
§1. Linear Bin Packing Lecture V Page 1

Lecture V

THE GREEDY APPROACH

An algorithmic approach is called “greedy” when it makes decisions for each step based on what seems
best at the current step. Moreover, once a decision is made, it is never revoked. It may seem that this
approach is rather limited. Nevertheless, many important problems have special features that allow efficient
solution using this approach. An essential point of greedy solutions is that we never have to revise our greedy
decisions, and this leads to fast algorithms provided we can make the greedy decision quickly.

The greedy method is supposed to exemplify the idea of “local search”. But closer examination of greedy
algorithms will reveal some global information being used. Such global information is usually minimal.
Typically it amounts to some global sorting step. Indeed, the preferred data structure for delivering this
global information is the priority queue.

In this chapter, we consider two problems that use the greedy approach: Huffman tree construction and
minimum spanning trees. An abstract setting for the minimum spanning tree problem is based on matroid
theory and the associated maximum independent set problem. We introduce this framework to capture
the essence of many problems with greedy solutions.

§1. Linear Bin Packing

In this section, we give a very simple example of greedy algorithms, called linear bin packing. However,
it is related to a major topic in algorithms, namely, bin packing problems. The prototype bin packing
problem involves putting a set of items into the minimum number of bins. Each item is characterized by
its weight, and the bins are identical, with a limited capacity. More precisely, we are given a multiset set
W = {w1, . . . , wn} of positive weights, and a bin capacity M > 0. We want to partition W into a minimum
number of subsets (“bins”) such that the total weight in each bin is at most M . We may assume that each
wi ≤M . E.g., if W = {1, 1, 1, 3, 2, 2, 1, 3, 1} and M = 5 then one solution is

{3, 2}, {2, 3}, {1, 1, 1, 1, 1}.

This solution uses 3 bins, and it is clearly optimal, as each bin is filled to capacity. In general, bin packing
is considered a hard problem because all known algorithm for optimal bin packing is exponential time. But
we can turn hard problems into feasible ones by imposing suitable restrictions. We now illustrate this with
a linearized version of bin packing.

Suppose we have a joy ride in an amusement park where riders arrive in a queue. We want to assign
riders into cars, where the cars are empty when they arrive. Each car has a weight limit M > 0. The number
of riders in a car in immaterial, as long as their total weight is ≤ M pounds. For instance, if M = 400 and
the weights (in pounds) of the riders in the queue are (40, 190, 80, 210, 100, 80, 50, 170) then we can put the
riders in cars in the following groups:

S1 : (40, 190, 80), (210, 100, 80), (50, 170).

Solution S1 uses three cars (the first car has the first 3 riders, the next car has the next 3, and the last care
has 2 riders). It is the solution given by the standard “greedy algorithm”. Here are two other non-greedy
solutions:

S2 : (40, 190), (80, 210), (100, 80, 50, 170).

S3 : (40, 190)(80, 210), (100, 80, 50, 170).

c© Chee-Keng Yap Basic Version October 26, 2005

§1. Linear Bin Packing Lecture V Page 2

Greedy Algorithm. The algorithm has a simple iterative solution. Let C be a container (or car) that is
being filled, and let W be the cumulative weight of the elements being added to C. Initially, W ← 0 and
C = ∅. If the next weight would make C overfull, we output C. So here is the code:

⊲ Initialization
C ← ∅, W ← 0.

⊲ Loop
for i = 1 to n + 1

if (i = n + 1 or W + wi > M)
Output C, W ← 0, C ← ∅.

else

W ←W + wi, Add wi to C.

At the conclusion of this for-loop, we would have output a sequence car loads representing the greedy solution.

Correctness. It is not obvious why this algorithm produces an optimal bin packing. Here is a proof by
induction. Suppose the greedy algorithm outputs k cars with the weights

(w1, . . . , wn1
), (wn1+1, . . . , wn2

), . . . , (wnk−1+1, . . . , wnk
)

where nk = n. This defines a sequence of indices,

1 ≤ n1 < n2 < · · · < nk = n.

Consider any optimal solution with ℓ cars with the weights

(w1, . . . , wm1
), (wm1+1, . . . , wm2

), . . . , (wmℓ−1+1, . . . , wmℓ
)

where
1 ≤ m1 < m2 < · · · < mℓ = n.

Since this is optimal, we have
ℓ ≤ k.

We claim that for i = 1, . . . , ℓ,
mi ≤ ni. (1)

It is easy to see that this is true for i = 1. For i > 1, assume mi−1 ≤ ni−1 by induction hypothesis. By way
of contradiction, suppose that mi > ni. Then

mi−1 ≤ ni−1 ≤ ni − 1 ≤ mi − 2.

This means that the i-th car on the optimal solution has weights

wmi−1+1 + · · ·+ wmi
> wni−1+1 + · · ·+ wni

+ wni+1.

But by definition of the greedy algorithm, the sum wni−1+1 + · · ·+ wni
+ wni+1 must exceed M (otherwise

the greedy algorithm would have added wni+1 to the ith car). This is a contradiction. This concludes our
proof of (1).

From (1), we have mℓ ≤ nℓ. Since mℓ = n, we conclude that nℓ = n. Since nk = n, this can only mean
ℓ = k. Thus the greedy method is optimal.

c© Chee-Keng Yap Basic Version October 26, 2005

§2. Linear Bin Packing Lecture V Page 3

Application to Bin Packing. Thus linear bin packing can be solved in O(n) time; if the weights are
arbitrary real numbers, this O(n) bound is based on the real RAM computational model of Chapter 1. We
can use this solution as a subroutine in solving the original bin packing problem: we just cycle through each
of the n! permutations of w = (w1, . . . , wn), and for each compute the greedy solution in O(n) time. The
optimal solution is among them. This yields an Θ(n · n!) = Θ((n/e)n+(3/2)). time algorithm. Here, we
assume that we can generate all n-permutations in O(n!) time. This is a nontrivial assumption, but in §6,
we will show how this can be done.

We can improve this by a factor of n, since without loss of generality, we may restrict to permutations
that begins with an arbitrary w1 (why?). Since there are (n− 1)! such permutations, we obtain:

Lemma 1. The bin packing problem can be solved in O(n!) = O((n/e)n+(1/2)) time in the real RAM model.

See the Exercise for how this complexity can be improved by another factor of n.

Exercises

Exercise 1.1: Give a counter example to the greedy algorithm for the grouping problem in case the wi’s
can be negative. ♦

Exercise 1.2: Suppose the weight wi’s can be negative. How bad can the greedy algorithm be, as a function
of the optimal bin size? ♦

Exercise 1.3: There are two places where our optimality proof for the greedy algorithm breaks down when
there are negative weights. What are they? ♦

Exercise 1.4: Consider the following “generalized greedy algorithm” in case wi’s can be negative. A solution
to linear bin packing be characterized by the indices 0 = n0 < n1 < n2 < · · · < nk = n where the ith
car holds the weights

[wni−1+1, wni+2, . . . , wni
].

Here is a greedy way to define these indices: let n1 to be the largest index such that
∑n1

j=1 wj ≤ M .

For i > 1, define ni to be the largest index such that
∑ni

j=ni−1+1 wj ≤ M . Either prove that this
solution is optimal, or give a counter example. ♦

Exercise 1.5: Give an O(n2) algorithm for linear bin packing when there are negative weights. HINT: Use
dynamic programming. Assume that when you solve the problem for (M, w), you also solve it for
(M, w′) where w′ is a suffix of w. ♦

Exercise 1.6: Improve the bin packing upper bound in Lemma 1 to O((n/e)n−(1/2)). HINT: Repeat the
trick which saved us a factor of n in the first place. Fix two weights w1, w2. We need to consider two
cases: either w1, w2 belong to the same bin or they do not. ♦

Exercise 1.7: Two dimensional generalization: suppose that the weights in w are of the form wi,j = ui +vj

and (u1, . . . , um) and (v1, . . . , vn) are two given sequences. So w has mn numbers. Moreover, each
group must have the form w(i, i′, j, j′) comprising all wk,ℓ such that i ≤ k ≤ i′ and j ≤ ℓ ≤ j′. Call
this a “rectangular group”. We want the sum of the weights in each group to be at most M , the bin
capacity. Give a greedy algorithm to form the smallest possible number of rectangular groups. Prove
its correctness. ♦

c© Chee-Keng Yap Basic Version October 26, 2005

§2. Interval Scheduling Problems Lecture V Page 4

End Exercises

§2. Interval Scheduling Problems

We give more elementary examples of greedy algorithms. An important class of problems involves schedul-
ing intervals.

Typically, we think of an interval I as a time interval, representing some activity. For instance, I = [s, f)
where s < f might represent an activity that starts at time s and finishes at time f . Thus I is the set
{t ∈ R : s ≤ t < f}, usually called a half-open interval. Two activities conflict if their time intervals are
not disjoint. We use half-open intervals instead of closed intervals so that the finish time of an activity
can coincide with the start time of another activitity without causing a conflict. A set S = {I1, . . . , In} of
intervals is said to be compatible if the intervals in S are pairwise disjoint (i.e., the set is conflict-free).

We begin with the activities selection problem, originally studied by Gavril. Imagine you have the
choice to do any number of the following fun activities in one afternoon: tennis 1 : 30 − 3 : 20, swimming
1 : 15 − 2 : 45, beach 12 : 00 − 4 : 00, movie 3 : 00 − 4 : 30, movie 4 : 30 − 6 : 00. You are not allowed to
do two activities at the same time. Assuming that your goal is to maximize your number of fun activities,
which activities should you choose? Formally, the activities selection problem is this: given a set

A = {I1, I2, . . . , In}

of intervals, to compute a compatible subset of S that is optimal. Here optimality means “of maximum
cardinality”. E.g., in the above fun activities example, an optimal solution would be to swim and to see two
movies. It would be suboptimal to go to the beach. What would a greedy algorithm for this problem look
like? Here is a generic version:

Generic Greedy Activities Selection:
Input: A a set of intervals
Output: S ⊆ A, a set of compatible intervals
⊲ Initialization

Sort A according to some numerical criterion.
Let (I1, . . . , In) be the sorted sequence.

Let S = ∅.
⊲ Main Loop

For i = 1 to n
If S ∪ {Ii} is compatible, add Ii to S

return(S)

Thus, S is a partial solution that we are building up. At stage i, we consider Ai, to either accept or
reject it. Accepting means to make it part of current solution S. But what greedy criteria should we use
for sorting? Here are some suggestions:

• Sort Ii’s in order of non-decreasing finish times.

• Sort Ii’s in order of non-decreasing start times.

• Sort Ii’s in order of non-decreasing size fi − si.

• Sort Ii’s in order of non-decreasing conflict degree. The conflict degree of Ii is the number of Ij ’s which
conflict with Ii.

c© Chee-Keng Yap Basic Version October 26, 2005

§2. Interval Scheduling Problems Lecture V Page 5

We now show that the first criterion (sorting by non-decreasing finish times) leads to an optimal solution.
In the Exercise, we ask you to show show that all the other criteria do not guarantee optimality.

We use an inductive proof, reminiscent of the joy ride proof. Let S = (I1, I2, . . . , Ik) be the solution given
by our greedy algorithm. If Ii = [si, fi), we may assume

f1 < f2 < · · · < fk.

Suppose S′ = (I ′1, I
′
2, . . . , I

′
ℓ) is an optimal solution where I ′i = [s′i, f

′
i) and again f ′

1 < f ′
2 < · · · < f ′

k. By
optimality of S′, we have k ≤ ℓ. CLAIM: We have the inequality fi ≤ f ′

i for all i = 1, . . . , k. We leave this
proof as an exercise.

Let us now derive a contradiction if the greedy solution is not optimal: assume k < ℓ so that I ′k+1 is
defined. Then

fk ≤ f ′
k (by CLAIM)

≤ s′k+1(since I ′k, I ′k+1 have no conflict)

and so I ′k+1 is compatible with {I1, . . . , Ik}. This is a contradition since the greedy algorithm halts after
choosing Ik because there are no other compatible intervals.

What is the running time of this algorithm? In deciding if interval Ii is compatible with the current set
S, it is enough to only look at the finish time f of the last accepted interval. This can be done in O(1) time
since this comparison takes O(1) and f can be maintained in O(1) time. Hence the algorithm takes linear
time after the initial sorting.

Extensions, variations. There are many possible variations and generalizations of the activities selection
problem. Some of these problems are explored in the Exercises.

• Suppose your objective is not to maximize the number of activities, but to maximize the total amount
of time spent in doing activities. In that case, for our fun afternoon example, you should go to the
beach and see the second movie.

• Suppose we generalize the objective function by adding a weight (“pleasure index”) to each activity.
Your goal now is to maximize the total weight of the activities in the compatible set.

• We can think of the activities to be selected as a uni-processor scheduling problem. (You happen to
be the processor.) We can ask: what if you want to process as many activities as possible using two
processors? Does our original greedy approach extend in the obvious way? (Find the greedy solution
for processor 1, then find greedy solution for processor 2).

• Alternatively, suppose we ask: what is the minimum number of processors that suffices to do all the
activities in the input set?

• Suppose that, in addition to the set A of activities, we have a set C of classrooms. We are given a
bipartite graph with vertices A∪C and edges is E ⊆ A×C. Intuitively, (I, c) ∈ E means that activity
I can be held in classroom c. We want to know whether there is an assignment f : A→ C such that
(1) f(I) = c implies (I, c) ∈ E and (2) f−1(c) is compatible. REMARK: scheduling of classrooms in a
school is more complicated in many more ways. One complication is the need to do weekly scheduling,
not daily scheduling.

