
Homework 5
Fundamental Algorithms, Spring 2003, Professor Yap

Due: Wed May 7, in class

INSTRUCTIONS:

• Please read the questions carefully. When in doubt, please ask.

1. (20 Points) Recursive Dynamic Programming
Equation (1) Lecture VII (p.12) describes the Dynamic Programming solution for the optimal trian-
gulation problem. The “bottom-up” implementation of this equation as a triply-nested for-loop was
given in page 14. In this question, we want to solve this “top-down”, by using a recursive algorithm.
We assume that the weight W (i, j, k) is easily computed for any 1 ≤ i < j < k ≤ n.
(i) Briefly explain how a naive recursive algorithm would be exponential.
(ii) Describe an efficient recursive algorithm for optimal triangulation. You will need to use some global
data structure for sharing information across subproblems.
(iii) Briefly analyze the complexity of your solution.
(iv) Does your algorithm ever run faster than the bottom-up implementation? Can you make it run
faster on some inputs?

2. (20 Points) String Alignment Problem
Recall the string edit problem, where the operations are Insert, Delete and Replace. Given two strings
X, Y , we want the minimum “cost” of modifying X so that the two strings becomes identical. Here is
our definition of ”cost”:
(a) Each deletion or insertion costs 2 units.
(b) Each replacement costs 1 unit.
(c) Each “original” match involving a character from X and the same character in Y costs −2 units.
What we mean by “original” match will be clear in an example. Note that this cost occurs in the
absence of any operations!

In contrast, in the original string edit problem, matches have no cost while each of the other operations
costs 1 unit. The minimum costs of such a sequence of operations (or non-operations) is called the
alignment cost for X, Y and is denoted A(X, Y). For instance, X = cga and Y = acaat. We can
first insert a in the front of X to get X ′ = acga (costs 2), and delete t from Y to get Y ′ = acaa. To
indicate the various copies of a letter, we use subscripts: X ′ = a1cga2 and Y ′ = a3ca4a5. Now we
make the obvious one-one correspondence between X ′ and Y ′: we get matches at positions 1, 2, 4. The
matches at positions 2 and 4 costs −2 units each. However, the match at position 1 (between a1 with
a3) is a result of inserting a1 and so it has already been counted. In other words, it is not an “original
match”. Since there is no match at 3, we need to replace g by an a to get a match – this replacement
costs 1 unit. This shows that A(X, Y) ≤ 2 + 2− 2− 2 + 1 = 1. [Can you show a lower cost alignment
of X, Y ?]

To summarize, here is how we perform a single alignment of X and Y : first perform a sequence of
insertions and deletions until the strings have the same length. Then align the result in the obvious
way, and find all the original matches, as well as perform any replacements as needed. Add up the cost
of deletions/insertions, original matches and replacements. This problem arise in DNA sequencing in
computational biology.

(i) Give the recursive formula for A(X, Y) and justify it.
(ii) Compute A(X, Y) where X, Y are the strings AATTCCCGA and GCATATT. You must organize this
computation systematically as in the LCS problem.

3. (20 Points) Probabilistic Counters
Recall the counter problem where, given a binary counter C which is initially 0, you can perform the
operation inc(C) to increments its value by 1. Now we want to do probabilistic counting: each
time you call inc(C), it will flip a fair coin. If heads, the value of C is incremented and otherwise the

1

value of C is unchanged. Now, at any moment you could call look(C), which will return twice the
current value of C. Let Xm be the value of look(C) after you have made m calls to inc(C).
(a) Note that Xm is a random variable. What is the sample space Ω here?
(b) Let Pm(i) be the probability that look(C) = i after m inc’s. State a recurrence equation for Pm(i)
involving Pm−1(i) and Pm−1(i− 1).
(c) Give the exact formula for Pm(i) using binomial coefficients. HINT: you can either use the model in
(a) to give a direct answer, or you can try to solve the recurrence of (b). You may recall that binomial
identity

(
m
i

)
=

(
m−1

i

)
+

(
m−1
i−1

)
.

(d) In probabilistic counting we are interested in the expected value of look(C), namely E[Xm]. What
is the expected value of Xm? HINT: express E[Xm] using Pm(i) and do some simple manipulation
involving binomial coefficients. If you do not see what is coming out, try small examples like m = 2, 3
to see what the answer is.

[NOTE: The expected value of Xm can be odd even when the actual value returned is always even.
Using a generalization of these ideas, you can probabilistically count to 22n

with an n-bit counter.]

