivalent to the recursive version.
♦

Exercise 5.12: When might we prefer the BDFS Algorithm in place of the standard DFS or BFS
algorithms? ♦

End Exercises

§6. Full Depth First Search

To perform certain computations in the DFS framework, it is useful to compute additional
information about the DFS tree. In particular, we may wish to classify the edges as described in the
previous algorithm. Instead of the bicolor scheme, we tricolor each vertex, e.g., unseen/seen/done.
The seen vertices are those currently in the recursion stack. The POSTVISIT(u) macro can be
used to color the vertex u as done.

A more profound embellishment is to timestamp the vertices. There are two kinds of time
stamp for each vertex time when first encountered, and time when last encountered. To implement
timestamps, we assume a global counter clock that is initially 0. Also, we introduce two arrays,
firstTime[v] and lastTime[v] where v ∈ V . Both arrays are initiallized to −1. When we see the
vertex v for the first time or the last time, the current value of clock will be assigned to these
array entries; the value of clock will be incremented after such an assignment.

More precisely, we may use the Simple DFS and the DFS Driver shells and the following
macro definitions:

• GLOBAL INIT(G)≡ clock← 0; (for v ∈ V)[firstTime[v]← lastTime[v]← −1].

• VISIT(v, u)≡ firstTime[v]← clock++.

• POSTVISIT(v)≡ lastTime[v]← clock++.

The tricolor scheme is subsumed by this timestamp scheme: a node is unseen if the current
value of firstTime[v] is −1; a node v is seen while the current values of firstTime[v] is ≥ 0 and
lastTime[v] is −1; it is done if the current value lastTime[v] is ≥ 0.

In some applications, we may only need one of these two time values. Let active(u) denote
the time interval [firstTime[u], lastTime[u]], and we say u is active within this interval. It
is clear from the nature of the recursion that two active intervals are either disjoint or has a
containment relationship. In case of non-containment, we may write active(v) < active(u) if
lastTime[v] < firstTime[u]. We have the following characterization of edges using timestamps:

Lemma 8. Let u, v ∈ V . Then v is a descendent of u in the DFS tree if and only if

active(v) ⊆ active(u).

c© Chee-Keng Yap Basic Version March 27, 2008

§6. Full Depth First Search Lecture IV Page 28

Proof. This result can be shown using the Unseen Path Lemma. If there is a unseen path,
then by induction on the length of this path, every vertex on this path will be a descendent of u.
Conversely, if v is descendent of u then by induction on the distance of v from u, there will be a
unseen path to u.

Now, if there is a unseen path from u to v when u was first discovered, we must have
firstTime[u] < firstTime[v]. Moreover, since the vertex u will remain active until v is dis-
covered, we also have lastTime[v] < lastTime[u]. Hence active(v) ⊆ active(u). Q.E.D.

We return to the problem of classifying every edge of a digraph G relative to a DFS tree on G:

Lemma 9. If u−v is an edge then

1. u−v is a back edge iff active(u) ⊆ active(v).

2. u−v is a cross edge iff active(v) < active(u).

3. u−v is a forward edge iff there exists some w ∈ V \{u, v} such that active(v) ⊆ active(w) ⊆
active(u).

4. u−v is a tree edge iff active(v) ⊆ active(u) but it is not a forward edge.

This above classification of edges by active ranges is illustrated in Figure 8.

cross

back

lastTime[u]firstTime[u]

v

v

u

v

forward/tree

time

Figure 8: Relative positions of active ranges of u, v and the classification of edge (u−v)

These criteria can be used by the PREVISIT(v, u) macro to classify edges of G:

PREVISIT(v, u)

⊲ Visiting v, from u
if (firstTime[v] = −1), mark u−v as “tree edge”
elif (firstTime[v] > firstTime[u]), mark u−v as “forward edge”
elif (lastTime[v] =∞), mark u−v as “back edge”
else mark u−v as “cross edge”.

