
Homework 6 Solutions
Fundamental Algorithms, Spring 2008, Professor Yap

Due: Mon May 5, during the last class.
HOMEWORK with SOLUTION, prepared by Instructor and T.A.s

INSTRUCTIONS:� Please read questions carefully. When in doubt, please ask.� Please write succinctly, to the point. Every sentence must be an complete English sentence.� You may post general questions to the homework discussion forum in class website. Also, bring your
questions to recitation on Monday.

1. (2 Points)
Exercise 6.5, Lect.V.

v1 v2

v6 v7

2

1

3 5 1

0

0

2

6 4

21

v12v11v10v9

v5v4v3

v8

Figure 1: The house graph: The cost of edge vi−vj is defined as C(vi) + C(vj), where C(v) is the value
indicated next to v. E.g. C(v1−v4) = 1 + 6 = 7.

Do hand simulation of Kruskal’s Algorithm on the graph of Figure 1. We consider each edge in turn,
maintaining a partition of V = {1, . . . , 12} into disjoint sets. Let L(i) denote the set containing vertex
i. Initially, each node is in its own set, i.e., L(i) = {i}. Whenever an edge i−j is added to the MST,
we merge the corresponding sets L(i) ∪ L(j). E.g., in the first step, we add edge 1−3. Thus the lists
L(1) = {1} and L(3) = {1} are merged, and we get L(1) = L(3) = {1, 3}. To show the computation of
Kruskal’s algorithm, for each edge, if the edge is “rejected”, we mark it with an “X”. Otherwise, we
indicate the merged list resulting from the union of L(i) and L(j): Please fill in the last two columns
of the table (we have filled in the first 4 rows for you).

1

Sorting Order Edge Weight Merged List Cumulative Weight

1 1-3: 1 {1, 3} 1

2 6-11: 1 {6, 11} 2

3 10-11: 1 {6, 10, 11} 3

4 6-10: 2 X 3

5 7-11: 2

6 11-12: 2

7 1-2: 3

8 3-8: 3

9 6-7: 3

10 7-10: 3

11 2-5: 6

12 3-4: 6

13 5-7: 6

14 5-12: 6

15 9-10: 6

16 1-4: 7

17 4-6: 7

18 8-9: 8

19 4-5: 10

20 4-9: 11

SOLUTION:

Sorting Order Edge Weight Merged List Cumulative Weight

1 1-3: 1 {1, 3} 1
2 6-11: 1 {6, 11} 2
3 10-11: 1 {6, 10, 11} 3
4 6-10: 2 X 3
5 7-11: 2 {6, 7, 10, 11} 5
6 11-12: 2 {6, 7, 10, 11, 12} 7
7 1-2: 3 {1, 2, 3} 10
8 3-8: 3 {1, 2, 3, 8} 13
9 6-7: 3 X 13
10 7-10: 3 X 13
11 2-5: 6 {1, 2, 3, 5, 8} 19
12 3-4: 6 {1, 2, 3, 4, 5, 8} 25
13 5-7: 6 {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12} 31
14 5-12: 6 X 31
15 9-10: 6 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 37
16 1-4: 7 X 37
17 4-6: 7 X 37
18 8-9: 8 X 37
19 4-5: 10 X 37
20 4-9: 11 X 37

REMARK: if we kept track of the number of edges added to the MST, we could stop
after this number is equal to n − 1 = 11. In particular, we could have stopped after
stage 15, after we added the 11th edge.

2. (15 Points)
Exercise 6.6, Lect.V.

This question considers two concrete ways to implement Kruskal’s algorithm. Let V = {1, 2, . . . , n}
and D[1..n] be an array of size n that represents a forest G(D) with vertex set V and edge set
E = {(i,D[i]) : i ∈ V }. More precisely, G(D) is an directed graph that has no cycles except for

2

self-loops (i.e., edges of the form (i, i)). A vertex i such that D[i] = i is called a root. The set V is
thereby partitioned into disjoint subsets V = V1 ∪ V2 ∪ · · · ∪ Vk (for some k ≥ 1) such that each Vi

has a unique root ri, and from every j ∈ Vi there is a path from j to ri. For example, with n = 7,
D[1] = D[2] = D[3] = 3, D[4] = 4, D[5] = D[6] = 5 and D[7] = 6 (see Figure 2). We call Vi a
component of the graph G(D) (this terminology is justified because Vi is a component in the usual
sense if we view G(D) as an undirected graph).

