
Homework 2
Fundamental Algorithms, Spring 2003, Professor Yap

Due: Feb 24, in class

INSTRUCTIONS:

• Please read questions carefully. When in doubt, please ask.

1. (20 Points)
Solve using the Master Theorem:
(a) T (n) = 3T (n/8) + 1.
(b) T (n) = 3T (n/8) +

√
n log n.

Be careful to justify all conditions required by the Master Theorem.

SOLUTION:

The watershed function in each case is w(n) = nlog8 3.

(a) Since f(n) in this case is 1 and 1 is polynomially smaller than w(n) we can apply the first case of
the Master Theorem, so T (n) = Θ(w(n)).

(b) In this case since log8 3 is more than 1/2 and since
√

n log(n) is polynomially smaller than w(n),
we again apply case 1 of the Master Theorem and conclude that T (n) = Θ(w(n)).

2. (10 Points)
Give tight upper and lower bounds for the following:
(a) T (n) = 4T (n/2) + n2/ logn.
(b) T (n) = 4T (n/2) + n2 log n.
NOTE: we DO NOT want you to transform these recurrences to solve them, nor to use real induction.
Just use the Master theorem, or from remarks like T (n) = Ω(d(n)) where d(n) is the driving function.

SOLUTION: Make sure you understand this type of exercise, because it captures a series of useful
tricks!

(a) We have:
Upper Bound: We claim that the upper bound is T (n) = O(n2 log n). To see this, use the Master
theorem. The watershed function in this case is w(n) = nlog2 4 = n2 and f(n) = n2/ logn. So we can’t
apply the Master Theorem directly, but we can do the following trick: T (n) = 4T (n/2) + n2/ logn ≤
4T (n/2)+n2. And now we can apply the Master Theorem for the new recurrence T1(n) = 4T1(n/2)+n2.
And this is a very nice recurrence, we can solve it quickly by applying the Master theorem. So
w(n) = n2 and also f(n) = n2 so we can apply case two of the MT and get T1(n) = Θ(n2 log n). And
since T (n) < T1(n), then we conclude T (n) = O(n2 log n).

Lower Bound: We claim that T (n) = Ω(n2). First, it is usefule to note a trivial lower bound, namely,
T (n) = Ω(n2/ logn), since this is just the driving function. But we can do a little better by invoking
the Master Theorem: we have T (n) = 4T (n/2) + n2/ logn ≥ 4T (n/2) + 1. Hence if we let T2(n) =
4T2(n/2) + 1, then T (n) ≥ T2(n). But the MT tells us that T2(n) = Θ(n2). Hence T (n) = Ω(n2).

(b) In this case, we have the driving function f(n) = n2 log n and w(n) = n2. Clearly, for any ε > 0,
T (n) ≤ 4T (n/2) + n2+ε = T3(n). But the latter recurrence has a solution (using Case (+1) of MT) of
T3(n) = Θ(n2+ε). Hence T (n) = O(n2+ε) for any ε > 0.

Actually, for both (a) and (b) we know the Θ-order of the solution. They are T (n) = Θ(n2 log log n) and
T (n) = Θ(n2 log2 n), respectively. These can be proved using our transformation methods. However,
we do not expect you to know this or to use it for this problem.

3. (15 Points)
Let T (n) = 2T (n

2 + c)+ n for some c > 0. You are told that this recurrence holds for n ≥ n0, and that
for all n < n0, we have T (n) ≤ C for some constant C. Prove that T (n) ≤ D(n− 2c) lg(n− 2c) for D
large enough. As usual, lg means log2. Describe carefully how you would choose D. NOTE: Thus we
conclude that T (n) = O(n log n), which is the point of this exercise.
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SOLUTION: This exercise requires a little bit of analysis to get the right values for D and also for the
starting interval of the real analysis. Note that the inequality does not hold for every n. For instance
we can not have n ≤ 2c, because otherwise, log(n − 2c) is undefined. Therefore we will take as the
starting point of the induction n1 = max{n0 + 1, 2c + 2}. The reason we want the “+2” is because
we want lg(n1 − 2c) to be positive (recall that log x > 0 iff x > 1). The reason we want the “+1” is
because we want n1 > n0.

So we will take the interval [n0, n1] to be the base for our real induction. Note that n1 is greater than
(n1/2) + c by at least 1. Hence we can choose δ = 1.

