
Homework 1 Solutions
Fundamental Algorithms, Spring 2008, Professor Yap

Due: Wed Feb 6, in class.
HOMEWORK with SOLUTION, prepared by Instructor and T.A.s

INSTRUCTIONS:

• Please read questions carefully. When in doubt, please ask. You may also post general questions to
the homework discussion forum in class website. Also, bring your questions to recitation on Monday.

• There are links from the homework page to the old homeworks from previous classes, including solu-
tions. Feel free to study these.

1. (10 Points)
Exercise 7.1 in Lecture 1. Assume f(n) ≥ 1 (ev.).
(a) Show that f(n) = nO(1) iff there exists k > 0 such that f(n) = O(nk). This is mainly an exercise
in unraveling our notations!
(b) Show a counter example to (a) in case f(n) ≥ 1 (ev.) is false.

SOLUTION: a) Let f(n) ≥ 1 (ev) and assume that f(n) = nO(1). Therefore there
exists a g ∈ O(1) such that g(n) ≤ k (ev) and f(n) ≤ ng(n) ≤ nk (ev). This shows
that f(n) ∈ O(nk). In the other direction, suppose f = O(nk). Then f ≤ Cnk (ev) for
some C > 1. Thus f ≤ nk+ǫ (ev) for any ǫ > 0 (we This shows f = nO(1).
b) To find a counterexample, let f(n) = 1/2. Clearly f = O(n). But f(n) 6= nO(1)

because if f(n) = ng(n) for some function g(n), then clearly g(n) < 0 (ev). But this
means g(n) 6= O(1). Recall that g ∈ O(1) implies g ≥ 0 (ev).

2. (25 Points)
Do Exercise 7.5, Lecture 1 (in 8 parts). Provide either a counter-example when false or a proof when
true. The base b of logarithms is arbitrary but fixed, and b > 1. Assume the functions f, g are arbitrary
(do not assume that f and g are ≥ 0 eventually).
(a) f = O(g) implies g = O(f).
(b) max{f, g} = Θ(f + g).
(c) If g > 1 and f = O(g) then ln f = O(ln g). HINT: careful!
(d) f = O(g) implies f ◦ log = O(g ◦ log). Assume that g ◦ log and f ◦ log are complexity functions.
(e) f = O(g) implies 2f = O(2g).
(f) f = o(g) implies 2f = O(2g).
(g) f = O(f2).
(h) f(n) = Θ(f(n/2)).

1

SOLUTION: Only two statements are true!

(a) False. f = n and g = n2.

(b) False. Take f any function that is eventually non-zero. Then take g = −f

(c) False. Take f = 1/2 and g > 1 as anything. log(1/2) < 0 This solution takes
advantage of the fact that if lg f = O(lg g) then lg f ≥ 0 (ev). HERE is another
solution which does not exploit this property (and I think is more insightful): Let
f = 2 and g(x) = (x+1)/x = 1+(1/x). Then ln g > 0 but lg g(n) → 0 as x → ∞.
[In fact, lg g(x) < 1/(2x), but you don’t need to not know this]. Clearly, lg f = 1
but there is no constant C > 0 such that lg f = 1 ≤ C lg g.

(d) True. We have f = O(g) implies there is some C > 0 and x0 such that for all
x > x0, f(x) ≤ Cg(x). Thus, f(log(x)) ≤ Cg(log(x)) for all x ≥ ex0 .

(e) False. Let f = 2n and g = n.

(f) True. f = o(g) implies that for all C > 0, 0 ≤ f ≤ C ∗ g (ev). Taking C = 1, we
obtain that 0 ≤ 2f ≤ 2g or in other words 2f ∈ O(2g).

(g) False. Let f = 1/n.

(h) False. f = 2n.

3. (10 Points)
Exercise 7.7, Lecture 1. Let f(x) = sin x and g(x) = 1.
(i) Prove f � g or its negation.
(ii) Prove g � f or its negation.

HINT: To prove that f 6� g, you need to show that for all choices of C > 0 and x0 > 0, some relationship
between f and g fails.

SOLUTION:
(i) CLAIM: f � g. Pf: Choose C = 1. Then for all x ∈ R, we have f(x) = sin x ≤

1 = g(x).
(ii) Note that f � g fails because f is periodic. Hence we will prove the negation:

CLAIM: g 6� f . Pf: To see this, note that for all C > 0 and x0, there exists x > x0

such that f(x) = 0. Hence g(x) ≤ Cf(x) does not hold.

4. (10 Points)
Exercise 7.8, Lecture 1. This exercise shows three (increasingly strong) notions of lower bounds.
Suppose TA(n) is the running time of an algorithm A.
(a) Suppose you have constructed an infinite sequence of inputs I1, I2, . . . of sizes n1 < n2 < · · · such
that A on Ii takes time more than f(ni). How can you express this lower bound result using our
asymptotic notations?
(b) In the spirit of (a), what would it take to prove a lower bound of the form TA(n) 6= O(f(n))? What
must you show about of your constructed inputs I1, I2,
(c) What does it take to prove a lower bound of the form TA(n) = Ω(f(n))?

