
Homework 5
Fundamental Algorithms, Spring 2003, Professor Yap

Due: Wed May 7, in class
Solutions prepared by: Chee Yap with help from T.A.’s.

INSTRUCTIONS:

• Please read the questions carefully. When in doubt, please ask.

1. (20 Points) Recursive Dynamic Programming
Equation (1) Lecture VII (p.12) describes the Dynamic Programming solution for the optimal trian-
gulation problem. The “bottom-up” implementation of this equation as a triply-nested for-loop was
given in page 14. In this question, we want to solve this “top-down”, by using a recursive algorithm.
We assume that the weight W (i, j, k) is easily computed for any 1 ≤ i < j < k ≤ n.
(i) Briefly explain how a naive recursive algorithm would be exponential.
(ii) Describe an efficient recursive algorithm for optimal triangulation. You will need to use some global
data structure for sharing information across subproblems.
(iii) Briefly analyze the complexity of your solution.
(iv) Does your algorithm ever run faster than the bottom-up implementation? Can you make it run
faster on some inputs?

SOLUTION:
(i) Let T (n) be the cost of solving a problem of size n. In dynamic programming, we solve at least one
subproblems of size n− 1, n− 2, . . . , 1. The cost to combine the answers is at least n. Hence

T (n) ≥ n +
∑n−1

i=1 T (i) — (a)
T (n− 1) ≥ n− 1 +

∑n−2
i=1 T (i) — (b)

T (n)− T (n− 1) = 1 + T (n− 1) — (a)-(b)
T (n) = 1 + 2T (n− 1).

It is easy to see by induction that T (n) > 2n (assuming T (0) = 1.

(ii) We maintain a matrix C where C[i, j] (1 ≤ i < j ≤ n) is the optimal cost of the subproblem P (i, j).
Initially, C[i, j] = ∞ for all i, j. The recursive algorithm R(i, j) returns the optimal cost C(i, j) while
updating the array C.

TRIANGULATION ALGORITHM:
1. Initialize C with C[i, j] = ∞ for all 1 ≤ i < j ≤ n.
2. Return R(1, n).

RECURSIVE ALGORITHM R(i, j):
1. If i = j − 1, then C[i, j] = 0 and return 0.
2. If C[i, j] < ∞ then return C[i, j].
3. For each k = i + 1, . . . , j − 1,
4. C[i, j] = min{C[i, j], W (i, k, j) + R(i, k) + R(k, j)}.
5. Return C[i, j].

(iii) Complexity Analysis: Each entry is filled in at most once. To fill an entry, we use O(n) time.
Since there are O(n2) entries, the overall time is O(n3).

(iv) Improvements: As implemented above, the recursive solution is no better than the bottom up
method. But there is the potential in a recursive solution to avoid solving certain subproblems. This
requires introducing some ”bounding function”. Here is a simple way to do it. Suppose we maintain

1

another matrix E[i, j] in parallel to C[i, j]. The entries E[i, j] is a LOWER bound on the cost of C[i, j].
For instance, we could set E[i, j] = min{W (i, k, j) : i < k < j} but this does not seem easy to compute
without additional properties about the functions W (i, k, j). In the lecture notes, we noted several
special cases, e.g., W (i, k, j) = ai + ak + aj , etc. In some of these cases we can easily compute E[i, j]
in O(n2) time. Once this is done, we can modify line 4 in the above recursive algorithm as follows: “if
C[i, j] ≥ W (i, j, k) + E[i, k] + E[k, j] then do X” where X is the assignment in the current line 4.

2. (20 Points) String Alignment Problem
Recall the string edit problem, where the operations are Insert, Delete and Replace. Given two strings
X, Y , we want the minimum “cost” of modifying X so that the two strings becomes identical. Here is
our definition of ”cost”:
(a) Each deletion or insertion costs 2 units.
(b) Each replacement costs 1 unit.
(c) Each “original” match involving a character from X and the same character in Y costs −2 units.
What we mean by “original” match will be clear in an example. Note that this cost occurs in the
absence of any operations!