Exercises

c© Chee-Keng Yap Basic Version October 26, 2005

§3. Huffman Code Lecture V Page 6

Exercise 2.1: We gave four different greedy criteria for the activities selection problem.
(a) Show that the other three criteria are suboptimal.
(b) Actually, each of the four criteria has a inverted version, where we sort in non-increasing order.
Show that each of these inverted criteria are also suboptimal. ♦

Exercise 2.2: Suppose the input A = (I1, . . . , In) for the activities selection problem is already sorted, by
non-decreasing order of their start times, i.e., s1 ≤ s2 ≤ · · · ≤ sn. Give an algorithm to compute a
optimal solution in O(n) time. Show that your algorithm is correct. ♦

Exercise 2.3: Again consider the activities selection problem. We now want to maximize the total length
of all the activities in a S ⊆ A. Here, the length of an activity I = [s, f) is just f − s. In case S is not
compatible, we define its length to be 0. Let Ai,j = {Ii, Ii+1, . . . , Ij} for i ≤ j and Fi,j be an optimal
solution for Ai,j .
(a) Show by a counter-example that the following “dynamic programming principle” fails:

Fi,j = maxi≤k≤j−1Fi,k ∪ Fk+1,j

where max{F1, F2, . . . , Fm} returns the set Fℓ whose length is maximum. (Recall that the length of
Fℓ is zero if it is not feasible.
(b) Give an O(n log n) algorithm for this problem. HINT: order the activities in the set S according
to their finish times, say,

f1 ≤ f2 ≤ · · · ≤ fn.

Consider the set of subproblems Si :={I1, . . . , Ii} for i = 1, . . . , n. Use an incremental algorithm to
solve S1, S2, . . . , Sn in this order. ♦

Exercise 2.4: Give a divide-and-conquer algorithm for the problem in previous exercise, to find the max-
imum length feasible solution for a set S of activities. (This approach is harder and less efficient!)

♦

End Exercises

§3. Huffman Code

We begin with an informally stated problem:

(P) Given a string s of characters (or letters or symbols) taken from an alphabet Σ, choose a
variable length code C for Σ so as to minimize the space to encode the string s.

Before making this problem precise, it is helpful to know the context of such a problem. A computer file
may be regarded as a string s, so problem (P) can be called the file compression problem. Typically,
characters in computer files are encoded by a fixed-length binary code (usually the ASCII standard). Note
that in this case, each code word has length at least log2 |Σ|. The idea of using variable length code is to
take advantage of the relative frequency of different characters. For instance, in typical English texts, the
letters ‘e’ and ‘t’ are most frequent and it is a good idea to use shorter length codes for them. An example
of a variable length code is Morse code (see Notes at the end of this section).

c© Chee-Keng Yap Basic Version October 26, 2005

§3. Huffman Code Lecture V Page 7

A (binary) code for Σ is an injective function

C : Σ→ {0, 1}∗.

A string of the form C(x) (x ∈ Σ) is called a code word. The string s = x1x2 · · ·xm ∈ Σ∗ is then encoded
as

C(s) := C(x1)C(x2) · · ·C(xm) ∈ {0, 1}∗.

This raises the problem of decoding C(s), i.e., recovering s from C(s). For a general C and s, one cannot
expect unique decoding. One solution is to introduce a new symbol ‘$’ and use it to separate each C(xi). If
we insist on using binary alphabet for the code, this forces us to convert, say, ‘0’ to ‘00’, ‘1’ to ‘01’ and ‘$’
to ‘11’. This doubles the number of bits, and seems to be wasteful.

Prefix-free codes. The standard solution for unique decoding is to insist that C be prefix-free. This
means that if a, b ∈ Σ, a 6= b, then C(a) is not a prefix of C(b). It is not hard to see that the decoding
problem is uniquely defined for prefix-free codes. With suitable preprocessing (basically to construct the
“code tree” for C, defined next) decoding can be done very simply in an on-line fashion. We leave this for
an exercise.

We represent a prefix-free code C by a binary tree TC with n = |Σ| leaves. Each leaf in TC is labeled by
a character b ∈ Σ such that the path from the root to b is represented by C(b) in the natural way: starting
from the root, we use successive bits in C(b) to decide to make a left branch or right branch from the current
node of TC . We call TC a code tree for C. Figure 1 shows two such trees representing prefix codes for the
alphabet Σ = {a, b, c, d}. The first code, for instance, corresponds to C(a) = 00, C(b) = 010, C(c) = 011
and C(d) = 1.

11

a

b c

d

b c

3

3

1 1

3

6

11

8

5

2 2

3

5
a

COST=11+8+3=22 COST=11+6+3=20

d

Figure 1: Two prefix-free codes and their code trees: assume f(a) = 5, f(b) = 2, f(c) = 1, f(d) = 3.

Returning to the informal problem (P), we can now interpret this problem as the construction of the
best prefix-free code C for s, i.e., the code that minimizes the length of C(s). It is easily seen that the only
statistics important about s is its frequency function fs where fs(x) is the number of occurrences of the
character x in s. In general, call a function of the form

f : Σ→ N

a frequency function. So we now regard the input data to our problem as a frequency function f = fs

rather than a string s. Relative to f , the cost of C will be defined to be

COST (f, C) :=
∑

a∈Σ

|C(a)| · f(a). (2)

Clearly COST (fs, C) is the length of C(s). Finally, the cost of f is defined to be

COST (f) :=min
C

COST (f, C)

c© Chee-Keng Yap Basic Version October 26, 2005

§3. Huffman Code Lecture V Page 8

over all prefix-free codes C on the alphabet Σ. A code C is optimal for f if COST (f, C) attains this
minimum. It is easy to see that an optimal code tree must be a full binary tree (i.e., non-leaves must have
two children).

For the codes in Figure 1, assuming the frequencies of the characters a, b, c, d are 5, 2, 1, 3 (respectively),
the cost of the first code is 5 · 2 + 2 · 3 + 1 · 3 + 3 · 1 = 22. The second code is better, with cost 20.

We now precisely state the informal problem (P) as the Huffman coding problem:

Given a frequency function f : Σ→ N, find an optimal prefix-free code C for f .

Relative to a frequency function f on Σ, we associate a weight W (u) with each node u of the code tree
TC : the weight of a leaf is just the frequency f(x) of the character x at that leaf, and the weight of an
internal node is the sum of the weights of its children. Let Tf,C denote such a weighted code tree. For
example, see Figure 1 where the frequency of each node is written next to it. The frequency of Tf,C is
the frequency of its root, and its cost COST (Tf,C) is the sum of the frequencies of all its internal nodes.
In Figure 1(a), the internal nodes have frequencies 3, 8, 11 and so the COST (Tf,C) = 3 + 8 + 11 = 22. In
general, the reader may verify that

COST (f, C) = COST (Tf,C). (3)

We need the merge operation on code trees: if Ti is a code tree on the alphabet Σi (i = 1, 2) and Σ1∩Σ2

is empty, then we can merge them into a code tree T on the alphabet Σ1 ∪Σ2 by introducing a new node as
the root of T and T1, T2 as the two children of the root. We also write T1 + T2 for T . If T1, T2 are weighted
code trees, the result T is also a weighted code tree.

We now present a greedy algorithm for the Huffman coding problem:

Huffman Code Algorithm:
Input: frequency function f : Σ→ N.
Output: optimal code tree T ∗ for f .
1. Let S be a set of weighted code trees. Initially, S is the set of n = |Σ| trivial trees,

each tree having only one node representing a single character in Σ.
2. while S has more than one tree,

2.1. Choose T, T ′ ∈ S with the minimum and the next-to-minimum frequencies, respectively.
2.2. Merge T, T ′ and insert the result T + T ′ into S.
2.3. Delete T, T ′ from S.

3. Now S has only one tree T ∗. Output T ∗.

Let us illustrate the algorithm with perhaps the most famous 12-letter string in computing: hello

world!. The alphabet Σ for this string and its frequency function may be represented by the following two
arrays:

letter h e l o ⊔ w r d !

frequency 1 1 3 2 1 1 1 1 1

Note that the exclamation mark (!) and blank space (⊔) are counted as letters in the alphabet Σ. The final
Huffman tree is shown in Figure 2. The number shown inside a node u of the tree is the weight of the node.

c© Chee-Keng Yap Basic Version October 26, 2005

§3. Huffman Code Lecture V Page 9

This is just sum of the frequencies of the leaves in the subtree at u. Each leaf of the Huffman tree is labeled
with a letter from Σ.

16

10 2 3 4 5 6 7

8 9 10 11

14

15

13

12

4

2 2 2 3

5

12

7

⊔

1

w

1

rℓ

1

d

1

!

2

h

1 1

e o

3 1

Figure 2: Huffman Tree for hello world!

To trace the execution of our algorithm, in Figure 2 we indicate the order (0, 1, 2, . . . , 16) in which the
nodes were placed into the priority queue. For instance, the leaf h is the first to be placed in the queue, and
the root is the last (16th) to be placed in the queue.

Implementation and complexity. The input for the Huffman algorithm may be implemented as an
array f [1..n] where f [i] is the frequency of the ith letter and |Σ| = n. The output is a binary tree whose
leaves are labeled from 1 to n. This algorithm can be implemented using a priority queue on a set S of binary
tree nodes. Recall (§III.2) that a priority queue supports two operations, (a) inserting a keyed item and (b)
deleting the item with smallest key. The frequency of the code tree serves as its key. Any balanced binary
tree scheme (such as AVL trees in Lecture IV) will give an implementation in which each queue operation
takes O(log n) time. Hence the overall algorithm takes O(n log n).

Correctness. We show that the produced code C has minimum cost. This depends on the following simple
lemma. Let us say that a pair of nodes in TC is a deepest pair if they are siblings and their depth is the
depth of the tree TC . In a full binary tree, there is always a deepest pair.

Lemma 2. There is an optimal Huffman code in which the two least frequent characters forms a deepest pair.

Proof. Suppose b, c are two characters at depths D(b), D(c) (respectively) in a weighted code tree T . If
we exchange the weights of these two nodes to get a new code tree T ′ where

COST (T)− COST (T ′) = f(b)D(b) + f(c)D(c)− f(b)D(c)− f(c)D(b)

= [f(b)− f(c)][D(b)−D(c)]

where f is the frequency function. If b has the least frequency and D(c) is the depth of the tree T then
clearly

COST (T)− COST (T ′) ≥ 0.

Hence if c, c′ are the two characters labeling a deepest pair and and b, b′ are the two least frequent characters,
then by a similar argument, we may exchange the labels b ↔ b′ and c ↔ c′ without increasing the cost of
the code. Q.E.D.

We are ready to prove the correctness of Huffman’s algorithm. Suppose by induction hypothesis that our
algorithm produces an optimal code whenever the alphabet size |Σ| is less than n. The basis case, n = 1,
is trivial. Now suppose |Σ| = n > 1. After the first step of the algorithm in which we merge the two least

c© Chee-Keng Yap Basic Version October 26, 2005

§3. Huffman Code Lecture V Page 10

frequent characters b, b′, we can regard the algorithm as constructing a code for a modified alphabet Σ′ in
which b, b′ are replaced by a new character [bb′] with modified frequency f ′ such that f ′([bb′]) = f(b)+ f(b′),
and f ′(x) = f(x) otherwise. By induction hypothesis, the algorithm produces the optimal code C′ for f ′:

COST (f ′) = COST (f ′, C′). (4)

This code C′ is related to a suitable code C for Σ in the obvious way and satisfies

COST (f, C) = COST (f ′, C′) + f(b) + f(b′). (5)

It is easily seen from our lemma that

COST (f) = COST (f ′) + f(b) + f(b′). (6)

From equations (4), (5) and (6), we conclude COST (f) = COST (f, C), i.e., C is optimal.

Remarks: The publication of this algorithm in 1952 by D. A. Huffman was considered a major achieve-
ment. This algorithm is clearly useful for compressing binary files. See “Conditions for optimality of the
Huffman Algorithm”, D.S. Parker (SIAM J.Comp., 9:3(1980)470–489, Erratum 27:1(1998)317), for a variant
notion of cost of a Huffman tree and characterizations of the cost functions for which the Huffman algorithm
remains valid.

