
Homework 4
Fundamental Algorithms, Fall 2004, Professor Yap

Due: Thu Nov 18, in class

INSTRUCTIONS:

• Please read carefully.

• General remark: we do encourage students to work in groups for discussion. However, when you finally
write up the solutions, they must represent your individual work.

1. (30 Points) DFS
Note that the graph in part (a) is a bigraph, but parts (b) and (c) it is a digraph.
(a) Suppose T is the DFS Tree for a connected bigraph G. Let u−v be a non-tree edge. Prove that
either u is an ancestor of v or vice-versa.
(b) Let G = (V, E) be a digraph. Suppose we call DFS((V, E; s0)) in which INIT((V, E; s0)) colors s0

as seen, but every node as unseen. Prove every vertex that is reachable from s0 will be seen. NOTE:
vertex u is reachable from s0 iff there is a path from s0 to u.
(c) Let G = (V, E; s0) be a digraph. Fill in the shell subroutines of the DFS Algorithm so that it
correctly classifies every edge of G into tree, back, forward, cross and unseen edges. You must briefly
argue why your algorithm is correct.

2. (25 Points) Radius and Diameter
(a) Let G = (V, E) be a connected bigraph. For any vertex v ∈ V define

radius(v, G) := max
u∈V

δ(v, u)

where δ(v, u) is the link distance from u to v. The center of G is the vertex v0 such that radius(v0, G)
is minimized. We call radius(v0, G) the radius of G and denote it by radius(G). Define the diameter
diameter(G) of G to be the maximum value of δ(u, v) where u, v ∈ V . Prove that

diameter(G) ≥ ·radius(G) ≥ ddiameter(G)/2e .

(b) Show that for every natural number n, there are graphs Gn and Hn such that n = radius(Gn) =
diameter(Gn) and n = radius(Hn) = ddiameter(Hn)/2e.
(c) Give an efficient algorithm to compute the diameter of a undirected tree (i.e., connected acyclic
undirected graph). Please use the ”shell” subroutines for BFS or DFS. What is the complexity of your
algorithm?

3. (20 Points) Greedy
(a) Give an algorithm that computes the optimal bin packing for an input (M, w) where w = (w1, . . . , wn)
are positive weights. You must reduce this to linear bin packing, by considering all n! permutations of
w1, . . . , wn.
(b) What is the complexity of your algorithm?
(c) Improve your complexity by algorithm by considering only (n− 1)! permutations. What is the new
complexity of your algorithm?
(d) Further improve upon (c) by using 2(n− 2)! permutations only.

4. (25 Points) Huffman
In our Huffman tree algorithm, we represented the Huffman tree as a binary tree. Now consider a more
compact representation of a Huffman tree T by exploiting its Sibling property: suppose T has k ≥ 1
leaves. Each of its 2k − 1 nodes is identified by its rank, i.e., a number from 0 to 2k − 2. Hence node
i has rank i. We use two arrays

W [0..2k − 2], L[0..2k − 2]

c© Chee-Keng Yap November 11, 2004



of length 2k − 1 where W [i] is the weight of node i, and L[i] is the left child of node i. So L[i] + 1
is the right child of node i (by the Sibling Property). In case node i is a leaf, we let L[i] denote the
canonical code for the letter that it represents in Σ. I.e., view Σ as a subset of a universal set U
where U ⊆ {0, 1}N . In reality, U might be the set of ASCII characters and N = 7. The transmitter
and receiver both know this global parameter N and the set U .

(a) Please implement the Restore(u) subroutine in detail, using the above representation. In or-
der to ensure sufficient details, we ask you to use either C, C++ or Java.
(b) Illustrate your algorithm above by showing how to transmit our familiar string hello world!.

5. (0 Points)
The problems below carry no credit. Please do not hand such problems; they are for your own practice.
We strongly recommend that you do them.

6. (0 Points) Greedy
Do Exercises 1.1, 1.5.

7. (0 Points) Huffman
Do Exercises 2.1, 2.2 and 2.3 in Lecture V.

c© Chee-Keng Yap November 11, 2004