To verify the correctness of this classification, we first note that tree edges are clearly correctly
labeled. The remaining edges are non-tree edges. An inspection of Figure 8 will reveal that the
tests that we perform are sufficient to distinguish among the forward, back and cross edges.

c© Chee-Keng Yap Basic Version March 27, 2008

§6. Full Depth First Search Lecture IV Page 29

¶26. Application to detecting cycles. We claim that the graph is acyclic iff there are no
back edges. One direction is clear — if there a back edge, we have a cycle. Conversely, if there is
a cycle Z = [u1− · · · −uk], then there must be a vertex (say, u1) in Z that is first reached by the
DFS algorithm. Thus there is an unseen path from u1 to uk, and so active(uk) ⊆ active(u1).
Thus there is a back edge from uk to u1. Hence, we can use the DFS algorithm to check if a graph
is acyclic. A simple way is to run DFS starting from each vertex of the graph, looking for cycles.
This takes O(mn) time. A more efficient solution is given in the Exercise.

Cycle detection is a basic task in many applications. In operating systems, we have processes

and resources: a process can request a resource, and a resource can be acquired by a process.
We assume that that processes require exclusive use of resources: a request for a resource will be
blocked if that resource is currently acquired by another process. Finally, a process can release

a resource that it has acquired.

q

p

s

t

r

Figure 9: Process-resource Graph: VP = {p, q}, VR = {r, s, t}.

We consider a digraph G = (V, E) where V = VP ⊎ VR and E ⊆ (VP × VR) ∪ (VR × VP).
With this restriction on E, we call G a bipartite graph and write G = (VP , VR, E) instead of
G = (V, E). See Figure 9 for an example with 2 processes and 3 resources. Each p ∈ VP represents
a process and r ∈ VR represents a resource. An edge (p, r) ∈ E means that p requests r but is
blocked. An edge (r, p) ∈ E means r is acquired by p. If the outdegree of p is positive, we say
p is blocked. If the outdegree of r is positive, we say r is acquired. The graph satisfies three
conditions:

• (1) Either (p, r) or (r, p) is not in E.

• (2) (p, r) ∈ E implies there exist p′ such that (r, p′) ∈ E.

• (3) The outdegree of each r is 0 or 1.

In operating systems (Holt 1971), G is called a process-resource graph. It represents the current
state of blocked processes and acquired resources. A cycle in G is called a deadlock if it contains
a cycle. For instance, the graph in Figure 9 has a deadlock. In this situation, a certain subset
of the processes could not make any progress. Thus our cycle detection algorithm can be used to
detect this situation. In the Exercise, we elaborate on this model.

Exercises

Exercise 6.1: Suppose G = (V, E; λ) is a strongly connected digraph in which λ : E → R>0. A
potential function of G is φ : V → R such that for all u−v ∈ E,

λ(u, v) = φ(u)− φ(v).

c© Chee-Keng Yap Basic Version March 27, 2008

§7. Further Applications of Graph Traversal Lecture IV Page 30

(a) Consider the cylic graphs Cn (see Figure 4(d)). Show that if G = (Cn; λ) then G does
not have a potential function.
(b) Generalize the observation in part (a) to give an easy-to-check property P (G) of G such
that G has a potential function iff property P (G) holds.
(c) Give an algorithm to compute a potential function for G iff P (G) holds. You must prove
that your algorithm is correct. EXTRA: modify your algorithm to output a “witness” in
case P (G) does not hold. ♦

Exercise 6.2: Give an efficient algorithm to detect a deadlock in the process-resource graph. ♦

Exercise 6.3: Process-Resource Graphs. Let G = (VP , VR, E) be a process-resource graph — all
the following concepts are defined relative to such a graph G. We now model processes in some
detail. A process p ∈ VP is viewed as a sequence of instructions of the form REQUEST (r)
and RELEASE(r) for some resource r. This sequence could be finite or infinite. A process
p may execute an instruction to transform G to another graph G′ = (VP , VR, E′) as follows:

• If p is blocked (relative to G) then G′ = G. In the following, assume p is not blocked.

• Suppose the instruction is REQUEST (r). If the outdegree of r is zero or if (r, p) ∈ E,
then E′ = E ∪ {(r, p)}; otherwise, E′ = E ∪ {(p, r)}.

• Suppose the instruction is RELEASE(r). Then E′ = E \ {(r, p)}.