Notes on Morse Code. In the Morse1 code, letters are represented by a sequence of dots and dashes:
a = · −, e = ·, t = − and z = − − · ·. The code is also meant to be sounded: dot is pronounced ’dit’ (or
’di-’ when non-terminal), dash is pronounced ’dah’ (or ’da-’ when non-terminal). Thus ’a’ is di− dah, ’z’ is
da − da − di − dit. Clearly, Morse code is not prefix-free. It also is no capital or small letters. Here is the
full alphabet:

Letter Code Letter Code

A · − B − · · ·
C − · − · D − · ·
E · F · · − ·
G − − · H · · · ·
I · · J · − − −
K − · − L · − · ·
M − − N − ·
O − − − P · − − ·
Q − − · − R · − ·
S · · · T −
U · · − V · · · −
W · − − X − · · −
Y − · − − Z − − · ·
0 − − − − − 1 · − − − −
2 · · − − − 3 · · · − −
4 · · · · − 5 · · · · ·
6 − · · · · 7 − − · · ·
8 − − − · · 9 − − − − ·
Fullstop (.) · − · − · − Comma (,) − − · · − −
Query (?) · · − − · · Slash (/) − · · − ·
BT (pause) − · · · − AR (end message) · − · − ·
SK (end contact) · · · − · −

1Samuel Finley Breese Morse (1791-1872) was Professor of the Literature of the Arts of Design in the University of the City
of New York (now New York University) 1832-72. It was in the university building on Washington Square where he completed
his experiments on the telegraph.

c© Chee-Keng Yap Basic Version October 26, 2005

§3. Huffman Code Lecture V Page 11

How do you send messages using Morse code? Note that spaces are not part of the Morse alphabet!
Since space are important in practice, it has an informal status as an explicit character (so Morse code is
not strictly a binary code). There are 3 kinds of spaces: space between dit’s and dah’s within a letter, space
between letters, and space between words. Let us assume some concept of unit space. Then the above
three types of spaces are worth 1, 3 and 7 units, respectively. These units can also be interpreted as “unit
time” when the code is sounded. Hence we simply say unit without prejudice. Next, the system of dots
and dashes can also be brought into this system. We say that spaces are just “empty units”, while dit’s and
dah’s are “filled units”. dit is one filled unit, and dah is 3 filled units. Of course, this brings in the question:
why 3 and 7 instead of 2 and 4 in the above?

Exercises

Exercise 3.1: Give an optimal Huffman code for the frequencies of the letters of the alphabet:

a = 5, b = 1, c = 3, d = 3, e = 7, f = 0, g = 2, h = 1, i = 5, j = 0, k = 1, l = 2, m = 0,

n = 5, o = 3, p = 0, q = 0, r = 6, s = 3, t = 4, u = 1, v = 0, w = 0, x = 0, y = 1, z = 1.

Please determine the cost of the optimal tree and show your intermediate collections of code trees.
NOTE: you need not to give any code word to symbols with the zero frequency. ♦

Exercise 3.2: What is the length of the Huffman code for the following string s = “please compress me′′.
The length of s is 18. Show your hand computation. ♦

Exercise 3.3: (a) Prove (3).
(b) It is important to note that we defined COST (Tf,C) to be the sum of f(u) where u range over the
internal nodes of Tf,C . That means that if |Σ| = 1 (or Tf,C has only one node which is also the root)
then COST (Tf,C) = 0. Why does Huffman code theory break down at this point?
(c) Suppose we (accidentally) defined COST (Tf,C) to be the sum of f(u) where u range over the all
nodes of Tf,C . Where in your proof in (a) would the argument fail? ♦

Exercise 3.4: Below is President Lincoln’s address at Gettysburg, Pennsylvania on November 19, 1863.
(a) Give the Huffman code for the string S comprising the first two sentences of the address. Also state
the length of the Huffman code for S, and the percentage of compression so obtained (assume that
the original string uses 7 bits per character). You need to distinguish caps and small letters, introduce
symbols for space and punctuation marks. But ignore the newline characters.
(b) The previous part was meant to be done by hand. Now write a program in your favorite pro-
gramming language to compute the Huffman code for the entire Gettysburg address. What is the
compression obtained?

Four score and seven years ago our fathers brought forth on this

continent a new nation, conceived in liberty and dedicated to the

proposition that all men are created equal. Now we are engaged in a

great civil war, testing whether that nation or any nation so conceived

and so dedicated can long endure. We are met on a great battlefield of

that war. We have come to dedicate a portion of that field as a final

resting-place for those who here gave their lives that that nation

might live. It is altogether fitting and proper that we should do this.

But in a larger sense, we cannot dedicate, we cannot consecrate, we

cannot hallow this ground. The brave men, living and dead who

c© Chee-Keng Yap Basic Version October 26, 2005

§3. Huffman Code Lecture V Page 12

struggled here have consecrated it far above our poor power to add or

detract. The world will little note nor long remember what we say here,

but it can never forget what they did here. It is for us the living

rather to be dedicated here to the unfinished work which they who

fought here have thus far so nobly advanced. It is rather for us to be

here dedicated to the great task remaining before us--that from these

honored dead we take increased devotion to that cause for which they

gave the last full measure of devotion--that we here highly resolve

that these dead shall not have died in vain, that this nation under God

shall have a new birth of freedom, and that government of the people,

by the people, for the people shall not perish from the earth.

♦

Exercise 3.5: Let (f0, f1, . . . , fn) be the frequencies of n + 1 symbols (assuming |Σ| = n + 1). Consider
the Huffman code in which the symbol with frequency fi is represented by the ith code word in the
following sequence

1, 01, 001, 0001, . . . , 00 · · · 01
︸ ︷︷ ︸

n−1

, 00 · · ·001
︸ ︷︷ ︸

n

, 00 · · ·000
︸ ︷︷ ︸

n

.

(a) Show that a sufficient condition for optimality of this code is

f0 ≥ f1 + f2 + f3 + · · ·+ fn,

f1 ≥ f2 + f3 + · · ·+ fn,

f2 ≥ f3 + · · ·+ fn,

. . .

fn−2 ≥ fn−1 + fn.

(b) Suppose the frequencies are distinct. Give a set of sufficient and necessary conditions. ♦

Exercise 3.6: Suppose you are given the frequencies fi in sorted order. Show that you can construct the
Huffman tree in linear time. ♦

Exercise 3.7: Suppose our alphabet is the set Σ = {0, . . . , n− 1}. Each a ∈ Σ is really a binary string of
length ⌈lg n⌉. Let T be any Huffmann code tree for Σ. Show how we can represent T using at most
2n− 1 + n ⌈lg n⌉ bits. To understand what is needed, suppose r(T) ∈ {0, 1} is the representation of T .
Suppose I have a message M ∈ Σ∗ and it is encoded as c(M) ∈ {0, 1}∗ uing the code of T . You must
do 3 things:
(a) Describe r(T) for a Huffmann code tree T for {0, . . . , n− 1}.
(b) If T is the second tree in figure 1, and assuming a = 3, b = 0, c = 2, d = 1, what is r(T)?
(c) Describe how to reconstruct T from r(T).
HINT: encode the full binary tree by a systematic traversal of all the nodes, level by level. ♦

Exercise 3.8: Generalize to 3-ary Huffman codes, C : Σ → {0, 1, 2}∗, represented by the corresponding
3-ary code trees (where each node has degree at most 3):
(a) Show that in an optimal 3-ary code tree, any node of degree 2 must have leaves as both its children.
(b) Show that there are either no degree 2 nodes (if |Σ| is odd) or one degree 2 node (if |Σ| is even).
(c) Show that when there is one degree 2 node, then the depth of its children must be the height of
the tree.
(d) Give an algorithm for constructing an optimal 3-ary code tree and prove its correctness. ♦

c© Chee-Keng Yap Basic Version October 26, 2005

§3. Huffman Code Lecture V Page 13

Exercise 3.9: Further the above 3-ary Huffman tree construction to arbitrary k-ary codes for k ≥ 4. ♦

Exercise 3.10: Suppose that the cost of a binary code word w is z + 2o where z (resp. o) is the number
of zeros (resp. ones) in w. Call this the skew cost. So ones are twice as expensive as zeros (this cost
model might be realistic if a code word is converted into a sequence of dots and dashes as in Morse
code). We extend this definition to the skew cost of a code C or of a code tree. A code or code tree
is skew Huffman if it is optimum with respect to this skew cost. For example, see figure 3 for a skew
Huffman tree for alphabet {a, b, c} and f(a) = 3, f(b) = 1 and f(c) = 6.

a b

c

21

1

3 1

62

Figure 3: A skew Huffman tree with skew cost of 21.

(a) Argue that in some sense, there is no greedy solution that makes its greedy decisions based on a
linear ordering of the frequencies.
(b) Consider the special case where all letters of the alphabet has equal frequencies. Describe the shape
of such code trees. For any n, is the skew Huffman tree unique?
(c) Give an algorithm for the special case considered in (b). Be sure to argue its correctness and
analyze its complexity. HINT: use an “incremental algorithm” in which you extend the solution for n
letters to one for n + 1 letters. ♦

Exercise 3.11: (Golin-Rote) Further generalize the problem in the previous exercise. Fix 0 < α < β and
let the cost of a code word w be α · z + β · o. Suppose α/β is a rational number. Show a dynamic
programming method that takes O(nβ+2) time. NOTE: The best result currently known gets rid of
the “+2” in the exponent, at the cost of two non-trivial ideas. ♦

Exercise 3.12: (Open) Give a non-trivial algorithm for the problem in the previous exercise where α/β is
not rational. An algorithm is “trivial” here if it essentially checks all binary trees with n leaves. ♦

Exercise 3.13: Suppose that the “frequency” of a symbol can be negative (this is really an abuse of the
term frequency). But we can define the cost of an optimal code tree as before. Is the greedy solution
still optimal? ♦

Exercise 3.14: (Elias) Consider the following binary encoding scheme for the infinite alphabet N (the
natural numbers): an integer n ∈ N is represented by a prefix string of ⌊lg n⌋ 0’s followed by the binary
representation of n. This requires 1 + 2 ⌊lg n⌋ bits.
(a) Show that this is a prefix-free code.
(b) Now improve the above code as follows: replacing the prefix of ⌊lg n⌋ 0’s and the first 1 by a
representation of ⌊lg n⌋ the same scheme as (a). Now we use only 1 + ⌊lg n⌋ + 2 ⌊lg(1 + lg n)⌋ bits to
encode n. Again show that this is a prefix-free code. ♦

c© Chee-Keng Yap Basic Version October 26, 2005

§4. Dynamic Huffman Code Lecture V Page 14

Exercise 3.15: (Shift Key in Huffman Code) We want to encode small as well as capital letters in our
alphabet. Thus ‘a’ and ‘A’ are to be distinguished. There are two ways to achieve this: (I) View the
small and capital letters as distinct symbols. (II) Introduce a special “shift” symbol, and each letter is
assumed to be small unless it is preceded by a shift symbol, in which case it is considered a capital. Use
the text of this question as your input string. Punctuation marks and spaces are part of this string.
But new lines (CRLF) do not contribute any symbols to the string. But when you merge two lines,
sometimes the CRLF character is sometimes replaced by a space. Also, in standard typography, the
space between two sentences is a double space. For our purposes, assume all spaces are single space.
(a) Compute the Huffman code tree for coding the above string using method (I). Note that the string
begins with the words “We want to en...” and ends with “...ces are single space.”. Be sure to compute
the number of bits in the Huffman code for this string.
(b) Same as part (a) but using method (II).
(c) Discuss the pros and cons of (I) and (II).
(d) There are clearly many generalizations of shift keys, as seen in modern computer keyboards.
The general problem arises when our letters or characters are no longer indivisible units, but exhibit
structure (as in Chinese characters). Give a general formulation of such extensions. ♦

End Exercises

§4. Dynamic Huffman Code

Here is the typical sequence of steps for compressing and transmitting a string s using the Huffman code
algorithm:

(i) First make a pass over the string s to compute its frequency function.

(ii) Next compute a Huffman code tree TC corresponding to some code C.

(iii) Using TC , compute the compressed string C(s).

(iv) Finally, transmit the tree TC , together with the compressed string C(s), to the receiver.

The receiver receives TC and C(s), and hence can recover the string s. Since the sender must process the
string s in two passes (steps (i) and (iii)), the original Huffman tree algorithm is sometimes called the “2-pass
Huffman encoding algorithm”. There are two deficiencies with this 2-pass process: (a) Multiple passes over
the input string s makes the algorithm unsuitable for realtime data transmissions. Note that if s is a large
file, this require extra buffer space. (b) The Huffman code tree must be explicitly transmitted before the
decoding can begin. We need some way to encode TC . This calls for a separate algorithm to handle TC in
the encoding and decoding process.

An approach called “Dynamic Huffman coding” (or adaptive Huffman coding) overcomes these problems:
it passes over the string s only once, and there is no need to explicitly transmit the code tree. Two known
algorithms for dynamic Huffman coding [6] are the FGK Algorithm (Faller 1973, Gallager 1978, Knuth
1985) and the Lambda Algorithm (Vitter 1987). Vitter’s algorithm ensures that the transmitted string
length is ≤ H2(s) + |s| − 1 where H2(s) is the number of bits transmitted by the 2-pass algorithm for s,
independent of alphabet size. It can be shown that the FGK Algorithm transmit at most 2H2(s)+ 4|s| bits.

The key idea here is the Sibling Property of Gallagher. Let T be a full binary tree on k ≥ 0 internal
nodes. Suppose there is a non-negative integer weight on each node such that the weight of an internal node

c© Chee-Keng Yap Basic Version October 26, 2005

§4. Dynamic Huffman Code Lecture V Page 15

is the sum of the weights of its two children. Recall that “full” means each internal node of T has exactly two
children. It is easy to see that T has k + 1 leaves or 2k + 1 nodes in all. Call such a tree T a pre-Huffman
tree. We say T has the Sibling Property if its nodes can be ranked from 0 to 2k satisfying:

(S1) If wi is the weight of node with rank i, then wi−1 ≤ wi for i = 1, . . . , 2k.

(S2) The nodes with ranks 2j and 2j + 1 are siblings (for j = 0, . . . , k − 1).

For example, the nodes of the pre-Huffmann tree in Figure 2 has been given the rankings 0, 1, 2, . . . , 16.
We check that this ranking satisfies the Sibling Property.

Note that node with rank 2k is necessarily the root, and it has no siblings. In general, let r(u) denote
the rank of node u. If the weights of nodes are all distinct, then the rank r(u) is uniquely determined by
Property (S1).