Real Basis step We claim that there exists a D0 such that on the interval [n0, n1], the hypothesis
holds with D = D0:

T (n) ≤ D0(n− 2c) lg(n− 2c) (1)

This is clear because lg(n − 2c) is positive and so we just make D0 large enough. Then we choose
D = max{D0, D1} where D1 is specified below.

Real Induction step Assume that (1) holds for n ∈ [n0, N ] with N ≥ n1. Now we show that it
holds on the interval [N, N + δ]. Let n be in [N, N + δ]. Then n

2 + c is in the interval [n0, N ] (see
above). So we can apply the induction hypothesis.

T (
n

2
+ c) ≤ D((

n

2
+ c)− 2c) lg((

n

2
+ c)− 2c) = D(

n

2
− c) lg(

n

2
− c)

Now we estimate T (n).

T (n) = 2T (
n

2
+ c) + n

≤ 2D(
n

2
− c) lg(

n

2
− c) + n

= D(n− 2c) lg(n− 2c)− (D(n− 2c)− n)
≤ D(n− 2c) lg(n− 2c)

where the last inequality is true provided D(n−2c) ≥ n for all n ≥ n0. So we need D ≥ n/(n−2c). But
the righthand side is decreasing, and so it suffices that D ≥ n1/(n1 − 2c). Choose D1 = n1/(n1 − 2c).

4. (20 Points)
(a) Prove that S(n) =

∑n
i=1

log i
i = Θ(log2 n).

(b) Let T (n) = aT (n/b) + w(n) log log n
log n where w(n) = nlogb a is the watershed function. Prove that

T (n) = O((log log n)2). Prove that T (n) = Θ(w(n)(log log n)2). You must use range and domain
transformation methods to solve this. You can combine the two transformations into one, by defining,
for all k ≥ 0,

s(k) =
T (bk)

ak
.

SOLUTION:
(a) We have to prove two parts : S(n) ∈ O(log2 n) and S(n) ∈ Ω(log2 n).
The first part is easy : just use log i ≤ log n for all i ≤ n. So

S(n) ≤ log n(
n∑

i=1

1
i
) = log2 n + c log n

where c is a constant.
For the second part, we have to find an n0 such that S(n) ≥ ∑n

i=n0

log i
i and the RHS of this sum is

Θ(log2 n). What candidates do we have for n0? Well, we can think of n
2 , but this won’t give us what
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we want, so we try the second candidate
√

n and this is just the right value. So

S(n) ≥
n∑

i=
√

n

log i

i
≥ log

√
n(

n∑

i=
√

n

1
i
) = log

√
n(Hn −H√

n−1) ≥

≥ log
√

n(log n− log
√

n + const) =
1
2

log n(
1
2

log n + const) = Θ(log2 n)

So we proved both parts and we are done!
(b) Using the hint we take:

s(k) =
T (bk)

ak
.

With this transformation we get:

s(k) = s(k − 1) +
1
ak

w(bk)
log log bk

log bk

And this recurrence is easy to solve, just write it in the form:

s(k)− s(k − 1) =
1
ak

w(bk)
log log bk

log bk

s(k − 1)− s(k − 2) =
1

ak−1
w(bk−1)

log log bk−1

log bk−1

. . .

s(1)− s(0) =
1
a
w(b)

log log b

log b

Now add all this things up and get:

s(k) =
k∑

i=1

1
ai

w(bi)
log log bi

log bi
+ s(0)

Observe that w(bi) = ai. So we get:

s(k) =
k∑

i=1

log i + log log b

i log b
=

1
log b

k∑

i=1

log i

i
+

log log b

log b

k∑

i=1

1
i

= Θ(log2 k)

using part (a). Now we know that T (bk) = aks(k), so we deduce that T (n) = Θ(w(n)(log log n)2).

5. (15 points) (a) Implement the rotation operation in pseudo-code. Make the following assumption: each
node u has three pointers, u.Parent, u, Left and u.Right, with the obvious meaning. u.Parent = null
iff u is the root, and u.Left = u.Right = null iff u is a leaf.
(b) How may assignments did you perform in (a)? Can you argue that you have used the minimum
number of assignments possible?

SOLUTION:

(a) Consider the description of rotation in the Lecture notes, where we want to rotate u and the parent
of u is v.

