
§1. Algorithmics Lecture I Page 1

Lecture I

OUTLINE OF ALGORITHMICS

We assume the student is familiar with computer programming and has a course in data
structures and some background in discrete mathematics. Problems solved using computers can
be roughly classified into problems-in-the-large and problems-in-the-small. The former is associated
with large software systems such as an airlines reservation system, compilers or text editors. The
latter1 is identified with mathematically well-defined problems such as sorting, multiplying two
matrices or solving a linear program. The methodology for studying such “large” and “small”
problems are quite distinct: Algorithmics is the study of the small problems and their algorithmic Algorithmics

concern small
problems

solution. In this introductory lecture, we presents an outline of this enterprise. Throughout this
book, computational problems (or simply “problems”) refer to problems-in-the-small. It is the
only kind of problem we address.

READING GUIDE: This chapter is mostly informal and depends on some prior understanding
of algorithms. The rest of this book has no dependency on this chapter, save the definitions in
§8 concerning asymptotic notations. Hence a light reading may be sufficient. We recommend
re-reading this chapter after finishing the rest of the book, when many of the remarks here may
take on more concrete meaning.

§1. What is Algorithmics?

Algorithmics is the systematic study of efficient algorithms for computational problems; it
includes techniques of algorithm design, data structures, and mathematical tools for analyzing
algorithms.

Why is algorithmics important? Because algorithms is at the core of all applications of comput-
ers. These algorithms are the “computational engines” that drive larger software systems. Hence
it is important to learn how to construct algorithms and to analyze them. Although algorithmics
provide the building blocks for large application systems, the construction of such systems usually
require additional non-algorithmic techniques (e.g., database theory) which are outside our scope.

We can classify algorithmics according to its applications in subfields of the sciences and math-
ematics: thus we have computational geometry, computational topology, computational number
theory, computer algebra, computational statistics, computational finance, computational physics,
and computational biology, etc. More generally, we have “computational X” where X can be any
discipline. But another way to classify algorithmics is to look at the generic tools and techniques
that are largely independent of discipline X. Thus, we have sorting techniques, graph searching,
string algorithms, string algorithms, dynamic programming, numerical PDE, etc, that cuts across
individual disciplines. A good way to represent this data is to use a matrix:

1If problems-in-the-large is macro-economics, then the problems-in-the-small is micro-economics.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§2. Computational Problems Lecture I Page 2

g
eo

m
et

ry

to
p
o
lo

g
y

fi
n
a
n
ce

p
h
y
si

cs

· · · b
io

lo
g
y

sorting X X X

graph searching X X

string algorithms X X

dynamic programming X X

...
...

numerical PDE X X

Computer Sci-
ence is row-
orientedSo each of the computational X’s represents a column in this matrix, and each computational

technique represents a row. Each checkmark indicates that a particular computational technique
is used in a particular discipline X. Individual scientific disciplines take a column-oriented view,
but Computer Science takes the row-oriented view. These row labels can be classified into four
basic themes:

(a) data-structures (e.g, linked lists, stacks, search trees)

(b) algorithmic techniques (e.g., divide-and-conquer, dynamic programming)

(c) basic computational problems (e.g., sorting, graph-search, point location)

(d) analysis techniques (e.g., recurrences, amortization, randomized analysis)

These themes interplay with each other. For instance, some data-structures naturally suggest
certain algorithmic techniques. Or, an algorithmic technique may entail certain analysis methods
(e.g., divide-and-conquer algorithms require recurrence solving). Complexity theory provides some
unifying concepts for algorithmics; but complexity theory is too abstract to capture many finer
distinctions we wish to make. Thus algorithmics often makes domain-dependent assumptions. For
example, in the subfield of computer algebra, the complexity model takes each algebraic operation
as a primitive while in the subfield of computational number theory, these algebraic operations
are reduced to some bit-complexity model primitives. In this sense, algorithmics is, say, more like
combinatorics (which is eclectic) than group theory (which starts out from a unified framework).

§2. What are Computational Problems?

Despite its name, the starting point for algorithmics is computational problems, not algo-
rithms. But what are computational problems? We mention three main categories.

¶1. (A) Input-output problems. Here is the simplest formulation: A computational prob-
lem is a precise specification of input and output formats, and for each input instance I, a de-
scription of the set of possible output instances O = O(I). Standard I/O

problems

The word “formats” emphasizes the fact the input and output representation is part and parcel
of the problem. In practice, standard representations may be taken for granted (e.g., numbers are
assumed to be in binary and set elements are arbitrarily listed without repetition). Note that
the input-output relationship need not be functional: a given input may have several acceptable
outputs.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§2. Computational Problems Lecture I Page 3

Example: (A1) Sorting Problem: Input is a sequence of numbers (a1, . . . , an) and
output is a rearrangement of these numbers (a′

1, . . . , a
′
n) in non-decreasing order. An input instance

is (2, 5, 2, 1, 7), with corresponding output instance (1, 2, 2, 5, 7).

¶2. (B) Preprocessing problems. A generalization of input-output problems is what we call
preprocessing problem: given a set S of objects, construct a data structure D(S) such that
for an arbitrary ‘query’ (of a suitable type) about S, we can use D(S) to efficiently answer the
query. There are two distinct stages in such problems: preprocessing stage and a “run-time” stage.
Usually, the set S is “static” meaning that membership in S does not change under querying. Two-staged

problems

Example: (B1) Ranking Problem: preprocessing input is a set S of numbers. A
query on S is a number q for which we like to determine its rank in S. The rank of q is S is the
number of items in S that are smaller than or equal to q. A standard solution to this problem is
the binary search tree data structure D(S) and the binary search algorithm on D(S).

Example: (B2) Post Office Problem: Many problems in computational geometry
and database search are the preprocessing type. The following is a geometric-database illustration:
given a set S of points in the plane, find a data structure D(S) such that for any query point p, we
find an element in S that is closest to p. (Think of S as a set of post offices and we want to know
the nearest post office to any position p). Note that the 1-dimensional version of this problem is
closely allied to the ranking problem.

Two algorithms are needed to solve a preprocessing problem: one to construct D(S) and
another to answer queries. They correspond to the two stages of computation: an initial prepro-
cessing stage to construct D(S), and a subsequent querying stage in which the data structure
D(S) is used. There may be a tradeoff between the preprocessing complexity and the query
complexity: D1(S) may be faster to construct than an alternative D2(S), but answering queries
using D1(S) is less efficient than D2(S). But our general attitude to prefer D2(S) over D1(S) in
this case: we prefer data structures D(S) that support the fastest possible query complexity. Our
attitude is often justified because the preprocessing complexity is a one-time cost.

Preprocessing problems can be seen as a special case of partial evaluation problems. In
such problems, we construct partial answers or intermediate structures based on part of the inputs;
these partial answers or intermediate structures must anticipate all possible extensions of the partial
inputs.

¶3. (C) Dynamization and Online problems. Now assume the input S is a set, or more
generally some kind of aggregate object. If S can be modified under queries, then we have a
dynamization problem: with S and D(S) as above, we must now design our solution with an
eye to the possibility of modifying S (and hence D(S)). Typically, we want to insert and delete
elements in S while at the same time, answer queries on D(S) as before. A set S whose members
can vary over time is called a dynamic set and hence the name for this class of problems.

Here is another formulation: we are given a sequence (r1, r2, . . . , rn) of requests, where a
request is one of two types: either an update or a query. We want to ‘preprocess’ the requests
in an online fashion, while maintaining a time-varying data structure D: for each update request,
we modify D and for each query request, we use D to compute and retrieve an answer (D may be
modified as a result).

In the simplest case, updates are either “insert an object” or “delete an object” while queries

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§3. Computational Model Lecture I Page 4

are “is object x in S?”. This is sometimes called the set maintenance problem. Preprocessing
problems can be viewed as a set maintenance problem in which we first process a sequence of
insertions (to build up the set S), followed by a sequence of queries.

Example: (C1) Dynamic Ranking Problem: Any preprocessing problem can be
systematically converted into a set maintenance problem. For instance, the ranking problem turns
into the dynamic ranking problem in which we dynamically maintain the set S subject to
intermittent rank queries. The data structures in solutions to this problem are usually called
dynamic search trees.

Example: (C2) Graph Maintenance Problems: Dynamization problems on graphs
are more complicated than set maintenance problems (though one can still view it as maintaining
a set of edges). One such problem is the dynamic connected component problem: updates
are insertion or deletion of edges and/or vertices. Queries are pairs of vertices in the current graph,
and we want to know if they are in the same component. The graphs can be directed or undirected.

¶4. (D) Pseudo-problems. Let us illustrate what we regard to be a pseudo-problem from
the viewpoint of our subject. Suppose your boss asks your IT department to “build an integrated
accounting system-cum-employee database”. This may be a real world scenario but it is not a
legitimate topic for algorithmics because part of the task is to figure out what the input and
output of the system should be, and there are probably other implicit non-quantifiable criteria
(such as available technology and economic realities).

§3. Computational Model: How do we solve problems?

Once we agree on the computational problem to be solved, we must choose the tools for solving
it. This is given by the computational model. Any conventional programming languages such
as C or Java (suitably abstracted, so that it does not have finite space bounds, etc) can be regarded
as a computational model. A computational model is specified by

(a) the kind of data objects that it deals with

(b) the primitive operations to operate on these objects

(c) rules for composing primitive operations into larger units called programs.

Programs can be viewed as individual instances of a computational model. For instance, the
Turing model of computation is an important model in complexity theory and the programs here
are called Turing machines.

¶5. Models for Sorting. To illustrate computational models, we consider the problem of
sorting. The sorting problem has been extensively studied since the beginning of Computer Science
(from the 1950’s). It turns out that there are several computational models underlying this simple
problem, each giving rise to distinct computational issues. We briefly describe just three of them:
the comparison-tree model, the comparator circuit model, and the tape model. In each
models, the data objects are elements from a linear order. 3 sorting mod-

els

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§3. Computational Model Lecture I Page 5

The first model, comparison-trees, has only one primitive operation, viz., comparing the two
elements x, y resulting in one of two outcomes x < y or x ≥ y. Such a comparison is usually
denoted “x : y”. We compose these primitive comparisons into a tree program by putting them
at the internal nodes of binary tree. Tree programs represent flow of control and are more generally
called decision trees. Figure 1(a) illustrates a comparison-tree on inputs x, y, z. The output of
the decision tree is specified at each leaf. For instance, if the tree is used for sorting, we would
want to write the sorted order of the input elements in each leaf. If the tree is used to find the
maximum element of the input set, then each leaf would specify the maximum element.

< <

< ≥

≥ ≥

(a)

x
′

y′

z′

(b)

x

y

z

max

min min

max

y : z x : z

x : y

Figure 1: (a) A comparison-tree and (b) a comparator circuit

In the comparator circuit model, we also have one primitive operation which takes two input
elements x, y and returns two outputs: one output is max{x, y}, the other min{x, y}. These are
composed into circuits which are directed acyclic graphs with n input nodes (in-degree 0) and
n output nodes (out-degree 0) and some number of comparator nodes (in-degree and out-degree
2). In contrast to tree programs, the edges (called wires) in such circuits represent actual data
movement. Figure 1(b) shows a comparator circuit on inputs x, y, z. Depending on the problem,
the output of the comparator circuit may be the set of all output lines (x′, y′, z′ in Figure 1(b)) or
perhaps some subset of these lines.