Let T be a weighted code tree. Then T is clearly pre-Huffman. We say T is Huffman if T can be
the output of the Huffman code algorithm. In this definition, we view the Huffman code algorithm as a
nondeterministic process: when two or more nodes have equal weights, the choice of the next two nodes for
merging is regarded as a nondeterministic choice. Hence there can be many potential output trees.

Lemma 3. Let T be pre-Huffman. Then T is Huffman iff it has the Sibling Property.

Proof. If T is Huffman then we can rank the nodes in the order that two nodes are merged, and this
ordering implies the Sibling Property. Conversely, the Sibling Property determines an obvious order for
merging pairs of nodes to form a Huffman tree. Q.E.D.

Example: the code tree in Figure 2 is Huffman. Since it is Huffman, there must be some ranking that
satisfies the Sibling Property. Indeed, such a ranking has already been indicated.

The Restoration Problem. The key problem of dynamic Huffman tree is how to restore Huffman-ness
under a particular kind of perturbation: let T be Huffman and suppose the weight of a leaf u is incremented
by 1. So weights of all the nodes along the path from u to the root are similarly incremented. The result
is a pre-Huffman tree T ′, but it may not be Huffman any more. The problem is to restore Huffman-ness in
such a tree T ′.

Consider the following algorithm for restoring Huffman-ness in T . For each node v in T , let W [v] and
R[v] denote the weight and rank of v in the original tree T that satisfies the Sibling Property is satisfied. Let
u be the current node. Initially, u is the leaf whose weight was incremented. We use the following iterative
process:

c© Chee-Keng Yap Basic Version October 26, 2005

§4. Dynamic Huffman Code Lecture V Page 16

Restore (u)
While u is not the root do

Find the node v with the largest rank R[v]
subject to the constraint W [v] = W [u].

If v = u then W [u]++ and let u = parent(u). Break.
If v 6= u then swap u and v.

⊳ This really swaps the entire subtree at u and v.
Increment W [u]++
Let u = parent(u). Break.

⊳ Note that u is now the former parent of v.
Increment W [u]++. ⊳ u is the root

Swapping needs to be explained: imagine the nodes of T are stored in a linear list

(u1, u2, . . . , un)

in the order of their ranks: R[ui] = i. Swapping u and v means that their ranks are exchanged; so their
positions in this list are swapped. Thus the rank of the current node is strictly increased by such swaps.
Each node u has three pointers, u.left, u.right and u.parent. When we swap u and v, their siblings may
have changed (recall that rank 2j and rank 2j +1 nodes must be siblings). So the child pointers of u.parent
and v.parent must be changed appropriately.

Let us consider an example to see how Restore works, using the famous string hello world!. Suppose
we have just completely processed this string, and the current Huffman tree T is given in Figure 2. Let the
next character to be transmitted be ⊔. Let u be the node corresponding to ⊔. So W [u] is incremented. But
this may now destroy the Sibling Property. But if u is make the rank ...

Our dynamic Huffman code tree T must be capable to expanding its alphabet. E.g., if the current
alphabet is Σ = {h, e} and we next encounter the letter l, we want to expand the alphabet to Σ = {h, e, l}.
For this purpose, we introduce in T a special leaf with weight 0. Call this the 0-node. This node does not
represent any letters of the alphabet, but in another sense, it represents all the yet unseen letters. We might
say that the 0-node represents the character ‘∗’. Upon seeing a new letter like l, we “expand” the 0-node
so that its left child is the new 0-node, and its right child u is a new leaf representing the letter l. The
frequency and weight of u is 1, so the original 0-node now has weight 1. We must now call Restore on the
parent of the original 0-node.

Here now is the dynamic Huffman coding method for transmitting a string s:

c© Chee-Keng Yap Basic Version October 26, 2005

§4. Dynamic Huffman Code Lecture V Page 17

Dynamic Huffman Transmission Algorithm:
Input: a string s of length n.
Output: the dynamically encoded sequence representing s.
⊲ Initialization

Initialize T to contain just the 0-node.
⊲ Main Loop

for i = 1 to n do

1. Let x be the ith character in the input string s.
2. If x is stored in node u in the current tree T ,
3. transmit the current code word for u, and
5. call Restore(u).
6. Else ⊳ x is a new character
7. transmit the code word for the current 0-node;
8. transmit the canonical representation for x;

⊳ E.g., the ASCII code for x
9. expand the 0-node to have two children, both with weight 0;
10. let the right sibling u represent the character x
11. and the left sibling represent the new 0-node.
12. Call Restore(u).

Decoding is also relatively straightforward. We are processing a continuous binary sequence, but we
know where the implicit “breaks” are in this continuous sequence. Call the binary sequence between these
breaks a word. We know how to recognize these words by maintaining the same dynamic Huffman code
tree T as the transmission algorithm. For each received word, we know whether it is (a) a code word for
some character, (b) signal to add a new letter to the alphabet Σ, or (c) the canonical representation of a
letter. Using this information, we can update T and also produce the next character in the string s.

Compact Representation of Huffman Tree. In our Huffman tree algorithm, we represented the Huff-
man tree as a binary tree. We now consider a more compact representation of a Huffman tree T by exploiting
its Sibling property: suppose T has k ≥ 1 leaves. Each of its 2k − 1 nodes is identified by its rank, i.e., a
number from 0 to 2k − 2. Hence node i has rank i. We use two arrays

W [0..2k − 2], L[0..2k − 2]

of length 2k − 1 where W [i] is the weight of node i, and L[i] is the left child of node i. So L[i] + 1 is the
right child of node i. In case node i is a leaf, we let L[i] = −1.

Another issue which we side-stepped until now is the practical but indispensable step of mapping between
a letter x ∈ Σ and the Huffman code of the letter x. We shall view Σ as a subset of a fixed universal set U
where U ⊆ {0, 1}N . The elements of U may be called the canonical code. In reality, U might be the set
of ASCII characters and N = 7. We assume the transmitter and receiver both know this global parameter
N and the set U . For instance, U may be the set of ASCII characters and so N = 7. To map leaf i to its
canonical code, we introduce a third array

C[1..k]

where C[i] ∈ U .

Another approach to dynamic compression of strings is based on the move-to-front heuristic and splay
trees [1].

Exercises

c© Chee-Keng Yap Basic Version October 26, 2005

§5. Matroids Lecture V Page 18

Exercise 4.1: Give a careful and efficient implementation of the dynamic Huffman code. Assume the
compact representation of Huffman tree using the arrays W and L described in the text. ♦

Exercise 4.2: A previous exercise (1.2) asks you to construct the standard Huffman code of Lincoln’s speech
at Gettysburg.
(a) Construct the optimal Huffman code tree for this speech. Please give the length of Lincoln’s coded
speech. Also give the size of the code tree (use Exercise 1.5).
(b) Please give the length of the dynamic Huffman code for this speech. How much improvement is it
over part (a)? Also, what is the code tree at the end of the dynamic coding process? ♦

Exercise 4.3: The correctness of the dynamic Huffman code depends on the fact that the weight at the
leaves are integral and the change is +1.
(a) Suppose the leave weights can be any real number, and the change in weight is also an arbitrary
positive number. Modify the algorithm.
(b) What if the weight change can be negative? ♦

Exercise 4.4: Consider 3-ary Huffman tree code. State and prove the Sibling property for this code. ♦

End Exercises

§5. Matroids

An abstract structure that supports greedy algorithms is matroids. We first illustrate the concept.

Graphic matroids. Let G = (V, S) be a bigraph. A subset A ⊆ S is acyclic if it does not contain any
cycle. Let I be the set of all acyclic subsets of S. The empty set is a acyclic and hence belongs to I. We
note two properties of I:

Hereditary property: If A ⊆ B and B ∈ I then A ∈ I.

Exchange property: If A, B ∈ I and |A| < |B| then there is an edge e ∈ B −A such that A ∪ {e} ∈ I.

The hereditary property is obvious. To prove the exchange property, note that the subgraph GA :=(V, A) has
|V | − |A| (connected) components; similarly the subgraph GB :=(V, B) has |V | − |B| components. If every
component U ⊆ V of GB is contained in some component of U ′ of GA, then |V | − |B| < |V | − |A| implies
that some component of GA contains no vertices, contradiction. Hence assume U ⊆ V is a component of
GB that is not contained in any component of GA. Let T :=B ∩

(
U
2

)
. Thus (U, T) is a tree and there must

exist an edge e = (u−v) ∈ T such that u and v belongs to different components of GA. This e will serve for
the exchange property.

For example, in figure 4 the sets A = {a−b, a−c, a−d} and B = {b−c, c−a, a−d, d−e} are acyclic. Then
the exchange property is witnessed by the edge d−e.

c© Chee-Keng Yap Basic Version October 26, 2005

§5. Matroids Lecture V Page 19

b a

c d

e

2

1 2

2

1

2

3

Figure 4: A bigraph with edge costs.

Matroids. The above system (S, I) is called the graphic matroid corresponding to graph G = (V, S).
In general, a matroid is a hypergraph or set system

M = (S, I)

where S is a non-empty set, I is a non-empty family of subsets of S (i.e., I ⊆ 2S) such that I has both
the hereditary and exchange properties. The set S is called the ground set. Elements of I are called
independent sets; other subsets of S are called dependent sets. Note that the empty set is always
independent.

Another example of matroids arise with numerical matrices: for any matrix M , let S be its set of columns,
and I be the family of linearly independent subsets of columns. Call this the matrix matroid of M . The
terminology of independence comes from this setting. This was the motivation of Whitney, who coined the
term ‘matroid’.

The explicit enumeration of the set I is usually out of the question. So, in computational problems whose
input is a matroid (S, I), the matroid is usually implicitly represented. The above examples illustrate this:
a graphic matroid is represented by a graph G, and the matrix matroid is represented by a matrix M . The
size of the input is then taken to be the size of G or M , not of |I| which can exponentially larger.

Submatroids. Given matroids M = (S, I) and M ′ = (S′, I ′), we call M ′ a submatroid of M if S′ ⊆ S
and I ′ ⊆ I. There are two general methods to obtain submatroids, starting from a non-empty subset R ⊆ S:
(i) Induced submatroids. The R-induced submatroid of M is

M |R := (R, I ∩ 2R).

(ii) Contracted2 submatroids. The R-contracted submatroid of M is

M ∧R := (R, I ∧R)

where I∧R :={A∩R : A ∈ I, S−R ⊆ A}. Thus, there is a bijective correspondence between the independent
sets A′ of M ∧R and those independent sets A of M which contain S −R. Indeed, A′ = A ∩R. Of course,
if S −R is dependent, then I ∧R is empty.

We leave it to an exercise to show that M |R and M ∧ R are matroids. Special cases of induced and
contracted submatroids arise when R = S − {e} for some e ∈ S. In this case, we say that M |R is obtained
by deleting e and M ∧R is obtained by contracting e.

2Contracted submatroids are introduced here for completeness. They are not used in the subsequent development (but the
exercises refer to them).

c© Chee-Keng Yap Basic Version October 26, 2005

§5. Matroids Lecture V Page 20

Bases. Let M = (S, I) be a matroid. If A ⊆ B and B ∈ I then we call B an extension of A; if A = B, the
extension is improper and otherwise it is proper. A base of M (alternatively: a maximal independent
set) is an independent set with no proper extensions. If A ∪ {e} is independent and e 6∈ A, we call A ∪ {e}
a simple extension of A and say that e extends A. If R ⊆ S, we may relativize these concepts to R: we
may speak of “A ⊆ R being a base of R”, “e extends A in R”, etc. This is the same as viewing A as a set
of the induced submatroid M |R.

Ranks. We note a simple property: all bases of a matroid have the same size. If A, B are bases and
|A| > |B| then there is an e ∈ A− B such that B ∪ {e} is a simple extension of B. This is a contradiction.
Note that this property is true even if S has infinite cardinality. Thus we may define the rank of a matroid
M to be the size of its bases. More generally, we may define the rank of any R ⊆ S to be the size of the
bases of R (this size is just the rank of M |R). The rank function

rM : 2S → N

simply assigns the rank of R ⊆ S to rM (R).

Problems on Matroids. A costed matroid is given by M = (S, I; C) where (S, I) is a matroid and
C : S → R. is a cost3 function. The cost of a set A ⊆ S is just the sum

∑

x∈A C(x). The maximum
independent set problem (abbreviated, MIS) is this: given a costed matroid (S, I; C), find an independent
set A ⊆ S with maximum cost. A closely related problem is the maximum base problem where, given
(S, I; C), we want to find a base B ⊆ S of maximum cost. If the costs are non-negative, then it is easy
to see the MIS problem and the maximum base problem are identical. The following algorithm solves the
maximum base problem:

Greedy Algorithm for Maximum Base:
Input: matroid M = (S, I; C) with cost function C.
Output: a base A ∈ I with maximum cost.
1. Sort S = {x1, . . . , xn} by cost.

Suppose C(x1) ≥ C(x2) ≥ · · · ≥ C(xn).
2. Initialize A← ∅.
3. For i = 1 to n,

put xi into A provided this does not make A dependent.
4. Return A.

The steps in this abstract algorithm needs to be instantiated for particular representations of matroids.
In particular, testing if a set A is independent is usually non-trivial (recall that matroids are usually given
implicitly in terms of other combinatorial structures). We discuss this issue for graphic matroids below. It
is interesting to note that the usual Gaussian algorithm for computing the rank of a matrix is an instance
of this algorithm where the cost C(x) of each element x is unit.