3

1 2

V1

4

V2

5

6

7

V3

Figure 2: Directed graph G(D) with three components (V1, V2, V3)

(i) Consider two restrictions on our data structure: Say D is list type if each component is a linear
list. Say D is star type if each component is a star (i.e., each vertex in the component points to the
root). E.g., in Figure 2, V2 and V3 are linear lists, while V1 and V2 are stars. Let ROOT(i) denote
the root r of the component containing i. Give a pseudo-code for computing ROOT(i), and give its
complexity in the 2 cases: (1) D is list type, (2) D is star type.
(ii) Let COMP(i) ⊆ V denote the component that contains i. Define the operation MERGE(i, j) that
transforms D so that COMP(i) and COMP(j) are combined into a new component (but all the other
components are unchanged). E.g., the components in Figure 2 are {1, 2, 3}, {4} and {5, 6, 7}. After
MERGE(1, 4), we have two componets, {1, 2, 3, 4} and {5, 6, 7}. Give a pseudo-code that implements
MERGE(i, j) under the assumption that i, j are roots and D is list type which you must preserve.
Your algorithm must have complexity O(1). To achieve this complexity, you need to maintain some
additional information (perhaps by a simple modification of D).
(iii) Similarly to part (ii), implement MERGE(i, j) when D is star type. Give the complexity of your
algorithm.
(iv) Describe how to use ROOT(i) and MERGE(i, j) to implement Kruskal’s algorithm for computing
the minimum spanning tree (MST) of a weighted connected undirected graph H.
(v) What is the complexity of Kruskal’s in part (iv) if (1) D is list type, and if (2) D is star type.
Assume H has n vertices and m edges.

3

SOLUTION: (i) The obvious algorithm for ROOT(i) this:

ROOT(i):
j ← i;
While (D[j] 6= j)

j ← D[j];
Return(j);

For list type structure, ROOT(i) can be found in O(n) time. For star type structure,
ROOT(i) takes O(1) time.
(ii) Let D be list type. To achieve O(1), we need to know both ends of a linked list. We
modify D so that if i is a leader, and j is the last element in the linked list corresponding
to COMP(i) then D[i] = −j. Then MERGE(i, j) amounts to concatenating the lists
corresponding to i and j:

MERGE(i, j):
k ← D[j];
D[j]← −D[i];
D[i]← k;

This algorithm is O(1), as desired.
(iii) Let D be star type. In this case, we do not need to modify D.

MERGE(i, j):
For k = 1 to n

If D[k] = j then D[k] = i;

This algorithm is O(n).
(iv) In Kruskal’s algorithm we consider each edge e = (i, j) in order of non-decreasing
weight. Let T be the current set of edges chosen to be in the MST. This induces
a partition of V into components, represented by the data structure D. Initially,
D[k] = k for all k. To decide whether e can be added to T , we first compute i′ =
ROOT(i) and j′ = ROOT(j). If i′ = j′, then we cannot add e. Otherwise we compute
MERGE(i′, j′).
(v) Kruskal’s algorithm as described in (iv) makes 2m calls to ROOT() and n− 1 calls
to MERGE(). Note that there is a preliminary cost of O(m log n) to sort the edges.
It remains to assess the cost of operations on D.
For list type D, ROOT(i) takes O(n) time and MERGE(i, j) takes O(1) time. Hence
the overall cost is O(mn + n) = O(mn) (assuming m ≥ 1).
For star type D, ROOT(i) takes O(1) time and MERGE(i, j) takes O(n) time. Hence
the overall cost is O(m + n2) = O(n2).

3. (0 Points)
Exercise 1.1, Lect.VI.

