
Homework 4
Fundamental Algorithms, Spring 2003, Professor Yap

Due: Mon April 14, in class
Solutions prepared by: T.A. Igor Chikanian and Chee Yap.

INSTRUCTIONS:

• Please read the questions carefully. When in doubt, please ask.

1. (20 Points)
In Lecture V.2, we define a code tree T = TC corresponding to any prefix code C. Let f be the
frequency function that assigns to each leaf u of T a frequency f(u) ≥ 0. The COST of this tree with
frequency f is defined to be COST (T, f) =

∑
u f(u)d(u) where u ranges over the leaves of T and d(u)

is the depth of u in T . We noted (without proof) an alternative way to compute the COST (T, f): first
extend f so that it assigns a frequency to every node v in T : if v is a leaf, then f(v) is already defined.
Otherwise, if the two children vL, vR of v have been assigned frequencies, define f(v) = f(vL)+ f(vR).
Alternatively, f(v) is just the sum of all the frequencies of the leaves below v. When v is the root of T ,
we also write f(T ) instead of f(v). Let C(T, f) =

∑
v f(v) where v ranges over all the internal nodes

of T . You are to prove that COST (T, f) = C(T, f).

SOLUTION:

Proof by induction on number of nodes in the tree: For trees with one node (no internal nodes):

COST (T, f) = C(T, f) = 0

Suppose this is true for all trees with less than n nodes. Let T have n nodes. Also, let u0 be the root
of T and let TL and TR be the left and right subtrees of T . So, by induction hypothesis,

COST (Ti, f) = C(Ti, f)

where i = L, R. Note that for any leaf ui of Ti, let di(ui) = d(ui) − 1 denote the depth of ui in Ti.
Then

COST (T, f) =
∑

u f(u)d(u)
=

∑
uL

f(uL)d(uL) +
∑

uR
f(uR)d(uR) (ui ranges over leaves of Ti, i = L, R)

=
(
f(TL) +

∑
uL

f(uL)dL(uL)
)

+
(
f(TR) +

∑
uR

f(uR)dR(uR)
)

(using di(ui) + 1 = d(ui))
= (f(TL) + f(TR)) + C(TL, f) + C(TR, f) (by induction hypothesis)
= f(T ) + C(TL, f) + C(TR, f) (f(T ) = f(TL) + f(TR))
= C(T, f) (by definition of C(T, f) )

2. (20 Points)
Consider the insertion of the following sequence of keys into an initially empty tree:

1,−1, 2,−2, 3,−3, . . . , n,−n.

Let Tn be the final splay tree. In Lecture VI.2, we gave an insertion algorithm in which splay the tree
before inserting the key. Call this Method 1. We noted in class an alternative, Method 2, where you
first insert as in an ordinary binary tree, and then splay the newly inserted node.
(i) Show Tn for n = 1, 2, 3, 4 under Method 1.
NOTE: Please be careful – if Ti is wrong, then Ti+1 is assumed wrong!
(ii) Show Tn for n = 1, 2, 3, 4 under Method 2.
(iii) Formulate a conjecture about the shape of Tn under Method 2. Prove it.

1



−1

1

2

1

−1

−2

−1

1

2

3

2

−2

1

−1

Splay(1)
Insert(1)

Splay(−1)
Insert(−1)

Splay(2)
Insert(2)

Splay(−2)
Insert(−2)

Splay(3)
Insert(3)

Splay(−3)
Insert(−3)

Splay(4)
Insert(4)

Splay(−4)
Insert(−4)

−3

2

3

−2

−1

1

4

−3

3

2

−2

1

−1

−4

−3

3

4

−2

2

−1

1

 1

Figure 1: Q2(i) Method I

SOLUTION:

(i) See Figure 1.

(ii) See Figure 2.

(iii) The conjecture should be: Tn is a tree with a unique leaf u0, and the path from this leaf to the
root is a zig-zag path (alternating a left turn and a right turn). The root contains −n and its right
child is n. The left child of n is Tn−1. For the proof, see Figure 3.

