
Homework 5 Solutions
Fundamental Algorithms, Fall 2005, Professor Yap

Due: Wed Dec. 14, in class.
SOLUTION PREPARED BY Instructor and T.A.s

INSTRUCTIONS:

• Please try to give clear but brief answers. Usually, the length of your answer will go down in proportion
to the amount of thought given to the problem.

Question 1 (10 Points)

Our “Counter Example” analysis can yield the exact cost to increment from any initial counter value to any
final counter value. What is the exact number of work units to increment a counter from 71 to 254?

SOLUTION: From the lecture notes we know that for the “Counter Example” the total charge is equal
to the sum of the total cost and the change in potential. The total charge is 366; each increment has charge
2 and we need to increment 254− 71 = 183 times. The initial potential is 4, since the binary representation
of 71 is 1000111, and the final potential is 7, since the binary represenation of 254 is 11111110; remember
that the potential of the counter is defined to be the number of one’s in the counter. Thus the total change
in potential is 3 and hence the total cost is 363.

Question 2 (20 Points)

Consider the insertion of the following sequence of keys into an initially empty tree: −1, 1,−2, 2,−3, 3, . . . ,−n, n.
Let Tn be the final splay tree.
(a) Show Tn for n = 1, 2, 3.
(b) Make a conjecture about the shape of Tn, and prove it.

SOLUTION: (b) The conjecture on the shape is shown in the Figure 1 (a).
The proof is by induction on n. The base case n = 1 is obvious. Suppose the conjecture holds for Tn−1.

Now we insert −n and then n; these steps and the resulting tree are shown in Figure 1 (b).

Question 3 (40 Points)

(a) Carry out the following operations on a Fibonacci heap, starting from an initially empty structure. Show
the heap after each operation. Please indicate any marked nodes with an ”X”.
Insert(a,10) i.e., insert item a with key 10
Insert(b,20)
Insert(c,30)
Insert(d,40)
Insert(e,15)
Insert(f,50)
Insert(g,35)
Insert(h,45)
deleteMin()
decreaseKey(c,14) i.e., decrease the key of c to 14
deleteMin().

(b) We want to do a variation of Fibonacci heaps. The idea is to combine the root list H and the array
A used in the consolidation process. In this way, we avoid the consolidation process altogether. First, all
sibling lists must be ordered by degree, and furthermore, there is at most one child of each degree. Second,
the rootlist H is treated like a sibling list (of some imaginary superroot). This implies that the rootlist and
sibling lists have length at most D(n) = O(lg n). Third, each sibling list (including rootlist) has a potential
that is equal to the number of nodes in the sibling list, plus the maximum degree among the siblings. The

1

Equal To

n

-n

Tn−1

Insert(-n) Splay(-n)

-n

n

n-1

-n+1

Tn−2

n

-n

Tn−1

(a)

n-1

-n+1

Tn−2

-n

-n+1

n-1

Tn−2

Insert(n) Splaystep(n)

Splaystep(n)

n

-n

n-1

-n+1

Tn−2

Figure 1: (a)The tree Tn. (b) Inserting −n and n in Tn−1

potential of the data structure Φ(H) is the sum of the potentials of all sibling lists, including the rootlist,
plus twice the number of marked nodes. Marking is as before.

Show that we can perform insert, union and decreaseKey in amortized constant time.
SOLUTION: (a) The root list of the heap after the insertions is a set of trees where the root of each tree

has degree zero; the roots of these trees contain the key values 10, 20, 30, 40, 15, 50, 35, 45 corresponding to
the items a to h.

The deleteMin() operation deletes ’a’ from the heap. The resulting heap after doing decreaseKey(c,14)
and deleteMin() is shown in Figure 2.

(b) As was told in the class the above potential function does not work. The reason is that the change
in potential is always non-negative and thus insufficient to pay for the cost which in the worst case can be
O(lg n).

Let t(H) denote the number of tress in the root list; H.len be one plus the maximum degree among all
the trees in root list; and m(H) the total number of marked nodes in the whole heap. The potential function
is then defined as Φ(H) = t(H) + H.len + 2m(H).

An equivalent way to treat the root lists is to think of them as binary numbers of bit length H.len, where
the i’th bit is one iff there is a tree with degree i in the root list; let B(H) represent this binary number. It
is not hard to see that under this interpretation union of two heaps H and H ′ is just adding the two binary
numbers B(H) and B(H ′). In this interpretation, the potential Φ(H) means that we assign two credits to
each one and one credit to each zero in B(H). We will show that the amortized cost of adding two binary
numbers is a constant and hence the amortized cost of union(H, H’) is constant.