Our model and analysis of counters can yield the exact cost to increment from any initial counter value
to any final counter value. Show that the exact number of work units to increment a counter from 68
to 125 is 190.

SOLUTION: It costs 2n − Φ(Dn) work units to count from 0 to n. Since 125 =
(1, 111, 101)2 and 68 = (1, 000, 100)2, and so it costs exactly 2(125 − 68) − Φ(D125) +
Φ(D68) = 194− 6 + 2 = 190.

4. (4 Points)
Exercise 1.2, Lect.VI.

4

A simple example of amortized analysis is the cost of operating a special kind of pushdown stack. Our
stack S supports the following two operations: S.push(K) simply add the key K to the top of the
current stack. But S.pop(K) will keep popping the stack as long at the current top of stack has a
key smaller than K (the bottom of the stack is assume to have the key value ∞). The cost for push
operation is 1 and the cost for popping m ≥ 0 items is m + 1.
(a) Use our potential framework to give an amortized analysis for a sequence of such push/pop opera-
tions, starting from an initially empty stack.
(b) How tight is your analysis? E.g., can it give the exact cost, as in our Counter Example?

SOLUTION: We will use the accounting method. For each Push, we will charge 2
units of work. One of these units will be used for the actual push, the other will be
saved for when that element is later popped off the stack. For the Pop operation, we
will charge nothing. Observe that the extra credit stored equals the number of elements
in the stack. Now observe that for any sequence of n operations, we charge at most
T (n) = 2 ∗ n work, obtaining an amortized cost of T (n)/n = O(1) work per operation.
Another solution for this problem involves setting a potential function to be equal to
the number of elements in the stack. Think through how such a proof would work
using this framework. In both cases this analysis is tight. Imagine inserting n elements
and then the final Pop, pops the entire stack.

5. (10 Points)
Exercise 1.3, Lect.VI.

Let us generalize the example of incrementing binary counters. Suppose we have a collection of binary
counters, all initialized to 0. We want to perform a sequence of operations, each of the type

inc(C), double(C), add(C,C ′)

where C,C ′ are names of counters. The operation inc(C) increments the counter C by 1; double(C)
doubles the counter C; finally, add(C,C ′) adds the contents of C ′ to C while simultaneously set the
counter C ′ to zero. Show that this problem has amortized constant cost per operation.

We must define the cost model. The length of a counter is the number of bits used to store its value.
The cost to double a counter C is just 1 (you only need to prepend a single bit to C). The cost of
add(C,C ′) is the number of bits that the standard algorithm needs to look at (and possibly modify)
when adding C and C ′. E.g., if C = 11, 1001, 1101 and C ′ = 110, then C +C ′ = 11, 1010, 0011 and the
cost is 9. This is because the algorithm only has to look at 6 bits of C and 3 bits of C ′. Note that the
4 high-order bits of C are not looked at: think of them as simply being “linked” to the output. Here
is where the linked list representation of counters is exploited. After this operation, C has the value You couldn’t

do this with
arrays!

11, 1010, 0011 and C ′ has the value 0.
HINT: The potential of a counter C should take into account the number of 1’s as well as the bit-length
of the counter.

5

SOLUTION: Let m be the number of counters and let us represent each binary
counter Ci, 1 ≤ i ≤ m, with a linked list that initially is empty. We also denote the
value stored in Ci by ‘Ci’. Let Li be the length of Ci, Oi be the number of 1’s in Ci,
and Ei be the length of the maximum suffix of 1’s in Ci in the current state.
Now define the potential function of the set of counters as follows:

Φ =
m∑

k=1

(Li + Oi).

For each operation on the set of counters, we will show that it has a constant
amortized cost. Consider the most interesting case of add(C1, C2). In this case,
∆Φ ≤ −min(L1, L2) − K where K is the number of carry bits beyond min(L1, L2)
in the addition process. This release enough potential, except for some small constant
A, to pay for the cost of addition. This small constant A can be our amortized cost.