An execution sequence e = p1p2p3 . . . (pi ∈ VP) is just a finite or infinite sequence
of processes. The computation path of e is a sequence of process-resource graphs,
(G0, G1, G2, . . .), of the same length as e, defined as follows: let Gi = (VP ∪ VR, Ei) where
E0 = ∅ (empty set) and for i ≥ 1, if pi is the jth occurrence of the process pi in e, then
Gi is the result of pi executing its jth instruction on Gi−1. If pi has no jth instruction, we
just define Gi = Gi−1. We say e (and its associated computation path) is valid if for each
i = 1, . . . , m, the process pi is not blocked relative to Gi−1, and no process occurs in e more
times than the number of instructions in e. A process p is terminated in e if p has a finite
number of instructions, and p occurs in e for exactly this many times. We say that a set
VP of processes can deadlock if some valid computation path contains a graph Gi with
deadlock.
(a) Suppose each process in VP has a finite number of instructions. Give an algorithm to
decide if VP can deadlock. That is, does there exist a valid computation path that contains
a deadlock?
(b) A process is cyclic if it has an infinite number of instructions and there exists an integer
n > 0 such that the ith instruction and the (i + n)th instruction are identical for all i ≥ 0.
Give an algorithm to decide if VP can deadlock where VP consists of two cyclic processes.

♦

Exercise 6.4: We continue with the previous model of processes and resources. In this question,
we refine our concept of resources. With each resource r, we have a positive integer N(r)
which represents the number of copies of r. So when a process requests a resource r, the
process does not block unless the outdegree of r is equal to N(r). Redo the previous problem
in this new setting. ♦

End Exercises

c© Chee-Keng Yap Basic Version March 27, 2008

§7. Further Applications of Graph Traversal Lecture IV Page 31

§7. Further Applications of Graph Traversal

In the following, assume G = (V, E) is a digraph with V = {1, 2, . . . , n}. Let per[1..n] be an
integer array that represents a permutation of V in the sense that V = {per[1], per[2], . . . , per[n]}.
This array can also be interpreted in other ways (e.g., a ranking of the vertices).

¶27. Topological Sort. One motivation is the so-called10 PERT graphs: in their simplest form,
these are DAG’s where vertices represent activities. An edge u−v ∈ E means that activity u must
be performed before activity v. By transitivity, if there is a path from u to v, then u must be
performed before v. A topological sort of such a graph amounts to a feasible order of execution of
all these activities.

wake up

breakfast

newspaper

go to work

Figure 10: PERT graph

Let
(v1, v2, . . . , vn) (9)

be a listing of the vertices in V . We call it a topological sort if every edge has the form vi−vj

where i < j. In other words, each edge points to the right, no edge points to the left. REMARK:
if (v1, . . . , vn) is a topological sort, then (vn, vn−1, . . . , v1) is called a reverse topological sort.

If an edges u−v is intepreted as saying “activity u must precede activity v”, then a topological
sort give us one valid way for doing these activities (do activities v1, v2, . . . in this order).

Let us say that vertex vi has rank i in the topological sort (9). Hence, we may represent this
topological sort by a rank attribute array Rank[1, . . . , n], where Rank[vi] = i for all vi ∈ V .

E.g., (v1, . . . , vn) = (v3, v1, v2, v4) in (9). The corresponding rank attribute array is
Rank[v1, v2, v3, v4] = [2, 3, 1, 4].

We use the DFS algorithm and the DFS Driver to compute the rank attribute array. First, we
must initialize the Rank array using the global initialization shell:

GLOBAL INIT (G) ≡ (for v = 1 to n, Rank[v]← −1).

Indeed, we need not use a separate color array: we simply interpret the Rank of −1 as unseen.
The idea is to use DFS(v) to assign a rank to v: but before we could assign a rank to v, we must
(recursively) assign a larger rank to the vertices reachable from v. To do this, we use a global
counter R that is initialized to n. Each time a vertex is to receive a rank, we use the current value
of R, and then decrement R. So by the time v receives its rank, all those vertices reachable from

10PERT stands for “Program Evaluation and Review Technique”, a project management technique that was
developed for the U.S. Navy’s Polaris project (a submarine-launched ballistic missile program) in the 1950’s. The
graphs here are also called networks. PERT is closely related to the CriticalPath Method (CPM) developed around
the same time.

c© Chee-Keng Yap Basic Version March 27, 2008

§7. Further Applications of Graph Traversal Lecture IV Page 32

v would have received a larger rank. This idea can be implemented by programming the postvisit
shell as follows:

POSTV ISIT (v) ≡ (Rank[v]← R; R← R− 1).

