
Homework 1 Solutions
Fundamental Algorithms, Spring 2003, Professor Yap

Due: Mon Feb 10, in class
SOLUTION PREPARED BY T.A. Igor Chikanian

INSTRUCTIONS:

• Please read questions carefully. When in doubt, please ask.

• There are links from the homework page to the old homeworks from two previous classes, including
solutions. Feel free to study these.

1. (10 Points) Let p(x) = 3x3 − 1000x2 + 1. Prove the following statement: p(x) = Θ(x3). NOTE: You
should normally break up a Θ-statement into an upper bound statement and a lower bound statement.

Solution: We need to show that (1) p(x) = O(n3), and (2) p(x) = Ω(n3).

Showing (1) amounts to showing that there exists c > 0 such that p(x) ≤ cx3 (eventually), i.e., there is
some x0 such that for all x ≥ x0, p(x) ≤ cx3. The following sequence of assertions are seen to follow:

For x ≥ 1, we have:

1000x2 ≥ 1,
−1000x2 + 1 ≤ 0,

3x3 − 1000x2 + 1 ≤ 3x3. (Adding 3x3 to both sides)

Thus, we can choose c = 3 and x0 = 1. Q.E.D.

Showing (2) amounts to showing that there exists c > 0 : p(x) ≥ cx3 (eventually), i.e., there is some
x0 such that for all x ≥ x0, p(x) ≥ cx3. For x ≥ 1000, we have:

x3 − 1000x2 ≥ 0,
x3 − 1000x2 + 1 ≥ 0,

3x3 − 1000x2 + 1 ≥ 2x3, (Adding 2x3 to both sides)

Thus, we can choose c = 2 and x0 = 1000. Q.E.D.

2. (15 Points)
(a) What is the relation between these two statements: f(n) 6= O(n2) and f(n) = Ω(n2).
(b) Construct an example of f(n) for which these two statements are not equivalent.

Solution: Let us expand both statements:

statement 1: f(n) 6= O(n2)
The following lines are each equivalent to statement 1:
6 ∃c > 0 : f(n) ≤ cn2 (eventually)
6 ∃c > 0 : ∃N > 0 : ∀n > N : f(n) ≤ cn2

∀c > 0 :6 ∃N > 0 : ∀n > N : f(n) ≤ cn2

∀c > 0 : ∀N > 0 :6 ∀n > N : f(n) ≤ cn2

∀c > 0 : ∀N > 0 : ∃n > N : f(n) > cn2

statement 2: f(n) = Ω(n2)
The following lines are each equivalent to statement 2:
∃c > 0 : f(n) ≥ cn2 (eventually)
∃c > 0 : ∃N > 0 : ∀n > N : f(n) ≥ cn2

For part (b) consider f(n) =
[
n3, if n is odd
0, if n is even

]
Given c > 0 and N > 0 let n be: n > N, n > c and n is odd.

1



Then f(n) = n3 > cn2, so statement 1 is satisfied.
On the other hand, ∀c > 0 : ∀N > 0, take n = 2N ,
then f(n) = 0 < cn2, so statement 2 is not satisfied.

For part (a) the following truth table of examples shows that there is no relationship between the
two statements:

Example f(n) 6= O(n2) f(n) = Ω(n2)
f(n) = n3 True True

(part(b)above) True False
f(n) = n2 False True
f(n) = n False False

3. (20 Points) This question should be done without resort to Calculus.
(a) Show that Hn →∞ as n→∞.
(b) Show that Hn = O(n1/k) for all positive integer k ≥ 2. HINT: Break the summation into k parts
– this is similar to an argument in Section 6 of Lecture 2.
(c) Conclude from (b) that log n = O(nα) for all real α > 0.

Solution:

(a) Break up the sum Hn into infinite number of parts Bi:
B0 = 1
B1 = 1/2
B2 = 1/3 + 1/4
B3 = 1/5 + 1/6 + 1/7 + 1/8
...
Bi = 1

2i−1+1 + ...+ 1
2i , a series of 2i−1 terms, each no less then 1

2i . Thus we see each Bi ≥ 1/2.

So H2n = B0 +B1 +B2 + ...+Bn > n/2→∞ as n→∞.

(b) Write

Hn = 1 +
1
2

+ · · ·+ 1⌈
n1/k

⌉
+

1⌈
n1/k

⌉
+ 1

+ · · ·+ 1⌈
n2/k

⌉
+

1⌈
n2/k

⌉
+ 1

+ · · ·+ 1⌈
n3/k

⌉
+ · · ·

+
1⌈

n(k−1)/k
⌉

+ 1
+ · · ·+ 1

n

= 1 +A1 +A2 + · · ·+Ak,

where

Ai =
dni/ke∑

j=dn(i−1)/ke+1

1
j
.

The largest term in each Ai is 1

dn(i−1)/ke+1
< 1

n(i−1)/k The number of terms in Ai is
⌈
ni/k

⌉
−
⌈
n(i−1)/k

⌉
≤

ni/k − n(i−1)/k + 1. Therefore, each Ai ≤ ni/k−n(i−1)/k+1
n(i−1)/k = n1/k − 1 + 1

n(i−1)/k ≤ n1/k.