Let a pair of pointers, from any node u to any v and a pointer from v to u, be called a “link-pair”.
You need to change 3 such link-pairs: between u and v, between v and its parent, and between u and
its right child (assuming u is the left child). Thus we need to update six pointers.

We do it in the following way.
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u.parent.left:=u.right – v.left:=B
u.right.parent:=u.parent – B.parent:=v
u.right:=u.parent – u.right:=v
u.parent:=u.right.parent – u.parent:=v.parent
u.right.parent:=u – v.parent:=u
u.parent.child=u – w.child=u

(b)

We did 6 assignments and since 6 pointers need to be updated, this is the minimum number of
assignments. NOTE: if you used 7 assignments, it is not bad.

6. (15 points)
Exercise 3.3 (a) and (b) in Lecture III. Rotations to transform any binary search tree into any other
equivalent one. Recall that two BST’s are equivalent if they store exactly the same set of keys.

SOLUTION:

(a) We apply induction on the number of nodes of the tree. NOTE: When we say induction on trees,
usually we mean induction on the number of nodes or on the height (depending on the problem one
might work, or the other.)

The basis step is when both trees have just a node (the root) and in this case they are equal so nothing
has to be done.

The induction step: assume the property is true for trees with less than n nodes and prove it for n
nodes. For this problem the trick was to realize that once you make the trees have the same key at
root, you can apply induction on the left and right subtree. So suppose we have 2 BSTs, which we
denote by T1,T2.

Suppose we fix T1, and transform T2 into T1. The first thing we do is make them have the same root.
So let’s try to see how we can do it. Suppose r1 is the root of T1. Since the trees have the same
keys, then r1 must be somewhere in T2. Now, by a series of rotations we can bring it up to the root
of T2. Since our trees are binary search trees, i.e. keys in left subtree < key at root ≤ keys in the
right subtree, and since our trees have the same keys and the same key at root, it is clear that the left
subtree in T1 and the left subtree in T2 have the same keys and same thing holds for the right subtrees.

Since the left and right subtrees in both trees have less than n nodes, then we can apply the induction
hypothesis. So the left subtree in T2 can be transformed into the left subtree of T1 and the right subtree
into T2 can be transformed in the right subtree of T1, so we showed that T2 can be transformed in T1.
We’re done!

(b) We can write an approximate recurrence for the number of rotations. We need cn rotations for
making both trees have the same root. And so we can write: T (n) ≤ max(T (n1)+T (n−n1− 1))+ cn
(we need T (n1),T (n − n1 − 1) rotations for the left and right subtree). We prove by induction that
T (n) ≤ an2. We have

T (n) ≤ a(n2
1 + (n− n1 − 1)2) + cn ≤ a(n− 1)2 + cn < an2

Observe that we have to choose a large such that T (1) < a for the basis case of induction and a much
larger than c for the above inequality to hold!

7. (30 Points)

(a) Insert the keys 1, 2, 3, . . . , 14, 15 into an AVL Tree, in this order. Please draw your tree at the end
of each insertion.
(b) Suppose you continue inserting in this manner indefinitely. Prove that when you insert key 2n− 1,
you will have a complete binary tree (i.e., every leaf is at the same level).
(c) Consider the AVL tree T12 after you have inserted keys 1, 2, . . . , 11, 12 as in (a). What is the
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minimum number of keys you need to delete from T12 before you cause a double rotation to happen?
Please specify the order of keys you need to delete, and show the tree after each deletion. The last
deletion must cause a double-rotation.

SOLUTION:

(a) See Figure 1, Figure 2 and Figure 3.
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Figure 1: First six figures

(b) The proof is by induction on n, assuming that we have inserted 2n−1 keys into the tree. We claim
that the result is a complete binary tree of height n− 1.

The basis case is when n = 1 and n = 2. This is clear.