3. (15 Points)
In many applications of binary search trees, we need to maintain more information than just the
search key. Thus, in the convex hull application (Lecture VI.4), we assumed that each node u has a
reference to its successor u.succ and predecessor u.pred. Assume that u.pred = null if u contains
the minimum node (i.e., the one with smallest key in the tree); similarly u.succ = null if u is the
maximum node. Consider maintaining such pointers in splay trees. What additional steps must be
carried out to maintain these pointers when you perform the following splay tree operations?
(i) Rotation. (Careful – this could be considered a trick question.)
(ii) Insertion.
(ii) Deletion.

SOLUTION:
(i) Rotation preserves all keys and the successor/predecessor relations are not disturbed, so no addi-
tional action is needed.

2



Insert(1)
Splay(1)

1

Insert(−1)
Splay(−1)

−1

1

Insert(2)
Splay(2)

2

1

−1

Insert(−2)
Splay(−2)

−2

2

1

−1

Insert(3)
Splay(3)

3

2

−2

−1

1

Insert(−3)
Splay(−3)

−3

3

−2
2

−1

1

Insert(4)
Splay(4)

4

3

−3

−2
2

−1

1

Insert(−4)
Splay(−4)

−4
4

−3
3

−2
2

−1
1

Figure 2: Q2(ii) Method II

(ii) Assume that node u is inserted as described in the Lecture Notes for inserting into splay tree.
This means that we first splay the tree to get a new node u′ and then u is made the parent of u′. Now
there are two cases, depending on whether u.Key > u′.Key (call this Case A) or u.Key < u′.Key (call
this Case B). We assume that you need to insert some code to above insertion algorithm remember
which case occurred. We now perform some additional assignment of pointers:

Case A (See Figure 4)
Suppose node u was inserted as usual, u′ was root after splaying.
if (u′.succ 6= null) then u′.succ.pred := u;
u.succ := u′.succ;
u′.succ := u;
u.pred := u′;

Case B (See Figure 4)
Suppose node u was inserted as usual, u′ was root after splaying.
if (u′.pred 6= null) then u′.pred.succ := u;
u.pred := u′.pred;
u′.pred := u;
u.succ := u′;

(iii) For deletion of node d, we only have to do the following:
if (d.pred 6= null) then d.pred.succ := d.succ;
if (d.succ 6= null) then d.succ.pred := d.pred;
delete(d) as usual

3



1) Base case follows from part (ii)

2) Inductive Hypothesis: After inserting {1,−1,2,−2, ..., n, −n} we get: −n

n

−1

1

3) Inductive Case: Insert+Splay(n+1), Insert+Splay(−(n+1)):

Insert(n+1)

−n

n

n+1

n+1

n

−n

Splay(n+1)+ Insert(−(n+1))

−(n+1)

Splay(−(n+1)), step1:

n+1

−(n+1)

−n

n

Splay(−(n+1)), step2:

n+1

n

−(n+1)

−n

Figure 3: Q2(iii) Proof by Induction

4. (20 Points)
In the problem of maintaining an upper hull H , we represent H as a splay tree T . Lecture VI.4 gives
an outline of the procedure called FindLeftTangentPoint(p, T ) where we already know that p (the
query point) lies outside the upper hull. You are to flesh out the details of this procedure, reducing
all numerical detail computation to just the left turn predicate. This predicate is defined1 for any
three points p, q, r ∈ R

2:

LeftTurn(p, q, r) =




+1 if the path (p, q, r) represents a left turn
−1 if the path p, q, r) represents a right turn
0 if p, q, r are collinear

Note that FindLeftTangent could return the special point vS = (0,−∞) (South Pole).

ASSUMPTIONS: For simplicity, you may assume that the input points are non-degenerate in the
sense that LeftTurn(p, q, r) on any input points p, q, r will never return a 0, and that the x-coordinate

1Note that in computational geometry, “predicates” are often 3-valued as in this instance. Contrast this to the 2-valued
(true/false) logic that is more common elsewhere. The LeftTurn predicate is only one example of the class of “orientation
predicates”. See class notes and Exercise 4.1 for how to implement the LeftTurn predicate as the sign of a determinant. But
this information is irrelevant for the present problem.

