
Homework 2 Solutions
Fundamental Algorithms, Spring 2008, Professor Yap

Due: Wed Feb 20, in class.
HOMEWORK with SOLUTION, prepared by Instructor and T.A.s

INSTRUCTIONS:

• Please read questions carefully. When in doubt, please ask. You may also post general questions to
the homework discussion forum in class website. Also, bring your questions to recitation on Monday.

• There are links from the homework page to the old homeworks from previous classes, including solu-
tions. Feel free to study these.

1. (4 Points)
Exercise A.3 in Lecture 1. (De Morgan’s Law applied to quantifiers)

Consider the following sentence:

(∀x ∈ Z)(∃y ∈ R)(∃z ∈ R)
h

(x > 0) ⇒ ((y < x < y
−1

) ∧ (z < x < z
2
) ∧ (y < z))

i

(1)

Note that the range of variable x is Z, not R. This is called a universal sentence because the leading
quantifier is the universal quantifier (∀). Similarly, we have existential sentence.
(i) Negate the sentence (1), and then apply De Morgan’s law to rewrite the result as an existential

sentence.

(ii) Give a counter example to (1).

(iii) By changing the clause “(x > 0)”, make the sentence true. Indicate why it would be true.

SOLUTION:
(i)

(∃x ∈ Z)(∀y ∈ R)(∀z ∈ R)
[

(x > 0) ∧ (¬(y < x < y−1) ∨ ¬(z < x < z2) ∨ (z ≤ y))
]

(ii) A counter example is x = 1. If z < x, then we must have z < 1 and so z2 < z.
Now, z must be positive, as otherwise, it would not satisfy the condition y < z. Hence
0 < z < 1. Thus (z < x < z2) cannot hold.
(iii) We change (x > 0) to (x > 1). This removes the counter example. Nor we can
always choose z so that (z < x < z2). Now if we choose a positive y sufficiently small,
we can also satisfy the remaining clauses.

2. (10 Points)
Exercise 7.6, Lecture 1. (Redoing question from hw1, with new assumptions)

Provide either a counter-example when false or a proof when true. The base b of logarithms is arbi-
trary but fixed, and b > 1. Unlike in hw1, we now assume the functions f, g are unbounded and ≥ 0
eventually.
(a) f = O(g) implies g = O(f).
(b) max{f, g} = Θ(f + g).
(c) If g > 1 and f = O(g) then ln f = O(ln g). HINT: careful!
(d) f = O(g) implies f ◦ log = O(g ◦ log). Assume that g ◦ log and f ◦ log are complexity functions.
(e) f = O(g) implies 2f = O(2g).
(f) f = o(g) implies 2f = O(2g).
(g) f = O(f2).
(h) f(n) = Θ(f(n/2)).

1

SOLUTION: Many false statements are now true:

(a) False, as before.

(b) True. max(f, g) ≤ f + g (ev), since both functions are ≥ 0 (ev). But f + g ≤
2max(f, g) (ev).

(c) True. Since f = O(g), we have f ≤ Cg (ev) for some C > 1. So lg f ≤ lg C + lg g.
As g is grows unbounded, we have g ≥ C (ev) and so lg f ≤ lg C + lg g = 2 lg g
(ev).

Alternative proof (based on limits, which I generally avoid): As f is increasing,
eventually f > 1, so ln(f) > 0 and moreover, it too is an increasing function of n.
Looking at the limit as n goes to infinity of ln(f)/ ln(g) = (1/f)/(1/g) = g/f = C,
we see that ln(f) = O(ln(g)) .

(d) True, as before.

(e) False, as before.

(f) True. as before.

(g) True. We have 1 ≤ f (ev) and hence f ≤ f2 (ev). Thus f = O(f2).

(h) False, as before.

3. (12 Points)
Exercise 0.2, Lecture 2. Let T (n) = aT (n/b) + n, where a > 0 and b > 1. How sensitive is this
recurrence to the initial conditions? More precisely, if T1(n) and T2(n) are two solutions corresponding
to two initial conditions, what is the strongest relation you can infer between T1 and T2?

