
Fundamental Algorithms (G22.1170); Fall 2005; Yap

STUDY QUESTIONS for FINAL EXAM
Dec 16, 2005

INSTRUCTIONS:

• Please study these questions. First try to solve it yourself without
using using the hints.

• They are designed to help you prepare for the FINAL EXAM.

• They will form the basis for some questions (but I will ask some unre-
lated questions as well).

• The final Exam will be based on EVERYTHING in the reading assign-
ments as well as what was covered in lectures. But we will emphasize
material after midterm, and those found in homework and lectures.

• Do not forget to prepare two sheets of notes (8”x11”) to bring to our
closed book final.

Pure Graph Algorithms

In HW3, we defined the concept of a bottle neck in a DAG. Some of you noted that our definition
of bottleneck is not quite the intuitive one. Let us explore this: an edge (v, w) in a DAG G is
called a by-pass for a node u if v is an proper ancestor of u, and w is a proper descendent of
u. Let us define u to be a real bottleneck if, in addition to being a bottleneck, there does
not exist any by-passes for u. Give an efficient algorithm to determine if a DAG has any real
bottlenecks; state its complexity.

HINT: Let D[v] denote the number of descendents of v ∈ V = {1, . . . , n}. Note that v is
considered its own descendent, but an improper descendent. How can the array D[1..n] help
determine if an edge is a by-pass for a vertex?

MORE HINT: First compute D[1..n]. Now you can check if each u is a real bottle neck in
O(m + n) time. Overall complexity to compute D[1..n] and to see if there is a real bottleneck
is O(n(m + n)).

Pure Graph Algorithms

Let N [v] be the number of distinct paths originating from each vertex v of a DAG G. E.g., let
G be the “straightline graph” with vertices v1, . . . , vn with edges (vi, vi+1) for i = 1, . . . , n − 1.
Then N [vi] = n − i + 1 for i = 1, . . . , n. Give an efficient algorithm to compute N [v] for all
vertices v, and state its complexity.

HINT: Let the vertices adjacent to u be v1, . . . , vk. Give a formula for N [u] in terms of N [vi]
(i = 1, . . . , k).

MORE HINT: Use the POSTVISIT routine to compute the formula N [u] = 1 + N [v1] +
· · · + N [vk].

Huffman Code

Let s ∈ Σ∗ be a string. Suppose C : Σ → {0, 1}∗ is the static Huffman code used to encode s.
Then we need to transmit both C(s) ∈ {0, 1}∗ as well as some representation of C. Let us see
how to construct such a representation r(C) ∈ {0, 1}∗ of C.

Assume Σ∗ ⊆ {0, 1}t. E.g., t = 8 for ASCII code. The receiver knows t and that Σ is a
subset of {0, 1}t, but knows nothing else about Σ. Note that C may be represented by a full
binary tree T whose leaves are labeled by elements of Σ. If n = |Σ|, then T has n leaves and
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n − 1 internal nodes. So we just transmit a representation r(T ) of T followed by the sequence
of labels of the leaves, listed in a left-to-right manner. The number of bits transmitted is then
|r(T )| + nt.

(a) Give a representation for r(T ) which uses as few bits as possible. Be sure that we can
reconstruct T from r(T ). HINT: Use r(T ) to describe a systematic traversal of the edges of T ,
where a 0 bit represents going down an edge, and 1 bit represents going up an edge. This leads
to a 4n − 4 bit solution. Try to improve this.

(b) In HW4, Question 1, the Huffman code of the ASCII string “hello, world!” is 42 bits.
How many bits would you need to transmit the corresponding Huffman code C in Figure 1 of
HW4? How does the total transmission cost for static Huffman code compare to the cost for
dynamic Huffman code?

(c) Using your scheme of (a), write out the string r(C) for the Huffman code in part (b).
You can just write ‘h’ instead of the ASCII code for h, etc.

(d) If you managed to find the 2n− 1 scheme, then please reconstruct the following code C:
r(C) = 0010111abcd where a, b, c, d stands for the appropriate ASCII code.

HINT:
(a) There is a scheme using 2n− 1 bits. A straightforward scheme uses 4n− 4 bits; you can

then improve this to 3n − 2, and finally to 2n − 1.
MORE HINT:

(a) Note that going up, you don’t need to say how far to go up since you know T is a full binary
tree. This saves n − 2 bits. You can further save another n − 1 bits by not having to specify
the 0 bit that follows a 1 bit.
(b) For the Huffman code in Question 1, HW4, n = 10 and r(T ) = 0010110001101100111 has
19 bits.
(d) This code is found in Lecture V (Figure 1, page 8).

