Homework 2 Solutions
Fundamental Algorithms, Fall 2004, Professor Yap
Due: Thu Oct 7, in class
SOLUTION PREPARED BY Instructor and T.A.s

INSTRUCTIONS:

- Please read questions carefully. When in doubt, please ask.

1. (20 Points)

Give the Θ-order for the following sums. If the sum is of polynomial-type or exponential-type sum, you must prove this fact before you invoke the general theorem for such sums. If it is neither polynomialtype nor exponential-type sum, you may be able to reduce to such a sum. [cf. Hw2 from Fall 2001]
(a) $S_{n}=\sum_{i=1}^{n}\binom{i}{3}$.
(b) $S_{n}=\sum_{i=1}^{n}\left(\lg ^{i} n\right)$.
(c) $S_{n}=\sum_{i=1}^{n} \frac{i!}{\lg ^{2} n}$.
(d) $S_{n}=\sum_{i=2}^{n} i^{1 / \lg i}$.

Solution:

(a) Observe that $S_{n}=\frac{1}{6} \sum_{i=1}^{n} i^{3}-3 i^{2}+2 i$. Let's define $f(n)=\frac{1}{6}\left(n^{4}-3 n^{3}+2 n^{2}\right)$.

Note that by expanding $f(n) \leq c * f(n / 2)$ we get $c=32$ and $n>4$ and therefore S_{n} is a polynomialtype sum and $S_{n}=\Theta\left(n^{4}\right)$.
Most students got it right.
(b) Observe $\lg ^{i} n \geq 2 \lg ^{i-1} n$ for $i \geq 4$.

Hence S_{n} is a growing exponentially-type sum and $S_{n}=\Theta\left(\lg ^{n} n\right)$.
Most students got it right.
(c) We divide this sum into 2 parts as follows: $S_{n}=\sum_{i=0}^{2 \lg n} f(i, n)+\sum_{i=2 \lg n+1}^{n} f(i, n)$. First, by using Stirling formula, which gives $n!=\theta\left((n / e)^{n+1 / 2}\right)$, we get $\sum_{i=0}^{2 \lg n} f(i, n) \leq 2 \lg n f(2 \lg n, n)=$ $O\left(\frac{\lg n\left(\frac{2 \lg n}{e}\right)^{2 \lg n+1 / 2}}{(\lg n)^{2 \lg n}}\right)=O\left((\lg n)^{3 / 2}\right)$. In order to show that $\sum_{i=2 \lg n+1}^{n} f(i, n)$ is increasing exponentially we can take $c=2$ when $i>2 \lg n$. Therefore, $S_{n}=\theta\left(\frac{n!}{\lg ^{n} n}\right)$ and by using Stirling formula it is equal to $\theta\left(\frac{(n / e)^{n} n^{1 / 2}}{\lg ^{n} n}\right)$.
Most students did not notice that it should be divided into 2 separate sums and/or did not expand n ! using Stirling formula. No points were taken off for those 2 issues.
(d) Note that $i^{1 / \lg i}=2$. Since $i \geq 2$ therefore $1 / \lg i$ is defined. Hence $S_{n}=2 n$.

Several students did not notice that this is a sum over a constant.
2. (15 Points)

Use the Master Theorem to solve the following. You must justify why a given recurrence falls under any of the 3 possible cases.
(a) $T(n)=18 T(n / 3)+n^{3}$.
(b) $T(n)=27 T(n / 3)+n^{3}$.
(c) $T(n)=18 T(n / 3)+n^{2} \lg n$.

Solution:

(a) $a=18$ and $b=3$ therefore the watershed function is $W(n)=n^{\log _{3} 18}$ where $2<\log _{3} 18<3$. This is case $(+)$ because it is clear that $n^{3}=\Omega\left(W(n) n^{\varepsilon}\right)$) for some $\varepsilon>0$. In order to confirm the regularity condition we need to show that there there is a constant $c<1$ such that $c n^{3} \geq 18 W(n / 3)$. When solving $a f(n / b) \leq c f(n)$ we find that $c \leq 2 / 3$. Hence, we conclude by the Master Theorem that $T(n)=\Theta\left(n^{3}\right)$.
Most students got it right.
(b) $a=27$ and $b=3$ therefore the watershed function is $W(n)=n^{\log _{3} 27}=n^{3}$. Hence, $f(n)=\Theta(w(n))$ and therefore case (0) applies. $T(n)=\Theta(w(n) \log n)=\Theta\left(n^{3} \log n\right)$. Most students got it right.
(c) Same watershed function as in (a), however here case (-) applies. Therefore, $T(n)=\Theta\left(n^{\log _{3} 18}\right)$. Several students did not notice that this is case (-).
3. (15 Points)

Suppose algorithm A_{1} has running time satisfying the recurrence

$$
T_{1}(n)=a T(n / 2)+n
$$

and algorithm A_{2} has running time satisfying the recurrence

$$
T_{2}(n)=2 a T(n / 4)+n .
$$

Here, $a>0$ is some constant. Compare these two running times for various values of a.