Rewriting Hn = 1 +A1 +A2 + . . .+Ak ≤ 1 + kn1/k = O(n1/k) for any constant natural k.

(c) Since for all α > 0 there exists k > 0 such that 1/k < α, we can conclude that n1/k < nα for such
k eventually, and so ∀α > 0 : log(n) = Θ(Hn) = O(n1/k) = O(nα).

2



4. (10 Points) You have been asked to update Java’s standard class ”BigInteger” that perform arithmetic
and other operations on arbitrarily large integers. You first determined that the old implementation
of the multiplication algorithm takes time T0(n) = 2n2 + 20n + 10 for all n ≥ 1 (this is, of course,
an implementation of the High School Algorithm). Since you learned about Karatsuba, you decided
to implement it, and found that its running time is T1(n) = 10nα + 20n + 60 for all n ≥ 1, where
1.584 < α = lg 3 < 1.585. How can you take advantage of these two multiplication algorithms for your
next release of Java’s ”BigInteger” class? NOTE: You should do some numerical calculations with
T0(n) and T1(n) using perhaps a pocket calculator.

Solution: Consider the difference δ(n) = T0(n)− T1(n):

δ(n) = (2n2 + 20n+ 10)− (10nα + 20n+ 60)
= 2n2 − 10nα − 50
= 2nα(n2−α − 5)− 50

We want to find a value n0 such that δ(n) ≥ 0 for all n ≥ n0. We can use a calculator to check that
δ(50) > 20. NOTE: we should always remember that exponentiation, nc, is only defined when n > 0.

Now we want to conclude that for all n ≥ 50, δ(n) ≥ 0. To see that, let δ1(n) = 2nα and δ2(n) =
n2−α − 5. Now δ1(n) is positive and increasing for all n > 1. Now δ2(n) is increasing for all n > 1,
but not necessarily positive. Therefore, the moment it becomes positive, it will remain positive. At
n = 50, δ2(n) is positive: e.g., your pocket calculator can show you that δ2(50) > 0.07.

Furthermore, δ1(n)δ2(n) > 50 when n = 50 (this was the first calculation we mentioned, i.e., δ(50) >
20). We conclude that δ1(n)δ2(n) − 50 is positive for all n ≥ 50. This is exactly what we wanted to
show.

[NOTE: we deliberately avoided calculus in our argument. If you like, you may use calculus to compute
derivatives of δ(n), etc, to get the same conclusion.]

The new implementation of Java’s multiplication may look as follows:

int Multiply(int n, int m) {
if ((bitSize(n) > 50) or (bitSize(m) > 50)) return Karatsuba(n,m);
else return HighSchool(n,m);
}
The running time of this algorithm is bounded by T1(max{bitSize(n), bitSize(m)})
when max{bitSize(n), bigSize(m)} ≥ 50.

5. (20 Points) Use the Rote Method to solve the following recurrence: T (n) = 8T (n/2) + n. The method
involves 4 steps (Expand, Guess, Verify, Stop). Make sure that each step is clearly marked and
explained. Be sure to tell us what initial condition you choose.

Solution:

Expand:

T (n) = 8T (n/2) + n

= 8(8T (n/22) + n/2) + n

= 82T (n/22) + 4n+ n

= 82(8T (n/23) + n/22) + 4n+ n

= 83T (n/23) + 16n+ 4n+ 1
= 83(8T (n/24) + n/23) + 16n+ 4n+ n

= 84T (n/24) + 64n+ 16n+ 4n+ n.

Guess: T (n) = 8kT (n/2k) +
∑k−1
i=0 4in.

3



Verify:

T (n+ 1) = 8k(8T (n/2k+1) + n/2k) +
k−1∑
i=0

4in

= 8k+1T (n/2k+1) + 4kn+
k−1∑
i=0

4in

= 8k+1T (n/2k+1) +
k∑
i=0

4in

Stop: Let us set the initial condition as T (n) = 0 when n ≤ 1, and let k = blog2 nc+ 1. We get:

T (n) = n(1 + 4 + 42 + 43 + ...+ 4blog2 nc)
= n(4blog2 nc+1 − 1)/3

≤ (4/3)n2log2(n2)

= Θ(n3).

(We used geometric series summation here.)

6. (20 Points) Let T (n) = 10T (n/3) + n.
(a) Use Real Induction to show that T (n) = O(nα) when α = 3.
(b) By examining your proof in (a), find the best possible value for α such that your proof will still
work.

Solution: (both (b) and (a)) Let us guess that T (n) ≤ cnα − bn for some c > 0, b > 0. Using this
assumption for n/3 we get: T (n) ≤ 10(c(n/3)α − bn/3) + n = (10/3α)cnα − ((10/3)b− 1)n.

Let us choose α ≥ log3(10), c=100, and b=3. Then T (n) ≤ cnα − 9n < cnα − bn. Also, the base case
holds: If we use the initial condition T (n) = 1 for n < 1 then:

T (1) = 10 + 1 = 11 < 100− 3 = c1α − b.
Thus by induction, T (n) ≤ cnα − bn = O(cnα). This proof works for α ≥ log3(10), so it works for
α = 3 as in part (a).

4