Dynamic Programming

We said that LCS(X, Y ) can be exponential in the m = |X | and n = |Y |. Construct two
families of strings {Xn : n ∈ N} and {Yn : n ∈ N} such that for each n, |LCS(Xn, Yn)| ≥ 2n.
Also, we require |Xn| = O(n) and |Yn| = O(n).

HINT: suppose Xn = 01a01a01 . . . = (01a)n and Yn = 10b10b10 . . . = (10b)n. To construct
a common subseqeunce of Xn, Yn, for each 01-block in Xn, it can choose to match either 0 or 1
with the corresponding letter in 10-block in Yn. This gives 2n common subsequences of length
n. Is this argument correct?

MORE HINT: The problem with the first hint is that the LCS of Xn, Yn is actually 2n − 1
and not n, as suggested by the HINT! Can you see how to get 2n− 1? To fix this problem, we
keep Xn but modify Yn to Yn = 10b10b10 . . . = (10b)n. Then L(Xn, Yn) = 2n (why?), and the
argument in the HINT is correct.

Dynamic Programming

Let us generalize the string edit distance problem as follows: let Σ be the alphabet and ∗ be a
symbol not in Σ. Let δ : (Σ ∪ {∗})2 → R be any cost function. We interpret δ(x, y) to be the
cost of replacing x by y in a string. If x = ∗, it means inserting y. If y = ∗, it means deleting
x. Let δ(X, Y ) denote the minimum cost of transforming X to Y using the this δ cost function.
Assume that δ(x, y) = δ(y, x) for all x, y.

(a) Let Σ = {a, b, c, . . . , x, y, z} (English alphabet) and suppose δ(x, y) = 0 if x = y and
δ(x, y) = 1 if x, y are both vowels or both consonents. Let δ(x, y) = 2 otherwise. What is
δ(good, bad)?

(b) Describe the exact relationship between the string edit distance problem and this δ(X, Y )
function.

(c) Give the dynamic programming principle for computing δ(X, Y ).
(d) Can you think of reasons to allow negative cost, δ(x, y) < 0?
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HINT:
(a) δ(good, bad) = 4.
(b) String edit distance is a special case of the δ measure.
(c) Relate δ(X, Y ) to δ(X ′, Y ′), δ(X ′, Y ), δ(X, Y ′) where X ′, Y ′ are defined as in LCS.
(d) Can you think of applications where δ(good, goof) and δ(on, of) should not be the same?

MORE HINT:
(c) δ(X, Y ) = min{δ(x, y) + δ(X ′, Y ′), δ(x, ∗) + δ(X ′, Y ), δ(∗, y) + δ(X, Y ′)}.
(d) If we want to find the closest pair of words between two databases, then one with more
matching letters should be better. So we want δ(good, goof) < δ(on, of). To achieve this, we
may want δ(x, x) < 0 for all x.

Dynamic Programming

Here is a Google problem: let F be a file, viewed as a seqence of N words (ignoring punctuations,
etc). Each occurrence of a word in F can be identified by a position i ∈ 1, . . . , N . We have a
dictionary which contains a set of “keywords”, and with each key word w, there is a sorted list
P (w) of positions indicating where w occurs in F . E.g., if P (dynamic) = (7, 16, 42, 101, 125), it
means the keyword dynamic occurs 4 times in F at positions 7, 16, etc.

The problem is this: suppose we are given k keywords, w1, . . . , wk. An interval J = [s, t]
is called a cover if each wi occurs at least once within the positions in J . Our task is to
compute a cover J = [s, t] of minimum size t − s. E.g., continuing the previous example,
suppose P (programming) = (9, 43, 300). You want to find a cover for the key words dynamic
and programming (so k = 2). In this case, J = [42, 43] would be the solution.

(a) If k = 2, give a linear time algorithm that finds all the minimum covers. Let the lists
P (wi) have ni positions; then linear time means O(n) where n = n1 + · · · + nk.

(b) Give an O(n log n) time recursive algorithm for k = 3.
HINT:

(a) Just merge P (w1) with P (w2) in linear time. Scan the resulting list.
(b) Merge P (w1), P (w2), P (w3). Let A[1..n] be the merged list. Recursively, compute the
minimum cover of A[1..n/2] and A[(n/2) + 1..n]. We now need to find the minimum cover that

straddles A[n/2]+A[(n/2)+1]
2 : there are 6 possibilities.

MORE HINT:
(a) If A[1..n] is the resultant list, then the minimum cover can be found as the pair A[i], A[i+1]
where A[i]−A[i + 1] has minimum absolute value, and where A[i] ∈ ¶(w1) iff A[i + 1] ∈ P (w2).
(b) Let J = [A[i], A[j]] be the minimum cover where i ≤ n/2 and j ≥ (n/2) + 1. One case
is [A[i], A[n/2]] contains only w1 while [A[(n/2) + 1], A[j]] contains w2 and w3. This can be
computed O(n) time. Similarly for the other 6 cases.

