
§1. Further Applications of Graph Traversal

This is a replacement section, with the correct algorithm for strong components!

In the following, assume G = (V, E) is a digraph with V = {1, 2, . . . , n}. Let per[1..n] be an integer array
that represents a permutation of V in the sense that V = {per[1], per[2], . . . , per[n]}. This array can also be
interpreted in other ways (e.g., a ranking of the vertices).

Topological Sort. One motivation is the so-called1 PERT graphs: in their simplest form, these are DAG’s
where vertices represent activities. An edge u−v ∈ E means that activity u must be performed before activity
v. By transitivity, if there is a path from u to v, then u must be performed before v. A topological sort of
such a graph amounts to a feasible order of execution of all these activities.

wake up

breakfast

newspaper

go to work

Figure 1: PERT graph

Let
(v1, v2, . . . , vn) (1)

be a listing of the vertices in V . We call it a topological sort if every edge has the form vi−vj where
i < j. In other words, each edge points to the right, no edge points to the left. REMARK: if (v1, . . . , vn) is
a topological sort, then (vn, vn−1, . . . , v1) is called a reverse topological sort.

If an edges u−v is intepreted as saying “activity u must precede activity v”, then a topological sort give
us one valid way for doing these activities (do activities v1, v2, . . . in this order).

Let us say that vertex vi has rank i in the topological sort (1). Hence, we may represent this topological
sort by a rank attribute array Rank[1, . . . , n], where Rank[vi] = i for all vi ∈ V .

E.g., (v1, . . . , vn) = (v3, v1, v2, v4) in (1). The corresponding rank attribute array is Rank[v1, v2, v3, v4] =
[2, 3, 1, 4].

We use the DFS algorithm and the DFS Driver to compute the rank attribute array. First, we must
initialize the Rank array using the global initialization shell:

GLOBAL INIT (G) ≡ (for v = 1 to n, Rank[v]← −1).

Indeed, we need not use a separate color array: we simply interpret the Rank of −1 as unseen. The idea is
to use DFS(v) to assign a rank to v: but before we could assign a rank to v, we must (recursively) assign
a larger rank to the vertices reachable from v. To do this, we use a global counter R that is initialized to
n. Each time a vertex is to receive a rank, we use the current value of R, and then decrement R. So by the

1PERT stands for “Program Evaluation and Review Technique”, a project management technique that was developed for
the U.S. Navy’s Polaris project (a submarine-launched ballistic missile program) in the 1950’s. The graphs here are also called
networks. PERT is closely related to the CriticalPath Method (CPM) developed around the same time.

c© Chee-Keng Yap Basic Version November 3, 2005



time v receives its rank, all those vertices reachable from v would have received a larger rank. This idea can
be implemented by programming the postvisit shell as follows:

POSTV ISIT (v) ≡ (Rank[v]← R; R← R− 1).

It is easy to prove the correctness of this procedure, provided the input graph is a DAG. But what can go
wrong in this code if the input is not a DAG?

REMARKS: Note that the rank function is just as the order of v according to lastTime[v]. In our strong
component algorithm below, we prefer to compute the inverse of Rank, i.e., an array Per[1..n] such that
Per[i] = v iff Rank[v] = i. The topological sort (1) is then equal to (Per[1], P er[2], . . . , P er[n]). We leave
it as an easy exercise to modify the above code to computer Per directly.

Robust Topological Sort. Suppose we want a more robust algorithm that will detect an error in case
the input is not a DAG. We need the following fact: G is cyclic iff there exists a back edge in every DFS
traversal. This was shown in the previous section. To detect back edges, when we need two modifications.
The previous solution is implicitly a 2-color scheme (Rank[v] = −1 if v is unseen, and otherwise v is seen).
Now, we need to a 3-color scheme where

Rank[v]







= −1 if v is unseen,

= 0 if v is seen,

> 0 if v is done.

To implement this, we just need to program the shell for visiting a vertex:

V ISIT (v, u) ≡ (Rank[v]← 0.)

The second modification is to check for back edges. This can be done during previsits to a vertex v from u:

PREV ISIT (v, u) ≡ (if (Rank[v] = 0) then ThrowException("Cycle detected"))

Strong Components. Computing the components of digraphs is somewhat more subtle than the corre-
sponding problem for bigraphs. In fact, at least three distinct algorithms for this problem are known. Here,
we will develop the version based on “reverse graph search”.

Let G = (V, E) be a digraph where V = {1, . . . , n}. For clarity, we also write “vi” for i ∈ V . Let
Per[1..n] be an array that represents some permutation of the vertices, so V = {Per[1], P er[2], . . . , P er[n]}.
Let DFS(i) denote the DFS algorithm starting from vertex i. Consider the following method to visit every
vertex in G:

Strong Component Driver(G, per)
Input: Digraph G and permutation Per[1..n].
Output: A set of DFS Trees.

⊲ Initialization
1. For i = 1, . . . , n, color[i] =unseen.
⊲ Main Loop
2. For i = 1, . . . , n,
3. If (color[Per[i]] =unseen)
4. DFS1(Per[i]) ⊳ Outputs a DFS Tree

This program is the usual DFS Driver program, except that we use Per[i] to determine the choice of the
next vertex to visit, and it calls DFS1, a variant of DFS. We assume that DFS1(i) will (1) change the

c© Chee-Keng Yap Basic Version November 3, 2005



color of every vertex that it visits, from unseen to seen, and (2) output the DFS tree rooted at i. If Per is
correctly chosen, we want each DFS tree that is output to correspond to a strong component of G.