A third model for sorting is the tape model. A tape is a storage medium which allows slow,
sequential access to its data. We can use several tapes and limited amount of main memory,
and the goal is to minimize the number of passes over the entire data. We will not elaborate on
this model, but [3] is a good reference. Tape storage was the main means of mass storage in the
early days of computing. Curiously, some variant of this model (the “streaming data model”) is
becoming important again because of the vast amounts of data to be process in our web-age.

¶6. Algorithms versus programs. To use a computational model to solve a given problem,
we must make sure there is a match between the data objects in the problem specification and the
data objects handled by the computational model. If not, we must specify some suitable encoding
of the former objects by the latter. Similarly, the input and output formats of the problem must
be represented in some way. After making explicit such encoding conventions, we may call A an
algorithm for P if, if the program A indeed computes a correct output for every legal input of
P . Thus the term algorithm is a semantical concept, signifying a program in its relation to some
problem. In contrast, programs may be viewed as purely syntactic objects. E.g., the programs
in figure 1(a,b) are both algorithms to compute the maximum of x, y, z. But what is the output
convention for these two algorithms?

¶7. Uniform versus Non-uniform Computational Models. While problems generally
admit inputs of arbitrarily large sizes (see discussion of size below), some computational models
define programs that admit inputs of a fixed size only. This is true of the decision tree and circuit

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§3. Computational Model Lecture I Page 6

models of computation. In order to solve problems of infinite sizes, we must take a sequence of
programs P = (P1, P2, P3, . . .) where Pi admits inputs of size i. We call such a program P a
non-uniform program since we have no á priori connections between the different Pi’s. For this
reason, we call the models whose programs admit only finite size inputs non-uniform models.
The next section will introduce a uniform model called the RAM Model. Pointer machines (see
Chapter 6) and Turing machines are other examples of uniform models. The relationship between
complexity in uniform models and in non-uniform models is studied in complexity theory.

¶8. Problem of Merging Two Sorted Lists. Let us illustrate the difference between uni-
form and non-uniform algorithms. A subproblem that arises in sorting is the merge problem
where we are given two sorted lists (x1, x2, . . . , xm) and (y1, y2, . . . , yn) and we want to produce a
sorted list (z1, z2, . . . , zm+n) where {z1, . . . , zm+n} = {x1, . . . , xm, y1, . . . , yn}. Assume these sorted
lists are non-decreasing. Here is a algorithm for this problem, written in a generic conventional
programming language:

Merge Algorithm

Input: (x1, . . . , xm) and (y1, . . . , yn), sorted in non-decreasing order.
Output: The merger of these two lists, in non-decreasing order.

⊲ Initialize
i← 1, j ← 1.

⊲ Loop
while (i ≤ m and j ≤ n)

if xi ≤ yj

Output(xi) and i← i + 1.
else

Output(yj) and j ← j + 1.
⊲ Terminate

if i > m ⊳ The x’s are exhausted
Output the rest of the y’s.

else ⊳ The y’s are exhausted
Output the rest of the x’s.

The student should note the conventions used in this program, which will be used throughout.
First, we use indentation for program blocks. Second, we use two kinds of comments: (⊲ forward Program con-

ventions!comments) and (⊳ backward comments).

This Merge Algorithm is a uniform algorithm for merging two lists. For each m, n, this algo-
rithm can be “unwounded” into a comparison-tree Tm,n for merging two sorted lists of sizes m and
n (Exercise). Hence family {Tm,n : m, n ∈ N} is a non-uniform algorithm for merging two lists.

¶9. Program Correctness. This has to do with the relationship between an program and
a computational problem. A program that is correct relative to a problem is, by definition, an
algorithm for that problem. It is usual to divide correctness into two parts: partial correctness and
halting. Partial correctness says that the algorithm gives the correct output provided it halts. In
some algorithms, correctness may be trivial but this is not always true.

Exercises

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§4. Complexity Model Lecture I Page 7

Exercise 3.1: What problems do the programs in Figure 1(a) and (b) solve, respectively? You
have some leeway in giving them suitable interpretations. ♦

Exercise 3.2: (a) Extend the program in Figure 1(a) so that it sorts three input elements {x, y, z}.
(b) In general, define what it means to say that a comparison-tree program sorts a set
{x1, . . . , xn} of elements. ♦

Exercise 3.3: Design a tree program to merge two sorted lists (x, y, z) and (a, b, c, d). The height
of your tree should be 5 (the optimum). ♦

Exercise 3.4: Draw the tree program corresponding to unwinding the Marge Algorithm on input
(x1, x2) and (y1, y2, y3, y4). This is called T2,4 in the text. ♦

End Exercises

§4. Complexity Model: How to assess algorithms?

We now have a suitable computational model for solving our problem. What is the criteria to
choose among different algorithms within a model? For this, we need to introduce a complexity
model.

In most computational models, there are usually natural notions of time and space. These
are two examples of computational resources. Naturally, resources are scarce and algorithms
consume resources when they run. We want to choose algorithms that minimize the use of resources.
In our discussions, we focus on only one resource at a time, usually time (occasionally space). So
we avoid issues of trade-offs between two resources.

Next, for each primitive operation executing on a particular data, we need to know how much
of the resource is consumed. For instance, in Java, we could define each execution of the addition
operation on two numbers a, b to use time log(|a|+ |b|). But it would be simpler to say that this
operation takes unit time, independent of a, b. This simpler version is our choice throughout these
lectures: each primitive operation takes unit time, independent of the actual data.

How is the running time for sorting 1000 elements related to the running time for sorting 10
elements? The answer lies in viewing running time as a function of the number of input elements,
the “input size”. In general, problems usually have a natural notion of “input size” and this is the
basis for understanding the complexity of algorithms.

So we want a notion of size on the input domain, and measure resource usage as a function
of input size. The size size(I) of an input instance I is a positive integer. We make a general
assumption about the size function: there are inputs of arbitrarily large size.

For our running example of the sorting problem, it may seem natural to define the size of an
input (a1, . . . , an) to be n. But actually, this is only natural because we usually use computational
models that compares a pair of numbers in unit time. For instance, if we must encode the input
as binary strings (as in the Turing machine model), then input size is better taken to be

∑n
i=1(1+

log(1 + |ai|)).

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§4. Complexity Model Lecture I Page 8

Suppose A is an algorithm for our problem P . For any input instance I, let TA(I) be the total
amount of time used by A on input I. Naturally, TA(I) = ∞ if A does not halt on I. Then we
define the worst case running time of A to be the function TA(n) where

TA(n) := max{TA(I) : size(I) = n}

Using “max” here is only one way to “aggregate” the set of numbers {TA(I) : size(I) ≤ n}.
Another possibility is to take the average. In general, we may apply some function G,

TA(n) = G({TA(I) : size(I) ≤ n})

For instance, if G is the average function and we get average time complexity.

To summarize: a complexity model is a specification of
(a) the computational resource,
(b) the input size function,
(c) the unit of resource, and
(d) the method G of aggregating.
Once the complexity model is fixed, we can associate to each algorithm A a complexity function
TA.

Example: (T1) Consider the Comparison Tree Model for sorting. Let T (n) be the worst
case number of comparisons needed to sort n elements. Any tree program to sort n elements must
have at least n! leaves, since we need at least one leaf for each possible sorting outcome. Since a
binary tree with n! leaves has height at least ⌈lg(n!)⌉.

Lemma 1. Every tree program for sorting n elements has height at least ⌈lg(n!)⌉, i.e., T (n) ≥
⌈lg(n!)⌉.

This lower bound is called the Information Theoretic Lower Bound for sorting.

Example: (T2) In our RAM model (real or integer version), let the computational
resource be time, where each primitive operation takes unit time. The input size function is the
number of registers used for encoding the input. The aggregation method is the worst case (for
any fixed input size). This is called the unit time complexity model.

¶10. Complexity of Merging. Define M(m, n) to be the minimum height of any comparison
tree for merging two sorted lists of sizes m and n, respectively. We can prove the following bounds

M(m, n) ≤ m + n− 1

and
M(m, n) ≥ 2 min{m, n} − δ(m, n)

where δ(m, n) = 1 if m = n and δ(m, n) = 0 otherwise. The upper bound comes from the algorithm Some inter-
esting stuff at
last!

for merging described in §3: each comparison results in at least one output. But the last element
can be output without any comparison. Hence we never make more comparisons than m + n− 1.
The lower bound comes from the following example: assume the input is x1 < x2 < · · · < xm and
y1 < · · · < yn where m ≥ n. We assume that

x1 < y1 < x2 < y2 < x3 < · · ·xn < yn < xn+1 < · · ·xm.

Note that each yi must be compared to xi and xi+1 (for i = 1, . . . , n − 1). Moreover, yn must
be compared to xn, and in case δ(m, n) = 0, yn must also be compared to xn+1. This proves

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§4. Complexity Model Lecture I Page 9

M(m, n) ≥ 2n − δ(m, n), where n = min{m, n}. This method of proving lower bounds is called
the adversary argument.

A corollary of the above upper and lower bounds are some exact bounds for the complexity of
merging:

M(m, m) = 2m− 1

and
M(m, m + 1) = 2m.

Thus the uniform algorithm is optimal in these cases. More generally, M(m, m + k) = 2m + k− 1
for k = 0, . . . , 4 and m ≥ 6 (see [3] and Exercise).

Now consider the other extreme where the two input lists are as disparate in lengths as possible:
M(m, 1). In this case, the information theoretic bound says that M(m, 1) ≥ ⌈lg(m + 1)⌉ (why?).
Also, by binary search, this lower bound is tight. Hence we now know another exact value:

M(m, 1) = ⌈lg(m + 1)⌉ .
A non-trivial result from Hwang and Lin says

M(2, n) = ⌈lg 7(n + 1)/12⌉+ ⌈lg 14(n + 1)/17⌉ .
More generally, the information-theoretic bound says

M(m, n) ≥ lg

(
m + n

m

)

since there are
(

m+n
n

)
ways of merging the two sorted lists. To see this, imagine that we already

have the sorted list of m + n elements: but which of these elements come from the list of size m?
There are

(
m+n

m

)
ways of choosing these elements.

Thus we have two distinct methods for proving lower bounds on M(m, n): the adversary method
is better when |m − n| is small, and the information theoretic bound is better when this gap is
large. The exact value of M(m, n) is known for several other cases, but a complete description of
this complexity function remains an open problem.

¶11. Other Complexity Measures. There are complexity models. For instance, in computa-
tional geometry, it is useful to take the output size into account. The complexity function would
now take at least two arguments, T (n, k) where n is the input size, but k is the output size. This
is the output-sensitive complexity model.

Remarks:
1. Another kind of complexity measure is the size of a program. In the RAM model, this can be
the number of primitive instructions. We can measure the complexity of a problem P in terms
of the size s(P) of the smallest program that solves P . This complexity measure assigns a single
number s(P), not a complexity function, to P . This program size measure is an instance of
static complexity measure; in contrast, time and space are examples of dynamic complexity
measures. Here “dynamic” (“static”) refers to fact that the measure depends (does not depend)
on the running of a program. Complexity theory is mostly developed for dynamic complexity
measures.
2. The comparison tree complexity model ignores all the other computational costs except com-
parisons. In most situations this is well-justified. But it is possible2 to create conjure up ridiculous

2My colleague, Professor Robert Dewar suggests the following example: given n numbers to be sorted, we
first search for all potential comparison trees for sorting n elements. To make this search finite, we only evaluate
comparison trees of height at most n ⌈lg n⌉. Among those trees that we have determined to be able to sort, we pick
one of minimum height. Now we run this comparison tree on the given input.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§4. Complexity Model Lecture I Page 10

algorithms which minimize the comparison cost, at an exhorbitant cost in other operations.
3. The size measure is relative to representation. Perhaps the key property of size measures is
that there are only finitely many objects up to any given size. Without this, we cannot develop
any complexity theory. If the input set are real numbers, R, then it is very hard to give a suitable
size function with this property. This is the puzzle of real computation.