It is easy to prove the correctness of this procedure, provided the input graph is a DAG. But what
can go wrong in this code if the input is not a DAG?

REMARKS: Note that the rank function is just as the order of v according to lastTime[v].
In our strong component algorithm below, we prefer to compute the inverse of Rank, i.e., an
array Per[1..n] such that Per[i] = v iff Rank[v] = i. The topological sort (9) is then equal to
(Per[1], P er[2], . . . , P er[n]). We leave it as an easy exercise to modify the above code to computer
Per directly.

¶28. Robust Topological Sort. Suppose we want a more robust algorithm that will detect an
error in case the input is not a DAG. We need the following fact: G is cyclic iff there exists a back
edge in every DFS traversal. This was shown in the previous section. To detect back edges, when
we need two modifications. The previous solution is implicitly a 2-color scheme (Rank[v] = −1 if
v is unseen, and otherwise v is seen). Now, we need to a 3-color scheme where

Rank[v]

= −1 if v is unseen,
= 0 if v is seen,
> 0 if v is done.

To implement this, we just need to program the shell for visiting a vertex:

V ISIT (v, u) ≡ (Rank[v]← 0.)

The second modification is to check for back edges. This can be done during previsits to a vertex
v from u:

PREV ISIT (v, u) ≡ (if (Rank[v] = 0) then ThrowException("Cycle detected"))

¶29. Strong Components. Computing the components of digraphs is somewhat more subtle
than the corresponding problem for bigraphs. In fact, at least three distinct algorithms for this
problem are known. Here, we will develop the version based on “reverse graph search”.

Let G = (V, E) be a digraph where V = {1, . . . , n}. For clarity, we also write “vi”
for i ∈ V . Let Per[1..n] be an array that represents some permutation of the vertices, so
V = {Per[1], P er[2], . . . , P er[n]}. Let DFS(i) denote the DFS algorithm starting from vertex
i. Consider the following method to visit every vertex in G:

Strong Component Driver(G, per)
Input: Digraph G and permutation Per[1..n].
Output: A set of DFS Trees.

⊲ Initialization
1. For i = 1, . . . , n, color[i] =unseen.
⊲ Main Loop
2. For i = 1, . . . , n,
3. If (color[Per[i]] =unseen)
4. DFS1(Per[i]) ⊳ Outputs a DFS Tree

c© Chee-Keng Yap Basic Version March 27, 2008

§7. Further Applications of Graph Traversal Lecture IV Page 33

This program is the usual DFS Driver program, except that we use Per[i] to determine the
choice of the next vertex to visit, and it calls DFS1, a variant of DFS. We assume that DFS1(i)
will (1) change the color of every vertex that it visits, from unseen to seen, and (2) output the DFS
tree rooted at i. If Per is correctly chosen, we want each DFS tree that is output to correspond
to a strong component of G.

First, let us see how the above subroutine will perform on the digraph G6 in Figure 5(a). Let
us also assume that the permutation is

Per[1, 2, 3, 4, 5, 6] = [6, 3, 5, 2, 1, 4]

= [v6, v3, v5, v2, v1, v4]. (10)

The output of Strong Component Driver will be the DFS trees for on the following sets of
vertices (in this order):

C1 = {v6}, C2 = {v3, v2, v5}, C3 = {v1}, C4 = {v4}.

Since these are the four strong components of G6, the algorithm is correct. It is not not hard to
see that there always exist “good permutations” for which the output is correct. Here is the formal
definition of what this means:

A permutation Per[1..n] is good if, for any two strong components C, C′ of G, if there is a
path from C to C′, then the first vertex of C′ is listed before the first vertex of C′.