SOLUTION: We can be slightly more general, and let the driving function be d(n);
our problem assumes d(n) = n. We can use rote expansion

T (n) = aT (n/b) + d(n)
= a2T (n/b2) + ad(n/b) + d(n) (Expand)
= · · ·
= aiT (n/bi) +

∑i−1
j=0 ajd(n/bj)

after expanding i times. Choose i = logb n − C for some C > 0 where where both
T1(n/bi) and T2(n/bi) are Θ(1). In the special case where d(n) = n, we see that

T (n) = aiT (n/bi) + n

i−1
∑

j=0

(a/b)j

= Θ(ai) + Θ

n(a/b)i if a > b
ni if a = b
n if a < b

= Θ

nlog
b

a if a > b
n logb n if a = b
n if a < b.

This shows that the initial conditions have no effects on the final solution!

4. (10 Points)
Exercise 2.8, Lecture 2. (Google problem) Recall the problem of computing a minimum cover for a set
W = {w1, . . . , wk} of k key words in a file. For each key word wi, we are given a sorted list P (wi) of
the positions where wi occurs in the file.
(a) Solve the minimum cover problem for k = 2 in linear time.

2

(b) Suppose P (wi) = (si, ti) for i = 1, . . . , k, i.e., each keyword has just two positions. Give an
O(k log k) algorithm to find the minimum cover J for w1, . . . , wk.

�

SOLUTION (a) Let P (w1) and P (w2) be merged into the list A[1..n]. The minimum cover has the
form J = [A[i], A[i + 1]] where (i) A[i]−A[i + 1] has minimum absolute value, and (ii) A[i] ∈ P (w1) iff
A[i + 1] ∈ P (w2).

(b) Let P (wi) = (si, ti) for i = 1, . . . , k. Wlog, assume s1 < s2 < · · · < sk. Let S = {s1, . . . , sk} and
and T = {t1, . . . , tk}. We first sort the set S ∪ T in O(k log k) time. Let L be the sorted list whose
elements are S ∪ T , sorted in increasing order (so the first element of L is s1). Let the set of minimal
covers be C1, . . . , Cm where Ci = [ci, di]. We may assume so that c1 < c2 < · · · < cm, and hence (by
minimality) also d1 < d2 < · · · < dm. We will first show (BASE CASE) how to compute C1, and
from Ci, we show (INDUCTIVE CASE) how to compute Ci+1 or else determine that i = m. The
computation of C1, . . . , Cm will take O(k), hence linear time.

Each cover C = [c, d] is represented by a pair of pointers to the numbers corresponding to c and d in
the sorted list L. We call ti the partner of si; and if c ∈ S, we can speak of the partner of c. For each
c ∈ L, let the successor of c be the next larger element in the list L. If c is equal to si (for some i)
then the partner of c is ti in the list L; if c ∈ T , then the partner of c is undefined.

First we will show how to find C1 = [c1, d1]. It is easy to see that no di’s can be smaller that sk.
Moreover, we see that [s1, sk] is a cover, not necessary minimal. Hence d1 = sk. To find c1, we
initialize the variable c to s1: c← s1. Then we enter a while-loop:

c← s1; d1 ← sk

⊳ LOOP INVARIANT: [c, d1] is a cover

while (c ∈ S and the partner of c lies in [c, d1])
c← successor of c.

c1 ← c; ⊲ ASSERTION: [c1, d1] is a minimal cover

When we exit from the while-loop, there are two cases: either (1) c ∈ T or (2) c ∈ S but the partner
of c is larger than d1. In either case, we can set c1 to this value of c. To see that [c1, d1] is minimal,
we only have to note that if c1 is replaced by its successor, it would no longer be a cover (by virtue of
(1) or (2)). This concludes our construction of C1.

