
MIDTERM – With Solutions
Fundamental Algorithms, Fall 2005, Professor Yap

Oct 20, 2005

INSTRUCTIONS:

0. This is a closed book exam, with one 8”x11” (2-sided) cheat sheet.
1. Please answer ALL questions
2. Please write clearly. Use complete sentences. This CAN AFFECT your
grade. If necessary, consider printing.
3. Write answers ONLY on the front side of each booklet page. Use the
reverse side for scratch and to show your working.
4. Read carefully, think deeply, write sparsely.
5. Begin each question in its own page.

SHORT QUESTIONS (6 Points Each)

No proofs required for this part. Just state tight upper and lower bounds for the following sums
or recurrence functions.
(a)

∑
n

i=1(i!)

(b)
∑

n

i=1
i
2

2i

(c) T (n) = 3T (n/10) +
√

n/ log n.
(d) T (n) = 10T (n/3) +

√
n log n.

(e) Order these 6 functions in increasing Θ-order:

n

lg n
, n lg lg n, 2lg n, n!, nlg n, 2n

SOLUTION:
(a) Θ(n!).

REMARK: Justification for is by our summation rule for exponentially large sums. HOW-
EVER, YOU DID NOT HAVE TO SAY THIS. Our instructions said to JUST STATE the
bound. Certainly no proofs. Put any derivation on the work sheet if you want, but NOT on
the answer part (but some students write several pages for one subpart!).

Students somehow forgot the summation rules completely, and some actually think this is a
polynomial sum!
(b) Θ(1).

REMARK: Justification is by our summation rule for exponentially small sums. Some
students say that this is O(n3/2n). Why is this wrong?
(c) Θ(

√
n/ log n).

REMARK: Justification is by Master Theorem. You need to see that log10 3 < log9 3 = 1/2.
(d) Θ(nc) where c = log3(10) > 2.

REMARK: Again by Master Theorem. You need to see that log3 10 > log3 9 > 2.
(e)

n

lg n
, 2lg n, n lg lg n, nlg n, 2n, n!

REMARK: Many people did not recogize 2lg n = n. For some reason, they place 2lg n right
after n lg lg n. Some even think that n lg lg n ≺ n/ lgn (where could this have come from?).

QUESTION 1, AVL trees (20 Points)

Consider the AVL tree in Figure 1.
(a) Find one key that we can delete so that the rebalancing phase requires two separate rebal-
ancing acts (either a single- or double-rotation)? Note that a double-rotation counts as one, not
two, rebalancing act. [EXTRA CREDIT IF YOU CAN TELL US ALL SUCH KEYS]

1



16

8

5

73

2 4

1

6

13 19

11 15

10
9

12 14

18

17

20

Figure 1: An AVL Tree for deletion

(b) Please delete this key, and draw the AVL tree after each of the rebalancing act. [We want
to see two AVL trees]
(c) Recall the funny ’AVL’ tree in the homework. Show that there are no ’AVL’ trees with an
even number of nodes. HINT: a node is full if it has exactly two children.

SOLUTION:
(a) We can delete any one of the keys 4, 5, 6, 7 or 20. Even keys 3 and 9 might work, but

that depends on the convention for replacing a deleted key with 2 children by its predecessor,
not predecessor.

(b) Suppose we delete 6. To rebalance, we need to do rotate 3 and double rotate 13, as in
Figure 2.

19

18

17

20

15

14

3

52

4 71

del(6)

rot(3)

168

13

11

12

16

8

13 19

11 15

10 12 14

18

17

20

3

52

4 71

16

8

5

73

2 4

1

6

13 19

11 15

10 12 14

18

17

20

9 9

9

10

rot2(13)

Figure 2: Rebalancing AVL Tree after deleting key 6

(c) A full binary tree is one where all internal nodes are full. All ’AVL’ trees are full
binary trees. binary tree have an odd number of nodes. Other than the root level, every other
level must have an even number of nodes in a full binary tree. To see this, note that every
nodes in a non-root level can be paired up into siblings. Thus there is only one level with odd
number of nodes, and thus the overall number is odd.

REMARK: For some reason, several of you start to invoke the function µ′(h) of homework.
This is the minimum size of an ’AVL’ tree of height h, but it has nothing to do with our
problem.

