
MIDTERM
Fundamental Algorithms, Spring 2008, Professor Yap

March 10, 2008

INSTRUCTIONS:

0. This is a closed book exam, with one 8”x11” (2-sided) cheat sheet.
1. Please answer ALL questions (there is ONE extra credit question)
2. Please write clearly. Use complete sentences. This CAN AFFECT your
grade. If necessary, consider printing.
3. Write answers ONLY on the front side of each booklet page. Use the
reverse side for scratch and to show your working.
4. Read carefully, think deeply, write sparsely.
5. Begin each question in its own page.

SHORT QUESTIONS

(4 Points Each)
No proofs required for this part (one line of informal justification can be entertained). Just
state upper and lower bounds for the following sums or recurrence functions. Ideally, we want
Θ-bounds.

• (a)
∑n

i=1 i3(i!)

• (b)
∑n

i=1
i3

2i

• (c) T (n) = 3T (n/10) +
√

n/ log n.

• (d) T (n) = 10T (n/3) +
√

n log n.

• (e) Order these 7 functions in increasing Θ-order:

n2

lg n
, n2 lg lg n, 2lg n, 2n, 4lg n, n!, nlg n,

• (f) What is the minimum number of nodes in an AVL tree of height 4?

• (g) What is the minimum number of nodes in a (3, 4)-tree of height 3?

• (h) Begin with the AVL tree in Figure 1, and insert the key 8.8. Show the final AVL tree.
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Figure 1: An AVL tree

• (i) Begin with the AVL tree in Figure 1, and delete the key 15. Show the final AVL tree.
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SOLUTION: Note that we provide justifications below, but you need not.
(a) Θ(n3(n!)).
REMARK: Justification is by our summation rule for exponentially large sums. Of
course, you did not have to say this. Our instructions said to JUST STATE the bound.
Put any derivation on the work sheet if you want, but NOT on the answer part (some
students write several pages for one subpart!).
Some students think this is a polynomial sum.
(b) Θ(1).
REMARK: Justification is by our summation rule for exponentially small sums. Some
students say that this is O(n3/2n). Why is this wrong?
(c) Θ(

√
n lg n).

REMARK: To justify, you need to see that log10 3 < log9 3 = 1/2. Thus the driving
functions dominates. You also need to check the regularity condition: if f(n) = n.
then for some 0 < c < 1, cf(n) ≥ 10f(n/3).
(d) Θ(nα) where α = log3(10) > 2.
REMARK: Again by Master Theorem. You need to see that log3 10 > log3 9 > 2.
(e)

2lg n(= n) � n2

lg n
� 4lg n(= n2) � n2 lg lg n � nlg n(= 2log2 n) � 2n ≺ n!(= 2Θ(n log n)).

COMMON mistakes:
Students did not recognize 2lg n = n, or 4lg n = n2. You should know a standard trans-
formation here: alog

b
c = clog

b
a for all a, b, c.

Some think that 2n � nlog n. To see that this is wrong, take log of both sides, and you
will get n ≤ C + log2 n for some C. This is clearly wrong.
Some think n2 lg lg n � n. I see how you come to this conclusion – you think lg lg n
grows so slowly that it overwhelms that fact that n2 grows faster than n...but you can-
not argue this way. The correct way is to order a “product of powers” in lexicographic
order – we consider the most important power which is different in the 2 products.
Then the decision is determined by the power of this term only!
(f) There are 12 nodes. Use the formula that µ(h + 1) = µ(h − 1) + µ(h), where
µ(−1) = 0, µ(0) = 1.
(g) There are 26 nodes. Use the fact that the root must have 2 children and the re-
maining internal nodes have 3 children each. STANDARD MISTAKE: you assume the
root must have 3 children.
(h) First insert 8.8 into the tree, then do rotate2(8). This is basically the same as the
insertion of 9.5, described in Figure 14 in Lecture III.
(i) First delete 15 from the tree, then do rotate(5). This is basically the same as the
deletion of 13, described in Figure 16 in Lecture III.

REGULAR QUESTIONS

1. (4 Points Each)
If true, prove it. If false, give counter example. For this problem, assume that f(x) > 0
for all x.

• (a) T/F: If f is polynomial-type, so is fa for any real a > 0.

• (b) T/F: If f is polynomial-type, so is lg f .

• (c) T/F: If f is exponential-type, then fa is exponential-type for any real a > 0.

• (d) T/F: If f is a increasing exponential-type, so is 2f .
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SOLUTION:

• (a) True: If f is polynomial-type, so is fa for any real a > 0.

Pf: Let f(n) ≤ Cf(n/2) (ev.) for some C > 0. Then f(n)a ≤ Caf(n/2)a.

• (b) False: If f is polynomial-type, so is lg f .

Counter example: let f(n) = (n − 1)/n = 1 − (1/n). Then f(n) ≤ 2f(n/2) but
lg f(n) < 0 means that lg f(n) 6= O(f(n/2)).

REMARK: Some students give 1/n as a counter-example. Why is this not
polynomial-type?

• (c) True: If f is exponential-type, then f c is exponential-type for any real c > 0.

Pf: For any K > 1, if f(n − 1) ≥ Kf(n − 1) implies f(n)c ≥ Kcf(n − 1)c and
Kc > 1. For any k < 1, if f(n− 1) ≤ kf(n− 1) implies f(n)c ≤ kcf(n− 1)c and
kc < 1.

REMARK: do not forget that you need to show this for exponentially large as
well as exponentially small functions.