Exercises

Exercise 4.1: How many comparisons are required in the worst case to sort 10 elements? Give
a lower bound in the comparison tree model. Note: to do the computation by hand, it is
handy to know that 10! = 3, 628, 800 and 220 = 1, 048, 576.

SOLUTION: The information theoretic lower bound is T (n) ≥ ⌈lg(10!)⌉ = 22.
Comments:

♦

Exercise 4.2: How good is the information theoretic lower bound for sorting 3 elements a sharp
bound? In other words, can you find upper bounds that matches the information-theoretic
lower bound? Repeat this exercise for 4 and 5 elements. ♦

Exercise 4.3: The following is a variant of the previous exercise. Is it always possible to sort n
elements using a comparison tree with n! leaves? Check this out for n = 3, 4, 5. ♦

Exercise 4.4: (a) Consider a variant of the unit time complexity model for the integer RAM
model, called the logarithmic time complexity model. Each operand takes time that is
logarithmic in the address of the register and logarithmic in the size of its operands. What
is the relation between the logarithmic time and the unit time models?
(b) Is this model realistic in the presence of the arithmetic operators (ADD, SUB, MUL,
DIV). Discuss. ♦

Exercise 4.5: Describe suitable complexity models for the “space” resource in integer RAM mod-
els. Give two versions, analogous to the unit time and logarithmic time versions. What about
real RAM models? ♦

Exercise 4.6: Justify the claim that M(m, 1) = ⌈lg(m + 1)⌉. ♦

Exercise 4.7: Using direct arguments, give your best upper and lower bounds for M(2, 10). ♦

SOLUTION: M(2, 10) ≥ 7: The information-theoretic lower bound of
⌈
lg
(
12
2

)⌉
=

⌈lg 66⌉ = 7. Also, M(2, 10) ≤ 8: we can use binary search to insert each element
in the 2-element list into the longer list. This takes ≤ ⌈lg 11⌉ + ⌈lg 12⌉ = 4 + 4 = 8
comparisons.
Comments:

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§5. Algorithmic Techniques Lecture I Page 11

Exercise 4.8: Prove that M(m, m + i) = 2m + i− 1 for i = 2, 3, 4 for m ≥ 6. ♦

Exercise 4.9: Prove that M(k, m) ≥ k lg2(m/k) for k ≤ m. HINT: split the list of length m into
three sublists of roughly equal sizes. ♦

Exercise 4.10: Open problem: determine M(m, 3) and M(m, m + 5) for all m. ♦

Exercise 4.11: With respect to the comparator circuit and tree program models in §3, describe
suitable complexity models for each. ♦

End Exercises

§5. Algorithmic Techniques: How to design algorithms

Now that we have some criteria to judge algorithms, we begin to design algorithms. There
emerges some general paradigms of algorithms design: (i) Divide-and-conquer (e.g., merge sort)
(ii) Greedy method (e.g., Kruskal’s algorithm for minimum spanning tree)
(iii) Dynamic programming (e.g., multiplying a sequence of matrices)
(iv) Incremental method (e.g., insertion sort)

Let us briefly outline the merge sort algorithm to illustrate divide-and-conquer: Suppose you
want to sort an array A of n elements. Assume n is a power of 2. Here is the Merge Sort algorithm
on input A:

1. (Basis) If n is 1 simply return the array A.

2. (Divide) Divide the elements of A into two subarrays B and C of size n/2 each.

3. (Recurse) Recursively, call the Merge Sort algorithm on B. Do the same for C.

4. (Conquer) Merge the sorted arrays B and C and put the result back into array A.

There is only one non-trivial step, the merging of two sorted arrays. We leave this as an exercise.

There are many variations or refinements of these paradigms. E.g., Kirkpatrick and Seidel
[2] introduced a form of divide-and-conquer (called “marriage-before-dividing”) that leads to an
output-sensitive convex hull algorithm. There may be domain specific versions of these methods.
E.g., plane sweep is an incremental method suitable for problems on points in Euclidean space.

Closely allied with the choice of algorithmic technique is the choice of data structures. A data
structure is a representation of a complex mathematical structure (such as sets, graphs or matrices),
together with algorithms to support certain querying or updating operations. The following are
some basic data structures.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§6. Analysis Lecture I Page 12

(a) Linked lists: each list stores a sequence of objects together with operations for (i) accessing
the first object, (ii) accessing the next object, (iii) inserting a new object after a given object,
and (iv) deleting any object.

(b) LIFO, FIFO queues: each queue stores a set of objects under operations for insertion and
deletion of objects. The queue discipline specifies which object is to be deleted. There are
two3 basic disciplines: last-in first-out (LIFO) or first-in first-out (FIFO). Note that recursion
is intimately related to LIFO.

(c) Binary search trees: each tree stores a set of elements from a linear ordering together with
the operations to determine the smallest element in the set larger than a given element. A
dynamic binary search tree supports, in addition, the insertion and deletion of elements.

(d) Dictionaries: each dictionary stores a set of elements and supports the operations of (i)
inserting a new element into the set, (ii) deleting an element, and (iii) testing if a given
element is a member of the set.

(e) Priority queues: each queue stores a set of elements from a linear ordering together with
the operations to (i) insert a new element, (ii) delete the minimum element, and (iii) return
the minimum element (without removing it from the set).

Exercises

Exercise 5.1: (a) Give a pseudo-code description of Merge(B, C, A) which, given two sorted
arrays B and C of size n each, returns their merged (hence sorted) result into the array A
of size 2n.
(b) Why did we assume n is a power of 2 in the description of merge sort? How can we justify
this assumption in theoretical analysis? How can we handle this assumption in practice? ♦

Exercise 5.2: Design an incremental sorting algorithm based on the following principle: assuming
that the first m elements have been sorted, try to add (“insert”) the m + 1st element into
the first m elements to extend the inductive hypothesis. ♦

End Exercises

§6. Analysis: How to estimate complexity

We have now a measure TA of the complexity of our algorithm A, relative to some complexity
model. Unfortunately, the function TA is generally too complex to admit a simple description, or
to be expressed in terms of familiar mathematical functions. Instead, we aim to give upper and
lower bounds on TA. This constitutes the subject of algorithmic analysis which is a major part
of this book. The tools for this analysis depends to a large extent on the algorithmic paradigm or
data structure used by A. We give two examples.

3A discipline of a different sort is called GIGO, or, garbage-in garbage-out. This is really a law of nature.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§7. Asymptopia Lecture I Page 13

Example: (D1) (Divide-and-conquer) If we use divide-and-conquer then it is likely we
need to solve some recurrence equations. In our Merge Sort algorithm, assuming n is a power of
2, we obtain the following recurrence:

T (n) = 2T (n/2) + Cn

for n ≥ 2 and T (1) = 1. Here T (n) is the (worst case) number of comparisons needed by our
algorithm to sort n elements. The solution is T (n) = Θ(n log n). In the next chapter, we study
the solutions of such equations.

Example: (D2) (Amortization) If we employ certain data-structures that might be
described as “lazy” then amortization analysis might be needed. Let us illustrate this with the
problem of maintaining a binary search tree under repeated insertion and deletion of elements.
Ideally, we want the binary tree to have height O(log n) if there are n elements in the tree. There
are a number of known solutions for this problem (see Chapter 3). Such a solution achieves the
optimal logarithmic complexity for each insertion/deletion operation. But it may be advantageous
to be lazy about maintaining this logarithmic depth property: such laziness may be rewarded by a
simpler coding or programming effort. The price for laziness is that our complexity may be linear
for individual operations, but we still logarithmic cost in the amortized sense. To illustrate this
idea, suppose we allow the tree to grow to non-logarithmic depth as long as it does not cost us
anything (i.e., there are no queries on a leaf with big depth). But when we have to answer a
query on a “deep leaf”, we take this opportunity to restructure the tree so that the depth of this
leaf is now reduced (say halved). Thus repeated queries to this leaf will make it shallow. The
cost of a single query could be linear time, but we hope that over a long sequence of such queries,
the cost is amortized to something small (say logarithmic). This technique prevents an adversary
from repeated querying of a “deep leaf”. Unfortunately, this is not enough because the very first
query into a “deep leaf” has to be amortized as well (since there may be no subsequent queries).
To anticipate this amortization cost, we “pre-charge” the requests (insertions) that lead to this
inordinate depth. Using a financial paradigm, we put the pre-paid charges into some bank account.
Then the “deep queries” can be paid off by withdrawing from this account. Amortization is both
an algorithmic paradigm as well as an analysis technique. This will be treated in Chapter 6.

§7. Asymptotics: How robust is the model?

This section contains important definitions for the rest of the book.

You may for-
get the rest of
this chapter,
but not this
part!

We started with a problem, selected a computational model and an associated complexity
model, designed an algorithm and managed to analyze its complexity. Looking back at this process,
we are certain to find arbitrariness in our choices. For instance, would a simple change in the set
of primitive operations change the complexity of your solution? Or what if we charge two units
of time for some of the operations? Of course, there is no end to such revisionist afterthoughts.
What we are really seeking is a certain robustness or invariance in our results.

¶12. What is a complexity function? In this book, we call a partial real function

f : R→ R

a complexity function (or simply, “function”). We use complexity functions to quantify the
complexity of our algorithms. Why do we consider partial functions? For one thing, many functions

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§7. Asymptopia Lecture I Page 14

of interest are only defined on positive integers. For example, the running time TA(n) of an
algorithm A that takes discrete inputs is a partial real function (normally defined only when n is
a natural number). Of course, if the domain of TA is taken to be N, then TA(n) would be total.
So why do we think of R as the domain of TA(n)? Again, we often use functions such f(n) = n/2
or f(n) =

√
n, to bound our complexity functions, and these are naturally defined on the real

domain; all the tools of analysis and calculus becomes available to analyze such functions. Many
common real functions such as f(n) = 1/n or f(n) = log n are partial functions because 1/n is
undefined at n = 0 and log n is undefined for n ≤ 0. If f(n) is not defined at n, we write f(n) =↑,
otherwise f(n) =↓. Since complexity functions are partial, we have to be careful about operations
such as functional composition.

¶13. Designated variable and Anonymous functions. In general, we will write “n2” and
“log x” to refer to the functions f(n) = n2 or g(x) = log x, respectively. Thus, the functions denoted
n2 or log x are anonymous (or self-naming). This convention is very convenient, but it relies on
an understanding that “n” in n2 or “x” in log x is the designated variable in the expression.
For instance, the anonymous complexity function 2xn is a linear function if n is the designated
variable, but an exponential function if x is the designated variable. The designated variable in
complexity functions, by definition, range over real numbers. This may be a bit confusing when
the designated variable is “n” since in mathematical literature, n is usually a natural number.