2



QUESTION 2, Program correctness (30 Points)

Write a detailed, complete and correct pseudo-code for checking whether a binary tree with
keys at each node is a binary search tree (BST). Assume each binary node u has three fields
(u.Key, u.left, u.right) that satisfy the inequality

u.left.Key ≤ u.Key < u.right.Key

THIS is the promised problem in which I will grade for your ability to write clean (beautiful)
code. There should be enough details to trivially turn your pseudo-code into a compilable
program in, say Java. Use indentation to indicate block structure. It should be a pleasure to
read your solution, not a pain. Checklist:
(a) Before giving the code, give a brief description of your approach (2 or 3 lines suffice).
(b) Specify the input and output of your program.
(c) Explain any variables and data structures.
(d) Initialize your variables and cover the base cases.
(e) Add comments as appropriate.

SOLUTION:
Write Tu for the binary tree rooted at u, and max{Tu} for the maximum key in Tu (similarly

for min{Tu}. Then Tu is a BST iff u = nil or:
(1) T

u.left is a BST
(2) T

u.right is a BST

(3) max{Tu.left} ≤ u.Key < min{Tu.right}.
The problem with (3) is that we need to make the left inequality true in case u.left = nil,

and similarly for the right inequality. To achieve this, we define max{Tu.left} = −∞ when
u.left = nil and define min{Tu.right} = −∞ when u.right = nil.

We use postorder traversal. Let POST (u) take a node u as argument, and returns a pair
[minkey, maxkey] of numbers. When Tu is a BST, minkey is the smallest key in the subtree
Tu and maxkey is the largest key in Tu. There are two special cases: in case u = nil, we return
[minkey, maxkey] = [+∞,−∞]. In case Tu is not a BST, we return [minkey, maxkey] =
[−∞, +∞]. Then our algorithm is:

POST(u)
⊲ Base Case:

if (u = nil)
return([+∞,−∞])

⊲ Recursive Case:
[Lmin, Lmax]← POST (u.left)
[Rmin, Rmax]← POST (u.right)

⊲ If not BST:
if ((Lmax > u.Key) or (Rmin ≤ u.Key))

else return([−∞, +∞])
else

⊲ If BST:
return([min{Lmin, u.Key}, max{Rmax, u.Key}]

⊳ This takes care of the cases Lmin = +∞ and Rmax = −∞

REMARK:
(1) Many of you committed the standard mistake of thinking that a BST only has to satisfy
the relationship u.left.Key ≤ u.Key < u.right.Key for all node u.
(2) Second, I said in class that anything about binary trees ought to be done recursively by
induction. So a post order traversal is the best solution. HOWEVER, for this problem the post
order must return some number (not just a Boolean value) in order for this to work.
(3) As for the base case, it seems always simplest to use u = nil as the base case.

3



QUESTION 3, Recurrences (20 Points)

Suppose T (n) = n + 3T (n/2) + 2T (n/3). Joe claims that T (n) = O(n), Jane claims that
T (n) = O(n2), John claims that T (n) = O(n3). Who is closest to the truth? Prove it.

SOLUTION:
Answer: Jane.
We can see at once that Joe is wrong: the related function T ′(n) = n + 3T ′(n/2) is already

nonlinear (by Master Theorem). Clearly, T (n) ≥ T ′(n).
We can check by real induction that Jane is correct. To show that T (n) ≤ Kn2 (ev.), we

can check the critical constant k0 = 3
22 + 2

32 . Since k0 < 1, our induction will succeed.
Now, if Jane is right, then John is also correct, but of course. But he is far from the truth.
REMARKS: Some tried to use “Master theorem” on the recurrence T (n) = n + 3T (n/2) +

2T (n/3). There is no such theorem! Certainly, it is impossible to use rote method (try it if you
don’t see why). As for upper bound, you can use the fact that the function

T ′′(n) = n + 5T ′′(n/2)

is an upper bound on T (n). The Master theorem tells us that T ′′(n) = Θ(nlg 5) where lg 5 < 3.
But is this closer to Jane or to John? Well, a pocket calculator would tell you that lg 5 < 2.322,
so you might say that this shows Jane is closer to the truth. But my questions normally do not
need a pocket calculator unless I tell you so.