• (d) True: If f is increasing exponentially, so is 2f .

Pf: Suppose f(n− 1) ≥ Kf(n− 1) for some K > 1. Note that f(n) ≥ c (ev.) for
any c > 0. Hence Kf(n) ≥ (K − 1)c + f(n) (ev.). Thus

2f(n) ≥ 2Kf(n−1)

≥ 2(K−1)c+f(n−1) (ev.)
≥ K ′2f(n−1)

where K ′ := 2(K−1)c > 1.

• (e) True: If f is a shrinking exponential-type, so is 2−f .

Pf: Suppose f(n−1) ≤ kf(n−1) for some 0 < k < 1. Note that kf(n) ≤ −k+f(n)
(ev.) since f(n)→ 0. Thus

2f(n) ≤ 2kf(n−1)

≤ 2−k+f(n−1) (ev.)
= 2−k2f(n−1)

2−f(n) ≥ 2k2−f(n−1)

where 2k > 1.

2. (2+8 Points)
The following statement is a fact: a planar graph on n vertices has at most 3n− 6 edges.
Let us restate it as follows:

(G is a planar graph and has n vertices)⇒ (G has ≤ 3n− 6 edges).

(i) State the contra-positive of this statement.
(ii) The complete graph on 5 vertices, denoted by K5 is shown in Figure 2. Using the
contra-positive statement in part (i), prove that K5 is not planar.

SOLUTION:
(i) Constra-positive:

(G has > 3n− 6 edges)⇒ (G is not a planar graph or does not have n vertices).

(ii) Let n = 5. Then K5 has > 3n − 6 = 9 edges. By the contra-positive of (i),
we conclude that K5 is not a planar graph or does not have 5 vertices. Since it does
have 5 vertices, it must not be planar.
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Figure 2: K5, the complete graph on 5 vertices

3. (10 Points)
Let size(u) denote the number of nodes in the tree rooted at u. Say that node u is
size-balanced if it is a leaf or else

1/2 ≤ size(u.left)/size(u.right) ≤ 2.

Use shell programming to give an algorithm BALANCE(u) that returns TRUE iff every
node below u is balanced. DO NOT assume any additional fields in the nodes.

Please use the informal style used in our lecture notes (use indentation to indicate the
logical structure of your program, and do not declare variables, etc.)

SOLUTION: A common mistake is to assume that you already have the value size(u)
for each node u. We will simply use the “return shell” called rPOST (u) in the lecture
notes. We assume that rPOST (u) returns the size of the binary tree rooted at u
if the tree is size-balanced; otherwise, rPOST (u) = −1. The required procedure
BALANCE(u) can be easily constructed from rPOST (u). Here is rPOST again:

rPOST (u)
BASE(u)
L← rPOST (u.left)
R← rPOST (u.right)
V ISIT (u,L,R)

We must program the BASE and VISIT macros:

BASE(u):
if (u = nil) return(−1)
if (u.left = nil and u.right = nil) return(1)
if (u.left = nil or u.right = nil)

RETURN(−1)

The macro VISIT macro is

BASE(u,L,R):
if ( 1

2 ≤ L/R ≤ 2) return(1 + L + R)
else return(−1)

4. (EXTRA CREDIT ONLY)
Suppose X1, . . . ,Xn are n sorted lists, each with k elements. We want to the set X =
⋃n

i=1 Xi. Here is a sketch of an algorithm: at each phase, we merge pairs of lists. The
phases stop when there is only one list left. In a general phase with m lists of size ℓ each,
the merging produce m/2 lists each of size 2ℓ (assume m is even). The merging in this
phase take time O(mℓ).
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(a) Set up the recurrence for the complexity T (n, k) of this algorithm.

(b) Show that T (n, k) = O(nk log n). HINT: domain transformation can be used but it is
not necessary.

(c) Using the Information Theoretic Bound, prove that T (n, k) = Ω(nk log n). (WARN-
ING: This might be hard for many students.)

SOLUTION: (a) The recurrence is T (n, k) = T (n/2, 2k) + nk when n is a power of
2. By our general practice, we will extend this recurrence for arbitrary real values of
n.
(b) Let N = lg n and K = lg k. Initially we assume n is a power of 2. We can transform
T (n, k) to t(N,K) as follows:

t(N,K) := T (2N , 2K)

= t(N − 1,K + 1) + 2N+K

= t(N − 2,K + 2) + 2 · 2N+K

= · · ·
= t(0, N + K) + N · 2N+K

Now, t(0, N + K) = T (1, 2N+K) = 0, clearly. Hence the solution to T (n, k) = lg n · nk.
When n is not a power of 2, we stop when we reach t({N} , N +K) where 0 ≤ {N} < 1,
and {N} is the fractional part of N .
ALTERNATIVE SOLUTION (Millstone): we maintain a minimum priority queue
which normally holds exactly n keys, one key from each of the n lists. To sort, we
just deleteMin() from the queue, note the list where the deleted item comes from, and
insert the next item from that list. There are nk deleteMin’s and insert’s, and each
takes time O(lg n). This proves our upper bound.
(c) Let C(n, k) denote the number of combinatorially distinct possible outcomes when
we merge n lists each of size k. This number is the multinomial

C(n, k) =

(
nk

k, k, . . . , k
︸ ︷︷ ︸

n

)

=
(nk)!

(k!)n

Using Stirling’s approximation, it is easy to see that log C(n, k) = Ω(nk log n)
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