(b)(a) (c)

2

1 4

6

2

4

6

5

3

5

3

2, 3, 5

1

Figure 2: A digraph and its reduced graph.

First, let us see how the above subroutine will perform on the digraph G6 in Figure 2(a). Let us also
assume that the permutation is

Per[1, 2, 3, 4, 5, 6] = [6, 3, 5, 2, 1, 4]

= [v6, v3, v5, v2, v1, v4]. (2)

The output of Strong Component Driver will be the DFS trees for on the following sets of vertices (in
this order):

C1 = {v6}, C2 = {v3, v2, v5}, C3 = {v1}, C4 = {v4}.

Since these are the four strong components of G6, the algorithm is correct. It is not not hard to see that
there always exist “good permutations” for which the output is correct. Here is the formal definition of what
this means:

A permutation Per[1..n] is good if, for any two strong components C, C′ of G, if there is a path from C

to C′, then the first vertex of C′ is listed before the first vertex of C′.

It is easy to see that our Strong Component Driver will give the correct output iff the given permutation is
good. But how do we get good permutations? Roughly speaking, they correspond to weak forms of “reverse
topological sort” of G. There are two problems: topological sorting of G is not really meaningful when G is
not a DAG. Second, good permutations requires some knowledge of the strong components which is what
we want to compute in the first place! Nevertheless, let us go ahead and run the topological sort algorithm
(not the robust version) on G. We may assume that the algorithm returns an array Per[1..n] (the inverse
of the Rank[1..n]). The next lemma shows that Per[1..n] almost has the properties we want. For any set
C ⊆ V , we first define

Rank[C] = min{i : Per[i] ∈ C} = min{Rank[v] : v ∈ C}

Lemma 1. Let C, C′ be two distinct strong components of G.
(a) If u0 ∈ C is the first vertex in C that is seen, then Rank[u0] = Rank[C].
(b) If there is path from C to C′ in the reduced graph of G, then Rank[C] < Rank[C′].

Proof. (a) By the Unseen Path Lemma, every node v ∈ C will be a descendent of u0 in the DFS tree.
Hence, Rank[u0] ≤ Rank[v], and the result follows since Rank[C] = min{Rank[v] : v ∈ C}.
(b) Let u0 be the first vertex in C ∪ C′ which is seen. There are two possibilities: (1) Suppose u0 ∈ C. By

c© Chee-Keng Yap Basic Version November 3, 2005



part (a), Rank[C] = Rank[u0]. Since there is a path from C to C′, an application of the Unseen Path Lemma
says that every vertex in C′ will be descendents of u0. Let u1 be the first vertex of C′ that is seen. Since u1

is a descendent of u0, Rank[u0] < Rank[u1]. By part(a), Rank[u1] = Rank[C′]. Thus Rank[C] < Rank[C′].
(2) Suppose u0 ∈ C′. Since there is no path from u0 to C, we would have assigned a rank to u0 before any
node in C is seen. Thus, Rank[C0] < Rank[u0]. But Rank[u0] = Rank[C′]. Q.E.D.

This lemma implies that, in the reverse “topological sort” ordering,

[Per[n], P er[n− 1], . . . , P er[1]] (3)

if there is path from C to C′, then the last vertex of C′ in this list appears before the last vertex of C in this
list. So this is not quite good.

We use another insight: consider the reverse graph Grev (i.e., u−v is an edge of G iff v−u is an edge of
Grev). It is easy to see that C is a strong component of Grev iff C is a strong component of G. However,
there is a path from C to C′ in Grev iff there is a path from C′ to C in G.

Lemma 2. If Per[1..n] is the result of running topological sort on Grev then Per is a good permutation for
G.

Proof. Let C, C′ be two components of G and there is a path from C to C′ in G. Then there is a path
from C′ to C in the reverse graph. According to the above, the last vertex of C is listed before the last
vertex of C′ in (3). That means that the first vertex of C is listed after the first vertex of C′ in the listing
[Per[1], P er[2], . . . , P er[n]]. This is good. Q.E.D.

We now have the complete algorithm:

Strong Component Algorithm(G)
Input: Digraph G = (V, E), V = {1, 2, . . . , n}.
Output: A list of strong components of G.

1. Compute the reverse graph Grev.
2. Call topological sort on Grev.

This returns a permutation array Per[1..n].
3. Call Strong Component Driver(G, Per)

Remarks. Tarjan [4] was the first to give a linear time algorithm for strong components. R. Kosaraju
and M. Sharir independently discovered the reverse graph search method described here. The reverse graph
search is conceptually elegant. But since it requires two passes over the graph input, it is slower in practice
than the direct method of Tarjan. Yet a third method was discovered by Gabow in 1999. For further
discussion of this problem, including history, we refer to Sedgewick [3].

References

[1] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North Holland, New York, 1976.

[2] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press
and McGraw-Hill Book Company, Cambridge, Massachusetts and New York, second edition, 2001.

[3] R. Sedgewick. Algorithms in C: Part 5, Graph Algorithms. Addison-Wesley, Boston, MA, 3rd edition
edition, 2002.

c© Chee-Keng Yap Basic Version November 3, 2005



[4] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Computing, 1(2), 1972.

c© Chee-Keng Yap Basic Version November 3, 2005