(a) Inc(Ci): The actual cost is Ei + 1 since it resets Ei bits and sets one bit to a 1.
The number of 1’s in Ci after this operation is Oi − Ei + 1 and the length of Ci

is at most Li + 1. Thus the potential difference is

∆Φ ≤ [(Oi − Ei + 1) + (Li + 1)]− [Oi + Li]

= 2− Ei.

The amortized cost is therefore

(Ei + 1) + ∆Φ ≤ (Ei + 1) + (2− Ei) = 3.

(b) Double(Ci): The actual cost is 1 since it is the cost of appending a 0-bit to the
end of the linked list for Ci. After this operation, the number of 1’s is not changed
but the length is increased by 1. Thus the potential difference is 1. Therefore the
amortized cost is 2.

(c) Add(Ci, Cj): Let us assume that Ci ≥ Cj . Let t01 be the number of times a bit
is flipped from 0 to 1 in Ci and t10 be the number of times a bit is flipped from
1 to 0 when Cj is added to Ci. After the addition, the number of 1’s in Ci is
Oi+t01−t10 and the length of Ci is at most Li+1. The actual cost of the addition
is at most Lj + t10 + 1 because all bits of Cj is scanned to be added to Ci and
after that a carry will flip bits of Ci from 1 to 0. Thus the potential difference is

∆Φ ≤ [(Li + 1) + (Oi + t01 − t10)]− [(Li + Lj) + (Oi + Oj)]

= 1 + t01 − t01 − Lj −Oj .

Therefore the amortized cost is

(Lj + t10 + 1) + (1 + t01 − t10 − Lj −Oj) = 2 + (t01 −Oj)

≤ 2,

since Oj ≥ t01.

6. (0 Points)
Exercise 2.1 and 2.2, Lect.VI.

7. (5 Points)
Fix a key K and a splay tree T0. Let Ti+1 ← splay(K,Ti) for i = 0, 1,
(a) Under what conditions will the Ti’s stabilize (become a constant)?
(b) What must be the case if the Ti’s do not stabilize.

6

SOLUTION: (a) The Ti’s stabilizes provided either key K is in T0, or K = +∞, or
K = −∞.
(b) The Ti’s do not stabilize iff K does not lie in tree T0, and moreover, K lies strictly
between two keys K ′ and K ′′ which are K’s successor and predecessor (resp.). Then
the Ti’s eventually alternates between having K ′ as root or K ′′ as root.

8. (8 Points)
Exercise 2.7, Lect.VI.

K ′

K

K ′

K

K ′

splay(K, T)

K ′ < K

K < K ′

Figure 3: Alternative method to insert a key K.

In our operations on splay trees, we usually begin by performing a splay. This is not the case in our
insertion algorithm. But consider the following variant insertion that follows this paradigm. To insert
an item X into T :
1. Perform splay(X.key, T) to give us an equivalent tree T ′.
2. Now examine the key K ′ at root of T ′: if K ′ = X.key, we declare an error (recall that keys must
be distinct).
3. If K ′ > X.key, we install a new root containing X, and K ′ becomes the right child of X; the case
K ′ < X.key is symmetrical. In either case, the new root has key equal to X.key. See Figure 3.
(a) Prove that the amortize complexity this insertion algorithm remains O(log n). NOTE: To do this,
you must understand Theorem 1 (VI.§1) and might be helpful to look at the proof of Theorem 5 as
well.
(b) (Ignore this part)

SOLUTION: When we insert a new element, we not only add a node to the tree,
but that node has its own potential which was not accounted for before the insertion.
Letting r denote the root of the tree, the potential at r becomes log(n + 1). The
potential generated by adding node X is also at most log(n), so we see that after
insertion the potential increases by at most, log(n + 1) + log(n) ≤ 2 log(n).

9. (15 Points)
Recall the convex hull problem in Lect.VI, §4. Consider an array-based representation of upper hulls.
An upper hull U = (v0, . . . , vk) is represented by an array U [0..k], where U [i] = vi. We want to build
U incrementally using METHOD ONE in the text. Assume the set of input points is non-degenerate
(no 3 points are collinear).

