
Homework 4
Fundamental Algorithms, Spring 2003, Professor Yap

Due: Mon April 14, in class

INSTRUCTIONS:

• Please read the questions carefully. When in doubt, please ask.

1. (20 Points)
In Lecture V.2, we define a code tree T = TC corresponding to any prefix code C. Let f be the
frequency function that assigns to each leaf u of T a frequency f(u) ≥ 0. The COST of this tree with
frequency f is defined to be COST (T, f) =

∑
u f(u)d(u) where u ranges over the leaves of T and d(u)

is the depth of u in T . We noted (without proof) an alternative way to compute the COST (T, f): first
extend f so that it assigns a frequency to every node v in T : if v is a leaf, then f(v) is already defined.
Otherwise, if the two children vL, vR of v have been assigned frequencies, define f(v) = f(vL)+ f(vR).
Alternatively, f(v) is just the sum of all the frequencies of the leaves below v. When v is the root of
T , we also write f(T ) instead of f(v). Let C(T, f) =

∑
v f(v) where v ranges over all the nodes of T .

You are to prove that COST (T, f) = C(T, f).

2. (20 Points)
Consider the insertion of the following sequence of keys into an initially empty tree:

1,−1, 2,−2, 3,−3, . . . , n,−n.

Let Tn be the final splay tree. In Lecture VI.2, we gave an insertion algorithm in which splay the tree
before inserting the key. Call this Method 1. We noted in class an alternative, Method 2, where you
first insert as in an ordinary binary tree, and then splay the newly inserted node.
(i) Show Tn for n = 1, 2, 3, 4 under Method 1.
NOTE: Please be careful – if Ti is wrong, then Ti+1 is assumed wrong!
(ii) Show Tn for n = 1, 2, 3, 4 under Method 2.
(iii) Formulate a conjecture about the shape of Tn under Method 2. Prove it.

3. (15 Points)
In many applications of binary search trees, we need to maintain more information than just the
search key. Thus, in the convex hull application (Lecture VI.4), we assumed that each node u has a
reference to its successor u.pred and predecessor u.succ. Assume that u.pred = null if u contains
the minimum node (i.e., the one with smallest key in the tree); similarly u.succ = null if u is the
maximum node. Consider maintaining such pointers in splay trees. What additional steps must be
carried out to maintain these pointers when you perform the following splay tree operations?
(i) Rotation. (Careful – this could be considered a trick question.)
(ii) Insertion.
(ii) Deletion.

4. (20 Points)
In the problem of maintaining an upper hull H , we represent H as a splay tree T . Lecture VI.4 gives
an outline of the procedure called FindLeftTangentPoint(p, T ) where we already know that p (the
query point) lies outside the upper hull. You are to flesh out the details of this procedure, reducing
all numerical detail computation to just the left turn predicate. This predicate is defined1 for any
three points p, q, r ∈ R

2:

LeftTurn(p, q, r) =




+1 if the path (p, q, r) represents a left turn
−1 if the path p, q, r) represents a right turn
0 if p, q, r are collinear

1Note that in computational geometry, “predicates” are often 3-valued as in this instance. Contrast this to the 2-valued
(true/false) logic that is more common elsewhere. The LeftTurn predicate is only one example of the class of “orientation
predicates”. See class notes and Exercise 4.1 for how to implement the LeftTurn predicate as the sign of a determinant. But
this information is irrelevant for the present problem.

1



Note that FindLeftTangent could return the special point vS = (0,−∞) (South Pole).

ASSUMPTIONS: For simplicity, you may assume that the input points are non-degenerate in the
sense that LeftTurn(p, q, r) on any input points p, q, r will never return a 0, and that the x-coordinate
of input points and query point are all distinct. However, your solution must take care of what happens
when a node u has no successor or no predecessor.

5. (0 Points)
THIS PROBLEM IS NOT REQUIRED, so do not submit for grading. It is for your practice, and we
will publish solution.

Let T be a splay tree on n nodes, and let T ′ be the result of inserting a new key into T using the
standard insertion algorithm. So, the new key appears as a leaf u in T ′ but in all other respects T and
T ′ are identical. The following will step you through a proof of

Φ(T ′)− Φ(T ) = O(lg n). (1)

Consider the path π = (u0, u1, . . . , uk) from the root u0 of T ′ to u = uk.
(i) Let vi be the sibling of ui for i = 1, 2, . . . , k, and let si be the size of the subtree rooted at si. If ui

has no sibling, then vi is undefined and si is 0. Let ∆i be the increase in potential of ui in going from
T to T ′. Express ∆i in terms of the sj ’s (j = i, i + 1, . . . , k).
(ii) Express Φ(T ′)− Φ(T ) in terms of the ∆i’s.
(iii) Try to bound the expression from (ii) as a telescoping sum, and deduce (1),

2