In contrast, in the original string edit problem, matches have no cost while each of the other operations
costs 1 unit. The minimum costs of such a sequence of operations (or non-operations) is called the
alignment cost for X, Y and is denoted A(X, Y). For instance, X = cga and Y = acaat. We can
first insert a in the front of X to get X ′ = acga (costs 2), and delete t from Y to get Y ′ = acaa. To
indicate the various copies of a letter, we use subscripts: X ′ = a1cga2 and Y ′ = a3ca4a5. Now we
make the obvious one-one correspondence between X ′ and Y ′: we get matches at positions 1, 2, 4. The
matches at positions 2 and 4 costs −2 units each. However, the match at position 1 (between a1 with
a3) is a result of inserting a1 and so it has already been counted. In other words, it is not an “original
match”. Since there is no match at 3, we need to replace g by an a to get a match – this replacement
costs 1 unit. This shows that A(X, Y) ≤ 2 + 2− 2− 2 + 1 = 1. [Can you show a lower cost alignment
of X, Y ?]

To summarize, here is how we perform a single alignment of X and Y : first perform a sequence of
insertions and deletions until the strings have the same length. Then align the result in the obvious
way, and find all the original matches, as well as perform any replacements as needed. Add up the cost
of deletions/insertions, original matches and replacements. This problem arise in DNA sequencing in
computational biology.

(i) Give the recursive formula for A(X, Y) and justify it.
(ii) Compute A(X, Y) where X, Y are the strings AATTCCCGA and GCATATT. You must organize this
computation systematically as in the LCS problem.

SOLUTION:
(i) Suppose we have two strings X and Y and want to give a recursive version of the alignment cost
A(X,Y). Suppose we transform X into X ′ and Y into Y ′ such that the alignment is optimal. Let’s
look at the last characters in X and Y , call them x and y. Similarly, let the last characters in X ′ and
Y ′ be x′ and y′. Since we do an optimal alignment, it is clear that at least one of x′ and y′ is from
the initial string. (a position where both characters are newly inserted can clearly be removed in an
optimal alignment). To simplify the analysis we suppose we only do insertions; this is without loss of
generality, since a delete in one string is the same as an insert in the other one and the cost is the
same. Hence there are three possibilities:
1. (x = x′) and (y 6= y′). This means an insertion of y′ in Y . In this case the cost is A(X, Y) =
Cost(Insertion) + A(Xp, Y) = 2 + A(Xp, Y) where Xp is the prefix of X obtained by dropping the
last character in X .
2. (x 6= x′) and (y = y′). This means an insertion of x′ in X . In this case we get the recurrence
A(X, Y) = 2 + A(X, Yp).
3. (x = x′) and (y = y′). This means the original characters at the end of X and Y are kept. There
are two possibilities: (a) If x = y then we get an original match with cost −2. The recurrence is
A(X, Y) = −2 + A(Xp, Yp). (b) If x 6= y, the we need a replacement with cost 1, giving the recurrence
A(X, Y) = 1 + A(Xp, Yp).

2

The base case is when |X | = 0 or |Y | = 0. In this case, A(X, Y) = 2 max{|X |, |Y |}. Hence the overall
recurrence is

A(X, Y) =

2 max{|X |, |Y |} if |X | · |Y | = 0,
min{2 + A(Xp, Y), 2 + A(X, Yp),−2 + A(Xp, Yp)} if x=y,
min{2 + A(Xp, Y), 2 + A(X, Yp), 1 + A(Xp, Yp)} else

We can simplify the recurrence in case x = y, by noticing that min{2 + A(Xp, Y), 2 + A(X, Yp),−2 +
A(Xp, Yp)} = −2 + A(Xp, Yp). To see this, we note that A(Xp, Yp) ≤ 2 + A(Xp, Y) since we can
insert y at the end of Yp to create Y . Hence 2 + A(Xp, Y) ≥ A(Xp, Yp) > −2 + A(Xp, Yp). Similarly,
2 + A(X, Yp) ≥ A(Xp, Yp) > −2 + A(Xp, Yp).

A(X, Y) =

2 max{|X |, |Y |} if |X | · |Y | = 0,
−2 + A(Xp, Yp) if x=y,
min{2 + A(Xp, Y), 2 + A(X, Yp), 1 + A(Xp, Yp)} else

(ii) Now that we know the recurrence we only have to fill in the usual table row by row.

G C A T A T T
0 2 4 6 8 10 12 16

A 2 1 3 2 4 6 8 10
A 4 3 2 1 3 2 4 6
T 6 5 4 3 -1 1 0 2
T 8 7 6 5 1 0 -1 -2
C 10 9 5 7 3 2 1 0
C 12 11 7 6 5 4 3 2
C 14 13 9 8 7 6 5 4
G 16 12 11 10 9 8 7 6
A 18 14 13 9 11 7 9 8

The value we are interested in is at the bottom right corner of the table, so A(X, Y) = 8.