4



u’
u

u’

u’
u

u’

Case BCase A

Figure 4: Q3: Insert

of input points and query point are all distinct. However, your solution must take care of what happens
when a node u has no successor or no predecessor.

SOLUTION:

FindLeftTangentPoint(p,T)
Let u := root(T );
Repeat Forever

v := u.succ;
w := u.pred;
if (p.x < u.x)

if (w = null) return SouthPole;
u := u.LeftChild; break;

if (w 6= null) and (LeftTurn(w, u, p))
u := u.LeftChild; break;

if (v 6= null) and (Not LeftTurn(u, v, p))
u := u.RightChild; break;

return u; //check that this is correct whether or not v or w is null.

5. (0 Points)
THIS PROBLEM IS NOT REQUIRED, so do not submit for grading. It is for your practice, and we
will publish solution.

Let T be a splay tree on n nodes, and let T ′ be the result of inserting a new key into T using the
standard insertion algorithm. So, the new key appears as a leaf u in T ′ but in all other respects T and
T ′ are identical. The following will step you through a proof of

Φ(T ′)− Φ(T ) = O(lg n). (1)

Consider the path π = (u0, u1, . . . , uk) from the root u0 of T ′ to u = uk.
(i) Let vi be the sibling of ui for i = 1, 2, . . . , k, and let si be the size of the subtree rooted at vi. If ui

has no sibling, then vi is undefined and si is 0. Let ∆i be the increase in potential of ui in going from
T to T ′. Express ∆i in terms of the sj ’s (j = i, i + 1, . . . , k).
(ii) Express Φ(T ′)− Φ(T ) in terms of the ∆i’s.
(iii) Try to bound the expression from (ii) as a telescoping sum, and deduce (1),

SOLUTION:

(i) ∆i is the change in potential of ui after we inserted uk, so:

5



∆k−1 = blog(sk + 2)c − blog(sk + 1)c
∆k−2 = blog(sk + sk−1 + 3)c − blog(sk + sk−1 + 2)c
∆k−3 = blog(sk + sk−1 + sk−2 + 4)c − blog(sk + sk−1 + sk−2 + 3)c

... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

∆i =
⌊
log(

∑k
j=i+1 sj + (k − i + 1))

⌋
−

⌊
log(

∑k
j=i+1 sj + (k − i))

⌋

∆i−1 =
⌊
log(

∑k
j=i sj + (k − i + 2))

⌋
−

⌊
log(

∑k
j=i sj + (k − i + 1))

⌋

... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

∆1 =
⌊
log(

∑k
j=2 sj + k)

⌋
−

⌊
log(

∑k
j=2 sj + (k − 1))

⌋

∆0 =
⌊
log(

∑k
j=1 sj + (k + 1))

⌋
−

⌊
log(

∑k
j=1 sj + k)

⌋

Notice that we have:

k∑
j=i

sj + (k − i + 1) ≥
k∑

j=i+1

sj + (k − i + 1)

log(
k∑

j=i

sj + (k − i + 1)) ≥ log(
k∑

j=i+1

sj + (k − i + 1))

log(
k∑

j=i

sj + (k − i + 1))

 ≥
log(

k∑
j=i+1

sj + (k − i + 1))



Therefore, ∆i−1 ≤ ∆′
i−1 =

⌊
log(

∑k
j=i sj + (k − i + 2))

⌋
−

⌊
log(

∑k
j=i+1 sj + (k − i + 1))

⌋

Similarly, ∆i ≤ ∆′
i =

⌊
log(

∑k
j=i+1 sj + (k − i + 1))

⌋
−

⌊
log(

∑k
j=i+2 sj + (k − i))

⌋

(ii),(iii) Let us compute Φ(T ′)− Φ(T ) =
∑k−1

i=0 ∆i:

∑k−1
i=0 ∆i ≤

∑k−1
i=0 ∆′

i

By telescoping the last sum we get:
Φ(T ′)−Φ(T ) ≤

⌊
log(

∑k
j=1 sj + (k + 1))

⌋
−blog(sk + 1)c = O(log n) , since the summation of subtree

sizes sj plus the length (k + 1) of the path π equals the number of nodes in the tree.

6


