
Homework 2 Solutions
Fundamental Algorithms, Fall 2005, Professor Yap

Due: Wed Oct 19, in class.
SOLUTION PREPARED BY Instructor and T.A.s

INSTRUCTIONS:

• Please read questions carefully. When in doubt, please ask.

• In view of the midterm, we will post the solution to this problem set on Wed evening of due date.
Absolutely no late homework is entertained.

Question 1

(20 Points)
(a) Here is the list of keys produced by a post-order traversal of a binary search tree:

2, 1, 4, 3, 6, 7, 9, 11, 10, 8, 5, 13, 16, 15, 14, 12

Draw this binary search tree.
(b) Describe a general algorithm to reconstruct a BST from its post-order traversal list of keys (as in part
(a)). HINT: Recursively, of course.

ANSWER:
(a) Figure 1 shows the corresponding binary search tree.

12

5 14

13 15

16

3 8

1 4 7 10

6 9 112

Figure 1: Binary Search tree

(b) In general, suppose (k1, . . . , kn) are the post-order keys. Since this is post-order, we know that kn

is the root. Then we can get two subsequences from (k1, . . . , kn−1) (note that the elements appear in the
same order as the original sequence) comprising (1) all the nodes that are smaller than kn, and (2) all the
nodes that are greater than kn. Recursively, we can construct the BST corresponding to (1) and the BST
corresponding to (2). These two BST’s are just the left and right subtree of the root kn. The base case is
trivial, namely when there is only one element in the post-order traversal.

COMMENTS:
For part (b), many students did not realize that one has to just search for the first index in the list where

the element is smaller then the root (which is the last elemet of the list). Given this index, one can easily
split the list into two parts as suggested in the solution.

Question 2

(10 Points)
Give an algorithm to check whether a binary search tree T is an AVL tree. Your algorithm should take time
O(|T |). HINT: Use one of the tree-traversal methods as a shell for this algorithm.

1



ANSWER:
We can use a post-order traversal shell. Assume that post(v) returns the height of the subtree at v. The

height of the tree is ∞ if it is not AVL. Then the algorithm is as follows:

post(v)
If v = nil, return(−1)
hL = post(v.Left)
hR = post(v.Right)
If (|hL − hR| > 1 or hL + hR = ∞) return(∞)
Else return(1 + max{hL, hR})

COMMENTS:
(1) If you forgot the base case, i.e. when the tree is an empty tree, then a point has been deducted.
(2) Some of the solutions were using the depth of a node, the distance from the root to the node, rather

than the height, the distance from the node to its most distant leaf. Four points have been deducted for this
mistake.

Question 3

(5 Points)
TRUE or FALSE: Justification is always needed in such questions.
Recall that a rotation can be implemented with 6 pointer assignments. Suppose a binary search tree maintains
successor and predecessor links (denoted u.succ and u.pred in the text). This is in addition to the standard
links to the children and parent. Now rotation requires 12 pointer assignments.

SOLUTION:
FALSE. Rotation does not affect the successor and predecessor links of a binary search tree. (That is

because the inorder traversal of a binary tree is unaffected by rotation.) So 6 assignments suffice.
COMMENTS:
(1) Most of the answers were correct even though the jusification was wrong; in this case 2 points were

deducted. More precisely, some of you said that it will not take 12 assignments but 7, or some other number.
This is not correct.

Question 4

(5+5+10+10 Points)
Suppose we define the height of the empty tree to be −∞ in a new definition of ’AVL’ trees, but everything
else remain the same as before. We want to compare the original AVL trees with this new ’AVL’ trees.

(a) TRUE or FALSE: every ’AVL’ tree is an AVL tree.
(b) Let µ′(h) be defined (similar to µ(h) in the Lecture Notes) as the minumum number of nodes in an

’AVL’ tree. Determine µ′(h) for all h ≤ 5.
(c) Show a relationship among µ′(h), µ(h) and F (h) where F (h) is the standard Fibonacci numbers.
(d) Give a good upper bound on µ′(h).
ANSWER:
(a) The ’AVL’ trees of heights 0 and 1 are both unique, and they are AVL. Inductively, all other ’AVL’

trees of greater heights are built from these two ’AVL’ trees, using the rule about height balance. Since these
are exactly the same rules as for regular AVL trees, this proves that all ’AVL’ trees are AVL.

The converse does not hold: The tree having just two nodes, i.e., a parent and its child is not ’AVL’
even though it is AVL. It is not ’AVL’ because the difference between the height of the two children is
| −∞− 1| > 1. We also have the convention (−∞) − (−∞) = 0 (mathematically, this is undefined).