¶14. Robustness or Invariance issue. Let us return to the robustness issue which motivated
this section. The motivation was to state complexity results that have general validity, or inde-
pendent of many apparently arbitrary choices in the process of deriving our results. There are
many ways to achieve this: for instance, we can specify complexity functions up to “polynomial
smearing”. Two real functions f, g,are polynomially equivalent in this sense if for some c > 0,
f(n) ≤ cg(n)c and g(n) ≤ cf(n)c for all n large enough. Thus,

√
n and n3 are polynomially equiv-

alent according to this definition. This is extremely robust but alas, too coarse for most purposes.
The most widely accepted procedure is to take two smaller steps:

• Step 1: We are interested in the eventual behavior of functions (e.g., if T (n) = 2n for n ≤ 1000
and T (n) = n for n > 1000, then we want to regard T (n) as a linear function).

• Step 2: We distinguish functions only up to multiplicative constants (e.g., n/2, n and 10n
are indistinguishable),

These two decisions give us most of the robustness properties we desire, and are captured in the
following language of asymptotics.

¶15. Eventuality. This is Step 1 in our search for invariance. Given two functions, we say
“f ≤ g eventually”, written

f ≤ g (ev.), (1)

if f(x) ≤ g(x) holds for all x large enough. More precisely, this means there is some x0 such that
the following statement is true:

(∀x)[x ≥ x0 ⇒ f(x) ≤ g(x)]. (2)

By not caring about the behaviour of complexity function over some initial values, our com-
plexity bounds becomes robust against the following table-lookup trick. Given any algorithm, it

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§7. Asymptopia Lecture I Page 15

is conceivable that for any finite set of inputs, the algorithm store their answers in a table. This
modified algorithm only has to do a table-lookup to provide answers for these cases, and otherwise
it operates as before. But this table-lookup algorithm has the same “eventual” complexity as the
original algorithm.

REMARK: We must be careful with (2): what does “f(x) ≤ g(x)” mean when either

f(x) or g(x) may be undefined? The answer depends on the quantifier that bounds
(i.e., that controls) x, whether x is bounded by an existential quantifier or by a
universal quantifier. If a universal quantifier (as in (1)), we declare the predicate
“f(x) ≤ g(x)” to be true if either f(x) or g(x) is undefined. If an existential quantifier,
we declare the predicate “f(x) ≤ g(x)” to be false if either f(x) or g(x) is undefined.
So (2) can be expanded into:

(∀x)[(x ≥ x0 ∧ f(x) =↓ ∧ g(x) =↓). ⇒ .(f(x) ≤ g(x))].

We generalize this treatment of quantification: by a partial predicate on real num-
bers, we mean a partial function P : R → {0, 1}. In the previous example, P (x) is
just “f(x) ≤ g(x)”. The universally sentence “(∀x)[P (x)]” should be interpreted as
saying “for all x ∈ R, if P (x) is defined then P (x) is true”. Similarly, the existentially
sentence “(∃x)[P (x)]” says “there exists some x ∈ R such that P (x) is defined and
P (x) is true”.
Note that the sentence “P (x) holds eventually” has the form “(∃y)(∀x)[R(x, y)]”
where R(x, y) ≡ (x ≥ y ⇒ P (x)). More generally, let R(x, y) be a partial predicate.
Let us say that x0 is “eligible in the first argument” if there exists some y0 such that
R(x0, y) is defined. We can similarly define eligibility in the second argument. Then
“(∀x)(∃y)[R(x, y)]” means that “for all x eligible in the first argument, there exists y

such that R(x, y) is defined and is true”. In particular, if there are no x eligible in the
first argument, the sentence is true. On the other hand, “(∃x)(∀y)[R(x,y)]” means
that “there is an eligible x in the first argument, for all y, if R(x, y) is defined then
R(x, y) is true”. In this case, there is at least one eligible x in the first argument.
This treatment extends easily to any partial predicates on any number of arguments
and quantifiers.

To show the role of the x variable, we may also write (1) as

f(x) ≤ g(x) (ev. x).

Clearly, this is a transitive relation.

The “eventually” terminology is quite general: if a predicate R(x) is parametrized by x in
some real domain D ⊆ R, and R(x) holds for all x ∈ D larger than some x0, then we say R(x)
holds eventually (abbreviated, ev.). We can also extend this to predicates R(x, y, z) on several
variables. A related notion is this: if R(x) holds for infinitely many values of x ∈ D, we say R(x)
holds infinitely often (abbreviated, i.o.).

If g ≤ f (ev.) and f ≤ g (ev.), then clearly

g = f (ev.).

Thus means f(x) = g(x) for sufficiently large x, whenever both sides are defined. Most natural
functions f in complexity satisfies f ≥ 0 (ev.) and are non-decreasing eventually.

¶16. Domination. We now take Step 2 towards invariance. We say g dominates f , written

f � g,

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§7. Asymptopia Lecture I Page 16

if there exists C > 0 such that f ≤ C · g (ev.). Equivalently, f � g is written as g � f . This
notation naturally suggests the transitivity property: f � g and g � h implies f � h. Of course,
the reflexivity property holds: f � f . If f � g and g � f then we write

f ≍ g.

Clearly ≍ is an equivalence relation. The equivalence classes of f is called the Θ-order of f ; more
on this below. If f � g but not g � f then we write

f ≺ g.

E.g., 1 + 1
n ≺ n ≺ n2.

In short, the triplet of notations �,≺,≍ for real functions correspond to the binary relations
≤, <, = for real numbers. The basic properties of domination are suggested by this correspondence:
since x ≤ y and y ≤ z implies x ≤ z, we might expect f � g and g � h to imply f � h (this is
true).

Domination provides “implementation platform” robustness in our complexity results: it does
not matter whether you implement a given algorithm in a high level program language like Java

or in assembly. The complexity of your algorithm in these implementations (if done correctly) will
be dominated by each other (i.e., same Θ-order). This also insulates our complexity results against
Moore’s Law which predicts that the speed of hardware will keep increasing over time (the end is
not in sight yet).

¶17. The Big-Oh Notation. We write

O(f)

(and read order of f or big-Oh of f) to denote the set of all complexity functions g such that

0 � g � f.

Note that each function in O(f) dominates 0, i.e., is eventually non-negative. Thus, restricted The key
asymptotic
notation to
know!

to functions that are eventually non-negative, the big-Oh notation (viewed as a binary relation) is
equivalent to domination.

big-Oh is al-
most the same
as domination!

In other words, if g = O(f) then there is some C > 0 and x0 such that for all x ≥ x0, if g(x) =↓
and f(x) =↓ then 0 ≤ g(x) ≤ Cf(x).

E.g., The set O(1) is the set of functions f that is bounded. The function 1 + 1
n is a member

of O(1).

The simplest usage of this O-notation is as follows: we write

g = O(f)

(and read ‘g is big-Oh of f ’ or ‘g is order of f ’) to mean g is a member of the set O(f). The
equality symbol ‘=’ here is “uni-directional”: g = O(f) does not mean the same thing as O(f) = g.
Below, we will see how to interpret the latter expression. The equality symbol in this context is
called a one-way equality. Why not just use ‘∈’ for the one-way equality? A partial explanation
is that one common use of the equality symbol has a uni-directional flavor where we transform a
formula from an unknown form into a known form, separated by an equality symbol. Our one-way

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§7. Asymptopia Lecture I Page 17

equality symbol for O-expressions lends itself to a similar manipulation. For example, the following
sequence of one-way equalities

f(n) =

n∑

i=1

(i +
n

i
) =

(
n∑

i=1

i

)
+

(
n∑

i=1

n

i

)
= O(n2) +O(n log n) = O(n2)

may be viewed as a derivation to show f is at most quadratic.

¶18. Big-Oh Expressions. The expression ‘O(f(n))’ is an example of an O-expression, which
we now define. In any O-expression, there is a designated variable which is the real variable that
goes4 to infinity. For instance, the O-expression O(nk) would be ambiguous were it not for the
tacit convention that ‘n’ is normally the designated variable. Hence k is assumed to be constant.
We shall define O-expressions as follows:

(Basis) If f is the symbol for a function, then f is an O-expression. If n is the designated variable
for O-expressions and c a real constant, then both ‘n’ and ‘c’ are also O-expressions.

(Induction) If E, F are O-expressions and f is a symbol denoting a complexity function then
the following are O-expressions:

O(E), f(E), E + F, EF, −E, 1/E, EF .

Each O-expression E denotes a set Ẽ of partial real functions in the obvious manner: in the basis
case, a function symbol f denotes the singleton set f̃ = {f}. Inductively, the expression E + F

(for instance) denotes the set Ẽ + F of all functions f + g where f ∈ Ẽ and g ∈ F̃ . Similarly for

f̃(E), ẼF , −̃E, ẼF .

The set 1̃/E is defined as
{
1/g : g ∈ Ẽ) & 0 � g

}
. The most interesting case is the expression

O(E), called a “simple big-Oh expression”. In this case,

Õ(E) =
{
f : (∃g ∈ Ẽ)[0 � f � g]

}
.

Examples of O-expressions:

2n −O(n2 log n), nn+O(log n), f(1 +O(1/n))− g(n).

Note that in general, the set of functions denoted by an O-expression need not dominate 0. If
E, F are two O-expressions, we may write

E = F

to denote Ẽ ⊆ F̃ , i.e., the equality symbol stands for set inclusion! This generalizes our earlier
“f = O(g)” interpretation. Some examples of this usage:

O(n2)− 5O(log n) = O(nlog n), n + (log n)O(
√

n) = nlog log n, 2n = O(1)n−O(1).

An ambiguity arises from the fact that ifO does not occur in anO-expression, it is indistinguishable
from an ordinary expression. We must be explicit about our intention, or else rely on the context in
such cases. Normally, at least one side of the one-sided equation ‘E = F ’ contains an occurrence of
‘O’, in which case, the other side is automatically assumed to be an O-expression. Some common
O-expressions are:

4More generally, we can consider x approaching some other limit, such as 0.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§7. Asymptopia Lecture I Page 18

• O(1), the bounded functions.

• 1±O(1/n), a set of functions that tends to 1±.

• O(n), the linearly bounded functions.

• nO(1), the functions bounded by polynomials.

• O(1)n or 2O(n), the functions bounded by simple exponentials.

• O(log n), the functions bounded by some multiple of the logarithm.

¶19. Extensions of Big-Oh Notations. We note some simple extensions of the O-notation:
(1) Inequality interpretation: For O-expressions E, F , we may write E 6= F to mean that the
set of functions denoted by E is not contained in the set denoted by F . For instance, f(n) 6= O(n2)
means that for all C > 0, there are infinitely many n such that f(n) > Cn2.
(2) Subscripting convention: We can subscript the big-Oh’s in an O-expression. For example,

OA(n), O1(n
2) +O2(n log n). (3)

The intent is that each subscript (A, 1, 2) picks out a specific but anonymous function in (the set
denoted by) the unsubscripted O-notation. Furthermore, within a given context, two occurrences
of an identically subscripted O-notation are meant to refer to the same function. How, it makes
sense to use inequalities, as in “f ≥ OA(g)” or “f ≤ O1(g)”.

For instance, if A is a linear time algorithm, we may say that “A runs in time OA(n)” to
indicate that the choice of the function OA(n) depends on A. Further, all occurrences of “OA(n)”
in the same discussion will refer to the same anonymous function. Again, we may write

n2k = Ok(n), n2k = On(2k)

depending on one’s viewpoint. Especially useful is the ability to do “in-line calculations”. As an
example, we may write

g(n) = O1(n log n) = O2(n
2)

where, it should be noted, the equalities here are true equalities of functions.