It is easy to see that our Strong Component Driver will give the correct output iff the given
permutation is good. But how do we get good permutations? Roughly speaking, they correspond
to weak forms of “reverse topological sort” of G. There are two problems: topological sorting of G
is not really meaningful when G is not a DAG. Second, good permutations requires some knowledge
of the strong components which is what we want to compute in the first place! Nevertheless, let us
go ahead and run the topological sort algorithm (not the robust version) on G. We may assume
that the algorithm returns an array Per[1..n] (the inverse of the Rank[1..n]). The next lemma
shows that Per[1..n] almost has the properties we want. For any set C ⊆ V , we first define

Rank[C] = min{i : Per[i] ∈ C} = min{Rank[v] : v ∈ C}

Lemma 10. Let C, C′ be two distinct strong components of G.
(a) If u0 ∈ C is the first vertex in C that is seen, then Rank[u0] = Rank[C].
(b) If there is path from C to C′ in the reduced graph of G, then Rank[C] < Rank[C′].

Proof. (a) By the Unseen Path Lemma, every node v ∈ C will be a descendent of u0 in the DFS
tree. Hence, Rank[u0] ≤ Rank[v], and the result follows since Rank[C] = min{Rank[v] : v ∈ C}.
(b) Let u0 be the first vertex in C ∪ C′ which is seen. There are two possibilities: (1) Suppose
u0 ∈ C. By part (a), Rank[C] = Rank[u0]. Since there is a path from C to C′, an application
of the Unseen Path Lemma says that every vertex in C′ will be descendents of u0. Let u1 be
the first vertex of C′ that is seen. Since u1 is a descendent of u0, Rank[u0] < Rank[u1]. By
part(a), Rank[u1] = Rank[C′]. Thus Rank[C] < Rank[C′]. (2) Suppose u0 ∈ C′. Since there is
no path from u0 to C, we would have assigned a rank to u0 before any node in C is seen. Thus,
Rank[C0] < Rank[u0]. But Rank[u0] = Rank[C′]. Q.E.D.

This lemma implies that, in the reverse “topological sort” ordering,

[Per[n], P er[n− 1], . . . , P er[1]] (11)

if there is path from C to C′, then the last vertex of C′ in this list appears before the last vertex
of C in this list. So this is not quite good.

c© Chee-Keng Yap Basic Version March 27, 2008

§7. Further Applications of Graph Traversal Lecture IV Page 34

We use another insight: consider the reverse graph Grev (i.e., u−v is an edge of G iff v−u is an
edge of Grev). It is easy to see that C is a strong component of Grev iff C is a strong component
of G. However, there is a path from C to C′ in Grev iff there is a path from C′ to C in G.

Lemma 11. If Per[1..n] is the result of running topological sort on Grev then Per is a good
permutation for G.

Proof. Let C, C′ be two components of G and there is a path from C to C′ in G. Then there
is a path from C′ to C in the reverse graph. According to the above, the last vertex of C is listed
before the last vertex of C′ in (11). That means that the first vertex of C is listed after the first
vertex of C′ in the listing [Per[1], P er[2], . . . , P er[n]]. This is good. Q.E.D.

We now have the complete algorithm:

Strong Component Algorithm(G)
Input: Digraph G = (V, E), V = {1, 2, . . . , n}.
Output: A list of strong components of G.

1. Compute the reverse graph Grev.
2. Call topological sort on Grev.

This returns a permutation array Per[1..n].
3. Call Strong Component Driver(G, Per)

Remarks. Tarjan [4] was the first to give a linear time algorithm for strong components. R.
Kosaraju and M. Sharir independently discovered the reverse graph search method described here.
The reverse graph search is conceptually elegant. But since it requires two passes over the graph
input, it is slower in practice than the direct method of Tarjan. Yet a third method was discovered
by Gabow in 1999. For further discussion of this problem, including history, we refer to Sedgewick
[3].

Exercises

Exercise 7.1: Modify our topological sort algorithm so that it outputs the permutation array
Per[1..n] that is the inverse of Rank[1..n]. ♦

Exercise 7.2: Give an algorithm to compute the number N [v] of distinct paths originating from
each vertex v of a DAG. Thus N [v] = 1 iff v is a sink, and if u−v is an edge, N [u] ≥ N [v].