Amortization

Let C be a binary counter, initially with value Val(C) = 0. We want to increment and decrement
counters. Consider the amortized cost of an arbitary sequence of n operations of Inc(C) and
Dec(C). The cost for Dec(C) from a value m is the same as the cost to Inc(C) from a value of
m − 1.

(a) Assume that we never decrement a value below 0. Show that it is no longer possible to
have O(1) amortized cost for each operation.

(b) Show how we can achieve O(1) amortized cost for part (a) if we use pair of counters to
represent each number. You need to define a suitable potential function.

(c) In (b), the counter value C can now be negative. Suppose you want to implement a new
operation, sign(C). Show how this can be implemented in amortized constant time.
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Shortest Paths

The input for Dijkstra’s algorithm is a digraph G = (V, E; s, C) where s is the source node and
C(e) > 0 are costs of each edge e ∈ E.

(a) Show how to implement Dijkstra’s algorithm using Fibonacci heaps.
(b) Analyze the complexity of your algorithm in (a).
(c) Suppose the cost C(e) may be negative. So we cannot use Dijkstra’s algorithm on G.

Consider the following idea: for each edge e ∈ E, redefine C′(e) = C(e)+M where M is a large
positive constant. Now G′ = (V, E; s, C′) has only positive costs, and so we can run Dijkstra’s
algorithm on G′. If d′[i] is the minimum cost from the source s to vertex i in G′. CLAIM: if
the minimum path from s to i has k edges, then d[i] = d′[i] − kM is the minimum cost from
source s to i in the original graph G = (V, E; s, C). Prove this or show a counter example.

(d) Modify the Floyd-Warshall algorithm so that it detects if there is any negative cycle in
a graph. A negative cycle is cycle whose cost is negative. Your algorithm should terminate as
soon as it detects a negative cycle.

(e) Do the hand simulation of Dijkstra’s algorithm using the organization described in §3 of
the Lecture Notes on Minimum Cost Path (Lecture 14). For input, use the graph in Figure 2,
but change the edge costs as follows: if the cost is 10, keep it unchanged; if the cost is < 10,
increase it by 10; if the cost is > 10, decrement it by 10.

HINT: (a),(b) standard material. (c) The shortest path may have lots of edges, but the
modified cost functions favors those paths with few edges. So the shortest paths may now be
different. (d) Let C(k)(i, j) be the shortest path from i to j in the kth stage. What is the cost
of the minimum cycle through i at this stage?

MORE HINT: (a),(b) read the texts. (d) Negative cycle detected as soon C(k)(i, i) < 0 for
any k, i.

NP -Completeness and Reducibility

In the Traveling Salesman Problem (TSP), you are given a bigraph G = (V, E) with edge costs,
C : E → N (i.e., edge costs are natural numbers). If (u, v) 6∈ E then C(u, v) = ∞. Write
G = (V, E; C) for this weighted graph. A tour is a path that visits each of the n = |V | vertices
in V exactly once, and returns to the starting vertex. Consider the following 3 versions of the
Traveling Salesman Problem:

• TSP: Given G = (V, E; C), compute a minimum tour π, i.e., π such that its cost C(π) is
minimum.

• TSC: Given G = (V, E; C), compute the cost C(π) of a minimum tour.

• TSD: Given G = (V, E; C) and an integer k > 0, determine whether the cost C(π) of a
minimum tour is at most k.

(a) Show that TSD ≤P TSC and TSC ≤P TSP , where A ≤P B means that A can be
solved in polynomial-time if there is a polynomial time algorithm for B.

(b) Show that TSP ≤P TSC and TSC ≤P TSD.
(c) The classes P and NP represent decision problems. How is the study of P and NP

justified when we are interested in optimization problems, not decision problems?
(d) The problem of Hamiltonian Circuit (HAM) is this: given a bigraph G = (V, E), we

want to know if there exists a tour (also called “Hamiltonian circuit” in this context). Show
that HAM ≤P TSP .

(e) Show that if A ≤P B and B ≤P C then A ≤P C.
(f) Suppose A ≤P B and A is NP -complete. What can you say about B?
HINT:

(a) Straightforward.
(b) TSC ≤P TSD follows by binary search. For TSP ≤P TSC, note that it does not matter
what the starting vertex v0 is. But how can you use TSC to help you determine whether there
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is an optimum tour that begins with the edge (v0, v1)?
(c) Look at parts (a) and (b).
(e), (f) are standard results.

MORE HINTS:
(b) If you know that (v0, v1) is the start of an optimum tour, you can now check if (v0, v1, v2)
is also the case.
(c) There are closely connected decision and optimization problems with the property one is
solvable in polynomial time iff the other is. E.g., TSP and TSD.
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