(b) µ′(0) = 1, µ′(1) = 3, µ′(2) = 5, µ′(3) = 9, µ′(4) = 15, µ′(5) = 25.
(c) We claim that µ′(h) = µ(h) + F (h). The proof is by induction on h. The claim is true in the base case

2



h = 0 since µ′(0) = µ(0) = 1 and F (0) = 0. Suppose that the claim is true for h, i.e.

µ′(h) = µ(h) + F (h). (1)

Then we know
µ′(h + 1) = µ′(h) + µ′(h − 1) + 1

= µ(h) + F (h) + µ(h − 1) + F (h − 1) + 1 (from (1))
= µ(h + 1) + F (h),

since for AVL trees we know that 1) µ(h + 1) = µ(h) + µ(h − 1) + 1 and 2) the Fibonacci numbers satisfy
the recurrence F (h + 1) = F (h) + F (h − 1).

(d) We know that F (h) = φh, where φ = 1+
√

5
2 is the golden ratio. We also know that µ(h) ≤ 2h. Thus

from (c) above we get that µ′(h) ≤ φh + 2h. However, we can show something better: µ′(h) ≤ 2h − 1 for
h ≥ 4. Again we prove using induction on h. The base case h = 4 follows from (b). Assuming the claim to
be true for h we have

µ′(h + 1) = µ′(h) + µ′(h − 1) + 1

≤ 2h − 1 + 2h−1

< 2h+1 − 1.

A better bound is: µ′(h) ≤ 3φh − 1. The base case for h = 0 and h = 1 is clearly true. Inductively we
have

µ′(h + 1) = µ′(h) + µ′(h − 1) + 1

≤ 3φh + 3φh−1 − 1

= 3φh−1(φ + 1) − 1

= 3φh+1 − 1.

COMMENTS:
1) For (c), 5 points are given by default; 8 if the relationships are correct but without or with an incorrect

proof; otherwise, full points.
2) For (d), 5 points are awarded if a correct bound, even though with a wrong argument, is provided;

otherwise, full points.
3) For (d), most of the students made statements saying µ′(h) = O(Ch) after giving the inequality

µ′(h) ≤ KCh, for some constant K. Please note that the inequality is a stronger and more precise statement
then the Big-O notation and hence it is sufficient to just give the inequality.

Question 5

(15 Points)
Inserting the following keys 0, 3, 6, 9, 12, 15, 18, 21 (in this order) into an initially empty AVL tree. Further
insert the keys 10, 11, 13, 14, 16, 17 (in this order) into the same tree. Show the resulting tree at the end of
each insertion (you may skip those that caused no rotations).

To delete a node u with two children, assume that you move the successor of u into the place of u, and
then Cut the node where the successor comes from.

Now, delete 9 and then 6. Show the result after each single rotation or double rotation.
ANSWER:
See Figure 2.
COMMENTS: 10 points are given if the tree given was partially correct and 13 if insertion steps were

correct, but not deletion.

3



10

11

Ins(18)

18

Ins(11)

Ins(13)
15

11 Ins(14)

10

11

11

10

13 21

12

15

18

15

rot
2(11)

14

rot(13)
11

10

21

15

18

10

13 21

13

12 14

12

11

10

21

15

18

15

18

rot(15)

13

12 14 16

17

11

15

10 13

12 14

11

21

15

18

21

18

12

13

12 14 16

17

13

rot(3)

21

18

16

17

21

18

21

10

11

12

rot
2(11)

15

del(9)

15

18

10

12

13

12 14

21

18

16

17

3

15

10 21

15

1812
1812

0

rot(9)

9

3

6

3 12

15

9

60

3

0

12

15

9

rot(9) 9

6 0 6

123

9

3

0 6

Ins(21), Ins(10)

15

9

3

0 6

9

3

0 6

3

0 6

9

3

0 6

9

3

0 6

11

6

0

0

3

6

rot(3) 3

60

Ins(9), Ins(12) 3

0 6

9

12

12

Ins(15)

0

0

9

3

6

9

3

0 6

Ins(16), Ins(17)
9

3

6

3

6

03

0 6

10
del(6), rot(15)

Ins(0), Ins(3), Ins(6)

9

Figure 2:

Question 6

(40 Points)
We want to implement (a, b, c)-trees with the parameter c = 2. The nodes of the search tree are stored
on the disk. The root is assumed to be always in main memory. To transfer data between disk and main
memory, we assume a UNIX-like environment where memory blocks have size of 512 bytes. The reading or
writing of one memory block constitute one disk access. Each disk I/O is two or three orders of magnitude
slower than each CPU operation. Assume that each pointer is 4 bytes and each key 6 bytes.
(a) Choose a and b optimally.
(b) Suppose we have a billion items that is stored in our (a, b, 2)-tree. How many disk accesses is needed to
lookup an item? To insert an item? To delete an item?
(c) Assume that the root is always resident in main memory. Give upper and lower bounds on the number
of blocks needed to store the internal nodes of this tree.
(d) Suppose that each data is 8 bytes (it is probably only a pointer). Choose a′, b′ optimally. Also give upper
and lower bounds on the number of blocks needed to store the leaves of the tree.