Inductively, suppose we are given Ci = [ci, di]. If ci ∈ T , then we see that Ci is the last minimal cover
(i.e., i = m). If ci ∈ S, then by minimality of Ci, the partner of ci must be larger than di. We let di+1

be the partner of ci. It is easy to see that [succ(ci), di+1] is a cover, This proves that di+1 is indeed
correctly computed. It remains to compute ci+1. We use the same while-loop as before. Namely, we
initialize c to succ(ci), and as long as c ∈ S and the partner of c lies in [c, di+1], we replace c by its
successor. When we exit from this loop, we set ci+1 to c. It is easy to see that [ci+1, di+1] is a minimal
cover. This concludes our algorithm.

Since the work amounts to following pointers to successors or partners, and these pointers point from
smaller to larger, the complexity of these pointer jumping is O(k).

�

5. (0 Points)
Exercise 3.1, Lecture 2.

6. (18+5 Points)
Exercise 6.1, Lecture II. (a) Verify that the examples in (55), (56), and (57) in Lecture II are polynomial-
type or exponential-type, as claimed.
(b) Is the summation

∑n
i=1 ilg i an exponential type or polynomial type? Give bounds for the summa-

tion.

3

SOLUTION: We will show one from each section.

(a) f(i) = i log i. We will show this is of polynomial-type. Let us compare f(i) and
f(i/2) by looking at the following for some C > 0 (we will determine the actual
C later).

i log i ≤ C(i/2) log i/2

Moving the constant 1/2 into the constant C and dividing both sides by i and
log i/2, we obtain the relationship

log i/ log (i/2) ≤ C

In other words, we are asking: does the ratio on the left hand side have a fi-
nite limit as we let i goto infinity? Using L’Hospitals rule, we take limits of
the top and bottom to see that this limit is in fact finite. Moreover, this ratio
approaches the limit from above, monotonically. Therefore, for any N , we let
C = log N/ log (N/2) and the result follows.

(b) f(i) = 2i. We will show this is of exponential type. To do this we must show
2i ≥ C ∗ (2i−1). However, to observe that 2i = 2 ∗ 2i−1 and the result follows.

(c) f(i) = ilg i. Let first observe, that this function is not of polynomial type. As
above, we look at the limit of the ratio f(i)/f(i/2). Using basic properties of the
logarithm, we can write this ratio as

ilg(i)/i(lg(i/2)) ∗ 2lg i/2 = 1/2 ∗ i2

Clearly this limit is unbounded, so f cannot be of polynomial-type.

We now claim that f(i) is not exponential type either! Suppose there is some
C0 > 1 such that

f(i) ≥ C0f(i− 1) (ev.). (2)

We first note two useful bounds: From the fact that Hn = lnn+γ+1/(2n)+O(n−2)

(see notes on the Harmonic function Hn in §15, Lect.II). we conclude that

lnn + γ + (1/n) ≥ Hn ≥ lnn + γ (ev.). (3)

Hence,

lnn ≤ Hn − γ

= (1/n) + Hn−1 − γ

≤ (1/n) + ln(n− 1) + (1/n)

= ln(n− 1) + (2/n),

eventually. Dividing this by ln 2, we get:

lg n ≤ lg(n− 1) + (2K/n) (ev.) (4)

where K = 1/ ln 2. The following bound is from Appendix A (Lect.II): for |x| < 1,
x > ln(1 + x) > x/2 (ev.). Again, dividing by ln 2, we get

Kx > lg(1 + x) > Kx/2 (ev.). (5)

We see that

f(i) =
[

(i− 1)(1 + 1
i−1)

]lg i

≤ (i− 1)lg(i−1)+(2K/i)(1 + 1
i−1)lg i (by (4))

= f(i− 1) · (i− 1)2K/i · 2lg(1+ 1
i−1

) lg i

≤ f(i− 1) · 22K lg(i−1)/i · 2
lg i

i−1 (by (5))
= f(i− 1) · C2(i) · C3(i)

where C2(i) := 22K lg(i−1)/i and C3(i) := 2
lg i

i−1 . But notice that lg C2(i) =
2K lg(i− 1)/i and lg C3(i) = lg i/(i− 1) both goes to 0 as i→∞. Hence C2(i) ≤√

C (ev.) and C (i) ≤
√

C (ev.). We have now shown f(i) ≤ f(i − 1)C (ev.),

4

7. (10 Points)
Use the Rote Method to solve the following T (n) = 11T (n/3)+n2 You must indicate clearly the EGVS
steps.