Inductively: suppose that the result is true for 2n − 1 (n ≥ 2). We must prove the result for 2n+1 − 1.
Consider what happens when we insert the next 2n keys into the complete binary tree with 2n − 1
keys: view this tree as a root v with two subtrees, A and B, where A and B are complete binary trees
of heights n− 2.
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[FIG A – fill in your own – the figures in this part are the ones I used in class, Monday Mar 10th,
during midterm review]

• After the next 2n−1 keys are inserted, by induction, the tree B will be transformed into a complete
binary tree of height n − 1. Let this subtree be denote B′. Now, view B′ as a root u with two
subtrees C and D, each complete binary tree with height n − 2. Assume A < C < D (i.e., the
keys in A are less than the keys in C, etc). At this point, the tree size is 2n − 1 + 2n−1.
[FIG B – fill in your own]

• When we insert the next item, this will transform D into D′ with height n− 1. That means the
root v of the entire tree (which now has 2n + 2n−1 keys) is unbalanced. This will force a rotation
at u. Now, u is the root, and v the left child.
[FIG C – fill in your own]

• Now, if we continue with inserting the next 2n−1 − 1 keys, by induction, the tree D′ will become
a complete balanced tree of height n− 1. Call this tree E.

• At this point, the tree is rooted at u, leftchild is v. The left subtree of v is A and right subtree
of v is C. The right subtree of u is E. This is a complete binary tree of height n, with 2n+1 − 1
keys.

(c) The solution is illustrated in Figure 4.

POSTSCRIPT: the solution in the figure is wrong. It deleted the keys 1, 3, 12, 9 and 11 to get a
double rotation. But it suffices to delete the four keys: 1, 3, 7, 2. Thanks to Yanjun for pointing this
out.

8. (30 points)
Exercise 4.9 (Lect.III), parts (a) and (b) only. For the algorithm in (b), describe it in the style that
we use to explain the insertion algorithm. Draw pictures to help explain your ideas.

SOLUTION:

a. To get the formula we do a similar reasoning as in the normal AVL trees. The smallest AVL tree
of height h is one that has the left subtree of height h − 1 and the right subtree of height h − 3
because now we allow the balance factor to be 2. So the formula we get is:

µ(h) = µ(h− 1) + µ(h− 3) + 1

Now to prove that such trees are balanced, all we need to do is to prove that height(h) = O(log n).
If you look well at the recurrence, you see that you can deduce:

µ(h) = µ(h− 1) + µ(h− 3) + 1 ≥ 2µ(h− 3) ≥ 4µ(h− 6) ≥ . . . ≥ 2
h−3
3 µ(1) ≥ c2

h
3

So for an AVL tree of height h we have n ≥ µ(h) ≥ c2
h
3 . So it follows that h = O(log(n)).

b. We need to do two things: first insert the node as in a BST and then we need to rebalance the
tree. We’ll explain in the following how to do the rebalance step. The possible unbalance is 3 or
−2. The first happens when before inserting the balance was 2 and we inserted in the left subtree.
The second case happens when we insert in the right subtree. The unbalance can occur only on
the path from the inserted node to the root, so we start from the inserted node and balance when
necessary on the way up to the root.

Case 1:
Unbalance 3 at node u. We have inserted a node on the left, making the height of the left subtree
to increase by 1. Call the root of the left subtree v and its height h. Note that the right subtree
has height h − 3. Also call hR and hL the heights of the left and right subtrees of v. We have
max(hL, hR) = h − 1 and we also know that v is balanced, so hL − hR ∈ {−1, 0, 1, 2}. So there
are 4 cases:
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1.
hL = h − 1, hR = h − 3. By rotate(v) we rebalance the tree. The left child of v has height
hL = h− 1, the right child has height 1 + max(hR, h− 3) = h− 2. The left child of u has height
hL = h− 3 and the right child has height h− 3. So we see that the new tree is balanced. 2.
hL = h− 1,hR = h− 2 Exactly the same argument as above works. (rotate(v)) 3.
hL = h− 1,hR = h− 1 The same rotation as in previous cases. 4.
hL = h− 2 and hR = h− 1. We need to do a double rotation in this case. We expand the right
subtree of v. Call its root w and DL and DR the height of the left and right subtrees of w. We
have the relations:
max(DL, DR) = h− 2 and DL −DR ∈ {−1, 0, 1, 2}. The double rotation of w will make the tree
balanced: at w, the left height is 1+max(h−2, DL) = h−1 and the right height (1+max(DR, h−
3)) ∈ {h− 2, h− 1}. At v left is h− 2, right is DL ∈ {h− 3, h− 2}, so v is balanced. At u left is
DR ∈ {h− 4, h− 3, h− 2} and right is h− 3. So again balanced. Case 2:
Analogous.
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