2

SOLUTION:

(a) TA(n) 6= o(f(n)). To see this, observe that there is a sequence of inputs of size
n1, n2, . . . such that TA(n)/f(n) 6−→ 0.

(b) To show that TA(n) 6= O(f(n)), we must show that for every C > 0 and for every
x0, there exists an x > x0, such that Cf < TA(n).

(c) We must must show that there exists a C and n0 such that for every n ≥ n0,
TA(n) ≥ Cf(n). NOTE: In particular, we need ni = n0 + i) for some integer
n0 ≥ 0. In most cases, an algorithm A only has positive integer size inputs; so
TA(n) is not naturally defined if n is not-integer. In this case, we can simply
define TA(n) to be TA(⌈n⌉).

5. (20 Points)
Exercuse A.6 in the Appendix of Lecture 1. Prove these basic facts about binary trees, assuming n ≥ 1.
(a) A full binary tree on n leaves has n − 1 internal nodes.
(b) Show that every binary tree on n nodes has height at least ⌈lg(1 + n)⌉ − 1. HINT: define M(h) to
be the maximum number of nodes in a binary tree of height h.
(c) Show that the bound in (b) is tight for each n.
(d) Show that a binary tree on n ≥ 1 leaves has height at least ⌈lg n⌉. HINT: use a modified version
of M(h).
(e) Show that the bound in (d) is tight for each n.

3

SOLUTION: (a) Use structural induction.
BASE CASE: assume n (the number of leaves) is at least 1. Note that a full binary
tree, if it has any leaves, must have at least 2 leaves. So n = 2 is our base case. The
result is clearly true here.
INDUCTIVE CASE: assume n > 2. Let n(T) and i(T) denote the number of leaves of
T and number of internal nodes of T . Thus, n = n(T). Our goal is to prove

n(T) = 1 + i(T).

Note that the size of T is |T | = n(T) + i(T). Let TL, TR be the left and right subtrees.
Without loss of generality, let |TL| ≤ |TR|. Assume first that n(TL) = 1. Then n(TR) >
1. By induction, n(TR) = i(TR) + 1. Then n(T) = 1 + n(TR) and i(T) = 1 + i(TR).
This proves that

n(T) = 1 + n(TR) (by definition of n(T)
= 1 + (i(TR) + 1) (by induction hypothesis)
= 1 + i(T) (by definition of i(T)

Finally, assume n(TL) > 1. Then we have

n(T) = n(TL) + n(TR) (by definition of n(T)
= (i(TL) + 1) + (i(TR) + 1) (by induction hypothesis)
= 1 + i(T) (since i(T) = 1 + i(TL) + i(TR))

(b) Then we have M(h) = 1+2M(h−1) and M(0) = 1. Thus M(h) = 2h+1 −1. Thus
we have n ≤ M(h) and n+1 ≤ 2h+1 and, by taking logarithm, h ≥ lg(n+1)−1. Since
h is an integer, we can take ceiling of lg(n + 1).
REMARK: this technique of defining M(h) is a good general way to prove lower bound
on heights. There is an analogous technique to prove upper bounds on height (see
Chapter on AVL trees).
(c) We must show that for every n ≥ 1, there are binary trees on n nodes with height
h(n) := ⌈lg(1 + n)⌉ − 1. If n = 1, h(1) = 0, and the result is true. Suppose n > 1 and
n is even. Then

h(n) = ⌈lg(1 + n)⌉ − 1
= ⌈lg((1 + n)/2)⌉
= ⌈lg(1 + (n/2))⌉ since n even
= h(n/2) + 1

By induction hypothesis, there is a binary tree on n/2 nodes of height h(n/2). Consider
the binary tree Tn on n nodes where the left subtree has n/2 nodes and the right subtree
has (n/2) − 1 nodes. The height of Tn is 1 + h(n/2), which is equal to h(n).
What if n is odd? In this case,

h(n) = ⌈lg(1 + n)⌉ − 1

= ⌈lg((1 + n)/2)⌉
= ⌈lg(1 + (n − 1)/2))⌉
= h((n − 1)/2) + 1

Now construct Tn so that its left and right subtrees are both T(n−1)/2. Hence Tn has
height 1 + h((n − 1)/2) which is equal to h(n).
(d) We can use the same method as (b), but define a modified function M ′(h) to be
the maximum number of leaves in a binary tree of height h. Then M ′(h) = 2M ′(h−1)
where M ′(1) = 2. Then M ′(h) = 2h. Hence n ≤ M ′(h) = 2h. Hence h ≥ lg n, and
again we can take ceiling.

4

6. (10 Points)
Do Exercise 11.3, Lecture 2. Order the following 5 functions in order of increasing Θ-order: (a) log2 n,
(b) n/ log4 n, (c)

√
n, (d) n2−n, (e) log log n.

SOLUTION: The order is (d) < (e) < (a) < (c) < (b).

5