ANSWER: (a) Since in any node the number of keys are at most b − 1 and the number of pointers b,
we want 6(b − 1) + 4b ≤ 512 to maximize the utilization in any given node; this yields b = 51, since b is an

4



integer. The parameter a should satisfy a =
⌊

cb+1
c+1

⌋

; substituting b = 51 and c = 2 yields a = 34.

(b) It is clear that the search tree, containing billion items, whose the root has exactly 2 children and all
other nodes have exactly a children has the maximum depth and hence the longest lookup time. The height
h of this search tree is bounded by 1+ ⌊loga ⌊n/2⌋⌋, where a = 34 and n = 109; thus height is bounded by 6.
Since at each lookup we need one disk access the number of disk accesses for looking up an item is bounded
by the height 6. In case of inserting an item we might have to perform a split or merge. In case of a split
we might need to lookup at c − 1 of the neighbours of a node, thus requiring c − 1 disk accesses, and when
we split we have to write c + 1 new memory blocks; thus at any given depth we have to perform at most
2c + 1 disk accesses, the extra one coming from the fact that we have to bring the node itself into memory
first. This gives us the disk accesses to insert an item as (2c + 1)h; to this we also have to add the number
of initial lookups that are at most h and 2 additional disk accesses resulting from the splitting of the root.
Thus the total disk accesses to insert an item is bounded by (2c + 2)h + 2; with our values this gives us 38.

In case of deleting an item from the tree we do not have to do the two additional disk accesses resulting
from the splitting of the root thus giving us a bound of 2h(c + 1) i.e. 36.

(c) From lecture notes we know that the height h of the tree satisfies

⌈logb n⌉ ≤ h ≤ 1 + ⌊loga ⌊n/2⌋⌋ .

When n = 109, a = 34, and b = 51 the lower and upper bound coincide and are 6. The minimum number
of blocks needed to store n items are

∑

h

i=1 bi since the root always resides in the memory. Similarly, the

maximum number of nodes needed to store n items are 2
∑

h

i=1 ai−1.
(d) Since the leaves store both the key and the associated data, and each such pair occupies 10 bytes, b′

satisfies 10b′ ≤ 512 thus implying that b′ = 36; since a′ ≤ cb+1
c+1 we have a′ = 24. Thus the number of blocks

N needed to store the leaves satisfies
⌈ n

b′

⌉

≤ N ≤
⌊ n

a′

⌋

.

COMMENTS: Each part was worth 10 points.
(1) For (a), 7 points were awarded if one of a or b was wrong, and 5 if both were wrong.
(2) For (b), the breakup was 2 points for lookup and 4 each for insertion and deletion. Full points were

given if you roughly mentioned the number of disk accesses accrued due to splitting or merging; a point was
deducted if you forgot to do the accounting for all the levels of the tree even afer giving the all most correct
answer for each level.

(3) For (c), each bound was worth 5 points. Full points were given if you showed the correct summation
for getting the bound on the nodes. For the case of an upper bound, if you forgot to metion that the root
has at least 2 children (and 2a2, 2a3 so on) then a point was deducted.

(4) For (d), if one of the values of a′ or b′ was wrong then 7-8 points were given; if the bounds were
missing, or incorrect, even though the above values were correct, then 2-3 points were deducted.

Question 7

(10 Points)
The root of an (a, b)-tree has between 2 to b children. Suppose we want the root, if non-leaf, to have between
a and b children, just like other nodes. Here is the idea: let us allow the root, when it is a leaf, to have
between 0 and a′a−1 items. As usual (a′, b′) are the bounds on items in leaves. When this limit is exceeded,
the root has a′a items and we can split it into a leaves, each with a′ items. The beauty is that there is no
exception with respect to the (a, b) bound. Discuss the issues that might arise with this design.

SOLUTION Unfortunately, there is trouble in deletion. After a deletion, suppose we want to do a
generalized merge on the children of the root. If the root has only a children, then this is not allowed.
(Previously, we had no problems, as the root was allowed to have less than a children.) In this case, we know
that these a children of the root has exactly a2 − 1 children among them. We must then merge all of them
into a single root with a2 − 1 children. With this additional condition, we can now achieve our original goal
of not having less than a children. But unless b ≥ a2 − 1, we still have an exception at the root – we must

5



allow the root to have between a and a2 − 1 children. Are we better off than the previous exception at the
root? I think that in practice, this is better than the standard exception.

COMMENTS: Full points were awarded if you mentioned the problem arising out of splitting at the root;
6 points, if there was no such mention at all.

6


