
Homework 3 Solutions
Fundamental Algorithms, Fall 2005, Professor Yap

Due: Thu Nov 10, in class.
SOLUTION PREPARED BY Instructor and T.A.s

INSTRUCTIONS:

• Please read questions carefully. When in doubt, please ask.

Question 1

(30 Points)
(a) Prove that if a bigraph has no odd cycles, then it is bipartite.
(b) Prove that if a connected bigraph has an odd cycle, then BFS search from any source vertex will detect
a level edge.
(c) Write the pseudo code for bipartite test algorithm outlined in the text. This algorithm is to return YES
or NO only. You only need to program the shell routines. NOTE: Please be concise! All pseudo code must
be reduced to O(1) time operations or operations on standard data structures such as queues.
(d) Modify the algorithm in (c) so that in case of YES, it returns a Boolean array B[1..n] such that V0 =
{i ∈ V : B[i] = false} and V1 = {i ∈ V : B[i] = true} is a witness to the bipartiteness of G. In the case of
NO, it returns an odd cycle.

ANSWER:
(a) We use the BFS Driver to call BFS(vi) repeatedly at unseen vi’s. This gives a set of BFS trees.

As there are no odd cycles, there are no level edges. Thus every edge is either a tree edge or a cross edge.
Hence, if we assign the nodes in even levels to a set U0, and the nodes in odd levels to the set U1, we find
that all edges are between U0 and U1. Hence the graph is bipartite.

(b) Suppose G has an odd cycle C = [u0−u1− · · ·−u2k] for some k ≥ 1. If there is any edge (ui−uj)
where |i− j| > 1, we say the cycle C is reducible; otherwise it is irreducible. If C is reducible, there is a
smaller odd cycle containing the edge (ui−uj), comprising only of the vertices in C. It is clear that if there
is an odd cycle, then there exists an irreducible odd cycle. Hence assume C is irreducible. Wlog, let u0 be
the vertex in C which is seen first from some BFS search. Then u1, u2k would be nodes in the next level of
the BFS tree; u2, u2k−1 would be nodes in the next level, and so on. The last pair of nodes would uk, uk+1.
Of course, (uk−uk+1) represents a level edge in the BFS tree.

(c) We use boolean array B[1...n], and BFS Algorithm.

PREVISIT(v,u):
If (v is seen and B[u]=B[v]) then Throw Exception.

VISIT(v,u):
B[v] ← ! B[u]

(d) We use another array Parent[1...n] to keep track of the parent node, and give a subroutine for
computing the odd cycle:

VISIT(v,u):
B[v] ← ! B[u]
Parent[v] ← u

PREVISIT(v,u):
If (v is seen and B[u]=B[v])

Return OddCycle(u, v, Parent)

1

where

OddCycle
Input: vertices u, v in a graph G, and array Parent[1..n]
Output: a vector V containing an odd cycle
vector V
V.push-front(u)
V.push-back(v)
While (Parent[u] ! = Parent[v]) do

u ← Parent[u]
v ← Parent[v]
V.push-front(u)
V.push-back(v)

V.push-front(Parent[u])

Question 2

(15 Points)
Explore the relationship between the traversals of binary trees and DFS.
(a) Why are there not two versions of DFS, corresponding to pre- and postorder tree traversal? What about
inorder traversal?
(b) Give the analogue of DFS for binary trees. As usual, you must provide place holders for shell routines.
Further assume that the DFS returns some values which is processed at the appropriate place. Be brief.
ANSWER:

(a) In DFS, we have folded pre- and postorder traversal into one program by defining the shells PRE-
VISIT, VISIT, POSTVISIT. Note that VISIT in preorder is like PREVISIT, and VISIT in postorder is like
POSTVISIT of DFS. What we call VISIT in DFS is not necessary for tree traversals because the binary tree
structure a special kind of digraph. There is no “inorder” analogue for DFS since the concept depends on
the “binary” nature of binary trees.

(b) The DFS version of binary tree traversal is basically the merger of preorder and postorder traversal.
The program DFS(u) where u is a root of a binary tree goes as follows:

DFS(u):
where u is a node of a binary tree
PREVISIT(u);
L← DFS(u.Left);
R← DFS(u.Right);
Return (POSTVISIT(u,L,R))

Question 3

(25 Points)
A vertex u is called a bottleneck if for every other vertex v ∈ V , either there is a path from v to u, or there
is a path from u to v.
(a) Give an algorithm to determine if a DAG has a bottleneck.
(b) Prove the correctness of your algorithm.
(c) Analyze the complexity of your algorithm (it should be no more than O(n4) but hopefully faster).

ANSWER:
(a,b) If u is a bottleneck, the number of descendants of u in G and GREV must be n + 1, where n is the

number of vertices. (Note that a vertex is its own descendent.) We modify DFS(u) to return the number of
u’s descendants. We use a local variable ’count’ to sum up the number of VISITed node.

2

DFS(G,u)
where u is a vertex of graph G

color u as seen
count ← 1
for each v adjacent to u do

if v is unseen then
count += DFS(v)

Return count.

Note that the above DFS algorithm can correctly compute the number of descendants only for the root
node u. So we modify DRIVER program to call DFS for every vertex.

DFS DRIVER (G)
Compute GREV

Assume vertex set is {1, . . . , n}.
For i = 1, . . . , n

Color all vertices of G as unseen
Color all vertices of GREV as unseen
If (DGS(G, i) + DFS(GREV , i) = n + 1), Return (“Bottleneck i”)

Return(“No bottleneck”)

(c) We can compute the reverse graph GREV in time O(m + n) where m is the number of edges. We call
DFS at most 2n times, and each DFS is O(m + n). Therefore, the overall complexity is O(n × (m + n)).
This is O(n3).

Question 4

(10 Points)
Please read the revised notes for computing strong components of a digraph. Give a counter example to our
original strong component algorithm (find a small an example as possible – we deduct points for unnecessarily
large graphs).

ANSWER: G = (V, E), V = {a, b, c}, E = {(a, b), (b, a), (b, c)}. Error occurs when the permutation is
{b, c, a} or {a, c, b}.

3

