
Homework 2 Solutions
Fundamental Algorithms, Fall 2004, Professor Yap

Due: Thu Oct 7, in class
SOLUTION PREPARED BY Instructor and T.A.s

INSTRUCTIONS:

• Please read questions carefully. When in doubt, please ask.

1. (20 Points)
Give the Θ-order for the following sums. If the sum is of polynomial-type or exponential-type sum, you
must prove this fact before you invoke the general theorem for such sums. If it is neither polynomial-
type nor exponential-type sum, you may be able to reduce to such a sum. [cf. Hw2 from Fall 2001]
(a) Sn =

∑n
i=1

(
i
3

)
.

(b) Sn =
∑n

i=1(lg
i n).

(c) Sn =
∑n

i=1
i!

lgi n
.

(d) Sn =
∑n

i=2 i1/ lg i.

Solution:
(a) Observe that Sn = 1

6

∑n
i=1 i3 − 3i2 + 2i. Let’s define f(n) = 1

6 (n4 − 3n3 + 2n2).
Note that by expanding f(n) ≤ c ∗ f(n/2) we get c = 32 and n > 4 and therefore Sn is a polynomial-
type sum and Sn = Θ(n4).
Most students got it right.
(b) Observe lgi n ≥ 2 lgi−1 n for i ≥ 4.
Hence Sn is a growing exponentially-type sum and Sn = Θ(lgn n).
Most students got it right.
(c) We divide this sum into 2 parts as follows: Sn =

∑2 lg n
i=0 f(i, n) +

∑n
i=2 lg n+1 f(i, n). First, by

using Stirling formula, which gives n! = θ((n/e)n+1/2), we get
∑2 lg n

i=0 f(i, n) ≤ 2 lgnf(2 lg n, n) =

O( lg n( 2 lg n
e )2 lg n+1/2

(lg n)2 lg n ) = O((lg n)3/2). In order to show that
∑n

i=2 lg n+1 f(i, n) is increasing exponentially
we can take c = 2 when i > 2 lg n. Therefore, Sn = θ( n!

lgn n ) and by using Stirling formula it is equal

to θ( (n/e)nn1/2

lgn n ).
Most students did not notice that it should be divided into 2 separate sums and/or did not expand n!
using Stirling formula. No points were taken off for those 2 issues.
(d) Note that i1/ lg i = 2. Since i ≥ 2 therefore 1/ lg i is defined. Hence Sn = 2n.
Several students did not notice that this is a sum over a constant.

2. (15 Points)
Use the Master Theorem to solve the following. You must justify why a given recurrence falls under
any of the 3 possible cases.
(a) T (n) = 18T (n/3) + n3.
(b) T (n) = 27T (n/3) + n3.
(c) T (n) = 18T (n/3) + n2 lg n.

Solution:
(a) a = 18 and b = 3 therefore the watershed function is W (n) = nlog3 18 where 2 < log3 18 < 3.
This is case (+) because it is clear that n3 = Ω(W (n)nε)) for some ε > 0. In order to confirm the
regularity condition we need to show that there there is a constant c < 1 such that cn3 ≥ 18W (n/3).
When solving af(n/b) ≤ cf(n) we find that c ≤ 2/3. Hence, we conclude by the Master Theorem that
T (n) = Θ(n3).
Most students got it right.
(b) a = 27 and b = 3 therefore the watershed function is W (n) = nlog3 27 = n3. Hence, f(n) = Θ(w(n))
and therefore case (0) applies. T (n) = Θ(w(n) log n) = Θ(n3 log n). Most students got it right.
(c) Same watershed function as in (a), however here case (-) applies. Therefore, T (n) = Θ(nlog3 18).
Several students did not notice that this is case (-).
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3. (15 Points)
Suppose algorithm A1 has running time satisfying the recurrence

T1(n) = aT (n/2) + n

and algorithm A2 has running time satisfying the recurrence

T2(n) = 2aT (n/4) + n.

Here, a > 0 is some constant. Compare these two running times for various values of a.

Solution:

The exponents of the watershed functions are, respectively, α1 = lg a and α2 = (lg a)/2 + (1/2), which
are equal when a = 2.
When a = 2, W1(n) = W2(n) = f1(n) = f2(n) = n. Therefore this is case (0) and the solution for both
equations after applying the Master theorem is T (n) = Θ(n lg n).
When a > 2 then α1 > α2, fi(n) = Wi(n)n−ε

i therefore this is case (-) and the solution is Θ(nα) for
both cases.
When a < 2 then α1 < α2, fi(n) = n therefore this is case (+) and by applying the Master theorem
we find that solution is Θ(n) for both cases.