3. (20 Points) Probabilistic Counters
Recall the counter problem where, given a binary counter C which is initially 0, you can perform the
operation inc(C) to increments its value by 1. Now we want to do probabilistic counting: each
time you call inc(C), it will flip a fair coin. If heads, the value of C is incremented and otherwise the
value of C is unchanged. Now, at any moment you could call look(C), which will return twice the
current value of C. Let Xm be the value of look(C) after you have made m calls to inc(C).
(a) Note that Xm is a random variable. What is the sample space Ω here?
(b) Let Pm(i) be the probability that look(C) = 2i after m inc’s. State a recurrence equation for
Pm(i) involving Pm−1(i) and Pm−1(i− 1).
(c) Give the exact formula for Pm(i) using binomial coefficients. HINT: you can either use the model in
(a) to give a direct answer, or you can try to solve the recurrence of (b). You may recall that binomial
identity

(
m
i

)
=

(
m−1

i

)
+

(
m−1
i−1

)
.

(d) In probabilistic counting we are interested in the expected value of look(C), namely E[Xm]. What
is the expected value of Xm? HINT: express E[Xm] using Pm(i) and do some simple manipulation
involving binomial coefficients. If you do not see what is coming out, try small examples like m = 2, 3
to see what the answer is.

[NOTE: The expected value of Xm can be odd even when the actual value returned is always even.
Using a generalization of these ideas, you can probabilistically count to 22n

with an n-bit counter.]

SOLUTION:
(a) Each increment has one of two possible outcomes, denoted 0 or 1. So a sequence of m increments
corresponds to a binary string of length m. Thus the sample space is Ω = {0, 1}m.
(b) Let Em,i be the event that the counter value is i after m increments. Fm be the event that the mth

3

increment causes the counter value to increase by 1. Thus Em,i = (Em−1,i ∩ Fm) ∪ (Em−1,i−1 ∩ Fm).
But Pr(Em−1,i∩Fm) = Pm−1(i)/2 and Pr(Em−1,i−1∩Fm) = Pm−1(i−1)/2. These are disjoint events,
so we may add them up. Pm(i) = Pr(Em,i) = (Pm−1(i) + Pm−1(i− 1))/2.
(c) The answer is Pm(i) = 2−m

(
m
i

)
. One way to solve this is to interpret the probability in terms of

the sample space in part (a). Thus Pm(i) is just the number of sample points w ∈ Ω with exactly i
one’s in w. There are

(
m
i

)
to choose these i one’s. Each choice has 2−m chance of occurring. Hence

Pm(i) = 2−m
(
m
i

)
. Another way is to solve the recurrence used (b) directly, recalling that this recurrence

looks like (
m

i

)
=

(
m− 1

i

)
+

(
m− 1
i− 1

)
.

We may guess that Pm(i) = 2−m
(
m
i

)
, and then verify by induction.

(d)
E[Xm] =

∑m
i=0 2iPm(i)

=
∑m

i=1 2i2−m
(
m
i

)
= 2−m+1

∑m
i=1 m

(
m−1
i−1

)
= m2−m+1

∑m−1
i=0

(
m−1

i

)
= m

where the last equation comes from the fact that, for any k ≥ 0, 2k = (1 + 1)k =
∑k

i=0

(
k
i

)
. After m

increments, the expected value of Look(C) is m! The odd thing is that, this is true even when m is an
odd number, and yet the value Look(C) is never odd.

4. (20 Points) Hashing

(a) Compute the sequence {α}, {2α}, . . . , {nα} for n = 10 and α = φ (= the golden ratio (1+
√

5)/2 =
1.618 . . .). You may compute to just 4 decimal positions using any means you like.
(b) Let

`0 > `1 > `2 > · · ·
be the new lengths of subsegments, in order of their appearance as we insert the points {nφ} (for
n = 0, 1, 2 . . .) into the unit interval. For instance, `0 = 1, `1 = 0.61803, `2 = 0.38197. Compute `i for
i = 0, . . . , 10.
(c) Using the multiplication method with α = φ, please insert the following set of 16 keys into a table
of size m = 10. Treat the keys as integers by treating the letters A, B, ..., Z as 1, 2, . . . , 26, with the
rightmost position having a value of 1, the next position with value 26, the third with value 262 = 676,
etc. Thus AND represents the integer (1 × 262) + (14× 26) + (4× 1) = 1044. This is sometimes called
the 26-adic notation. To resolve collision, use separate chaining.