QUESTION 4, (a,b)-Trees (5 Points each)

2 4 6 8 12 13 15 17 19 2110

2 5 9 10 14 16 18 22 23

6

23

20

25 27

25

12

Figure 3: A (2,4)-tree or a (3,4)-tree.

Consider the (a, b, c)-tree in Figure 3. We will view it as a (2, 4, 1)-tree or a (3, 4, 2)-tree.
Note that a′ = b′ = 1. Make these assumptions below:
• When splitting a node with 5 children into two, the left node is to have 2 children, and right
node have 3 children.
•When looking for one sibling, we first try the left-sibling. If there is no left-sibling, we try the
right-sibling.
• When looking for two siblings, we first try the left-sibling then the right-sibling. Of course,
sometimes we have to look further.
(a) Suppose we insert the key 14 into Figure 3, viewed as a (2, 4, 1)-tree. Draw the resulting
tree. When drawing trees, you need not draw the contents of nodes that are not modified.
(b) Same as part(a), but viewed as a (3, 4, 2)-tree.
(c) Suppose we delete the key 4 from Figure 3, viewed as a (2, 4, 1)-tree. Draw the resulting
tree.
(d) Same as part(c), but viewed as a (3, 4, 2)-tree.
(e) Find the smallest choices of the parameters a, b such that we could have an (a, b, 3)-tree.
Explain.

SOLUTION:
(a) See Figure 4. After insert,ion we split the overfull node. Now parent (root) is overfull,

and is split.

4



22 23 259 102 5

108 12 21 23 272 4 6 25

6 12 20

14 1713 16

151413 1917

206

12

13 14

13

15

16 17

17 19

14

13 15 17 19

14 16 17

6 12 20

12 14 206

13 14

13

15

16 17

17 19

1 to 2 split1 to 2 split

Insert(14)

Figure 4: Inserting 14 into (2, 4, 1)-tree.

REMARK: In (a, b, c)-trees, the c parameters tells you that we want to do a c → c + 1
generalized split, and do a c + 1→ c generalized merge. Since c = 1, you do a 1→ 2 split. DO
NOT try to donate any child to your sibling! Some students do not remember that the keys in
internal nodes are just used for searching, and do NOT represent items.
(b) See Figure 5. After insertion, the overfull node donates a child to its left sibling.

6 12 20

22 23 25

6 12 20

108 12

10

108 12

9 109

8 10 13

9 10 12

14 15 17 19

14 16 17

6 13 20

12

14 16 1713

151413 191713 15 17 19

14 16 17

4 6

2 5

21 23 25 272

Insert(14)

Donate 13

Figure 5: Inserting 14 into (3, 4, 2)-tree.

REMARK:Note that a key from the parent must be transferred to the left sibling, and we
must also move a key to the parent: you must get these keys right!
(c) See Figure 6. Everything is fine after the deletion. But note that a separator key in the
parent must be deleted (here we deleted key 5, but we could delete key 2 instead).

16 17

6 12 20

22 25239 102 5

6 12 20

13 15 17 19

14

6

2(5)

108 12 21 23 25 272 4 6 2

Delete(4)

Figure 6: Deleting 4 from (2, 4, 1)-tree.

(d) See Figure 7. After deletion, the current node u is underfull. We try to borrow from the
right sibling, but failed. But the right sibling of the right sibling could give up one child. So we

5



first merge u with the 2 siblings to its right (call this a 3-to-1 merge). This requires bringing
some keys from the parent of u into the supernode. The supernode has 9 children, which we
can split into 3 nodes, each with 3 children (call this a 1-3 split).

20

23 2522

13 15 17 19

14 16 179 102 5

108 122 64

6 12 20

108 126

9 102

13 15 17 19

14 16 17

2

6 12

2

209

10 16

15 17 19

17

14

20

21 23 25 27 2 6

2(5)

2 6 8 10 12 13

6

1 to 3 split

12

Delete(4)

3 to 1 merge

612

Figure 7: Deleting 4 from (3, 4, 2)-tree.

(e) We need to satisfy

c + 1 ≤ a ≤ cb + 1

c + 1
.

Since c = 3, a is at least 4. Also, b > a (by a, b-tree inequalities). So b is at least 5. We may
verify that (a, b) = (4, 5) is the smallest values that satisfy these inequalities.

6