7

(a) Describe in detail how to carry out the operation of finding LeftTangent of a given point p in U .
(b) Describe how to implement the insertion of a new point p.
(c) Carry out a complexity analysis of your algorithm.
(d) Show how to modify your algorithms if the input can be degenerate. You must discuss how to
implement the changes using the LeftTurn(p,q,r) predicate. NOTE: For this problem, ASSUME that
an input point p is in U if it does NOT lie in the interior of the convex hull.

SOLUTION: Before we attempt to find LeftTangent, first verify that the point p does
not lie within the interior of the convex hull. By assumption, the array of points is
already sorted by x values. Let p lie between points vj and vj+1 for some j = 0, . . . , k
(if j = 0 then vj is undefined, and if j = k then vj+1 is undefined). In case j = 0 is
undefined, we can conclude that the left tangent is vS = (0,−∞) (south pole). Knowing
j, we can check if p lies inside the upper hull. If so, we return ↑. Otherwise, we need
to only search points v0, v2, . . . , vk−1 for the necessary vertex. We will now perform a
binary search looking for the proper vertex. Let vi = vk/2 be a point and look at the
line connecting p and vi. We now verify that both of points vi neighbors lies beneath
this line. If so, they we have found a new point. Otherwise, if vi+1 lies above the line,
we perform a binary search on the set (vi+1, . . . , vk) or symmetrically if vi−1 lies above
the line, we search on the other half.

10. (2 Points)
Exercises 1.3, Lect.VII.

11. (10 Points)
Exercises 1.10, Lect.VII. Let X,Y be strings.
(a) Prove that L(XX,Y) ≤ 2L(X,Y).
(b) Give examples where the inequality is strict, and where it is not strict.
(c) Prove that L(XX,Y Y) ≤ 3L(X,Y). How tight is this upper bound?

SOLUTION:
(a) Two proofs from students: [Michael Haag, 2003] Let L(XX,Y) = m + n,

where m of the first X, and n of the second X, are used in an optimal solution in
LCS(XX,Y). Then L(X,Y) ≥ max{m,n}. Hence 2L(X,Y) ≥ m + n = L(XX,Y).
[Yanjun Wang, 2003] Let Z ∈ LCS(X,Y). Then L(XX,Y) ≤ L(XX,Z) + L(Z, Y) by
triangular inequality. But |Z| = L(XX,Z) = L(Z, Y) = L(X,Y). Hence L(XX,Y) ≤
2L(X,Y).

(b) Let X = an and Y = an+1. Then L(XX,Y) = n + 1 < 2n = 2L(X,Y). Let
X ′ = an and Y ′ = a2n. Then L(X ′X ′, Y ′) = 2n = 2L(X ′, Y ′).

(c) Let Z ∈ LCS(XX,Y Y) of length ℓ. Define the increasing function f so that
Z[i] = XX[f(i)] for i = 1, . . . , ℓ. Similarly, define g so that Z[i] = Y Y [g(i)]. Suppose
f(i0) ≤ |X| and f(i0 +1) > |X|. There are two cases: either g(i0) > |Y | or g(i0) ≤ |Y |.
In the former case, i0 ≤ L(X,Y Y) ≤ 2L(X,Y) and |Z| − i0 ≤ L(X,Y). The latter
case is symmetrically argued.
This inequality is tight: let X = anbncnxn and Y = yncnbnan be strings of length 4n.
Then L(X,Y) = n and L(XX,Y Y) = 3n.

12. (12 Points)
Exercise 1.18, Lect.VII. Researchers are using LCS computation to fight computer viruses. A virus
that is attacking a machine has a predictable pattern of messages it sends to the machine. We view
the concatenation of all these messages that a potential virus sends as a single string. Call the first
1000 bytes than from any source (i.e., potential virus) the signature of that source. Let X be the
signature of an unknown source and Y is the signature of a known virus. To test the source is the
Y -virus, we compute L(X,Y). Empirically, suppose it is shown that if L(X,Y) > 500, then that our
source is likely to be Y -virus.

