Homework 4 Solutions
Fundamental Algorithms, Spring 2008, Professor Yap

Due: Wed Apr 2, in class.
HOMEWORK with SOLUTION, prepared by Instructor and T.A.s

INSTRUCTIONS:
e Please read questions carefully. When in doubt, please ask.
e Please write succinctly, to the point. Every sentence must be an complete English sentence.

e You may post general questions to the homework discussion forum in class website. Also, bring your
questions to recitation on Monday.

1. (10 Points)
Question 2.3 in Lect.IV (algorithm to determine if two closed paths p and ¢ are equivalent).

Give an algorithm which, given two closed paths p = (vop—v1— -+ —vg) and ¢ = (up—ug— -+ —uy), de-
termine whether they represent the same cycle (i.e., are equivalent). The complexity of your algorithm
should be O(k?) in general, but O(k) for when ¢ is a simple cycle. NOTE: Assume that vertices are
integers, and the closed path p = (vg— -+ —vy) is represented by an array of integers p[0..k], where
pli] = v; and p[0] = p[k].



SOLUTION: We introduce the following procedures: Procedure Find returns the
position of vertex v in path p if found, —2 otherwise.

int Find(int v, path p, int z (starting position) )
1= z;
while (i < length(p))
it (v = p[d]) return i;
=1+ 1;
return —1;

Procedure Match returns True/False depending on whether path p matches path ¢
starting at ¢[j] modulo length L.

Bool M atch(path p, path ¢, int 7, int L)
for i=0to L
if p[i] # q[j + @ mod L] return False;
return True;

Procedure Fqual will determine if two given cycles are equivalent:

Bool Equal(path p, path ¢)
if length(p) # length(q) return False;
L := length(p);
J =0
whilej >0
Jj = Find(p[0],q, j);
if 7 < 0 return False;
if Mateh(p,q, j, L) return True;
J=J+1L

The above solution will determine equivalence even of non-simple cycles. If L is the
length of the cycles, the running time on simple cycles is O(L), since Fiind and Match
will be called only once. The running time on non-simple cycles can be as high as
O(L?) in the worst case.

To see the O(L?) behavior is possible, consider the closed paths p = a™ba and g = a™*2.
We suggest you convince yourself that the behaviour is O(L) when the paths are simple.
REMARK: this problem can be solved in linear time using more sophisticated algo-
rithms from string pattern matching (e.g., the KMP algorithm).

2. (0 Points)
Question 3.1 in Lect.IV (reversing a graph). Do not hand in, just for your thought.

3. (3 Points)
Question 3.5 in Lect.IV. Show that K33 is nonplanar. This should be a fun problem — we will lead
you through.

HINT: assuming it is planar, then K33 can be embedded in the Euclidean plane. This partitions the
plane into regions (called faces). Let there be f faces. NOTE that the number f includes the infinite
face (that stretches to infinity). Now, the faces are each bounded by 4 edges or 6 edges (why?). But at
most one face can be bounded by 6 edges (why?). By Euler’s formula, we know that v —e+ f = 2 (note
that you know v = 6 and e = 9). Let S be the set of pairs of the form (f’,e’) where f’ is a face and €’ is
an edge that bounds f’. Let us compute the count S| in two ways: s1:= > . [{(f',€') : (f',¢’) € S}|
and so =Y., [{(f',€): (f',€/) € S}|. Clearly, s; = s = |S|. But you should get different expressions
for s; and so in terms of v, e, f, and contradict Euler’s formula.



SOLUTION: Assuming K3 3 is planar, let it be embedded in the plane with f faces
(this includes the infinite face). Note that v = 6,e = 9 and Euler’s formula says
v —e+ f =2, Let I be the number of edge-face incidences. Every cycle of K3 3 is at
least 4. If d(f’") denotes the number of edge-face incidences that a face f’ is involved
in, we conclude that d(f’) > 4.

Using the hint, we consider the two expressions s; and sy for I. Summing over all faces

f', we have
I=s1=) d(f)>> 4>4f.
I’ 1
But each edge €’ is involved in exactly two such incidences. Summing over all edges ¢/,

1252222:26218.

It follows that 4f <= s7 = so = 18 or f < 4. Then Euler’s formula gives 2 = v—e+ f <
6 —9+4 = 1. This is a contradiction!

4. (12 Points)
Question 4.8 in Lect.IV (detecting cycles in bigraphs).

Give an algorithm that determines whether or not a bigraph G = (V, E) contains a cycle. Your
algorithm should run in time O(|V|), independent of |E|. You must use the shell macros, and also
justify the claim that your algorithm is O(|V]).

SOLUTION: Sketch: First, assume the bigraph is connected. We can use the BFS
shell (Lect IV, §4), and stop as soon as a level or cross edge is discovered. (NOTE: We
could also use DFS shell, and stop the moment a back edge is discovered.) Here are
the shell macros to implement:

INIT(G, s): initialize the depth of each vertex, d[u] = oo if u # s¢ and d[sg] = 0. We
interprete u to be unseen iff d[u] = co.

VISIT (v, u): set d[v] = 1+ d[u].

PREVISIT (v, u): if v is seen, we have detected a cycle. Return(CYCLE FOUND);

If after the BFS shell has terminated the main loop without finding a cycle, we Re-
turn(ACYCLIC).

In case the bigraph may not be connected, we just use the BFS or DFS driver to run
as many searches as there are connected components.

Complexity analysis: Until a non-tree edge is found, each new vertex and edge is added
to a growing forest of size at most n. The minute we find a non-tree edge, we terminate.
This makes it clear that the running time is O(|V]).

5. (12 Points)
Question 5.7 in Lect.IV (classifying edges using DFS tree of bigraphs).

Suppose T is the DFS Tree for a connected bigraph G. Recall our standard treatment of edges of a
bigraph in DFS. Let u—v be an edge of G. Prove that

(a) Either w is an ancestor of v or vice-versa in the tree T

(b) If u—wv is a non-tree edge, it is a back edge.

(¢) Give a complete classification of the edges as produced by the DFS algorithm.



SOLUTION:

(a) This is a consequence of the Unseen Path Lemma: suppose that u is visited
before v. Then at the time we first see u, there is an unseen path from u to v (since
u—v is an edge). The Lemma tells us that v would become a descendent of w.

(b) Hence if the edge u—wv is not a tree-edge, then v is a descendent of w. That
means that while we are exploring v, we will discover the edge from v to u, i.e., v—u
will become a back edge.

(c) All non-edges are back edges or unseen. In particlar, there are no forward or
cross edges.

6. (12 Points)
The following is result is discussed in the notes:

LEMMA 1. Let u be a vertex in the DFS tree T for a bigraph G. Then u is a cut-vertex iff one of the
following conditions hold:

(i) u is the root of T and has more than one child.

(#i) w is not the root, but it has a child v’ such that for every descendent v of u', if v—w is an edge,
then w is also a descendent of u. Note that a node is always a descendent of itself.

Use this lemma to design an algorithm to detect cut-vertices in a connected bigraph. HINT: Let ft(u)
be the smallest value of firstTime[w], where w is a vertex that can be reached by a back edge v—w, for
some proper descendent v of v in the DFT tree; if there is no such back edge, then we define ft(u) to
be firstTime[u]. You need to address two questions: (a) How can ft(u) help you determine whether
a vertex v is a cut-vertex? (b) How can you compute ft(u)?