(3) Another possible extension is to multivariate real functions. For instance “f(x, y) = O(g(x, y))”
seems to be clear enough. In practice, this extension seems little needed.

¶20. Related Asymptotic Notations. The above discussion extends in a natural way to
several other related notations.

Big-Omega notation: Ω(f) is the set of all complexity functions g such that for some constant
C > 0,

C · g ≥ f ≥ 0 (ev.).

Of course, this can be compactly written as g � f � 0. Note that Ω(f) is empty unless it is
eventually non-negative. Clearly, big-Omega is just the reverse of the big-Oh relation: g is
in Ω(f) iff f = O(g).

Theta notation: Θ(f) is the intersection of the sets O(f) and Ω(f). So g is in Θ(f) iff g ≍ f .

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§7. Asymptopia Lecture I Page 19

Small-oh notation: o(f) is the set of all complexity functions g such that for all C > 0,

C · f ≥ g ≥ 0 (ev.).

Thus g is in o(f) implies g(n)/f(n)→ 0 as n → ∞. Also, o(f) ⊆ O(f). A related notation
is this: we say

f ∼ g

if f = g ± o(g) or f(x) = g(x)[1 ± o(1)]. So n+lg n ∼ n.

Small-omega notation: ω(f) is the set of all functions g such that for all C > 0,

C · g ≥ f ≥ 0 (ev.).

Thus g is in ω(f) implies g(n)/f(n)→∞ as n→∞. Clearly ω(f) ⊆ Ω(f).

For each of these notations, we again define the ◦-expressions (◦ ∈ {Ω, Θ, o, ω}), use the one-
way inequality instead of set-membership or set-inclusion, and employ the subscripting convention.
Thus, we write “g = Ω(f)” instead of saying “g is in Ω(f)”. We call the set ◦(f) the ◦-order of
f . Here are some immediate relationships among these notations:

• f = O(g) iff g = Ω(f).

• f = Θ(g) iff f = O(g) and f = Ω(g).

• f = O(f) and O(O(f)) = O(f).

• f + o(f) = Θ(f).

• o(f) ⊆ O(f).

• g = ω(f) iff f = o(g).

¶21. Lower Bounds. We can negate the statement f = O(g) by writing f 6= O(g). This
statement is a way of stating a lower bound on f , since f = O(g) states an upper bound on f .
Thus we have the following three ways to state lower bounds on a complexity function f(n):

• f(n) = Ω(g(n)).

• f(n) 6= O(g(n)).

• f(n) 6= o(g(n)).

Each lower bound on f is less stringent than the previous. See Exercise for how these are used in
practice.

For example, let us prove that for all k < k′,

nk′ 6= O(nk).

Suppose nk′

= O(nk). Then there is a C > 0 such that nk′ ≤ Cnk (ev.). That means nk′−k ≤ C
(ev.). This is a contradiction because nε is unbounded for any ε > 0.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§7. Asymptopia Lecture I Page 20

¶22. Discussion. There is some debate over the best way to define the asymptotic concepts.
There is considerable divergence in the literature on the details. Here we note just two alternatives:
1. Perhaps the most common definition follows Knuth [4, p. 104] who defines “g = O(f)” to mean
there is some C > 0 such that |f(x)| dominates C|g(x)|. Using this definition, both O(−f)
and −O(f) would mean the same thing as O(f). Our definition, on the contrary, allows us to
distinguish5 between 1+O(1/n) and 1−O(1/n). Note that g = 1−O(f) amounts to 1−Cf ≤ f ≤ 1
(ev.).

Note that when an big-Oh expression appears in negated form as in −O(1/n), it is really a
lower bound
2. Again, we could have defined O(f) more simply, as comprising those g such that g � f . That is,
we omit the requirement 0 � g in our original definition. This definition is attractive because of its
simplicity. But with this “simplified definition”, O(f) contains arbitrarily negative functions. The
expression 1−O(1/n) is useful as an upper and lower bound under our official notation. But with
the simplified definition, the expression 1−O(1/n) has no value as an upper bound. Our official
definition opted for something that is intermediate between this simplified version and Knuth’s.

We are following Cormen et al [1] in restricting the elements of O(f) to complexity functions
that dominate 0. This approach has its own burden: thus whenever we say “g = O(f)”, we have
to check that g dominates 0 (cf. exercise 1 below). In practice, this requirement is not much of a
burden, and is silently passed over.

A common abuse is to use big-Oh notations in conjunction with the less-than or greater-than
symbol: it is very tempting to write “f(n) ≤ O(g)” instead of “f(n) = O(g)”. At best, this is
redundant. The problem is that, once this is admitted, one may in the course of a long derivation
eventually write “f(n) ≥ O(E)” which is not very meaningful. Hence we regard any use of ≤ or
≥ symbols in O-notations as illegitimate (but see below, (3)).

Perhaps most confusion (and abuse) in the literature arises from the variant definitions of the
Ω-notation. For instance, one may have only shown a lower bound of the form g(n) 6= O(f(n)) but
this is claimed as a g(n) = Ω(f(n)) result. In other words, the expression “g = Ω(f)” is interpreted
to mean that there exists (or for all) C > 0 such that for infinitely many x, g(x) ≥ Cf(x).

Evidently, these asymptotic notations can be intermixed. E.g., o(nO(log n) − Ω(n). However,
they can be tricky to understand and there seems to be little need for them. Another generalization
with some applications are multivariate complexity functions such as f(x, y). They do arise in
discussing tradeoffs between two or more computational resources such as space-time, area-time,
etc. In recently years, the study of “parameterized complexity” is gives another example of bivariate
complexity functions (one of the size variables controls the “parameters” of the problem).

Exercises

Exercise 7.1: Assume f(n) ≥ 1 (ev.).
(a) Show that f(n) = nO(1) iff there exists k > 0 such that f(n) = O(nk). This is mainly an
exercise in unraveling our notations!
(b) Show a counter example to (a) in case f(n) ≥ 1 (ev.) is false. ♦

5On the other hand, there is no easy way to recover Knuth’s definition using our definitions. It may be useful to
retain Knuth’s definition by introducing a special notation “|O|(f(n))”, etc.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§7. Asymptopia Lecture I Page 21

SOLUTION: a) Let f(n) ≥ 1 (ev) and assume that f(n) = nO(1). Therefore there
exists a g ∈ O(1) such that g(n) ≤ k (ev) and f(n) ≤ ng(n) ≤ nk (ev). This shows
that f(n) ∈ O(nk). In the other direction, suppose f = O(nk). Then f ≤ Cnk (ev) for
some C > 1. Thus f ≤ nk+ǫ (ev) for any ǫ > 0 (we This shows f = nO(1).
b) To find a counterexample, we exploit the fact that if g = O(1) implies g ≥ 0 (ev).
Let us choose f(n) = 1/2. Clearly f = O(n). But f(n) 6= nO(1) because if f(n) = ng(n)

for some function g(n), then clearly g(n) < 0 (ev). But this means g(n) 6= O(1).
Comments:

Exercise 7.2: Prove or disprove: f = O(1)n iff f = 2O(n). ♦

Exercise 7.3: Unravel the meaning of the O-expression: 1−O(1/n)+O(1/n2)−O(1/n3). Does
the O-expression have any meaning if we extend this into an infinite expression with alter-
nating signs? ♦

Exercise 7.4: For basic properties of the logarithm and exponential functions, see the appendix
in the next lecture. Show the following (remember that n is the designated variable). In
each case, you must explicitly specify the constants n0, C, etc, implicit in the asymptotic
notations.
(a) (n + c)k = Θ(nk). Note that c, k can be negative.
(b) log(n!) = Θ(n log n).
(c) n! = o(nn).
(d) ⌈log n⌉! = Ω(nk) for any k > 0.
(e) ⌈log log n⌉! ≤ n (ev.). ♦

Exercise 7.5: Provide either a counter-example when false or a proof when true. The base b of
logarithms is arbitrary but fixed, and b > 1. Assume the functions f, g are arbitrary (do not
assume that f and g are ≥ 0 eventually).
(a) f = O(g) implies g = O(f).
(b) max{f, g} = Θ(f + g).
(c) If g > 1 and f = O(g) then ln f = O(ln g). HINT: careful!
(d) f = O(g) implies f ◦ log = O(g ◦ log). Assume that g ◦ log and f ◦ log are complexity
functions.
(e) f = O(g) implies 2f = O(2g).
(f) f = o(g) implies 2f = O(2g).
(g) f = O(f2).
(h) f(n) = Θ(f(n/2)).

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§7. Asymptopia Lecture I Page 22

SOLUTION: Only two statements are true:

(a) False. f = n and g = n2.

(b) False. Take f any function that is eventually non-zero. Then take g = −f

(c) False. Take f = 1/2 and any function g such that g > 1. But log(f) < 0 and so,
by definition of the O-notation, f 6∈ O(lg g)).

This solution seems to take advantage of a technical requirement in the definition
of O-notation. HERE is another solution which does not exploit this property
(and I think is more insightful): Let f = 2 and g(x) = (x + 1)/x = 1 + (1/x).
Then ln g > 0 but lg g(n)→ 0 as x→∞. [In fact, lg g(x) < 1/(2x), but you don’t
need to not know this]. Clearly, lg f = 1 but there is no constant C > 0 such that
lg f = 1 ≤ C lg g.

(d) True. We have f = O(g) implies there is some C > 0 and x0 such that for all
x > x0, f(x) ≤ Cg(x). Thus, f(log(x)) ≤ Cg(log(x)) for all x ≥ ex0 .

(e) False. Let f = 2n and g = n.

(f) True. f = o(g) implies that for all C > 0, 0 ≤ f ≤ C ∗ g (ev). Taking C = 1, we
obtain that 0 ≤ 2f ≤ 2g or in other words 2f ∈ O(2g).

(g) False. Let f = 1/n.

(h) False. f = 2n.

Comments:

♦

Exercise 7.6: Re-solve the previous exercise, assuming that f, g ≥ 2 (ev.).

SOLUTION: Many statements are now true:

(a) False, as before.

(b) True. max(f, g) ≤ f + g (ev), since both functions are ≥ 0 (ev). But f + g ≤
2 max(f, g) (ev).

(c) True. Since f = O(g), we have f ≤ Cg (ev) for some C > 1. So lg f ≤ lg C + lg g.
As g ≥ 2 (ev), so lg g ≥ 1 (ev) and so lg f ≤ lg C + lg g = (1 + lg C) lg g (ev).

Alternative proof (based on limits, which I generally avoid): the limit as n goes
to infinity of ln(f)/ ln(g) = (1/f)/(1/g) = g/f = C, we see that lg(f) = O(lg(g))
.

(d) True, as before.

(e) False, as before.

(f) True. as before.

(g) True. We have 1 ≤ f (ev) and hence f ≤ f2 (ev). Thus f = O(f2).

(h) False, as before.

Comments: Some students treat max {f, g} to be either equal to the function f (or
g). But this is not true since max {f, g} is a pointwise maximum, which is sometimes
attained by f and other times by g.

♦

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§8. Two Dictums Lecture I Page 23

Exercise 7.7: Let f(x) = sin x and g(x) = 1.
(i) Prove f � g or its negation.
(ii) Prove g � f or its negation.

HINT: To prove that f 6� g, you need to show that for all choices of C > 0 and x0 > 0, some
relationship between f and g fails.