Let us see why the greedy algorithm is correct.

Lemma 4 (Correctness). Suppose the elements of A are put into A in this order:

z1, z2, . . . , zm,

where m = |A|. Let Ai = {z1, z2, . . . , zi}, i = 1, . . . , m. Then:
1. A is a base.

3Recall our convention that costs may be negative. If the costs are non-negative, we call C a a “weight function”.

c© Chee-Keng Yap Basic Version October 26, 2005

§5. Matroids Lecture V Page 21

2. If x ∈ S extends Ai then i < m and C(x) ≤ C(zi+1).
3. Let B = {u1, . . . , uk} be an independent set where C(u1) ≥ C(u2) ≥ · · · ≥ C(uk). Then k ≤ m and
C(ui) ≤ C(zi) for all i.

Proof. 1. By way of contradiction, suppose x ∈ S extends A. Then x 6∈ A and we must have decided not
to place x into the set A at some point in the algorithm. That is, for some j ≤ m, Aj ∪ {x} is dependent.
This contradicts the hereditary property because Aj ∪ {x} is a subset of the independent set A ∪ {x}.
2. Suppose x extends Ai. By part 1, i < m. If C(x) > C(zi+1) then for some j ≤ i, we must have decided
not to place x into Aj . This means Aj ∪ {x} is dependent, which contradicts the hereditary property since
Aj ∪ {x} ⊆ Ai ∪ {x} and Ai ∪ {x} is independent.
3. Since all bases are independent sets with the maximum cardinality, we have k ≤ m. The result is clearly
true for k = 1 and assume the result holds inductively for k − 1. So C(uj) ≤ C(zj) for j ≤ k − 1. We only
need to show C(uk) ≤ C(zk). Since |B| > |Ak−1|, the exchange property says that there is an x ∈ B−Ak−1

that extends Ak−1. By part 2, C(zk) ≥ C(x). But C(x) ≥ C(uk), since uk is the lightest element in B by
assumption. Thus C(uk) ≤ C(zk), as desired. Q.E.D.

From this lemma, it is not hard to see that an algorithm for the MIS problem is obtained by replacing the
for-loop (“for i = 1 to n”) in the above Greedy algorithm by “for i = 1 to m” where xm is the last positive
element in the list (x1, . . . , xm, . . . , xn).

Greedoids. While the matroid structure allows the Greedy Algorithm to work, it turns out that a more
general abstract structure called greedoids is tailor-fitted to the greedy approach. To see what this structure
looks like, consider the set system (S, F) where S is a non-empty finite set, and F ⊆ 2S . In this context,
each A ∈ F is called a feasible set. We call (S, F) a greedoid if

Accessibility property If A is a non-empty feasible set, then there is some e ∈ A such that A \ {e} is
feasible.

Exchange property: If A, B are feasible and |A| < |B| then there is some e ∈ B \A such that A ∪ {e} is
feasible.

Exercises

Exercise 5.1: Consider the graphic matroid in figure 4. Determine its rank function. ♦

Exercise 5.2: The text described a modification of the Greedy Maximum Base Algorithm so that it will
solve the MIS problem. Verify its correctness. ♦

Exercise 5.3:
(a) Interpret the induced and contracted submatroids M |R and M ∧R in the bigraph of figure 4, for
various choices of the edge set R. When is M |R = M ∧R?
(b) Show that M |R and M ∧R are matroids in general. ♦

Exercise 5.4: Show that rM (A ∪ B) + rM (A ∩ B) ≤ rM (A) + rM (B). This is called the submodularity
property of the rank function. It is the basis of further generalizations of matroid theory. ♦

c© Chee-Keng Yap Basic Version October 26, 2005

§5. Matroids Lecture V Page 22

Exercise 5.5: (Gavril) Consider the activities selection problem in which we are given a set

S = {A1, A2, . . . , An}

of intervals. Each Ai is the half-open interval Ai = [si, fi) which represents an “activity” that starts
at time si and finishes just before time fi. A subset F ⊆ S is called a solution and its size is the
number of activities in F . We say F is feasible if for all A, B ∈ F , if A 6= B then A ∩B = ∅. We say
F is optimal if its size is maximum among all feasible solutions. E.g., if S = {[1, 3), [0, 2), [2, 4)} then
{[1, 3), [0, 2)} is not feasible, and {[0, 2), [2, 4)} is an optimal solution.
(a) Prove that the following greedy algorithm is correct: sort the intervals in order of non-decreasing
finish times. After renumbering the intervals, we may assume f1 ≤ f2 ≤ · · · ≤ fn. Now we consider
A1, A2, etc, in turn. Each Ai is accepted iff it does not conflict with the previously accepted intervals.
(b) What is the running time of this algorithm? Note: in deciding if an Ai is in conflict, it is enough
to only look at the last accepted interval.
(c) Does the collection of feasible sets form a matroid? If yes, prove it. If no, give a counter example.

♦

Exercise 5.6:
(a) The greedy solution to the above activities selection problem uses the “finish time greedy crite-
rion”: the smallest remaining fi is selected for consideration. We could conceive of other (apparently
reasonable) greedy criteria:

1. Order the intervals Ai (i = 1, . . . , n) in non-decreasing order of their lengths fi − si.
2. Order Ai in non-decreasing order of si.
3. Order Ai in non-decreasing “degree of conflict” where the degree of conflict of Ai is the number

of j’s (j 6= i) such that Ai, Aj conflict.
For each of these ordering, either prove that the greedy method works or else produce a counter exam-
ple. Note: the greedy method says that for each item in the sorted list, pick it iff this will not cause
infeasibility among the picked items.
(b) Surely there is some symmetry between start and finish times. Find the “start time greedy crite-
rion” analogous to the “finish time greedy criterion’. ♦

Exercise 5.7: Again consider the activities selection problem. The length of a feasible solution F is
∑

A∈F |A| where |A| denotes the length f − s of the interval A = [s, f). If F is infeasible, then we
define its length to be 0. Now, define a feasible solution to be optimal if its length is maximum. Let
Si,j = {Ai, Ai+1, . . . , Aj} for i ≤ j and Fi,j be an optimal solution for Si,j .
(a) Show by a counter-example that the following “dynamic programming principle” fails:

Fi,j = maxi≤k≤j−1Fi,k ∪ Fk+1,j

where max{F1, F2, . . . , Fm} returns the set Fℓ whose length is maximum. (Recall that the length of
Fℓ is zero if it is not feasible.
(b) Give an O(n log n) algorithm for this problem. HINT: order the activities in the set S according
to their finish times, say,

f1 ≤ f2 ≤ · · · ≤ fn.

Consider the set of subproblems Si := S1,i for i = 1, . . . , n. Use an incremental algorithm (solve
S1, S2, . . . , Sn in this order). ♦

Exercise 5.8: Give a divide-and-conquer algorithm for the problem in previous exercise, to find the max-
imum length feasible solution for a set S of activities. (This approach is harder and less efficient!)

♦

c© Chee-Keng Yap Basic Version October 26, 2005

§6. Minimum Spanning Tree Lecture V Page 23

Exercise 5.9: A vertex cover for a bigraph G = (V, E) is a subset C ⊆ V such that for all edge e in E, at
least one of its two vertices is contained in C. A minimum vertex cover is one of minimum size.
Here is a greedy algorithm that finds a vertex cover V C:

1. Initialize V C to the empty set and initialize G′ to the input graph.

2. While the edge set of G′ is not empty: Select a vertex v of maximum degree, add v to the set
V C, and remove v and all edges incident on v from G′.

3. Output V C.

Show that this greedy algorithm may fail to find a minimum vertex cover. EXTRA CREDIT: It is OK
to give an example in which the greedy algorithm may find a suboptimal solution, depending on how it
breaks ties when two or more vertices have the same degree. But you get extra credit if the algorithm
is guaranteed to find a suboptimal solution on your example. An example with 7 vertices exists. ♦

End Exercises

§6. Minimum Spanning Tree

The Minimum Base Problem. Consider the minimum base problem for a costed matroid (S, I; C)
where C is a cost function C : S → R. The cost of a set B ⊆ S is given by

∑

x∈B C(x). So we want to
compute a base B ∈ I of minimum cost. A greedy algorithm is easily derived from the previous Greedy
Algorithm for Maximum Base: we only have to replace the for-loop (“for i = 1 to n”) by “for i = n downto

1”. We leave the justification for an exercise.

The minimum spanning forest problem is an instance of the minimum base problem. Here we are
given a costed bigraph

G = (V, E; C)

where C : E → R. In the previous section, we show that the set I of acyclic sets of G is a matroid. An
acyclic set T ⊆ E of maximum cardinality is called a spanning forest; in this case, |T | = |V | − c where G
has c ≥ 1 components. The cost C(T) of any subset T ⊆ E is given by C(T) =

∑

e∈T C(e). An acyclic set
is minimum if its cost is minimum. It is conventional to make the following simplification:

The input bigraph G is connected.

In this case, a spanning forest T is actually a tree, and the problem is known as the minimum spanning
tree (MST) problem. The simplification is not too severe: if our graph is not connected, we can first
compute its connected component (another basic graph problem that has efficient solution) and then apply
the MST algorithm to each component. Alternatively, it is not hard to modify an MST algorithm so that it
applies even if the input is not connected.

Consider the bigraph in figure 4 with vertices V = {a, b, c, d, e}. One such MST is {b−c, d−e, a−c, a−e},
with cost 6. It is easy to verify that there are six MST’s, as shown in figure 5.

The greedy method for minimum bases is applicable to the MST problem. The minimum base algorithm,
restated for MST, is called Kruskal’s algorithm. Here is the description: order the m edges of the input
G so that

C(e1) ≤ C(e2) ≤ · · · ≤ C(em) (7)

c© Chee-Keng Yap Basic Version October 26, 2005

§6. Minimum Spanning Tree Lecture V Page 24

1

b a

c d

e

2

1 2

2

1

2

3

b a

c d

e

2

2

2

1

2

3

b a

c d

e

2

1 2

2

1

2

3

b a

c d

e

2

1 2

2

1

2

3

1

b a

c d

e

2

1 2

2

1

2

3

b a

c d

e

2

2

2

1

2

3

Figure 5: MST’s of a bigraph.

and for each i = 1, . . . , m in turn, we accept ei provided it does not create a cycle with the previously
accepted edges.

Actually, Kruskal’s algorithm is an instance of a general schema for the greedy MST algorithms:

Generic Greedy MST Algorithm
Input: G = (V, E; C) a connected bigraph with edge costs.
Output: S ⊆ E, a MST for G.

S ← ∅.
for i = 1 to |V | − 1 do

1. Find an e ∈ E − S that is “safe for S”.
2. S ← S + e.
Output S as the minimum spanning tree.

NOTATION: it is convenient to write “S + e” for “S ∪ {e}” in this discussion. Likewise, “S − e” shall
denote the set “S \ {e}”.

What does it mean for “e to be safe for S”? Surely, it is sufficient if S + e is contained in some MST. But
this criteria seems hard to characterize in a computationally effective way. Various instances of the above
generic algorithm amount to defining some other criterion which is computationally effective.

Let us say that e is a candidate for S if S + e is acyclic. If U is a connected component of G′ = (V, S),
and e = (u, v) is a candidate such that u ∈ U or v ∈ U then we say that e extends U . Note that if e extends
U then the graph G′′ = (V, S + e) will not have U as a component.

The following are 4 notions of what it means for “e to be safe for S”:

c© Chee-Keng Yap Basic Version October 26, 2005

§6. Minimum Spanning Tree Lecture V Page 25

• (Simple) S + e is extendible to some MST. This, as we said, is computational ineffective.

• (Kruskal) Edge e has the least cost among all the candidates.

• (Boruvka) There is a component U of G′ = (V, S) such that e has the least cost among all the candidates
that extend U .

• (Prim) This has, in addition to Boruvka’s condition, the requirement that the graph G′′ = (V, S + e)
has only one non-trivial component. [A component is trivial if it has only a single vertex.]

Let us call those sets S ⊆ E that may arise during the execution of the generic MST algorithm simply-
safe, Boruvka-safe, Kruskal-safe or Prim-safe, depending on which of the above definition of safety is
used.

The latter three criteria are named for the inventors of three versions of the generic MST algorithm. The
correctness of these algorithms amounts to showing that “X-safe implies simply-safe” where X = Kruskal,
Boruvka or Prim. The previous section has essentially shown the correctness of Kruskals’s algorithm. Let
us now show the correctness of the algorithm of Boruvka. By definition, Prim-safe implies Boruvka-safe,
and so Prim’s algorithm is also correct. Indeed, Kruskal-safe also implies Boruvka-safely, so we obtain an
alternative proof of correctness for Kruskal’s algorithm.

Lemma 5 (Correctness of Boruvka’s Algorithm). Boruvka-safe sets are simply-safe.

Proof. We use induction on the size |S| of Boruvka-safe sets S. Clearly if S = ∅, then S is Boruvka-safe
and this is clearly simply-safe. Next suppose S = S′ + e where S′ is Boruvka-safe. We need to prove that S
is simply-safe. By definition of Boruvka-safety, there is a component U of the graph G′ = (V, S′) such that e
has the least cost among all edges that extend U . By induction hypothesis, we may assume S′ is simply-safe.
Hence there is a MST T ′ that contains S′. If e ∈ T ′, then we are done (as T ′ would be a witness to the fact
that S = S′ + e is simply-safe). So assume e 6∈ T ′.

e

e′

v1

U

V − U

v

vi

vi+1

u

vk

Figure 6: Extending a component U by e = (u, v).