SOLUTION: As above in Problem 3 above, we have

T (n) = aT (n/b) + d(n)

= aiT (n/bi) +
i−1
∑

j=0

ajd(n/bj).

In Problem 3, we only do the guessing but did not do the verification. But you must
to do this in your solution.
Specializing to our particular recurrence,

T (n) = 11iT (n/3i) +

i−1
∑

j=0

11j(n/3j)2

= 11iT (n/3i) + n2
i−1
∑

j=0

(11/9)j

= 11iT (n/3i) + n2(11/9)i

Now we stop by choosing i = log3 n− C for some C > 0, we get

T (n) = Θ(nlog3 11) + n2(11/9)log3 n

= Θ(nlog3 11).

8. (20 Points)
Use Real Induction to give good upper and lower bounds on the recurrence T (n) = T (n/2)+T (n/3)+
T (n/4) + n. HINT: try different values of α, β to get bounds of the form K ′nα ≤ T (n) ≤ Knβ (ev.)

5

SOLUTION: We want to determine the α such that T (n) = Θ(nα) (a general theorem
in Lecture 10.3 guarantees that such an α exists). But you can get most of the credits
for such questions by giving good upper and lower bounds on α.
For instance, we know that α ≥ 1 because T (n) ≥ n. How good is this? We will see
that this is surprisingly good.
Let us guess some upper bound, like α ≤ 2. This amounts to proving that T (n) ≤ Kn2

(ev.). So we just try it:

T (n) = T (n/2) + T (n/3) + T (n/4) + n

≤ K(n/2)2 + K(n/3)2 + K(n/4)2 + n

= Kn2

[

1

22
+

1

32
+

1

42
+

1

Kn

]

= Kn2

provided
1
22 + 1

32 + 1
42 + 1

Kn ≤ 1
1
4 + 1

9 + 1
16 + 1

Kn ≤ 1

}

Since (1/4) + (1/9) + (1/16) < 3/4, the inequality (6) will clearly hold for Kn ≥ 4.
Hence, we have proven T (n) ≤ Kn2 by real induction. You can now try to see if
α ≤ 1.5 (but for this, you probably need a pocket calculator to estimate the value of

1

21.5
+

1

31.5
+

1

41.5
.

More generally, let

h(x) =
1

2x
+

1

3x
+

1

4x
.

As x goes from −∞ to ∞, h(x) changes monotonically from ∞ to 0. Hence there is a
unique α such that h(x) = 1. Moreover, our theorem in Lecture 10.3 assures us that
T (n) = Θ(nα).
This is an aside for those of you who want to explore this more: Suppose we want to
numerically approximate the α = 1.???. For a simple way to do this, use a user-friendly,
powerful software like MATLAB. For instance, consider the following two lines of MATLAB
code:

>> h = @(x) 2.ˆ (-x) + 3.ˆ (-x) + 4.ˆ (-x);
>> for x =0.9 : 0.1 : 1.2, display([x, h(x)]), end

It will produce the values for first of the following four tables:

x h(x)

0.9000 1.1951
1.0000 1.0833
1.1000 0.9828
1.2000 0.8923

x h(x)

1.0700 1.0119
1.0800 1.0021
1.0900 0.9924
1.1000 0.9828

x h(x)

1.0810 1.0011
1.0820 1.0001
1.0830 0.9992
1.0840 0.9982

x h(x)

1.0820 1.0001
1.0821 1.0000
1.0822 0.9999
1.0823 0.9998

NOTE: you should be able to repeat this experiment with MATLAB using the public
terminals of our department. By changing the stepsize and limits of the for-loop, we
can get more correct digits with each iteration. Each of the tables able is based on a new
for-loop that yields one extra digit in the decimal expansion of α. Thus, α ≈ 1.0821.
Suggestion: how can you continue this experiment to determine the first 100 digits of
α?

6