AND, ARE, AS, AT, BE, BOY, BUT, BY, FOR, HAD,
HER, HIS, HIM, IN, IS, IT

We just want you to display the results of your final hashing data structure.
(d) Use the division method on the same set of keys as (c), but with m = 17.

SOLUTION:

We solve this problem with the help of a C++ program which is included at the end of this file.

(a) First 10 numbers and (b) first 10 distinct lengths
In the table below, r is the number {iφ} = iφ − biφc, L1 and L2 are the lengths of the 2 new sub-
intervals formed by the insertion of i-th number. The last column shows the newly created lengths
`j’s.

4

i r L1 L2 `j

1 0.6180 0.6180 0.3820 `1 = 0.6180, `2 = 0.3820
2 0.2361 0.2361 0.3820 `3 = 0.2361
3 0.8541 0.2361 0.1459 `4 = 0.1459
4 0.4721 0.2361 0.1459
5 0.0902 0.0902 0.1459 `5 = 0.0902
6 0.7082 0.0902 0.1459
7 0.3262 0.0902 0.1459
8 0.9443 0.0902 0.0557 `6 = 0.0557
9 0.5623 0.0902 0.0557
10 0.1803 0.0902 0.0557
...
13 0.0344 0.0344 0.0557 `7 = 0.0344
...
21 0.9787 0.0344 0.0213 `8 = 0.0213
...
34 0.0132 0.0132 0.0213 `9 = 0.0132
...
55 0.9919 0.0132 0.0081 `10 = 0.0081

(c), (d): Hashing 16 data items by multiplication (m = 10), and hashing 16 data items by division (m = 17):
In the following table, num is the integer corresponding to data item in 26-adic notation, h1 is the hash
value for part (c), h2 is the hash value for part (d). The hashing data structures are seen in Figure 1.

item num h1 h2

AND 1044 2 7
ARE 1149 1 10
AS 45 8 11
AT 46 4 12
BE 57 2 6
BOY 1767 0 16
BUT 1918 3 14
BY 77 5 9
FOR 4464 9 10
HAD 5438 8 15
HER 5556 7 14
HIS 5661 6 0
HIM 5655 9 11
IN 248 2 10
IS 253 3 15
IT 254 9 16

5. (20 Points) NP-Completeness
We guide you through Exercise 6.2 in Lecture XXX on NP-Completeness. The problem L is to
recognize whether a given bigraph G is “triangular” or not. To show that L is Karp-reducible to SAT ,
you need to construct a Boolean formula φ(G) such that G is triangular iff φ(G) ∈ SAT . Moreover,
this construction must be done in polynomial time.
(i) If G = (V, E) and |V | is not divisible by 3 then there is no solution. What would you output as
φ(G) in this case?
(ii) Suppose |V | = 3m. So our goal is to form m disjoint triangles from the vertices of G. Introduce the
Boolean variable xij which corresponds to the proposition “Node i is in the jth Triangle”. Here, i ∈ V
and j = 1, . . . , m. Using these variables, you construct a Boolean formula F1(i) that is satisfiable iff i
is in at least one of the m triangles?

5

BUT

AT

AS

ARE

BY

AND

BE

HIS

9

8

7

6

5

4

3

2

1

0

FOR HIM IT

AS HAD

HER

HAD

IT

IS

HER

HIM

FOR IN

13

16

15

14

12

11

10

9

8

7

6
5
4
3
2
1
0

BOY

HIS

BY

AT

BUT IS

AND BE IN

ARE

BOY

(b)(a)

Figure 1: (i) Hashing by multiplication with m = 10, (ii) Hashing by Division with m = 17

(iii) Similarly, construct F2(i) that is satisfiable iff i is in at most one triangle.
(iv) Construct a formula F3(j) that is satisfiable iff the jth triangle has at least three nodes.
(v) Construct a formula F4(j) that is satisfiable iff the jth triangle has at most three nodes.
(vi) Construct a formula F5(j) that is satisfiable iff each pair of vertices in the jth triangle has an edge
in the graph G. [NOTE: this is the first time you are actually using specific information about the
edges of G. You know G since it is in the input.]
(vii) Using the above formulas, describe a formula φ(G) that is satisfiable iff G is triangular. You must
prove this claim about φ(G).
(viii) Conclude that L is Karp-reducible to SAT .

SOLUTION:
(i) If |V | is not divisible by 3, let φ(G) = x ∧ x (this is clearly not satisfiable). In the rest of this
solution, assume n = |V | = 3m.
(ii) F1(i) =

∨m
j=1 xij .