Write e = (u, v) such that u ∈ U and v 6∈ U . Hence T ′ + e contains a unique closed path of the form

Z :=(u−v−v1−v2− · · · −vk−u).

There exists some i = 0, . . . , k such that vi 6∈ U and vi+1 ∈ U . Write

Z = (u−v−v1− · · · −vi−vi+1− · · · −u)

(where v = v0 and u = vk+1 in this notation). Let e′ :=(vi−vi+1). Note that T := T ′ + e− e′ is acyclic and
is a spanning tree. Moreover, C(e) ≤ C(e′), by our choice of e. Hence C(T) ≤ C(T ′) and so T is a MST.
This shows that S is simply-safe, as S contains T . Q.E.D.

c© Chee-Keng Yap Basic Version October 26, 2005

§6. Minimum Spanning Tree Lecture V Page 26

Next, we need effective implementations of the above notions of safety. In the case of Prim’s algorithm,
this is taken up in Chapter 6 (amortization techniques). Similarly, we will show how to implement Kruskal’s
algorithm in Chapter 12 when we study the union-find data structure. However, an exercise below will
lead you through a method of organizing a hand-simulation of Prim’s and Kruskal’s algorithm so that you
understand the mechanics involved in these two algorithms.

Safe sets of vertices. Let us define the notion of “safety” for sets of vertices. For any set S ⊆ E of edges,
let V (S) denote the set of those vertices that are incident on some edge of S. We say a set U ⊆ V is X-safe
if there exists an X-safe set S ⊆ E such that U = V (S). Here, X is equal to ‘simply’, ‘Prim’, ‘Kruskal’ or
‘Boruvka’. By this definition, no singleton would be safe. Instead, we define safety for singletons thus: a
singleton {v} is defined to be X-safe if there exists u such that {u, v} is X-safe by the previous definition.

Hand Simulation of MST Algorithms. We expect students to do hand simulation of Kruskal’s and
Prim’s algorithms. The trick is devise a compact way to represent the intermediate steps. For Kruskal’s
algorithm, this is easy – we just list the edges by non-decreasing weight order and indicate the accep-
tance/rejection of successive edges.

For Prim’s algorithm, we just maintain an array d[1..n] assuming the vertex set is V = {1, . . . , n}. We
shall maintain a subset S ⊆ V representing the set of vertices which we know how to connect to the source
node 1 in a MST. The set S is “Prim safe”. Initially, let S = ∅ and d[1] = 0 and d[v] =∞ for v = 2, . . . , n.
In general, the entry d[v] (v ∈ V \ S) represents the “cheapest” cost to connect vertex v to the MST on
the set S. Our simulation consists in building up a matrix M which is a n × n matrix, where the 0th row
representing the initial array d. Each time the array d is updated, we rewrite it as a new row of a matrix M .

At stage i ≥ 1, suppose we pick a node vi ∈ V \ S where d[vi] = min{d[j] : j ∈ V \ S}. We add vi to S,
and update all the values d[u] for each u ∈ V \ S that is adjacent to vi. The update rule is this:

d[u] = min{d[u], COST [vi, u]}.

The resulting array is written as row i in our matrix.

Let us illustrate the process on the graph of Figure 7. The vertex set is V = {1, 2, . . . , 11, 12}. The final
matrix is the following:

Stage 1 2 3 4 5 6 7 8 9 10 11 12

0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 X 3 1 7 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 X 6 3
3 X 6
4 X 8
5 X 7
6 X 6 6
7 3 X 3 2
8 1 1 X 2
9 X
10 6 X
11 X
12 X

Some conventions: We mark the newly picked node in each stage with an ‘X’. Also, any value that is

c© Chee-Keng Yap Basic Version October 26, 2005

§6. Minimum Spanning Tree Lecture V Page 27

unchanged from the previous row may be left blank. Thus, in stage 2, the node 3 is picked and we update
d[4] using d[4] = min{d[4], COST [3, 4]} = min{7, 6} = 6.

The final cost of the MST is 37. To see this, each X corresponds to a vertex v that was picked, and the
last value of d[v] contributes to the cost of the MST. E.g., the X corresponding to vertex 1 has cost 0, the
X corresponding to vertex 2 has cost 3, etc. Summing up over all X’s, we get 37.

Remarks: Boruvka (1926) has the first MST algorithm. The algorithm attributed to Prim (1957) was
discovered earlier by Jarńık (1930). These algorithms have been rediscovered many times. See [5] for further
references. Both Boruvka and Jarńık’s work are in Czech. The Prim-Jarńık algorithm is very similar in
structure to Dijkstra’s algorithm which we will encounter in the chapter on minimum cost paths.

Exercises

Exercise 6.1: We consider minimum spanning trees (MST’s) in an undirected graph G = (V, E) where
each vertex v ∈ V is given a numerical value C(v) ≥ 0. The cost C(u, v) of an edge (u−v) ∈ E is
defined to be C(u) + C(v).
(a) Let G be the graph in figure 7. The value C(v) is written next to the node v. For instance

v1 v2

v6 v7

2

1

3 5 1

0

0

2

6 4

21

v12v11v10v9

v5v4v3

v8

Figure 7: The house graph.

C(v4) = 6 and C(v1, v4) = 1 + 6 = 7. Compute an MST of G using Boruvka’s algorithm. Please
organize your computation so that we can verify intermediate results. Also state the cost of your
minimum spanning tree.
(b) Can you design a special algorithm for MST in which edge costs has the special form C(u, v) =
C(u) + C(v) as in part(a)? ♦

Exercise 6.2: Suppose G is the complete bipartite graph Gm,n. That is, the vertices V are partitioned into
two subsets V0 and V1 where |V0| = m and V1| = n and E = V0 × V1. Give a simple description of
an MST of Gm,n. Argue that your description is indeed an MST. HINT: transform an arbitrary MST
into your description by modifying one edge at a time. ♦

Exercise 6.3: Let Gn be the bigraph whose vertices are V = {1, 2, . . . , n}. The edges are defined as follows:
for each i ∈ V , if i is prime, then (1, i) ∈ E with weight i. [Recall that 1 is not considered prime, so 2
is the smallest prime.] For 1 < i < j, if i divides j then we add (i, j) to E with weight j/i.
(a) Draw the graph G19.

c© Chee-Keng Yap Basic Version October 26, 2005

§6. Minimum Spanning Tree Lecture V Page 28

(b) Compute the MST of G18 using Prim’s algorithm, using node 1 as the source vertex. Please use
the organization described in the appendix below. ♦

Exercise 6.4: Describe the rule for reconstructing the MST from the matrix M using in our hand-simulation
of Prim’s Algorithm. ♦

Exercise 6.5: Hand Simulation of Kruskal’s Algorithm on the graph of Figure 7. This exercise suggests a
method for carry out the steps of this algorithm. The edges in sorted order are shown in the table
below.

Next, we now consider each edge in turn. We maintain a partition of V = {1, . . . , 12} into disjoint
sets. Let L(i) denote the set containing vertex i. Initially, each node is in its own set, i.e., L(i) = {i}.
Whenever an edge i−j is added to the MST, we merge the corresponding sets L(i) ∪ L(j). E.g., in
the first step, we add edge 1−3. Thus the lists L(1) = {1} and L(3) = {1} are merged, and we get
L(1) = L(3) = {1, 3}. To show the computation of Kruskal’s algorithm, for each edge, if the edge is
“rejected”, we mark it with an “X”. Otherwise, we indicate the merged list resulting from the union
of L(i) and L(j): Please fill in the last two columns of the table (we have filled in the first 4 rows for
you).

Sorting Order Edge Weight Merged List Cumulative Weight

1 1-3: 1 {1, 3} 1
2 6-11: 1 {6, 11} 2
3 10-11: 1 {6, 10, 11} 3
4 6-10: 2 X 3
5 7-11: 2
6 11-12: 2
7 1-2: 3
8 3-8: 3
9 6-7: 3
10 7-10: 3
11 2-5: 6
12 3-4: 6
13 5-7: 6
14 5-12: 6
15 9-10: 6
16 1-4: 7
17 4-6: 7
18 8-9: 8
19 4-5: 10
20 4-9: 11

♦

Exercise 6.6: This question considers two concrete ways to implement Kruskal’s algorithm. Let V =
{1, 2, . . . , n} and D[1..n] be an array of size n that represents a forest G(D) with vertex set V and
edge set E = {(i, D[i]) : i ∈ V }. More precisely, G(D) is an directed graph that has no cycles except
for self-loops (i.e., edges of the form (i, i)). A vertex i such that D[i] = i is called a root. The set V
is thereby partitioned into disjoint subsets V = V1 ∪ V2 ∪ · · · ∪ Vk (for some k ≥ 1) such that each Vi

has a unique root ri, and from every j ∈ Vi there is a path from j to ri. For example, with n = 7,
D[1] = D[2] = D[3] = 3, D[4] = 4, D[5] = D[6] = 5 and D[7] = 6 (see Figure 8). We call Vi a
component of the graph G(D) (this terminology is justified because Vi is a component in the usual
sense if we view G(D) as an undirected graph).

c© Chee-Keng Yap Basic Version October 26, 2005

§6. Minimum Spanning Tree Lecture V Page 29

3

1 2

V1

4

V2

5

6

7

V3

Figure 8: Directed graph G(D) with three components (V1, V2, V3)

(i) Consider two restrictions on our data structure: Say D is list type if each component is a linear
list. Say D is star type if each component is a star (i.e., each vertex in the component points to the
root). E.g., in Figure 8, V2 and V3 are linear lists, while V1 and V2 are stars. Let ROOT(i) denote
the root r of the component containing i. Give a pseudo-code for computing ROOT(i), and give its
complexity in the 2 cases: (1) D is list type, (2) D is star type.
(ii) Let COMP(i) ⊆ V denote the component that contains i. Define the operation MERGE(i, j) that
transforms D so that COMP(i) and COMP(j) are combined into a new component (but all the other
components are unchanged). E.g., the components in Figure 8 are {1, 2, 3}, {4} and {5, 6, 7}. After
MERGE(1, 4), we have two componets, {1, 2, 3, 4} and {5, 6, 7}. Give a pseudo-code that implements
MERGE(i, j) under the assumption that i, j are roots and D is list type which you must preserve.
Your algorithm must have complexity O(1). To achieve this complexity, you need to maintain some
additional information (perhaps by a simple modification of D).
(iii) Similarly to part (ii), implement MERGE(i, j) when D is star type. Give the complexity of your
algorithm.
(iv) Describe how to use ROOT(i) and MERGE(i, j) to implement Kruskal’s algorithm for computing
the minimum spanning tree (MST) of a weighted connected undirected graph H .
(v) What is the complexity of Kruskal’s in part (iv) if (1) D is list type, and if (2) D is star type.
Assume H has n vertices and m edges. ♦

Exercise 6.7: Give two alternative proofs that the suggested algorithm for computing minimum base is
correct:
(a) By verifying the analogue of the Correctness Lemma.
(b) By replacing the cost C(e) (for each e ∈ E) by the cost c0 −C(e). Choose c0 large enough so that
c0 − C(e) > 0. ♦

Exercise 6.8: Let G be a bigraph G with distinct weights.
(a) Prove that the minimal spanning tree T of an must contain that edge of smallest weight.
(b) Must it contain the edge of second smallest weight?
(c) Must it contain the edge of third smallest weight?
(d) Student Quick observed that Kruskal’s algorithm does pick the edges of smallest and second smallest
weights. Since Kruskal’s algorithm correctly computes the MST this proves (a) and (b). What is
missing in this argument? ♦

Exercise 6.9: Show that every MST can be obtained from Kruskal’s algorithm by a suitable re-ordering
of the edges which have identical weights. Conclude that when the edge weights are unique, then the
MST is unique. ♦

Exercise 6.10: Student Joe wants to reduce the minimum base problem for a costed matroid (S, I; C) to
the MIS problem for (S, I; C′) where C′ is a suitable transformation of C.
(a) Student Joe considers the modified cost function C′(e) = 1/C(e) for each e. Construct an example

c© Chee-Keng Yap Basic Version October 26, 2005

§6. Minimum Spanning Tree Lecture V Page 30

to show that the MIS solution for C′ need not be the same as the minimum base solution for C.
(b) Next, student Joe considers another variation: he now defines C′(e) = −C(e) for each e. Again,
provide a counter example. ♦

Exercise 6.11: Extend the algorithm to finding MIS in contracted matroids. ♦

Exercise 6.12: If S ⊆ E is Prim-safe, then clearly G′ = (V (S), S) is clearly a tree. Prove that S is actually
an MST of the restricted graph G|V (S). ♦

Exercise 6.13:
(a) Enumerate the X-safe sets of vertices in figure 4. Here, X is ‘simply’, ‘Kruskal’, ‘Boruvka’ or
‘Prim’.
(b) Characterize the safe singletons (relative to any of the three notions of safety). ♦

