
Homework 5 Solutions
Fundamental Algorithms, Spring 2008, Professor Yap

Due: Wed Apr 9, in class.
HOMEWORK with SOLUTION, prepared by Instructor and T.A.s

INSTRUCTIONS:� Please read questions carefully. When in doubt, please ask.� Please write succinctly, to the point. Every sentence must be an complete English sentence.� You may post general questions to the homework discussion forum in class website. Also, bring your
questions to recitation on Monday.

1. (0 Points)
Exercise 1.1. (All Exercises in this homework refers to Lecture V)

Suppose you are a cashier at a checkout and has to give change to customers. You want to give out
the minumum number of notes and coins.
(a) What is the greedy algorithm for this?
(b) Assuming a US cashier giving change less than $100. You have bills in denominations $50, $20, $10, $5, $1
and common coins 25¢, 10¢, 5¢, 1¢. Is your greedy algorithm optimal here?
(c) Give a scenario in which your greedy algorithm is non-optimal.

SOLUTION: (a) Give out the maximum number of the largest denomination avail-
able..
(b) Yes, it is optimal.
(c) Suppose we have coins for 10¢, 8¢, 5¢, 1¢. To give back a change of 13¢, the greedy
solution would use 4 coins. But 2 coins suffice.

2. (0 Points)
Exercise 1.2. (Do not hand in problems with 0 Points.)

Give a counter example to the greedy algorithm in case the wi’s can be negative.

3. (2 Points)
Exercise 1.3.

Suppose the weight wi’s can be negative. How bad can the greedy solution be, as a function of the
optimal number of bins?

SOLUTION: Arbitrarily bad! Consider the following input sequence on n+1 weights:
{1, 1, . . . , 1,−n}. The greedy algorithm would use n bins, but 1 bin suffices.

4. (0 Points)
Exercise 1.4.

There are two places where our optimality proof for the greedy algorithm breaks down when there are
negative weights. What are they?

SOLUTION: Two places: We cannot assume that n1 < m1. We cannot assume in
the induction that we add additional riders to a car, its weight will increase.

5. (8 Points)
Exercise 1.5.

1

Consider the following “generalized greedy algorithm” in case wi’s can be negative. A solution to linear
bin packing be characterized by the sequence of indices, 0 = n0 < n1 < n2 < · · · < nk = n where the
ith car holds the weights

[wni−1+1, wni+2, . . . , wni
].

Here is a greedy way to define these indices: let n1 to be the largest index such that
∑n1

j=1 wj ≤ M .

For i > 1, define ni to be the largest index such that
∑ni

j=ni−1+1 wj ≤ M . Either prove that this
solution is optimal, or give a counter example.

-

SOLUTION: For a counterxample, let M = 5 and w = (5,−6, 5, 5, 1). The -optimal
answer is two bins, however the greedy algorithm will give -a solution with 3.

6. (10 Points)
Exercise 1.8. [NOTE: This WAS an open-ended problem.]

Consider an extension of linear bin packing where we now load two cars (called front and rear cars) at
any one time. For example, for joy rides in a Ferris wheel, this is a realistic scenario. We are allowed
to slightly violate the first-come first-serve policy: a rider can be assigned to the rear car, and the next
rider in the queue can be assigned to the front car. But this is the worst that can happen (people
coming behind in the queue can never be ahead by more than one car). We continue to make the
“online requirement”, i.e., we must make a decision for the ith rider before the i + 1st rider. Let the
choice for the ith rider be denote xi ∈ {1, 2, 3} where xi = 1 (resp., xi = 2) means the ith rider goes
into the front (resp., rear) car. Also xi = 3 means we dispatch the front car (so the previous rear car
becomes the front car, and we obtain a new empty rear car). Here is a greedy algorithm: for each i,

make xi to be the smallest possible integer. I.e., load into the front car if possible, otherwise try to
load into the rear car if possible, and otherwise dispatch the front car. car to which we will assign the
i-th rider. Prove or disprove that this strategy is at least as good as the original greedy algorithm for
loading one car.

2

SOLUTION: If the input sequence of weights is w = (w1, . . . , wn), let G1(w) be the
number of cars used by the original greedy method and G2(w) be the number of cars
in the 2-car greedy method. We want to show that G2(w) ≤ G1(w). But let us prove
the stronger statement: if w is any weight sequence and w′ is any subseqence of w then

G2(w
′) ≤ G1(w). (1)

To make the comparison of G1 with G2 solutions clearer, we use this trick: let us re-
interpret “w′ is a subsequence of w” to mean that w′ is obtained from w by replacing
some of the weights of w by weight 0. E.g., if w = (1, 2, 2, 1, 3, 1) and w′ = (2, 3, 1) we
re-interpret w′ as (0, 2, 0, 0, 3, 1) (or (0, 0, 2, 0, 3, 1) if we like). More generally, w′ is a
subsequence of w iff w = (w′

1, . . . , w
′
n) has the same length as w = (w1, . . . , wn) and

for each i, we have w′
i ≤ wi.

Our proof uses induction on the number of cars used by the G1 solution. If G1(w) = 1,
then clearly (1) holds. Suppose G1(w) ≥ 2, and let the first car load C in the G1

solution be the multiset C = {w1, w2, . . . , wi} for some i ≥ 1. So

G1(w) = 1 + G1(wi+1, wi+2, . . . , wn). (2)

The first car load C ′ in the G2(w
′) solution must contain the multiset {w′

1, . . . , w
′
i}.