4. (20 Points) Hashing

(a) Compute the sequence {α}, {2α}, . . . , {nα} for n = 10 and α = φ (= the golden ratio (1+
√

5)/2 =
1.618 . . .). You may compute to just 4 decimal positions using any means you like.
(b) Let

`0 > `1 > `2 > · · ·
be the new lengths of subsegments, in order of their appearance as we insert the points {nφ} (for
n = 0, 1, 2 . . .) into the unit interval. For instance, `0 = 1, `1 = 0.61803, `2 = 0.38197. Compute `i for
i = 0, . . . , 10.
(c) Using the multiplication method with α = φ, please insert the following set of 16 keys into a table
of size m = 10. Treat the keys as integers by treating the letters A, B, ..., Z as 1, 2, . . . , 26, with the
rightmost position having a value of 1, the next position with value 26, the third with value 262 = 676,
etc. Thus AND represents the integer (1 × 262) + (15× 26) + (4× 1) = 1070. This is sometimes called
the 26-adic notation. To resolve collision, use separate chaining.

AND, ARE, AS, AT, BE, BOY, BUT, BY, FOR, HAD,
HER, HIS, HIM, IN, IS, IT

We just want you to display the results of your final hashing data structure.
(d) Use the division method on the same set of keys as (c), but with m = 17.

5. (20 Points) NP-Completeness
We guide you through Exercise 6.2 in Lecture XXX on NP-Completeness. The problem L is to
recognize whether a given bigraph G is “triangular” or not. To show that L is Karp-reducible to SAT ,
you need to construct a Boolean formula φ(G) such that G is triangular iff φ(G) ∈ SAT . Moreover,
this construction must be done in polynomial time.
(i) If G = (V, E) and |V | is not divisible by 3 then there is no solution. What would you output as
φ(G) in this case?
(ii) Suppose |V | = 3m. So our goal is to form m disjoint triangles from the vertices of G. Introduce
the Boolean variable xij which corresponds to the proposition “Node i is in the jth Triangle”. Here,
i ∈ V and j = 1, . . . , m. Using these variables, you construct a Boolean formula F1(i) that is true iff i
is in at least one of the m triangles?
(iii) Similarly, construct F2(i) that is true iff i is in at most one triangle.
(iii) Construct a formula F3(j) that is true iff the jth triangle has at least three nodes.
(iv) Construct a formula F4(j) that is true iff the jth triangle has at most three nodes.
(v) Construct a formula F5(j) that is true iff each pair of vertices in the jth triangle has an edge in
the graph G. [NOTE: this is the first time you are actually using specific information about the edges
of G. You know G since it is in the input.]
(vi) Using the above formulas, describe a formula F (G) that is true iff G is triangular. You must prove

2

this claim about F (G).
(vii) Conclude that L is Karp-reducible to SAT .

THE REMAINING QUESTIONS CARRIES NO CREDIT. BUT YOU ARE ENCOURAGED TO
GO OVER THEM. IF YOU HAVE NO TIME, AT LEAST THINK TRY TO UNDERSTAND THE
ISSUES AND HAVE A STRATEGY TO SOLVE THEM.

6. (0 Points)
(a) Suppose you have a random number generator, which is a function rand() that returns a real
number r in the range 0 ≤ r < 1 with “uniform” probability (this means that for any 0 ≤ a < b ≤ 1,
the probability of r lying in [a, b] is b − a). Given any n, how do you generate an integer in the range
{0, 1, . . . , n− 1} with equal probability?
(b) Given an array A[0..n] of numbers (A[i] is some number xi). How do you compute a random
permutation of these numbers?

7. (0 Points)
To understand Coalesced Chaining, we ask you to provide the algorithms for LookUp(key k), Insert(key
k, data d), and Delete(key k) for this form of hashing. As usual, we assume a hash function h : U → Zm.
The hash table is denote T [0..m− 1] where the ith entry is T [i]. We assume that T [i] has three fields,
T [i].Key, T [i].Data and T [i].next. The value of T [i].Key is either a key (an element of U) or the special
values EMPTY or DELETED. The value of T [i].next is either an element of Zm or −1. Provide the
algorithmic details for the three dictionary operations: LookUp, Insert and Delete.

8. (0 Points)
Describe the algorithmic details of our offline Quicksort algorithm in the notes. You must make very
explicit choices for the data structures (how the input is represented and how whether you are using
linked lists, etc).

3