(iii) F2(i) =
∧

1≤j<j′≤m(xij ∨ xij′).
(iv) F3(j) =

∨
1≤i<i′<i′′≤n(xij ∧ xi′j ∧ xi′′j).

(v) F4(j) =
∧

1≤i<i′<i′′<i′′′′≤n(xij ∨ xi′j ∨ xi′′j ∨ xi′′′j).
(vi) Let x be a new variable. For all 1 ≤ i < i′ ≤ n, let Eii′ be equal to x is (i, i′) is an edge of G, and
Eii′ be equal to x ∧ x otherwise. [Note that Eii′ is either satisfiable or not satisfiable (as in part (i)).
Then we define

F5(j) =
∧

1≤i<i′≤n

(xij ∨ xi′j ∨ Eii′).

(vii) If |V | is not divisible by 3 then let φ(G) be the formula in part (i). Otherwise, let n = 3m and
φ(G) = F1∧F2∧F3∧F4∧F5 where F1 =

∧n
i=1(F1(i), F2 =

∧n
i=1 F2(i)), F3

∧m
j=1(F3(j), F4

∧m
j=1(F4(j)

and F5

∧m
j=1(F5(j). Each Fi is called a “clause”. We have used the formulas constructed in parts

(ii)-(vi). The formula in part (i) is not needed (you could use it if you like, only as a ”filter”) We now
prove the two properties needed of φ(G):
(A) If φ(G) is satisfiable, then G is triangular.
(B) If G is triangular, then φ(G) is satisfiable.
To see (A), suppose I is as assignment that makes φ(G) true. We can form m triangles as follows:

6

the jth triangle comprises those nodes i such that I(xij) = 1. Each of the clauses F1, . . . , F5 in φ(G)
ensures that G is truly triangular.
To see (B), suppose G is triangular. Let there be m triangles. We can use this information to construct
an assignment I as follows: for each i, j, let I(xij) = 1 iff node i is in triangle j. Then we see that each
of the clauses in φ(G) is satisfied by I.
(viii) Given G (encoded), we can compute φ(G) (encoded) in polynomial time. It is at most O(n5)
time. Moreover, G is triangular iff φ(G) ∈ SAT . This is exactly what is required by Karp reducibility.

THE REMAINING QUESTIONS CARRIES NO CREDIT. BUT YOU ARE ENCOURAGED TO
GO OVER THEM. IF YOU HAVE NO TIME, AT LEAST THINK TRY TO UNDERSTAND THE
ISSUES AND HAVE A STRATEGY TO SOLVE THEM.

6. (0 Points)
(a) Suppose you have a random number generator, which is a function rand() that returns a real
number r in the range 0 ≤ r < 1 with “uniform” probability (this means that for any 0 ≤ a < b ≤ 1,
the probability of r lying in [a, b] is b − a). Given any n, how do you generate an integer in the range
{0, 1, . . . , n− 1} with equal probability?
(b) Given an array A[0..n] of numbers (A[i] is some number xi). How do you compute a random
permutation of these numbers?

SOLUTION: See Section 4 in Lecture 8 (page 11).

7. (0 Points)
To understand Coalesced Chaining, we ask you to provide the algorithms for LookUp(key k), Insert(key
k, data d), and Delete(key k) for this form of hashing. As usual, we assume a hash function h : U → Zm.
The hash table is denote T [0..m− 1] where the ith entry is T [i]. We assume that T [i] has three fields,
T [i].Key, T [i].Data and T [i].next. The value of T [i].Key is either a key (an element of U) or the special
values EMPTY or DELETED. The value of T [i].next is either an element of Zm or −1. Provide the
algorithmic details for the three dictionary operations: LookUp, Insert and Delete.

SOLUTION:

Here each slot T [i] is potentially the node of some chain, and all nodes are allocated from the hash
table T . In this way, we avoid the dynamic memory management found in separate chaining. More
precisely, we assume that T [i] has three fields:

(a) T [i].Key which either stores a key (element of U) or the special values EMPTY or DELETED,
and

(b) T [i].next which stores either an element of Zm or −1.

(c) T [i].Data which stores associated data. This is clearly important in practice, but its use is appli-
cation dependent. As usual, we ignore this field in our discussions of the algorithms.

We use the next field to form the chains: If T [i].next ∈ Zm, then it is a pointer to the next node in a
chain; otherwise, T [i] is the end of a chain and T [i].next = −1. We also maintain a global variable n
which is the number of keys currently in the hash table. Initially, n = 0 and T [i].Key is EMPTY and
T [i].next = −1 for all i.