SOLUTION:
(i) CLAIM: f � g. Choose C = 1. Then for all x ∈ R, we have f(x) = sin x ≤

1 = g(x). So any choice of x0 will do.
(ii) Note that f � g fails because f is periodic. Hence we will prove the negation:

CLAIM: g 6� f . To see this, note that for all C > 0 and x0, there exists x > x0 such
that f(x) = 0. Hence g(x) ≤ Cf(x) does not hold.

Comments:

♦

Exercise 7.8: This exercise shows three (increasingly strong) notions of lower bounds. Suppose
TA(n) is the running time of an algorithm A.
(a) Suppose you have constructed an infinite sequence of inputs I1, I2, . . . of sizes n1 < n2 <
· · · such that A on Ii takes time more than f(ni). How can you express this lower bound
result using our asymptotic notations?
(b) In the spirit of (a), what would it take to prove a lower bound of the form TA(n) 6=
O(f(n))? What must you show about of your constructed inputs I1, I2,
(c) What does it take to prove a lower bound of the form TA(n) = Ω(f(n))? ♦

Exercise 7.9: Show some examples where you might want to use “mixed” asymptotic expressions.
♦

Exercise 7.10: Discuss the meaning of the expressions n−O(log n) and n +O(log n) under (1)
our definition, (2) Knuth’s definition and (3) the “simplified definition” in the discussion.

♦

End Exercises

§8. Two Dictums of Algorithmics

We discuss two principles in algorithmics. They justify many of our procedures and motivate
some of the fundamental questions we ask.

(A) Complexity functions are determined only up to Θ-order. This recalls our motivation for
introducing asymptotic notations, namely, concern for robust complexity results. For instance, we
might prove a theorem that the running time T (n) of an algorithm is “linear time”, T (n) = Θ(n).
Then simple and local modifications to the algorithm, or reasonable implementations on different
platforms, should not affect the validity of this theorem.

There are of course several caveats: A consequence of this dictum is that a “new” algorithm is
not considered significant unless its asymptotic order is less than previous known algorithms. This

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§8. Two Dictums Lecture I Page 24

attitude could be counter-productive if it is abused. Often, an asymptotically superior algorithm
may be inferior when compared to another slower algorithm on all inputs of realistic sizes. For
special problems, we might be interested in constant multiplicative factors.

(B) Problems with complexity that are polynomial-bounded are feasible. Moreover, there is an
unbridgeable gap between polynomial-bounded problems and those that are not polynomial-bounded.
This principle goes back to Cobham and Edmonds in the late sixties and relates to the P versus NP
question. Hence, the first question we ask concerning any problem is whether it is polynomially-
bounded. The answer may depend on the particular complexity model. E.g., a problem may
be polynomial-bounded in space-resource but not in time-resource, although at this moment it
is unknown if this possibility can arise. Of course, polynomial-bounded complexity T (n) = nc is
not practical except for small c (typically less than 6). In many applications, even c = 2 is not
practical. So the “practically feasible class” is a rather small slice of P .

Despite the caveats, these two dictums turn out to be extremely useful. The landscape of
computational problems is thereby simplified and made “understandable”. The quest for asymp-
totically good algorithms helps us understand the nature of the problem. Often, after a compli-
cated but asymptotically good algorithm has been discovered, we find ways to achieve the same
asymptotic result in a simpler (practical) way.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§A. APPENDIX: General Notations Lecture I Page 25

§A. APPENDIX: General Notations

We gather some general notations used throughout this book. Use this as reference. If there is
a notation you do not understand from elsewhere in the book, this is a first place to look. Bookmark this

appendix to
come back
again!

§A.0 Definitions.
We use the symbol := to indicate the definition of a term: we will write X := . . . Y . . . when
defining a term X in terms of . . . Y For example, we define the sign function as follows:

sign(x) :=





1 iff x > 0
0 iff x = 0
−1 iff x < 0

Again, to define the special symbol for logarithm to base 2, we will say: let lg x := log2 x.

§A.1 Numbers.
Denote the set of natural numbers6 by N = {0, 1, 2, . . .}, integers by Z = {0,±1,±2, . . .}, rational
numbers by Q = {p/q : p, q ∈ Z, q 6= 0}, the reals R and complex numbers C. The positive and
non-negative reals are denoted R>0 and R≥0, respectively. The set of integers {i, i+1, . . . , j−1, j}
where i, j ∈ N is denoted [i..j]. So the size of [i..j] is max{0, j− i+1}. If r is a real number, let its
ceiling ⌈r⌉ be the smallest integer greater than or equal to r. Similarly, its floor ⌊r⌋ is the largest
integer less than or equal to r. Clearly, ⌊r⌋ ≤ r ≤ ⌈r⌉. For instance, ⌊0.5⌋ = 0, ⌊−0.5⌋ = −1 and
⌈−2.3⌉ = −2.

§A.2 Sets.
The size or cardinality of a set S is the number of elements in S and denoted |S|. The empty
set is ∅. A set of size one is called a singleton. The disjoint union of two sets is denoted X ⊎ Y .
Thus, X = X1 ⊎X2 ⊎ · · · ⊎Xn to denote a partition of X into n subsets. If X is a set, then 2X

denotes the set of all subsets of X . The Cartesian product X1×· · ·×Xn of the sets X1, . . . , Xn

is the set of all n-tuples of the form (x1, . . . , xn) where xi ∈ Xi. If X1 = · · · = Xn then we simply
write this as Xn. If n ∈ N then a n-set refers to one with cardinality n, and

(
X
n

)
denotes the set

of n-subsets of X .

Sometimes, we need to consider multisets. These are sets whose elements need not be distinct.
E.g., the multiset S = {a, a, b, c, c, c} has 6 elements but only three of them are distinct. There are
two copies of a and three copies of c in S. Note that S is distinct from the set {a, b, c}, and we use
set notations for multisets. Alternatively, a multiset can be viewed as a function µ : S → N whose
domain is a standard set S. Intuitively, µ(a) is the multiplicity of each a ∈ S.

§A.3 Functions.
If f : X → Y is a partial function, then write f(x) ↑ if f(x) is undefined and f(x) ↓ otherwise.
Function composition will be denoted f ◦ g : X → Z where g : X → Y and f : Y → Z. Thus
(f ◦ g)(x) = f(g(x)). We say a total function f is injective or 1− 1 if f(x) = f(y) imples x = y;
it is surjective or onto if f(X) = Y ; it is bijective if it is both injective and surjective.

The special functions of exponentiation expb(x) and logarithm logb(x) to base b > 0 are more
fully described in the Appendix of Chapter 2. Although these functions can be viewed as complex
functions, we will exclusively treat them as real functions in this book. In particular, it means
logb(x) is undefined for x ≤ 0. When the base b is not explicitly specified, it is assumed to be some
constant b > 1. Two special bases deserve their own notations: lg x and lnx refer to logarithms

6Zero is considered natural here, although the ancients do not consider it so. The symbol Z comes from the
German ‘zahlen’, to count.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§A. APPENDIX: General Notations Lecture I Page 26

to base b = 2 and base b = e = 2.718..., respectively. For any real i, we write logi x as short hand
for (log x)i. E.g., log2 x = (log x)2. But if i is a natural number then log(i) x will denote the i-fold

application of the log-function. E.g., log(2) x = log(log x)) = log log x and log(0) x = x. In fact,
this notation can be extended to any integer i, where i < 0 indicates the |i|-fold application of exp.

§A.4 Logic.
We assume the student is familiar with Boolean (or propositional) logic. In Boolean logic, each
variable A, B stands for a proposition that is either true or false. Boolean logic deals with Boolean
combinations of such variables: ¬A, A ∨B, A ∧B. Note that A⇒ B is logical implication, and is
equivalent to ¬A ∨B.

But mathematical facts goes beyond propositional logic. Here is an example7 of a mathematical
assertion P (x, y) where x, y are real variables:

P (x, y) : There exists a real z such that if x < y then x < z < y. (4)

The student should know how to parse such assertions. The assertion P (x, y) happens to be true.
This is logically equivalent to

(∀x, y ∈ R)[P (x, y)]. (5)

All mathematical assertions are of this nature. Note that we have passed from propositional logic
to quantifier (first order) logic. It is said that mathematical truths are universal: truthhood does
not allow exceptions. If an assertion P (x, y) has exceptions, and we can explicitly characterize the
exceptions E(x, y): then the new statement P (x, y) ∨ E(x, y) constitute a true assertion.

Assertions contain variables: for example, P (x, y) in (4) contains x, y, z. Each variable has an
implied or explicit range (x, y, z range over “real numbers”), and each variable is either quantified
(either by “for all” or “there exists”) or unquantified. Alternatively, they are either bounded
or free. In our example P (x, y), z is bounded while x, y are free. It is conventional to display the
free variables as functional parameters of an assertion. The symbol ∀ stands for “for all” and is
called the universal quantifier. Likewise, the symbol ∃ stands for “there exists” and is called the
existential quantifier. Assertions with no free variables are called statements. We can always
convert an assertion into a statement by adding some prefix to quantify each of the free variables.
Thus, P (x, y) can be converted into statements such as in (5) or as in (∃x ∈ R)(∀y ∈ R)[P (x, y)].
In general, if A and B are statements, so is any Boolean combinations of A and B, such as A ∧B
and ¬A or A ∨B. However, all statements can be transformed into the form

(Q1)(Q2) · · · (Qn) [. . . predicate . . .]

where Qi is the ith quantifier part. Such a form, where all the quantifiers appear before the
predicate part, is said to be in prenex form.

For a course in Algorithmics, there is a natural place to practice quantifier logic: in the asymp-
totic notations.

§A.5 Proofs and Induction.
Constructing proofs or providing counter examples to mathematical statements is a basic skill
to cultivate. Three kinds of proofs are widely used: (i) case analysis, (ii) induction, and (iii)
contradiction.

A proof by case analysis is often a matter of patience. But sometimes a straightforward enu-
meration of the possibilities will yield too many cases; clever insights may be needed to compress
the argument. Induction is sometimes mechanical as well but very complicated inductions can also

7When we formalize the logical language of discussion, what is called “assertion” here is often called “formula”.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§A. APPENDIX: General Notations Lecture I Page 27

arise (Chapter 2 treats induction). Proofs by contradiction usually has a creative element: you
need to find an assertion to be contradicted!

In proofs by contradiction, you will need to routinely negate a logical statement. Let us first
consider the simple case of propositional logic. Here, you basically apply what is called De Morgan’s
Law: if A are B are truth values, then ¬(A ∨ B) = (¬A) ∧ (¬B) and ¬(A ∧ B) = (¬A) ∨ (¬B).
For instance suppose you want to contradict the proposition A⇒ B. You need to first know that
A⇒ B is the same as (¬A) ∨B. Negating this by de Morgan’s law gives us A ∧ (¬B).

Next consider the case of quantified logic. De Morgan’s law becomes the following: ¬((∀x)P) is
equivalent to (∃x)(¬P); ¬((∃x)P) is equivalent to (∀x)(¬P). A useful place to exercise these rules
is to do some proofs involving the asymptotic notation (big-Oh, big-Omega, etc). See Exercise.

§A.6 Formal Languages.
An alphabet is a finite set Σ of symbols. A finite sequence w = x1x2 · · ·xn of symbols from Σ is
called a word or string over Σ; the length of this string is n and denoted8 |w|. When n = 0, this
is called the empty string or word and denoted with the special symbol ǫ. The set of all strings
over Σ is denoted Σ∗. A language over Σ is a subset of Σ∗.