8

(a) Design a practical and efficient algorithm for the decision problem L(X,Y, k) which outputs “PROB-
ABLY VIRUS” if L(X,Y) > k and “PROBABLY NOT VIRUS” otherwise. Give the pseudo-code for
an efficient practical algorithm. NOTE: The obvious algorithm is to use the standard algorithm to
compute L(X,Y) and then compare n to k. But we want you to do better than this. HINT: There
are two ideas we want you to exploit – most students only think of one idea.
(b) Quantify the complexity of your algorithm, and compare its performance to the obvious algorithm
(which first computes L(X,Y)). First do your analysis using the general complexity parameters of
m = |X|, n = |Y | and k, and also ℓ = L(X,Y). Also discuss this for the special case of m = n = 1000
and k = 500.

SOLUTION:
(a) We exploit two ideas: EARLY ACCEPTANCE and EARLY REJECTION.

Early acceptance means that once we determined that L(X,Y) > k, we can stop,
without computing the true value of L(X,Y). Early rejection means that once we
determined hat L(X,Y) ≤ k, we can stop. Here is the algorithm:

L(X,Y, k):
Output: If L(X,Y) > k, then print “PROBABLY VIRUS”

Else print “PROBABLY NOT VIRUS”
⊲ Initialization

For i = 0 to |X| do:
L[i, 0] := 0.

For j = 0 to |Y | do:
L[0, j] := 0.

⊲ Main Loop

For i = 1 to |X| do:
For j = 1 to |Y | do:

If X[i] = Y [j] then L[i, j] := 1 + L[i− 1, j − 1]
Else L[i, j] := max{L[i− 1, j], L[i, j − 1]}
If L[i, j] > k, return(“PROBABLY VIRUS”)
If L[i, j] ≤ k −max(|X| − i, |Y | − j), return(“PROBABLY NOT VIRUS”)

You can improve this computation by filling in the matrix L using the “square filling
method”. This rule says that you must not fill in L[i, j] unless both L[i − 1, j] and
L[i, j− 1] have already been filled. So the filled entries are essentially a square (except
for the last row and last column).
Most students got the early acceptance idea, but most students do not see early rejec-
tion idea unless we give the hint! In fact, since most sources are not viruses, it is the
early rejection idea that is more useful.

(b) We measure the complexity as a function of m = |X|, n = |Y | and k, and also
ℓ = L(X,Y). The first remark should be that our heuristics in (a) do not give any
asymptotic improvement in the worst case: it is still Θ(mn) like the straightforward
algorithm.
In the best case, we might achieve a complexity of O(k2). For our numerical example
where m = n = 1000 and k = 500, we can at most save a factor of 4.
Next, suppose L(X,Y) = ℓ. If ℓ > 500, then we could detect probable virus after filling
in 1500 − ℓ rows of the matrix L. I.e., we do not fill in at least ℓ − 500 rows. Thus
we save a factor of (ℓ/1000)− 0.5. If we use the “square filling method” then we say a
factor of 1− (1.5− (ℓ/1000))2.

13. (2 Points)

9

Exercise 2.4, Lect.VII. Compute A(X,Y) where X,Y are the strings AATTCCCGA and GCATATT. Assume
δ has gap penalty 2, δ(x, x) = −2 and δ(x, y) = 1 if x 6= y. You must organize this computation
systematically as in the LCS problem.

SOLUTION: Solution by Iuliana Ionita (2003). We fill in the usual table row by
row:

G C A T A T T

0 2 4 6 8 10 12 16
A 2 1 3 2 4 6 8 10
A 4 3 2 1 3 2 4 6
T 6 5 4 3 -1 1 0 2
T 8 7 6 5 1 0 -1 -2
C 10 9 5 7 3 2 1 0
C 12 11 7 6 5 4 3 2
C 14 13 9 8 7 6 5 4
G 16 12 11 10 9 8 7 6
A 18 14 13 9 11 7 9 8

The value we are interested in is at the bottom right corner of the table, so A(X,Y) =
8.

10