Exercise 6.14: (Tarjan) Consider the following generic accept/reject algorithm for MST. This consists
of steps that either accept or reject edges. In our generic MST algorithm, we only explicitly accept
edges. However, we may be implicitly rejecting edges as well, as in the case of Kruskal’s algorithm. Let
S, R be the sets of accepted and rejected edges (so far). We say that (S, R) is simply-safe if there is an
MST that contains S but not containing any edge of R. Note that this extends our original definition
of “simply safe”. Prove that the following extensions of S and R will maintain minimal safety:
(a) Let U ⊆ V be any subset of vertices. The set of edges of the form (u, v) where u ∈ U and v 6∈ U
is called a U -cut. If e is the minimum cost edge of a U -cut and there are no accepted edges in the
U -cut, then we may extend S by e.
(b) If e is the maximum cost edge in a cycle C and there are no rejected edges in C then we may
extend R by e. ♦

Exercise 6.15: With respect to the generic accept/reject version of MST:
(a) Give a counter example to the following rejection rule: let e and e′ be two edges in a U -cut. If
C(e) ≥ C(e′) then we may reject e′.
(b) Can the rule in part (a) be fixed by some additional properties that we can maintain?
(c) Can you make the criterion for rejection in the previous exercise (part (b)) computationally effective?
Try to invent the “inverses” of Prim’s and Boruvka’s algorithm in which we solely reject edges.
(d) Is it always a bad idea to only reject edges? Suppose that we alternatively accept and reject edges.
Is there some situation where this can be a win? ♦

Exercise 6.16: Consider the following recursive “MST algorithm” on input G = (V, E; C):
(I) Subdivide V = V1 ⊎ V2.
(II) Recursive find a “MST” Ti of G|Vi (i = 1, 2).
(III) Find e in the V1-cut of minimum cost. Return T1 + e + T2.
Give a small counter-example to this algorithm. Can you fix this algorithm? ♦

Exercise 6.17: Is there an analogue of Prim and Boruvka’s algorithm for the MIS problem for matroids?
♦

Exercise 6.18: Let G = (V, E; C) be the complete graph in which each vertex v ∈ V is a point in the
Euclidean plane and C(u, v) is just the Euclidean distance between the points u and v. Give efficient
methods to compute the MST for G. ♦

c© Chee-Keng Yap Basic Version October 26, 2005

§6. Minimum Spanning Tree Lecture V Page 31

Exercise 6.19: Joe Moe thought that a simple way to compute the MST is to pick, for each vertex v, the
edge (v−u) that has the least cost among all the nodes u that are adjacent to v. Let P be the set of
edges so picked.
(a) Show that n/2 ≤ P ≤ n − 1. Give examples where these two extreme bounds are achieved (your
examples must be described in general terms for every n).
(b) Show that if the costs are unique, P cannot contain a cycle. What kinds of cycles can form if
weights are not unique?
(c) Assume vertices in P is picked with the tie breaking rule: when two or more vertices can be picked,
choose the smallest numbered vertex (assume vertices are numbered from 1 to n). This clearly avoids
cycles. Prove that P has the following property: if add an edge e to P creates a cycle Z in P , then e
has the maximum cost among the edges in Z.
(d) For any costed bigraph G = (V, E; C), and P ⊆ E, we define a new costed bigraph denoted G/P .
First, two vertices of V are said to be equivalent modulo P if they are connected by a sequence of edges
in P . For v ∈ V , let [v] denote the equivalence class of v. The vertices of G/P is the set {[v] : vinV }.
The edges of G/P are those ([u]−[v]) such that there exists some u′ ∈ [u] and v′ ∈ [v] with (u′−v′) ∈ E.
The cost of ([u]−[v]) is the minimum cost in the set {C(u′, v′) : u′ ∈ [u], v′ ∈ [v], (u′−v′) ∈ E}. Note
that G/P has at most n/2 vertices. Moreover, we can pick another set P ′ of edges in G/P using
the same rules as before. This gives us another graph (G/P)/P ′ with at most n/4 vertices. We can
continue this until V has 1 vertex. Briefly describe how this gives us another MST algorithm. You
must show how to recover the MST in your algorithm. What is the complexity of your algorithm?

♦

Exercise 6.20: Fix a connected undirected graph G = (V, E). Let T ⊆ E be any spanning tree of G. A
pair (e, e′) of edges is called a swappable pair for T if
(i) e ∈ T and e′ ∈ E \ T (Notation: for sets A, B, their difference is denoted A \B = {a ∈ A : a 6∈ B})
(ii) The set (T \ {e}) ∪ {e′} is a spanning tree.
Let T (e, e′) denote the spanning tree (T \ {e}) ∪ {e′} obtained from T by swapping e and e′ (see
illustration in Figure 9(a), (b)).

(b) T (e, e′)

e e′e e′

(a) T

e′

e

u0

u1

uk

uℓ

ek+1

(c) Path P (u0, uℓ).

1

2

1

4

5

43

2

3

5

Figure 9: (a) A swappable pair (e, e′) for spanning tree T . (b) The new spanning tree T (e, e′) [NOTE: tree
edges are indicated by thick lines]

(a) Suppose (e, e′) is a swappable pair for T and e′ = (u, v). Prove that e lies on the unique path,
denoted by P (u, v), of T from u to v. In Figure 9(a), e′ = (1−5) = (5−1). So the path is either
P (1, 5) = (1−2−3−5) or P (5, 1) = (5−3−2−1).
(b) Let n = |V |. Relative to T , we define a n×n matrix First indexed by pairs of vertices u, v, where
First[u, v] = w means that the first edge in the unique path P (u, v) is (u, w). (In the special case of
u = v, let First[u, u] = u.) In Figure 9(a), First[1, 5] = 2 and First[5, 1] = 3. Show the matrix First
for the tree T in Figure 9(a). Similarly, give the matrix First for the tree T (e, e′) in Figure 9(b).
(c) Describe an O(n2) algorithm called Update(First, e, e′) which updates the matrix First after we
transform T to T (e, e′). HINT: For which pair of vertices (x, y) does the value of First[x, y] have to

c© Chee-Keng Yap Basic Version October 26, 2005

§7. Generating Permutations Lecture V Page 32

change? Suppose e′ = (u′, v′) and P (u′, v′) = (u0, u1, . . . , uℓ) is as illustrated in Figure 9(c). Then
u′ = u0, v

′ = uℓ, and also e = (uk, uk+1) for some 0 ≤ k < ℓ. Then, originally First[u0, uℓ] = u1 but
after the swap, First[u0, uℓ] = uℓ. What else must change?
(d) Analyze your algorithm to show that that it is O(n2). Be sure that your description in (c) is clear
enough to support this analysis. ♦

End Exercises

§7. Generating Permutations

In §1, we saw how the general bin packing problem can be reduced to linear bin packing. This reduction
depends on the ability to generate all permutations of n elements, in O(n!) time. There are many other
applications of such a permutation generator, so we now take a small detour to address this interesting topic.
A survey of this classic problem is given by Sedgewick [4]. Perhaps the oldest incarnation of this problem
is the “change ringing problem” of bell-ringers in early 17th Century English churches [3]. This calls for
ringing a sequence of n bells in all n! permutations.

The problem of generating all permutations efficiently is representative of an important class of problems
called combinatorial enumeration. For instance, we might want to general all size k subsets of a set,
all graphs of size n, all convex polytopes with n vertices, etc. Such an enumerations would be considered
optimal if the algorithm takes O(1) time to generate each member.

It is good to fix some terminology. A n-permutation of a finite set X is a surjective function
p : {1, . . . , n} → X . Surjectivity of p implies n ≥ |X |. The function p may be represented by a se-
quence (p(1), p(2), . . . , p(n)). Here we are interested in the case n = |X |, i.e., permutation of distinct
elements. We use a path-like notation for permutations, writing “(p(1)− · · · −p(n))” for the permutation
(p(1), p(2), . . . , p(n)).

Let Sn denote the set of all permutations of X = {1, 2, . . . , n}; each element of Sn is called an n-
permutation. Note that |Sn| = n!. E.g., the following is a listing of S3:

(1−2−3), (1−3−2), (3−1−2); (3−2−1), (2−3−1), (2−1−3). (8)

Two n-permutations π = (x1− · · ·−xn) and π′ = (x′
1− · · · −x′

n) are said to be adjacent (to each other) if
there is some i = 2, . . . , n such that xi−1 = x′

i and xi = x′
i−1, and for all other j, xj = x′

j . Indeed, we write
π′ = Exchi(π) in this case. E.g., π = (1−2−4−3) and π′ = (1−4−2−3) are adjacent since π′ = Exch3(π).
An adjacency ordering of a set S of permutations is a listing of the elements of S such that every two
consecutive permutations in this listing are adjacent. For instance, the listing of S3 in (8) is an adjacency
ordering.

[Figure: Adjacency Graph for 3-permutations]

We need another concept: if π = (x1− · · · −xn−1) is an (n − 1)-permutation, and π′ is obtained from π
by inserting the letter n into π, then we call π′ an extension of π. Indeed, if n is inserted just before the
ith letter in π, then we write π′ = Exti(π) for i = 1, . . . , n. The meaning of “Extn(π)” should be clear: it
is obtained by appending ‘n’ to the end of the sequence π. Note that there are n extensions of π. E.g., if
π = (1−2) then the three extensions of π are (3−1−2), (1−3−2), (1−2−3).

The Johnson-Trotter Ordering. Among the several known methods to generate all n-permutations, we
will describe one that is independently discovered by S.M.Johnson and H.F.Trotter (1962), and apparently

c© Chee-Keng Yap Basic Version October 26, 2005

§7. Generating Permutations Lecture V Page 33

known to 17th Century English bell-ringers [3]. The two main ideas in the Johnson-Trotter algorithm are
(1) the n-permutations are generated as an adjacency ordering, and (2) the n-permutations are generated
recursively. Suppose let π is an (n− 1)-permutation that has been recursively generated. Then we note that
the n extensions of π can given one of two adjacency orderings. It is either

UP (π) : Ext1(π), Ext2(π), . . . , Extn(π)

or the reverse sequence
DOWN(π) : Extn(π), Extn−1(π), . . . , Ext1(π).

E.g., UP (1−2−3) is equal to

(4−1−2−3), (1−4−2−3), (1−2−4−3), (1−2−3−4).

Note that if π′ is another (n− 1)-permutation that is adjacent to π, then the concatenated sequences

UP (π); DOWN(π′)

and
DOWN(π); UP (π′)

are both adjacency orderings. We have thus shown:

Lemma 6 (Johnson-Trotter ordering). If π1, . . . , π(n−1)! is an adjacency ordering of Sn−1, then the
concatenation of alternating DOWN/UP sequences

DOWN(π1); UP (π2); DOWN(π3); · · · ; DOWN(π(n−1)!)

is an adjacency ordering of Sn.

For example, starting from the adjacency ordering of 2-permutations (π1 = (1−2), π2 = (2−1)), our
above lemma says that DOWN(π1), UP (π2) is an adjacency ordering. Indeed, this is the ordering shown in
(8).

Let us define the permutation graph Gn to be the bigraph whose vertex set is Sn and whose edges
comprise those pairs of vertices that are adjacent in the sense defined for permutations. We note that the
adjacency ordering produced by Lemma 6 is actually a cycle in the graph Gn. In other words, the adjacency
ordering has the additional property that the first and the last permutations of the ordering are themselves
adjacent. A cycle that goes through every vertex of a graph is said to be Hamiltonian. If (π1−π2− · · · −πm)
(for m = (n− 1)!) is a Hamiltonion cycle for Gn−1, then it is easy to see that

(DOWN(π1); UP (π2); · · · ; UP (πm))

is a Hamiltonian cycle for Gn.

The Permutation Generator. We proceed to derive an efficient means to generate successive permu-
tations in the Johnson-Trotter ordering. We need an appropriate high level view of this generator. The
generated permutations are to be used by some “permutation consumer” such as our greedy linear bin pack-
ing algorithm. There are two alternative views of the relation between the “permutation generator” and the
“permutation consumer”. We may view the consumer as calling4 the generator repeatedly, where each call
to the generator returns the next permutation. Alternatively, we view the generator as a skeleton program
with the consumer program as a (shell) subroutine. We prefer the latter view, since this fits the established
paradigm of BFS and DFS as skeleton programs (see Chapter 4). Indeed, we may view the permutation
generator as a bigraph traversal: the implicit bigraph here is the permutation graph Gn.

4The generator in this viewpoint is a co-routine. It has to remember its state from the previous call.

c© Chee-Keng Yap Basic Version October 26, 2005

§7. Generating Permutations Lecture V Page 34

In the following, an n-permutation is represented by the array per[1..n]. We will transform per by
exchange of two adjacent values, indicated by

per[i]⇔ per[i− 1] (9)

for some i = 2, . . . , n, or
per[i]⇔ per[i + 1]

where i = 1, . . . , n− 1.

A Counter for n factorial. To keep track of the successive exchanges in Johnson-Trotter generator, we
introduce an array of n counters

C[1..n]

where each C[i] is initiallized to 1 but always satisfying the relation 1 ≤ C[i] ≤ i. Of course, C[1] may be
omitted since its value cannot change under our restrictions. The array counter C has n! distinct possible.
We say the i-th counter is full iff C[i] = i. The level of the C is the largest index ℓ such that the ℓ-th
counter is not full. If all the counters are full, the level of C is defined to be 1. E.g., C[1..5] = [1, 2, 2, 1, 5]
has level 4. We define the increment of this counter array as follows: if the level of the counter is ℓ,
then (1) we increment C[ℓ] provided ℓ > 1, and (2) we set C[i] = 1 for all i > ℓ. E.g., the increment of
C[1..5] = [1, 2, 2, 1, 5] gives [1, 2, 2, 2, 1]. In code:

Inc(C)
ℓ← n.
while (C[ℓ] = ℓ) ∧ (ℓ > 1)

C[ℓ--]← 1.
if (ℓ > 1)

C[ℓ]++.
return(ℓ)

Note that Inc returns the level of the original counter value. This subroutine is a generalization of the usual
incrementation of binary counters (Chapter 6.1). For instance, for n = 4, starting with the initial value of
[1, 1, 1], successive increments of this array produce the following cyclic sequence:

C[2, 3, 4] = [1, 1, 1]→ [1, 1, 2]→ [1, 1, 3]→ [1, 1, 4]→ [1, 2, 1] (10)

→ [1, 2, 2]→ [1, 2, 3]→ [1, 2, 4]→ [1, 3, 1]→ · · ·

→ [2, 3, 3]→ [2, 3, 4]→ [1, 1, 1]→ · · · .