§A.7 Graphs.
A hypergraph is a pair G = (V, E) where V is any set and E ⊆ 2V . We call elements of V
vertices and elements of E hyper-edges. In case E ⊆

(
V
k

)
, we call G a k-graph. The case k = 2

is important and is called a bigraph (or more commonly, undirected graph). A digraph or
directed graph is G = (V, E) where E ⊆ V 2 = V × V . For any digraph G = (V, E), its reverse
is the digraph (V, E′) where (u, v) ∈ E iff (v, u) ∈ E′. In this book, the word “graph” shall refer
to a bigraph or digraph; the context should make the intent clear. The edges of graphs are often
written ‘(u, v)’ or ‘uv’ where u, v are vertices. We will prefer9 to denote edge-hood by the notation
u−v. Of course, in the case of bigraphs, u−v = v−u.

Often a graph G = (V, E) comes with auxiliary data, say d1, d2, etc. In this case we denote the
graph by

G = (V, E; d1, d2, . . .)

using the semi-colon to mark the presense of auxiliary data. For example:
(i) Often one or two vertices in V are distinguished. If s, t ∈ V are distinguished, we might write
G = (V, E; s, t). This notation might be used in shortest path problems where s is the source and
t is the target for the class of paths under consideration.
(ii) A “weight” function W : V → R, and we denote the corresponding weighted graph by G =
(V, E; W).
(iii) Another kind of auxiliary data is vertex coloring of G, i.e., a function C : V → S where
S is any set. Then C(v) is called the color of v ∈ V . If |S| = k, we call C a k-coloring. The
chromatic graph is therefore given by the triple G = (V, E; C). An edge coloring is similarly
defined, C : E → S.

We introduce terminology for some special graphs: If V is the empty set, A graph G = (V, E)
is called the empty graph. If E is the empty set, G = (V, E) is called the trivial graph. Hence
empty graphs are necessarily trivial but not vice-versa. Kn = (V,

(
V
2

)
) denotes the complete

graph on n = |V | vertices. A bipartite graph G = (V, E) is a digraph such that V = V1⊎V2 and
E ⊆ V1 × V2. It is common to write G = (V1, V2, E) in this case. Thus, Km,n = (V1, V2, V1 × V2)
denotes the complete bipartite graph where m = |V1| and n = |V2|.

8This notation should not be confused with the absolute value of a number or the size of a set. The context will
make this clear.

9When we write u−v, it is really an assertion that the (u, v) is an edge. So it is redundant to say “u−v is an
edge”.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§A. APPENDIX: General Notations Lecture I Page 28

Two graphs G = (V, E), G′ = (V ′, E′) are isomorphic if there is some bijection φ : V → V ′

such that φ(E) = E′ (the notation φ(E) has the obvious meaning).

If G = (V, E), G′ = (V ′, E′) where V ′ ⊆ V and E′ ⊆ E then we call G′ a subgraph of G. In
case E′ is the restriction of E to the edges in V ′, i.e., E′ = E ∩ V ′ × V ′, then we say G′ is the
subgraph of G induced by V ′, or G′ is the restriction of G to V ′. We may write G|V ′ for G′.

A path (from v1 to vk) is a sequence (v1, v2, . . . , vk) of vertices such that (vi, vi+1) is an edge.
Thus, we may also denote this path as (v1−v2− · · · −vk). A path is closed if v1 = vk and k > 1.
Two closed paths are equivalent if the sequence of edges they pass through are the same up to
cyclic reordering. An equivalence class of such closed paths is called a cycle. The length of a cycle
is just the length of any of its representative closed paths. For bigraphs, we require cycles to have
length at least 3. A graph is acyclic if it has no cycles. Sometimes acyclic bigraphs are called
forests, and acyclic digraph are called dags (“directed acyclic graph”).

Two vertices u, v are connected if there is a path from u to v, and a path from v to u. (Note
that in the case of bigraphs, there is a path from u to v iff there is a path from v to u.) We shall
say v is adjacent to u if u−v. Clearly, connectivity and adjacency are symmetric binary relation.
It is easily seen that connectivity is also reflexive and transitive. This relation partitions the set
of vertices into connected components.

In a digraph, out-degree and in-degree of a vertex is the number of edges issuing (respec-
tively) from and into that vertex. The out-degree (resp., in-degree) of a digraph is the maximum
of the out-degrees (resp., in-degrees) of its vertices. The vertices of out-degree 0 are called sinks
and the vertices of in-degree 0 are called sources. The degree of a vertex in a bigraph is the
number of adjacent vertices; the degree of a bigraph is the maximum of degrees of its vertices.

See Chapter 4 for further details on graph-related matters.

§A.8 Trees.
A connected acyclic bigraph is called a free tree. A digraph such that there is a unique source
vertex (called the root) and all the other vertices have in-degree 1, is called10 a tree. The sinks
in a tree are called leaves or external nodes and non-leaves are called internal nodes. In
general, we prefer a terminology in which the vertices of trees are called nodes. Thus there is a
unique path from the root to each node in a tree. If u, v are nodes in T then u is a descendent
of v if there is a path from v to u. Every node v is a descendent of itself, called the improper
descendent of v. All other descendents of v are called proper. We may speak of the child or
grandchild of any node in the obvious manner. The reverse of the descendent binary relation is
the ancestor relation; thus we have proper ancestors, parent and grandparent of a node.

The subtree at any node u of T is the subgraph of T obtained by restricting to the descendents
of u. The depth of a node u in a tree T is the length of the path from the root to u. So the root is
the unique node of depth 0. The depth of T is the maximum depth of a node in T . The height
of a node u is just the depth of the subtree at u; alternatively, it is the length of the longest path
from u to its descendents. Thus u has height 0 iff u is a leaf iff u has no children. The collection
of all nodes at depth i is also called the ith level of the tree. Thus level zero is comprised of just
the root. We normally draw a tree with the root at the top of the figure, and edges are implicitly
direction from top to bottom.

10One can also define trees in which the sense of the edges are reversed: the root is a sink and all the leaves are
sources. We will often go back and forth between these two view points without much warning. E.g., we might
speak of the “path from a node to the root”. While it is clear what is meant here, but to be technically correct, we
ought to speak awkwardly of the path in the “reverse of the tree”.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§A. APPENDIX: General Notations Lecture I Page 29

See Chapter 3 for further details on binary search trees.

§A.9 Programs.
In this book, we present algorithms in an informal unspecified programming language that combines
mathematical notations with standard programming language constructs. For lack of better name,
we call this language pseudo-PL. The basic goal in the presentation of pseudo-PL programs pseudo-PL is

appropriately
amorphous by
design

is to expose the underlying algorithmic logic. It is not to produce code that can compile in
any conventional programming language! And yet, it is often easy to transcribe pseudo-PL into
compilable code in languages such as C++ or Java. There is a good reason why we stop short
of writing compilable code – first of all, it is programming language- dependent. The half-life of
programming languages is short as compared11 to mathematical language. Second, compilable
code is meant for machine consumption, and that gets in the way of human understanding. Here e.g., static

volatile int

n

is the quick run-down on pseudo-PL:

• We use standard programming constructs such as if-then-else, while-loop, return statements,
etc. no clutter lan-

guage• To reduce clutter, we indicate the structure of programming blocks by indentation and new-
lines only. In particular, we avoid explicit block markers such as “begin...end”, “...”, etc.

• Programming variables are undeclared, and implicitly introduced through their first use.
They are not explicitly typed, but the context should make this clear. This is in the spirit
of modern scripting languages such as Perl, and consistent with our clutter-free spirit.

• Informally, the equality symbol “=” is often overloaded to indicate the assignment operator
as well as the equality test. We will use := for assignment operator, and preserve12 “=” for
equality test.

• In the style of C or Java, we write “x++” (resp., “++x”) to indicate the increment of an integer
variable x. The value of this expression is the value of x before (resp., after) incrementing.
There is an analogous notation for decrementing, x-- and --x.

• Comments in a program are indicated in two ways: ⊲ This is a forward comment and
⊳ This is a backward comment . These comments either precede (in case of forward comment)
or follows (in case of backward comment) the code that it describes.

Here is a recursive program written in pseudo-PL to compute the Factorial function:

F (n)
Input: natural number n.
Output: n!
⊲ Base Case
1. if n ≤ 1 return(1).
⊲ General Case
2. return(n · F (n− 1)). ⊳ This is a recursive call

11It would be hard to read mathematical writing from 80 years ago, but the chance that a program written 20
years ago can still compile today is close to zero. So perhaps the half-life of mathematical language is perhaps 40
years as compare to a half-life of 10 years for programming languages.

12Programmers often use “=” for assignment and “==” for equality test. But our choice preserves the original
meaning of “=”.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§A. APPENDIX: General Notations Lecture I Page 30

It is important to note that we use indentation to indicate the block structure of our code.
This avoids visual clutter.

§A.10 How to answer algorithmic exercises.
In our exercises, whenever we ask you to give an algorithm, it is best to write in pseudo code.
Throughout this book, you will see examples of such pseudo code. We suggest you emulate this
form of presentation. Students invariably ask about what level of detail is sufficient. The general
answer is as much detail as one needs to know how to reduce it to compilable programs in a
conventional language like Java. Actually, there are other issues. Here is a checklist you can use:

Rule 1 Take advantage of well-known algorithms. For instance, if you are invoking a sorting
routine or a standard graph traversal algorithm, you just13 need to indicate this. Of course,
you may need to set up the arguments correctly before calling these standard routines.

Rule 2 Reduce all operations to O(1) time operations. Only do this when Rule 1 does not apply.
But sometimes, achieving O(1) time may depend on a suitable choice of data structures. If
so, you should explain this.

Rule 3 Specify your input and output. This cannot be emphasized enough. We cannot judge your
algorithm if we do not know what to expect from its output!

Rule 4 Use progressive algorithm development. Even pseudo code may make no sense without
a suitable orientation – it is never wrong to precede your pseudo code with some English
explanation of what the basic idea is. In more complicated situations, you may do this in
3 steps: explain basic ideas, give pseudo code, further explain certain details in the pseudo
code.

Rule 5 Explain and initialize all variables and data structures. All non-trivial algorithms has some
data structures (possibly the humble array). Critical variables (counters, coloring schemes)
ought to be explained too. You must show how to initialize them.

Rule 6 The control structure of the algorithm should very clear. Most of the algorithms you
need to design have simple structures – typically a simple loop or a doubly-nested loops.
Occasionally we see triply-nested loops (in dynamic programming or matrix multiplication).
The nature of each loop should be follow standard programming constructs (for-loop, while-
loop, etc). It seems to be an axiom that if a problem can be solved, then it is solvable by
clean loop structures.

Rule 7 Correctness. This is an implicit require of all algorithms. In computer science, the stan-
dard meaning of correct algorithms is split into two distinct requirements: (1) the algorithm
halts, and (2) the output is correct when it halts. Even when we do not ask you to explic-
itly prove correctness, you should check this yourself. There is a very simple rule that you
should use – at the beginning of every loop iteration, you should be able to attach a suitable
invariant (also called assertion in standard programming languages). The correctness of
algorithms follow easily if the appropriate invariants hold.

Rule 8 Analysis and Efficiency. This is viewed as a more advance requirement. But since this is
what algorithmics is about, we view it as part and parcel of any algorithm design. You should
always be able to give a big-Oh analysis of your algorithm. In most cases, any non-polynomial
solution is probably unnecessarily inefficient.