Thus, we conclude that A2 is never slower than A1 in asymptotic running time.

4. (30 Points)
Use domain and range transformations to solve the following two recurrences:
(a) T (n) = 4T (n/2) + n2/ logn.
(b) T (n) = 4T (n/2) + n2 log n.
Do not use real induction to solve this. You might wish to refer to a similar question in Hw2, Spring
2003.

Solution:
(a) By applying domain transformation of n = 2k we get T (2k) = 4T (2k−1) + 4k/k. We then set t(k)
to be equal to T (4k) and get t(k) = 4t(k− 1) + 4k/k. By doing range transformation of dividing both
sides by 4k we define S(k) = t(k)/4k to get S(k) = S(k − 1) + 1/k. By setting S(0) = 0 we get a
telescopic series that sums up to S(k) =

∑k
i=1 1/k. This is the Harmonic function, whose solution is

ln k + Θ(1). By applying the inverse of range transformation we get t(k) = Θ(4k ln k). By applying
the inverse domain transformation we get T (n) = Θ(n2 ln lg n).
(b) We apply the same domain transformation as in (a) and get t(k) = 4t(k − 1) + 4kk. To do range
transformation we divide both sides by 4k i.e., define S(k) = t(k)/4k, to get S(k) = S(k − 1) + k.
After setting S(0) = 0 we get a telescopic series that sums up to S(k) =

∑k
i=1 i and equals to Θ(k2).

Therefore, t(k) = Θ(4kk2) and T (n) = θ(n2 lg2 n).

In both sections, several students did not correctly solve the arithmetic/harmonic series and/or did
not perform the inverse transformations in order to get the final solutions for T (n).

5. (20 Points)
Using real induction, give good upper and lower bounds for

T (n) = T (n− lg n) + n.

HINT: first try to find an upper bound by expanding the recurrence and simplifying the intermediate
expressions.

Solution:

The tightest result is T (n) = Θ(n2/ lg n).

After expanding several steps of the recurrence we can see that

T (n) ≥ T (n− i lg n) + in−
i∑

j=1

i lg n
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This leads to T (n) = Ω(n2/ lg n). Then by real induction we show that T (n) = O(n2/ lg n) as follows:

T (n) = T (n− lg n) + n

≤ C
(n− lg n)2

lg(n− lg n)
+ n

= C
(n2 + lg2 n)
lg(n− lg n)

− 2
Cn lg n

lg(n− lg n)
+ n

≤ C
(n2 + lg2 n)
lg(n− lg n)

− 2
Cn lg n

lg n
+ n (since lg n ≥ lg(n− lg n), we subtract a smaller quantity)

= C
(n2 + lg2 n)
lg(n− lg n)

− (2C − 1)n (*)

Note that lg(n− lg n) = lg n + lg(1 − lg n
n ). Consider

ln(1− x) = −x− x2/2− x3/3− . . . (for x < 1)

= −x(1 + x/2 + x2/3 + . . . )

≥ −x(1 + x + x2 + . . . )

=
−x

1− x

≥ −2x (if x ≤ 1
2
).

Now lg(1− x) = 1
ln 2 ln(1 − x) ≥ −2x

ln 2 . Using this we get lg(n− lg n) ≥ lg n− 2 lg n
ln 2n = (1 − 2

ln 2n ) lg n ≥
(1− 3

n ) lg n. Continuing our argument from (∗) we have

T (n) ≤ C
(n2 + lg2 n)
(1− 3

n ) lg n
− (2C − 1)n

= C
(n2 + lg2 n)

lg n

n− 3
n

− (2C − 1)n

= C
n2

lg n
(1 +

3
n− 3

) + lg n(1 +
3

n− 3
)− (2C − 1)n

≤ C
n2

lg n
+

16C(n− 3)
lg n

+ 4 lg n− (2C − 1)n (since 16(n− 3)2 ≥ n2 for n ≥ 4)

≤ C
n2

lg n
(for sufficiently large C).

The credits for this question are as follows: For only exploring the steps of the recurrence and not
giving any bounds you got 5 points. For each reasonable bound and its proof you got 10 points. For
a bound which was not reasonable but for which you gave a proof, you got 8 points. For only stating
a correct bound without proving it you got 5 points. Only few students found the correct bounds and
their proofs.
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