Consider the following special cases:

• Adding a one, with credit 2, to a zero with credit 1. Using the credit of zero we can pay for the cost
of addition and place the remaining 2 credits on the output bit.

2

d

45 35

50

15

20

30

40

h g

f b

e

c

d

decreaseKey(c,14)

deleteMin()

45 35

50

h g

f

15

20 40b

e

d

45 35

50

15

20 40

h g

f b

ec 14

Figure 2: The heap after doing insertions, deleteMin(), decreaseKey, and another deleteMin()

• Adding a one, with credit 2, to another one with credit 2. In this case we use one credit to pay for the
cost of addition and break the remaining 3 into one credit on the zero and 2 credits on the one.

Thus our potential scheme always ensures the above invariants while adding the two binary numbers; if
a carry bit is produced it always has 2 credits and from the above two cases we know that this is sufficient
to pay for the cost and maintain the credits. Thus we have enough credit to pay for the change in potential
and the cost and hence the amortized charge is a constant.

An alternative argument is the following: Let B(H) be longer than B(H ′). Suppose l′ is the largest bit
in B(H), beyond the largest bit of B(H ′), that is modified; thus 0 ≤ l′ ≤ H.len− H ′.len. Then the change
in potential is less than 3 − l′ − H ′.len; we must have converted l′ − 1 ones in B(H) that lie to the left of
the largest bit of B(H ′) to zeros, converted a zero to one, and possibly increased the length of B(H) by one,
however, at the same time we have destroyed the counter H ′ and thus lost the potential corresponding to
its length. The cost is l′ + H ′.len. Thus the amortized cost is 3 = O(1).

For decreaseKey the amortized cost analysis is similar to the one in the lecture notes; in this case the
release in potential is due to the loss of marked nodes while doing the cascading cut. The analysis holds if
we know the exact place in the root list where to insert the tree produced by cutting. For this purpose we
introduce a degree register D associated with the root list. From now on we assume that all our linked lists
are doublly linked lists.

Let T1, . . . , Tk be the trees in the root list with degrees d1 < d2 < · · · < dk. The degree register is a list
of pair of pointers where the length of the list is dk +1. Let D[i], i = 0, 1, 2, . . . , dk, represent the i’th pair in
the register and D[i, j], j = 1, 2 the j’the element in the pair D[i]. The interpretation of these two pointers
is the following.

• D[i, 1] points to the tree Tj if i = dj ; if dj < i < dj+1 then it points to Tj; and is null if i = 0 and
there is not tree with degree 0.

• D[i, 2] points to a list of all trees in the heap whose root have degree i.

For each node x with degree i in the heap there are three additional pointers:

• x.degP tr that points to the entry D[i];

• x.degP trS that points to its successor in the list D[i, 2];

• x.degP trP that points to its predecessor in the list D[i, 2].

Now we describe the details of all the operations in this augmented data structure.
makeQueue(): create two empty lists: first, the root-list and second the degree register. insert(x, H) is

a special case of union. union(H1, H2): Let Di be the degree register corresponding to Hi and li := Hi.len−1
with the assumption l1 ≥ l2. We give a rough outline of the algorithm.

• Let i = 0, prev = NULL, and T = NULL

3

• While i 6= l1
Concatenate the two lists D1[i, 2] and D2[i, 2].
Merge the trees at D1[i, 1], D2[i, 1] and T , the tree of degree i from the previous merge. The output,
if any, is stored in D1[i, 1] and let T be the tree that is “carried” over to the next merge. If there is no
merging to be done then we update the D1[i, 1] to point to prev; this is needed to maintain the first
property for D1[i]. Let prev = D1[i, 1].

Intuitively, we are doing “binary addition” of the lists D1 and D2 and T represents the carries.
decreaseKey(x, k, H): we cut x if it is not a root; if x is the child of the root and k is less than the

value at the root then we switch x with its parent; otherwise, we just decrement the key at x to k. We can
insert the trees, produced during the cascading cut, in the root-list using the x.degP tr. Moreover, if the
parent of x has degree i we have to move it from the list D[i, 2] to the list D[i − 1, 2], but this can be done
using x.degP tr and the two additional pointers x.degP trS and x.degP trP in constant time.

The deleteMin() operation can be implemented using the above operations.

Question 4 (30 Points)

Consider the LCS problem where we are constructing the matrix L corresponding to input strings X, Y .
(a) Suppose L[i, j] = 89. What are all the possible values of L[i − 1, j − 1]? What are all the possible

values of L[i, j + 1]? You must prove your claims.
(b) Consider the string Xn = 01021031 · · · 0n−110n1 and Yn = 10120130 · · · 1n−101n0. Compute L(X4, Y4).