Exercises

13In computing, we call this “code reuse” but others call this “not reinventing the wheel”.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§A. APPENDIX: General Notations Lecture I Page 31

Exercise A.1: The following is a useful result about iterated floors and ceilings.
(a) Let n, b be positive integers. Let N0 := n and for i ≥ 0, Ni+1 := ⌊Ni/b⌋. Show that
Ni =

⌊
n/bi

⌋
. Similarly for ceilings. HINT: use the fact that Ni+1 ≤ Ni/b + (b − 1)/b.

(b) Let u0 = 1 and ui+1 = ⌊5ui/2⌋ for i ≥ 0. Show that for i ≥ 4, 0.76(5/2)i < ui ≤
0.768(5/2)i. HINT: ri := ui(2/5)i is non-increasing; give a lower bound on ri (i ≥ 4) based
on r4. ♦

SOLUTION: See the solution to the next problem for the general result about
iterated floors.
Comments:

Exercise A.2: Let x, a, b be positive real numbers. Show that

⌊x/ab⌋ ≥ ⌊⌊x/a⌋ /b⌋ . (6)

When is this an equality? ♦

SOLUTION: Note that x/ab ≥ ⌊x/a⌋ /b. Then inequality (6) follows by taking floors
on both sides.
We claim that equality holds when x, a, b are integers. Write ⌊x/a⌋ = (x/a)− δ where
0 ≤ δ < 1, and ⌊⌊x/a⌋ /b⌋ = (x/ab) − (δ/b) − δ′ where 0 ≤ δ′ < 1. When x, a, b are
integers, we get the stronger bound that 0 ≤ δ ≤ (a − 1)/a and 0 ≤ δ′ ≤ (b − 1)/b.
Now, notice that

∆ := (δ/b) + δ′ ≤ (a− 1)/(ab) + (b − 1)/b ≤ (ab− 1)/(ab).

This implies that (x/ab)−∆ = ⌊x/ab⌋.
Comments: REMARK: There is an analogous result for the ceiling function ⌈x⌉.

Exercise A.3: Consider the following sentence:

(∀x ∈ Z)(∃y ∈ R)(∃z ∈ R)
h

(x > 0) ⇒ ((y < x < y−1) ∧ (z < x < z2) ∧ (y < z))
i

(7)

Note that the range of variable x is Z, not R. This is called a universal sentence be-
cause the leading quantifier is the universal quantifier (∀). Similarly, we have existential
sentence.
(i) Negate the sentence (7), and then apply De Morgan’s law to rewrite the result as an

existential sentence.

(ii) Give a counter example to (7).

(iii) By changing the clause “(x > 0)”, make the sentence true. Indicate why it would be
true.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§A. APPENDIX: General Notations Lecture I Page 32

SOLUTION: This example is easiest to understand if you (visually) order the various
numbers according to the requirements of the sentence:

0 < y < z < x < z2 < y−1

where the relative order of y−1 and z2 is unimportant (can be reversed if you like).
(i)

(∃x ∈ Z)(∀y ∈ R)(∀z ∈ R)
[
(x > 0) ∧ (¬(y < x < y−1) ∨ ¬(z < x < z2) ∨ (z ≤ y))

]

(ii)
A counter example is x = 1. First note that y < x < y−1 implies y > 0. If z < x,
then z < 0 because otherwise we have 0 ≤ z < 1 and so z2 ≤ z, which contradicts the
requirement of the sentence. But if z < 0, then we cannot satisfy y < z.
(iii) We change (x > 0) to (x > 1). This removes the counter example. Now, for any
x > 1, we can always choose z so that (z < x < z2). Now if we choose a positive y
sufficiently small, we can also satisfy the remaining clauses of our sentence. Students
also came up with an alternative answer: replace (x > 0) by (x < 0). Then the sentence
is true since you can choose y = x− 1 and z = x− 2.
Comments: Common mistakes: (i) Students think that ¬(a < b < c) is the same as
(a ≥ b ≥ c), or that ¬(p ⇒ q) is (¬p ⇒ ¬q). (ii) Students claim sentence is false by
giving a particular example of y and z.

♦

Exercise A.4: Suppose you want to prove that

f(n) 6= O(f(n/2))

where f(n) = (log n)log n.
(a) Using de Morgan’s law, show that this amounts to saying that for all C > 0, n0 there
exists n such that

(n ≥ n0) ∧ f(n) > Cf(n/2).

(b) Complete the proof by finding a suitable n for any given C, n0. ♦

Exercise A.5: The following statement is a fact: a planar graph on n vertices has at most 3n− 6
edges. Let us restate it as follows:

(G is a planar graph and has n vertices)⇒ (G has ≤ 3n− 6 edges).

(i) State the contra-positive of this statement.
(ii) The complete graph on 5 vertices, denoted by K5 is shown in Figure 2. Using the
contra-positive statement in part (i), prove that K5 is not planar.

SOLUTION:
(i) Constra-positive:

(G has > 3n− 6 edges)⇒ (G is not a planar graph or does not have n vertices).

(ii) Let n = 5. Then K5 has > 3n− 6 = 9 edges. By the contra-positive of (i),
we conclude that K5 is not a planar graph or does not have 5 vertices. Since it does
have 5 vertices, it must not be planar.
Comments:

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§A. APPENDIX: General Notations Lecture I Page 33

Figure 2: K5, the complete graph on 5 vertices

♦

Exercise A.6: Prove these basic facts about binary trees: assume n ≥ 1.
(a) A full binary tree on n leaves has n− 1 internal nodes.
(b) Show that every binary tree on n nodes has height at least ⌈lg(1 + n)⌉− 1. HINT: define
M(h) to be the maximum number of nodes in a binary tree of height h.
(c) Show that the bound in (b) is tight for each n.
(d) Show that a binary tree on n ≥ 1 leaves has height at least ⌈lg n⌉. HINT: use a modified
version of M(h).
(e) Show that the bound in (d) is tight for each n. ♦

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§A. APPENDIX: General Notations Lecture I Page 34

SOLUTION: (a) Use structural induction.
BASE CASE: assume n (the number of leaves) is at least 1. Note that a full binary
tree, if it has any leaves, must have at least 2 leaves. So n = 2 is our base case. The
result is clearly true here.
INDUCTIVE CASE: assume n > 2. Let n(T) and i(T) denote the number of leaves
of T and number of internal nodes of T . Thus, n = n(T). Also, the size of T is
|T | = n(T) + i(T).
Let TL, TR be the left and right subtrees. Without loss of generality, let |TL| ≤ |TR|.
If |TL| = 1 then |TR| > 1. By induction, n(TR) = i(TR) + 1. Then n(T) = 1 + n(TR)
and i(T) = 1 + i(TR). This proves that

n(T) = 1 + n(TR) (by definition of n(T)
= 1 + (i(TR) + 1) (by induction hypothesis)
= 1 + i(T) (by definition of i(T)

In general, we have |TL| > 1, then we have

n(T) = n(TL) + n(TR) (by definition of n(T)
= (i(TL) + 1) + (i(TR) + 1) (by induction hypothesis)
= 1 + i(T) (since i(T) = 1 + i(TL) + i(TR))

(b) Then we have M(h) = 1+2M(h−1) and M(0) = 1. Thus M(h) = 2h+1−1. Thus
we have n ≤M(h) and n+1 ≤ 2h+1 and, by taking logarithm, h ≥ lg(n+1)−1. Since
h is an integer, we can take ceiling of lg(n + 1).
REMARK: this technique of defining M(h) is a good general way to prove lower bound
on heights. There is an analogous technique to prove upper bounds on height (see
Chapter on AVL trees).
(c) We must show that for every n ≥ 1, there is a binary tree Tn on n nodes with height
h(n) := ⌈lg(1 + n)⌉ − 1. If n = 1, h(1) = 0, and the result is true. Suppose n > 1 and
n is even. Then

h(n) = ⌈lg(1 + n)⌉ − 1

= ⌈lg((1 + n)/2)⌉
= ⌈lg(1 + (n/2))⌉ (since n even)

= h(n/2) + 1

By induction hypothesis, there is a binary tree Tn/2 on n/2 nodes of height h(n/2).
Consider the binary tree Tn on n nodes where the left subtree is Tn/2 and the right
subtree has T(n/2)−1. The height of Tn is 1 + h(n/2), which is equal to h(n). What if
n is odd? In this case,

h(n) = ⌈lg(1 + n)⌉ − 1

= ⌈lg((1 + n)/2)⌉
= ⌈lg(1 + (n− 1)/2))⌉
= h((n− 1)/2) + 1

Now construct Tn so that its left and right subtrees are both T(n−1)/2. Hence Tn has
height 1 + h((n− 1)/2) which is equal to h(n).
(d) We can use the same method as (b), but define a modified function M ′(h) to be
the maximum number of leaves in a binary tree of height h. Then M ′(h) = 2M ′(h−1)
where M ′(1) = 2. Then M ′(h) = 2h. Hence n ≤ M ′(h) = 2h. Hence h ≥ lg n, and
again we can take ceiling.
Comments:

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§A. APPENDIX: General Notations Lecture I Page 35

Exercise A.7: (Erdös-Rado) Show that in any 2-coloring of the edges of the complete graph Kn,
there is a monochromatic spanning tree of Kn. HINT: use induction. ♦

SOLUTION: The result is trivial if Kn is monochromatic. Otherwise, take a vertex
v that is incident to edges of both colors. Now use induction on Kn−1 which is obtained
by eliminating v. This is a basic result in so-called “Ramsey Theory”.
Comments:

Exercise A.8: Let T be a binary tree on n nodes.
(a) What is the minimum possible number of leaves in T ?
(b) Show by strong induction on the structure of T that T has at most

⌊
n+1

2

⌋
leaves. This

is an exercise in case analysis, so proceed as follows: first let n be odd (say, n = 2N + 1) and
assume T has k = 2K + 1 children in the left subtree. There are 3 other cases.
(c) Give an alternative proof of part (b): show the result for n by a weaker induction on
n− 1 and n− 2.
(d) Show that the bound in part (b) is the best possible by describing a T with

⌊
n+1

2

⌋
leaves.

HINT: first show it when n = 2t − 1. Alternatively, consider binary heaps. ♦

SOLUTION:
(a) One. This happens when all but one node has exactly one child.
(d) Fill the nodes of the tree level by level, from left to right.

Comments: REMARK: Students who could not do (b) is basically stumped by not
knowing simple “case analysis”. Question (c) calls for a construction of a tree with n
nodes having exactly

⌊
n+1

2

⌋
leaves.

Exercise A.9:
(a) A binary tree with a key associated to each node is a binary search tree iff the in-order
listing of these keys is in non-decreasing order.
(b) Given both the post-order and in-order listing of the nodes of a binary tree, we can
reconstruct the tree. ♦

End Exercises

References

[1] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press and McGraw-Hill Book Company, Cambridge, Massachusetts and New York, second
edition, 2001.

[2] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM J. Comput.,
15:287–299, 1986.

[3] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-
Wesley, Boston, 1972.

[4] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1. Addison-
Wesley, Boston, 2nd edition edition, 1975.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

§A. APPENDIX: General Notations Lecture I Page 36

[5] C. K. Yap. Introduction to the theory of complexity classes, 1987. Book Manuscript. Prelimi-
nary version (on ftp since 1990),
URL ftp://cs.nyu.edu/pub/local/yap/complexity-bk.

c© Chee-Keng Yap Basic Version (Solution+) March 5, 2008