Let the cost of incrementing the counter array be equal to n+1− ℓ where ℓ is the level. CLAIM: the cost to
increment the counter array from [1, 1, . . . , 1] to [2, 3, . . . , n] is < 2(n!). In proof, note that C[ℓ] is updated
after every n!/ℓ! steps, so that the overall, C[ℓ] is updated ℓ! times. Hence the total number of updates for
the n− 1 counters is

n! + (n− 1)! + · · ·+ 2! < 2(n!),

which proves our Claim.

This gives us the top level structure for our permutation generator:

c© Chee-Keng Yap Basic Version October 26, 2005

§7. Generating Permutations Lecture V Page 35

Johnson-Trotter Generator (Sketch)
Input: natural number n ≥ 2

⊲ Initialization
per[1..n]← [1, 2, . . . , n]. ⊳ Initial permutation
C[2..n]← [1, 1, . . . , 1]. ⊳ Initial counter value

⊲ Main Loop
do

ℓ← Inc(C)
UPDATE(ℓ) ⊳ The permutation is updates
CONSUME(per) ⊳ Permutation is consumed

while (ℓ > 1)

The shell routine CONSUME is application-dependent. In illustrations, we simply use it to print the
current permutation.

How to update the permutation. We now describe the UPDATE routine. It uses the previous counter
level ℓ to transform the current permutation to the next permutation. For example, the successive counter
values in (10) correspond to the following sequence of permutations:

[1,1,1]
−→ (1−2−3−4)

[1,1,2]
−→ (1−2−4−3)

[1,1,3]
−→ (1−4−2−3)

[1,1,4]
−→ (4−1−2−3)

[1,2,1]
−→ (4−1−3−2) (11)

[1,2,2]
−→ (1−4−3−2)

[1,2,3]
−→ (1−3−4−2)

[1,2,4]
−→ (1−3−2−4)

[1,3,1]
−→ (3−1−2−4)

[1,3,2]
−→ · · ·

[2,3,3]
−→ (1−4−2−3)

[2,3,4]
−→ (1−2−4−3)

[1,1,1]
−→ (1−2−3−4) −→ · · · .

To interpret the above, consider a general step of the form

[c2,c3,c4]
−→ · · · (x1−x2−x3−x4)

[c′2,c′3,c′4]−→ (x′
1−x′

2−x′
3−x′

4) · · ·

We start with the counter value [c2, c3, c4] and permutation (x1−x2−x3−x4). After calling Inc, the counter
is updated to [c′2, c

′
3, c

′
4], and it returns the level ℓ of [c2, c3, c4]. If ℓ = 1, we may5 terminate; otherwise,

ℓ ∈ {2, 3, 4}. We find the index i such that xi = ℓ (for some i = 1, 2, 3, 4). UPDATE will then exchange xi

with its neighbor xi+1 or xi−1. The resulting permutation is (x′
1−x′

2−x′
3−x′

4).

In (11), we indicate xi by an underscore, “xi”. The choice of which neighbor (xi−1 or xi+1) depends on
whether we are in the “UP” phase or “DOWN” phase of level ℓ. Let UP [1..n] be a Boolean array where
UP [ℓ] is true in the UP phase, and false in the DOWN phase when we are incrementing a counter at level
ℓ. Moreover, the the value of UP [ℓ] is changed (flipped) each time C[ℓ] is reinitialized to 1. For instance, in
the first row of (11), UP [4] = false and so the entry 4 is moving down with each swap involving 4. In the
next row, UP [4] = true and so the entry 4 is moving up with each swap.

Hence we modify our previous Inc subroutine to include this update:

5In case we want to continue, the case ℓ = 1 is treated as if ℓ = n. E.g., in (11), the case ℓ = 1 is treated as ℓ = 4.

c© Chee-Keng Yap Basic Version October 26, 2005

§7. Generating Permutations Lecture V Page 36

Increment(C)
Output: Increments C, updates UP , and returns the previous level of C

ℓ← n.
while (C[ℓ] = ℓ) ∧ (ℓ > 1) ⊳ Loop to find the counter level

C[ℓ]← 1;
UP [ℓ]← ¬UP [ℓ]; ⊳ Flips the boolean value UP [ℓ]
ℓ--.

if (ℓ > 1)
C[ℓ]++.

return(ℓ).

For a given level ℓ, the UPDATE routine need to find the “position” i where per[i] = ℓ (i = 1, . . . , n). We
could search for this position in O(n) time, but it is more efficient to maintain this information directly: let
pos[ℓ] denote the current position of ℓ. Thus the pos[1..n] is just the inverse of the array per[1..n] in the
sense that

per[pos[ℓ]] = ℓ (ℓ = 1, . . . , n).

We can now specify the UPDATE routine to update both pos and per:

Update(ℓ)
if (UP [ℓ])

per[pos[ℓ]]⇔ per[pos[ℓ] + 1]; ⊳ modify permutation
pos[per[pos[ℓ]]]← pos[ℓ]; ⊳ update position array
pos[ℓ]++; ⊳ update position array

else

per[pos[ℓ]]⇔ per[pos[ℓ]− 1];
pos[per[pos[ℓ]]]← pos[ℓ];
pos[ℓ]--;

Thus, the final algorithm is:

Johnson-Trotter Generator
Input: natural number n ≥ 2

⊲ Initialization
per[1..n]← [1, 2, . . . , n]. ⊳ Initial permutation
pos[1..n]← [1, 2, . . . , n]. ⊳ Initial positions
C[2..n]← [1, 1, . . . , 1]. ⊳ Initial counter value

⊲ Main Loop
do

ℓ← Increment(C);
UPDATE(ℓ);
CONSUME(per).

while(ℓ > 1)

REMARKS:
1. In practice, we can introduce early termination criteria into our permutation generator. For instance, in
the bin packing application, there is a trivial lower bound on the number of bins, namely b0 = ⌈(

∑n
i=1 wi)/M⌉.

c© Chee-Keng Yap Basic Version October 26, 2005

§7. Generating Permutations Lecture V Page 37

We can stop when we found a solution with b0 bins. If we want only an approximate optimal, say within a
factor of 2, we may exit when the we achieve ≤ 2b0 bins.
2. We have focused on permutations of distinct objects. In case the objects may be identical, more efficient
techniques may be devised. For more information about permutation generation, see the book of Paige
and Wilson [2]. Knuth’s much anticipated 4th volume will treat permutations; this will no doubt become a
principle reference for the subject.
3. The Java code for the Johnson-Trotter Algorithm is presented in an appendix of this chapter.

Exercises

Exercise 7.1:
(a) Draw the adjacency bigraph corresponding to 4-permutations. HINT: first draw the adjacency
graph for 3-permutations and view 4-permutations as extension of 3-permutations.
(b) How many edges are there in the adjacency bigraph of n-permutations?
(c) What is the radius and diameter of the bigraph in part (b)? [See definition of radius and diameter
in Exercise 4.8 (Chapter 4).] ♦

Exercise 7.2: Another way to list all the n-permutations in Sn is lexicographic ordering: (x1− · · ·−xn) <
(x′

1− · · · −x′
n) if the first index i such that xi 6= x′

i satisfies xi < x′
i. Thus the lexicographic smallest n-

permutation is (1−2− · · · −n). Give an algorithm to generate n-permutations in lexicographic ordering.
Compare this algorithm to the Johnson-Trotter algorithm. ♦

Exercise 7.3: All adjacency orderings of 2- and 3-permutations are cyclic. Is it true of 4-permutations?
♦

Exercise 7.4: Two n-permutations π, π′ are cylic equivalent if π = (x1−x2− · · · −xn) and π′ =
(xi−xi+1− · · · −xn−x1−x2− · · · −xi−1) for some i = 1, . . . , n. A cyclic n-permutation is an equiva-
lence class of the cyclic equivalence relation. Note that there are exactly n permutations in each cyclic
n-permutation. Let S′

n denote the set of cylic n-permutations. So |S′
n| = (n − 1)!. Again, we can

define the cylic permutation graph G′
n whose vertex set is S′

n, and edges determined by adjacent pairs
of cyclic permutations. Give an efficient algorithm to generate a Hamiltonian cycle of G′

n. ♦

End Exercises

c© Chee-Keng Yap Basic Version October 26, 2005

§A. APPENDIX: Java Code Lecture V Page 38

§A. APPENDIX: Java Code for Permutations

/**

* Per(mutations)

* This generates the Johnson-Trotter permutation order.

* By n-permutation, we mean a permutation of the symbols {1,2,...,n}.

*

* Usage:

* % javac Per.java

* % java Per [n=3] [m=0]

*

* will print all n-permutations. Default values n=3 and m=0.

* If m=1, output in verbose mode.

* Thus "java Per" will print

* (1,2,3), (1,3,2), (3,1,2), (3,2,1), (2,3,1), (2,1,3).

* See Lecture Notes for details of this algorithm.

*

***/

public class Per {

// Global variables

//

static int n; // n-permutations are being considered

// Quirk: Following arrays are indexed from 1 to n

static int[] per; // represents the current n-permutation

static int[] pos; // inverse of per: per[pos[i]]=i (for i=1..n)

static int[] C; // Counter array: 1 <= C[i] <= i (for i=1..n)

static boolean[] UP; // UP[i]=true iff pos[i] is increasing

// (going up) in the current phase

// Display permutation or position arrays

//

static void showArray(int[] myArray, String message){

System.out.print(message);

System.out.print("(" + myArray[1]);

for (int i=2; i<=n; i++)

System.out.print("," + myArray[i]);

System.out.println(")");

}

// Print counter

//

static void showC(String m){

System.out.print(m);

System.out.print("(" + C[2]);

for (int i=3; i<=n; i++)

System.out.print("," + C[i]);

System.out.println(")");

}

// Increment counter

//

static int inc(){

int ell=n;

while ((C[ell]==ell) && (ell>1)){

UP[ell] = !(UP[ell]); // flip Boolean flag

c© Chee-Keng Yap Basic Version October 26, 2005

§A. APPENDIX: Java Code Lecture V Page 39

C[ell--]=1;

}

if (ell>1)

C[ell]++;

return ell; // level of previous counter value

}

// Update per and pos arrays

//

static void update(int ell){

int tmpSymbol; // this is not necessary, but for clarity

if (UP[ell]) {

tmpSymbol = per[pos[ell]+1]; // Assert: pos[ell]+1 makes sense!

per[pos[ell]] = tmpSymbol;

per[pos[ell]+1] = ell;

pos[ell]++;

pos[tmpSymbol]--;

} else {

tmpSymbol = per[pos[ell]-1]; // Assert: pos[ell]-1 makes sense!

per[pos[ell]]= tmpSymbol;

per[pos[ell]-1] = ell;

pos[ell]--;

pos[tmpSymbol]++;

}

}

// Main program

//

public static void main (String[] args)

throws java.io.IOException

{

//Command line Processing

n=3; // default value of n

boolean verbose=false; // default is false (corresponds to second argument = 0)

if (args.length>0)

n = Integer.parseInt(args[0]);

if ((args.length>1) && (Integer.parseInt(args[1]) != 0))

verbose = true;

//Initialize

per = new int[n+1];

pos = new int[n+1];

C = new int[n+1];

UP = new boolean[n+1];

for (int i=0; i<=n; i++) {

per[i]=i;

pos[i]=i;

C[i]=1;

UP[i]=false;

}

//Setup For Loop

int count=0; // only used in verbose mode

int ell=1;

System.out.println("Johnson-Trotter ordering of "+ n + "-permutations");

if (verbose)

showArray(per, count + ", level="+ ell + " :\t");

else

showArray(per, "");

c© Chee-Keng Yap Basic Version October 26, 2005

§A. APPENDIX: Java Code Lecture V Page 40

//Main Loop

do {

ell = inc();

update(ell);

if (verbose)

count++;

showArray(per, count + ", level="+ ell + " :\t");

else

showArray(per, "");

} while (ell>1);

}//main

}//class Per

References

[1] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A locally adaptive data compression scheme.
Comm. of the ACM, 29(4):320–330, 1986.

[2] E. Page and L. Wilson. An Introduction to Computational Combinatorics. Cambridge Computer Science
Texts, No. 9. Cambridge University Press, 1979.

[3] T. W. Parsons. Letter: A forgotten generation of permutations, 1977.

[4] R. Sedgewick. Permutation generation methods. Computing Surveys, 9(2):137–164, 1977.

[5] R. E. Tarjan. Data Structures and Network Algorithms. SIAM, Philadelphia, PA, 1974.

[6] J. S. Vitter. The design and analysis of dynamic huffman codes. J. of the ACM, 34(4):825–845, 1987.

c© Chee-Keng Yap Basic Version October 26, 2005