♦

Exercise 7.3: Let G be a DAG.
(a) Prove that G has a topological ranking.
(b) If G has n vertices, then G has at most n! topological rankings.
(c) Let G consists of 3 disjoint linear lists of vertices with n1, n2, n3 vertices (resp.). How
many topological rankings of G are there? ♦

Exercise 7.4: Prove that a digraph G is cylic iff every DFS search of G has a back edge. ♦

c© Chee-Keng Yap Basic Version March 27, 2008

§7. Further Applications of Graph Traversal Lecture IV Page 35

Exercise 7.5: Consider the following alternative algorithm for computing strong components of
a digraph G: what we are trying to do in this code is to avoid computing the reverse of G.

Strong Component Algorithm(G)
Input: Digraph G = (V, E), V = {1, 2, . . . , n}.
Output: A list of strong components of G.

1. Call topological sort on G.
This returns a permutation array Per[1..n].

2. Reverse the permutation:
for i = 1, . . . , ⌊n/2⌋, do the swap Per[i]↔ Per[n + 1− i].

3. Call Strong Component Driver(G, Per)

Either prove that this algorithm is correct or give a counter example. ♦

Exercise 7.6: An edge u−v is inessential if there exists a w ∈ V \ {u, v} such that there is a
path from u to w and a path from w to v. Otherwise, we say the edge is essential. Give an
algorithm to compute the essential edges of a DAG. ♦

Exercise 7.7: Let G0 be a DAG with m edges. We want to construct a sequence G1, G2, . . . , Gm

of DAG’s such that each Gi is obtained from Gi−1 by reversing a single edge so that finally
Gm is the reverse of G0. Give an O(m+n) time algorithm to compute an ordering (e1, . . . , em)
of the edges corresponding to this sequence of DAGs.

NOTE: this problem arises in a tie breaking scheme. Let M be a triangulated mesh that represents

a terrain. Each vertex v of M has a height h(v) ≥ 0, and each pair u, v of adjacent vertices of

M gives rise to a directed edge u−v if h(u) > h(v). Note that if the heights are all distinct, the

resulting graph is a DAG. If h(u) = h(v), we can arbitrarily pick one direction for the edge, as

long as the graph remain a DAG. This is the DAG G0 in our problem above. Suppose now we

have two height functions h0 and h1, and we want to interpolate them: for each t ∈ [0, 1], let

ht(v) = th0(v) + (1− t)h1(v). We want to represent the transformation from h0 to h1 by a sequence

of graphs, where each successive graph is obtained by changing the direction of one edge. ♦

Exercise 7.8: Let D[u] denote the number of descendents a DAG G = (V, E). Note that D[u] = 1
iff u is a sink. Show how to compute D[u] for all u ∈ V by programming the shell macros.
What is the complexity of your algorithm? ♦

Exercise 7.9: A vertex u is called a bottleneck if for every other vertex v ∈ V , either there is a
path from v to u, or there is a path from u to v. Give an algorithm to determine if a DAG
has a bottleneck. HINT: You should be able to do this in at most O(n(m + n)) time. ♦

Exercise 7.10: In the previous problem, we defined bottlenecks. Now we want to classify these
bottlenecks into “real” and “apparent” bottlenecks. A bottleneck u is “apparent” if there
exists an ancestor v (6= u) and a descendent w (6= u) such that v−w is an edge. Such an
edge v−w is called a by-pass for u. Give an efficient algorithm to detect all real bottlenecks
of a DAG G. HINT: This can be done in O(n + m log n) time. ♦

Exercise 7.11: Given a DAG G, let D[u] denote the number of descendents of u. Can we compute
D[u] for all u ∈ V in o((m + n)n) time, i.e., faster than the obvious solution? ♦

End Exercises

c© Chee-Keng Yap Basic Version March 27, 2008

§7. Further Applications of Graph Traversal Lecture IV Page 36

References

[1] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North Holland, New York,
1976.

[2] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press and McGraw-Hill Book Company, Cambridge, Massachusetts and New York, second
edition, 2001.

[3] R. Sedgewick. Algorithms in C: Part 5, Graph Algorithms. Addison-Wesley, Boston, MA, 3rd
edition edition, 2002.

[4] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Computing, 1(2), 1972.

c© Chee-Keng Yap Basic Version March 27, 2008