Let w′′ be the weight sequence that is obtained from (w′
i+1, w

′
i+2, . . . , w

′
n) by setting to

weight 0 any weight that is in C ′. Clearly, w′′ is a subsequence of (w′
i+1, . . . , w

′
n), and

hence w′′ is a subseqeunce of (wi+1, . . . , wn). By induction hypothesis, we conclude
that

G2(w
′′) ≤ G1(wi+1, . . . , wn). (3)

Thus our main claim (1) follows from (2), (3) and the following:

G2(w
′) = 1 + G2(w

′′). (4)

To see this, let j be the largest index such that w′
j is in second car of the G2 solution.

Clearly, G2 assigned w′
j+1 to the third car, and it is at this moment that the first car

was dispatched. We see that, at this moment, the multiset of weights assigned to the
second car is precisely

{

w′
i+1, w

′
i+2, . . . , w

′
j

}

\ C ′. But this is precisely the set that
would be put into the first car of the G2 solution on input w′′. This completes the
proof of (4).

7. (10 Points)
Exercise 2.3.

Consider the activities selection problem. We now want to maximize the length |A| of a set A ⊆ S of
activities. Define the length |A| of a set compatible set S to be the length of all the activities in S

(the length of an activity I = [s, f) is just |I| = f − s). In case S is not compatible, its length is 0. Let
Ai,j = {Ii, Ii+1, . . . , Ij} for i ≤ j and Fi,j be an optimal solution for Ai,j .
(a) Show by a counter-example that the following “dynamic programming principle” fails:

Fi,j = maxi≤k≤j−1Fi,k ∪ Fk+1,j

where max{F1, F2, . . . , Fm} returns the set Fℓ whose length is maximum. (Recall that the length of
Fℓ is zero if it is not feasible.
(b) Give an O(n log n) algorithm for this problem. HINT: order the activities in the set S according
to their finish times, say,

f1 ≤ f2 ≤ · · · ≤ fn.

Consider the set of subproblems Si := {I1, . . . , Ii} for i = 1, . . . , n. Use an incremental algorithm to
solve S1, S2, . . . , Sn in this order.

3

SOLUTION: (a) Consider A1 = [1, 3), A2 = [2, 6), A3 = [3, 7).
(b) First lets sort the jobs by finish time so we have f1 ≤ f2 ≤ − + . . . fn. For
i = 1 . . . n, let r(i) denote the largest j such -that fj <= si. This is the job we
can schedule before job i. -Defined Si = {I1, I2, . . . , In}, we can define the following
-recurrence: Opt(Si) = max{Opt(Si−1), |Ii|+ Opt(Sr(i)).

8. (10 Points)
Exercise 3.3.

Consider the following letter frequencies:

a = 5, b = 1, c = 3, d = 3, e = 7, f = 0, g = 2, h = 1, i = 5, j = 0, k = 1, l = 2,m = 0,

n = 5, o = 3, p = 0, q = 0, r = 6, s = 3, t = 4, u = 1, v = 0, w = 0, x = 0, y = 1, z = 1.

Please determine the cost of the optimal tree. NOTE: you may ignore letters with the zero frequency.

SOLUTION: The tree may not be unique, but should have cost of 212.

9. (15 Points)
Exercise 3.10.

For any binary full tree T , we have given two representations: the array AT and the bit string αT .
Give detailed algorithms for the following conversion problems:
(a) To construct the string αT from the array AT .
(b) To construct the array AT from the string αT .

4

SOLUTION: The following solution is from your classmate, Jason Lee.
(a) Assume the input array is A[1..n] encoding AT , and the output array is b[1..2n−1]
encoding the αT . If A[i] < 0, it means node i is a leaf.

arrayToBits (A, i)
if A[i] < 0

return ’1’
else

return ’0’ + arrayToBits(A, i + 1) + arrayToBits(A,A[i]).

Note that we use the C++ convention where string concatenation is indicated by ‘+’.
(b) Assume the input bit string is b[1..2n−1], and the output array is A[0..2n−2]. We
will use a stack to keep track of the current path from the root to the current node.
An integer index (initially 0) is used to assign index numbers to nodes. We scan the
input b[1..2n− 1] sequentially; the output A[0..2n− 2] is filled in almost sequentially.
This is the inductive situation: suppose index = i, we are about to read b[j]. and the
stack contains the values 0 ≤ s1 < s2 < · · · < sh. This means the current node is i,
and the entries of A[0..i− 1] have all been filled in except for A[s1], . . . , A[sh].
Consider the next bit b[j]:
If b[j] = 0, then we push i on the stack (so the stack now contains 0 ≤ s1 < s2 <

· · · < sh < i. That is because we are unable to fill in the array entry A[i], so we just
remember this.
If b[j] = 1, we assign A[i]← −1 (i.e., node i is a leaf). We check if the stack is empty.
If so, we are done. Otherwise, we pop the value sh from stack. Now A[sh] ← i + 1.
Conceptually, we move up the tree to the last node sh whose right child is not yet
determined.

bitsToArray(b, n)
Input: bit array b[1..2n− 1]
Output: integer array A[0..2n− 2]
S ← empty stack
j ← 1; index← 0
while index ≤ 2n− 2 do

ch← b[j++]
if (ch = 0)

S.push(index++)
else

A[index++]← −1
if (S is non-empty)

A[S.pop()]← index

10. (10 Points)
What binary string would you transmit in order to send the string now is the time, under the
dynamic Huffman algorithm? Show your working. Note: you would have to transmit ascii codes for
the letters n, o, etc. Just write ASCII(n), ASCII(o), etc.

SOLUTION:

ASCII(n)0ASCII(o)00ASCII(w)100ASCII()

000ASCII(i)1100ASCII(s)1111000ASCII(t)0000

ASCII(h)11100ASCII(e)011111111111000ASCII(m)0011

5