Next, prove that L(Xn, Yn) = 2n − 1.
(c) You can represent LCS(X, Y) by a suitable digraph whose size is O(mn) where |X | = m, |Y | = n.

This graph can be constructed from the matrix L used to solve the LCS problem. Please describe an
algorithm to construct this graph.

(d) Instead of O(mn), give a sharper bound on the space used by this graph. HINT: express the bound
in terms of L(X, Y) = k. pp (e) Given a string Z, how fast can you check whether Z ∈ LCS(X, Y) using
this graph G?

SOLUTION:
(a) L[i − 1, j − 1] can only be 89 or 88. It must be 89 if xi 6= yj . L[i, j + 1] can be 89, 88 or 90.

(b) The string (01)n−10, or the string (10)n−11, which has length 2n−1 is a common subsequence of both
Xn and Yn; thus L(Xn, Yn) ≥ 2n− 1. Also observe that there are n 1’s in Xn and the same number of 0’s in
Yn. Since the last bit of Xn and Yn do not match only one of them can be present in LCS(Xn, Yn), i.e., ei-
ther the last 1 of Xn or the last 0 of Yn gets dropped. Thus L(Xn, Yn) ≤ 2n−1, giving us the desired equality.

(c) We will construct a DAG Gm,n corresponding to the matrix L recursively. More precisely, we will
construct the adjacency list representation of the Gm,n. With each index (i, j) we will associate a graph
Gi,j , though we will not construct it, and using these graphs we will construct the final graph. Each edge in
Gi,j will be either labelled with a character from the alphabet or the empty string. We will use a boolean
matrix M where M [i, j] = 0 iff we have not constructed Gi,j .

4

Construct

Input: Weight matrix L[m, n] corresponding strings X, Y .
Output: Gm,n the graph representing LCS(X, Y).
1 Initialize V = (0, 0); E = Φ; all entries in M to false.
2 RecursiveCG(m,n)

RecursiveCG

Input: m, n ∈ N.
1 If L[i, j] = 0 or M [i, j] = true Return.
2 Add (i, j) to V .
3 If Xi = Yj

If L[i − 1, j − 1] = 0
Add the edge ((i, j), (0, 0)) with label Xi to E.

else
Add the edge ((i, j), (i − 1, j − 1)) with label Xi to E.
RecursiveCG(i − 1, j − 1).

4 If L[i, j] = L[i − 1, j]
Add the edge ((i, j), (i − 1, j)) with empty string as the label to E.
RecursiveCG(i − 1, j).

5 If L[i, j] = L[i, j − 1]
Add the edge ((i, j), (i, j − 1)) with empty string as the label to E.
RecursiveCG(i, j − 1).

Clearly, it takes O(mn) space and time to construct the graph. Note that if we do not use the matrix
M then we have an exponential time algorithm. Also observe that it is the reversed graph that represents
LCS(X, Y), but this can be obtained from the graph constructed above.

(d)Now we give a version of the above procedure that gets rid of all the edges that are labelled with
empty strings. In the recursive calls now we also pass the vertex in whose adjacency list we want to add an
edge. Moreover, we only add edges when we see a match. the

RecursiveCG

Input: m, n ∈ N and vertex u.
1 If L[i, j] = 0 or M [i, j] = true Return.
2 If Xi = Yj

If L[i − 1, j − 1] = 0
Add the edge (u, (0, 0)) with label Xi to E.

else
Add (i − 1, j − 1) to V .
Add the edge (u, (i − 1, j − 1)) with label Xi to E.
RecursiveCG(i − 1, j − 1, (i − 1, j − 1)).

3 If L[i, j] = L[i − 1, j]
RecursiveCG(i − 1, j, u).

4 If L[i, j] = L[i, j − 1]
RecursiveCG(i, j − 1, u).

Clearly, the longest path in this graph has length k, the length of LCS(X, Y). The width at any level of
the graph is bounded by at most m + n. Thus |V | = O((m + n)k).

NOTE: As stated in the class, we cannot ensure the bound of O(k|Σ|) since merging of the adjacent
vertices of the graph, so that the width at any level is bounded by |Σ|, engenders new strings that are not
present in LCS(X, Y).

(e) A BFS on the graph based upon the labels on the edges will give us a way to verify whether a
string is in LCS(X, Y) or not. The complexity is govenrned by the number of edges in the graph, i.e.,
O(k2(m + n)2).

5