To lookup a key k, we first check T [h(k)].Key = k. In general, suppose we have just checked T [i].Key = k
for some index i. If this check is positive, we have found k and return i with success. If not, and
T [i].next = −1, we return a failure value. Otherwise, we let i = T [i].next and continue the search.

To insert a key k, we first check to see if the n number of items in the table has reached the maximum
value m. If so, we return a failure. Otherwise, we perform a lookup on k as before. If k is found,
we also return a failure. If not, we must end with a slot T [i] where T [i].next = −1. In this case, we
continue searching from i for the first j that does not store any keys (i.e., T [j].Key is either EMPTY
or DELETED. This is done sequentially: j = i + 1, i + 2, . . . (where all the index arithmetic is modulo
m). We are bound to find such a j. Then we set T [i].next = j, T [j].next = −1, T [j].Key = k and
increment n. We may return with success.

7

What about deletion? We look for the slot i such that T [i].Key = k. If found, we set T [i].Key =
DELETED. Otherwise deletion failed.

FOOD FOR THOUGHT: Why do we need DELETED values? What is the implication of this in terms
of efficiency?

8. (0 Points)
Describe the algorithmic details of our offline Quicksort algorithm in the notes. You must make very
explicit choices for the data structures (how the input is represented and how whether you are using
linked lists, etc).

SOLUTION: Omitted.

/***
C++ PROGRAM for Question 4
Programmed by Igor Chikanian
**/

#include "math.h"

float find pred(float r, float h[100], int n);
float find succ(float r, float h[100], int n);
int hash1(const char word[3]);
int hash2(const char word[3]);
int num26(const char word[3]);
int code26(char c);

float g = (1.0 + sqrt(5))/2.0; // golden ratio

int main(int argc, char* argv[])

int i, k;
float f[100], r[100];
float pred, succ, new1, new2;
char* data[] = " ", // this is for data[0]
"AND","ARE"," AS"," AT"," BE","BOY","BUT"," BY",
"FOR","HAD","HER","HIS","HIM"," IN"," IS"," IT";
FILE* pf = fopen("hash.txt","w");
fprintf(pf,
"(a) First 60 numbers and (b) first 10 distinct lengths (new1,new2)\n");
fprintf(pf,
"--\n");
for (i=1; i<=60; i++)
f[i] = i*g; // this is full i*g
k = f[i]; // this is floor(i*g)
r[i] = f[i] - k; // this is i*g = i*g - floor(i*g)
pred = find pred(r[i],r,i);
succ = find succ(r[i],r,i);
new1 = r[i] - pred;
new2 = succ - r[i];
fprintf(pf,
"i=
i, f[i], k, r[i], new1, new2);

8

fprintf(pf, "\n(c) Hashing 16 data items by multiplication, m=10\n");
fprintf(pf,
"--\n");
for (i=1;i<=16;i++)
fprintf(pf,
"i=
i, data[i], num26(data[i]), hash1(data[i]));

fprintf(pf, "\n(d) Hashing 16 data items by division, m=17\n");
fprintf(pf,
"--\n");
for (i=1;i<=16;i++)
fprintf(pf, "i=
i, data[i], num26(data[i]), hash2(data[i]));

fclose(pf);
return 0;

float find pred(float r, float h[100], int n)
/* finds a proper predecessor of r in array h */
int i;
float curr pred = 0.0;
for (i=1; i<=n; i++)
if ((h[i]<r)&&(curr pred<h[i])) curr pred = h[i];

return curr pred;

float find succ(float r, float h[100], int n)
/* finds a proper successor of r in array h */
int i;
float curr succ = 1.0;
for (i=1; i<=n; i++)
if ((h[i]>r)&&(curr succ>h[i])) curr succ = h[i];

return curr succ;

int hash1(const char word[3])
int k,i;
float f,r;
k = num26(word);
f = k*g; // this is full k*g
i = f; // this is floor(k*g)
r = f - i; // this is k*g = k*g - floor(k*g)
return 10*r; // this is floor(m*k*g), m=10

int hash2(const char word[3])
int k;
k = num26(word);
return (k

9

int num26(const char word[3])
return (26 * 26 * code26(word[0]))
+ (26 * code26(word[1]))
+ code26(word[2]);

int code26(char c)
if (c==’ ’) return 0;
else return c-64;

10