Solution:

The exponents of the watershed functions are, respectively, $\alpha_{1}=\lg a$ and $\alpha_{2}=(\lg a) / 2+(1 / 2)$, which are equal when $a=2$.
When $a=2, W_{1}(n)=W_{2}(n)=f_{1}(n)=f_{2}(n)=n$. Therefore this is case (0) and the solution for both equations after applying the Master theorem is $T(n)=\Theta(n \lg n)$.
When $a>2$ then $\alpha_{1}>\alpha_{2}, f_{i}(n)=W_{i}(n) n_{i}^{-\varepsilon}$ therefore this is case (-) and the solution is $\Theta\left(n^{\alpha}\right)$ for both cases.
When $a<2$ then $\alpha_{1}<\alpha_{2}, f_{i}(n)=n$ therefore this is case $(+)$ and by applying the Master theorem we find that solution is $\Theta(n)$ for both cases.
Thus, we conclude that A_{2} is never slower than A_{1} in asymptotic running time.
4. (30 Points)

Use domain and range transformations to solve the following two recurrences:
(a) $T(n)=4 T(n / 2)+n^{2} / \log n$.
(b) $T(n)=4 T(n / 2)+n^{2} \log n$.

Do not use real induction to solve this. You might wish to refer to a similar question in Hw2, Spring 2003.

Solution:

(a) By applying domain transformation of $n=2^{k}$ we get $T\left(2^{k}\right)=4 T\left(2^{k-1}\right)+4^{k} / k$. We then set $t(k)$ to be equal to $T\left(4^{k}\right)$ and get $t(k)=4 t(k-1)+4^{k} / k$. By doing range transformation of dividing both sides by 4^{k} we define $S(k)=t(k) / 4^{k}$ to get $S(k)=S(k-1)+1 / k$. By setting $S(0)=0$ we get a telescopic series that sums up to $S(k)=\sum_{i=1}^{k} 1 / k$. This is the Harmonic function, whose solution is $\ln k+\Theta(1)$. By applying the inverse of range transformation we get $t(k)=\Theta\left(4^{k} \ln k\right)$. By applying the inverse domain transformation we get $T(n)=\Theta\left(n^{2} \ln \lg n\right)$.
(b) We apply the same domain transformation as in (a) and get $t(k)=4 t(k-1)+4^{k} k$. To do range transformation we divide both sides by 4^{k} i.e., define $S(k)=t(k) / 4^{k}$, to get $S(k)=S(k-1)+k$. After setting $S(0)=0$ we get a telescopic series that sums up to $S(k)=\sum_{i=1}^{k} i$ and equals to $\Theta\left(k^{2}\right)$. Therefore, $t(k)=\Theta\left(4^{k} k^{2}\right)$ and $T(n)=\theta\left(n^{2} \lg ^{2} n\right)$.
In both sections, several students did not correctly solve the arithmetic/harmonic series and/or did not perform the inverse transformations in order to get the final solutions for $T(n)$.
5. (20 Points)

Using real induction, give good upper and lower bounds for

$$
T(n)=T(n-\lg n)+n
$$

HINT: first try to find an upper bound by expanding the recurrence and simplifying the intermediate expressions.

Solution:

The tightest result is $T(n)=\Theta\left(n^{2} / \lg n\right)$.
After expanding several steps of the recurrence we can see that

$$
T(n) \geq T(n-i \lg n)+i n-\sum_{j=1}^{i} i \lg n
$$

This leads to $T(n)=\Omega\left(n^{2} / \lg n\right)$. Then by real induction we show that $T(n)=O\left(n^{2} / \lg n\right)$ as follows:

$$
\begin{align*}
T(n) & =T(n-\lg n)+n \\
& \leq C \frac{(n-\lg n)^{2}}{\lg (n-\lg n)}+n \\
& =C \frac{\left(n^{2}+\lg ^{2} n\right)}{\lg (n-\lg n)}-2 \frac{C n \lg n}{\lg (n-\lg n)}+n \\
& \leq C \frac{\left(n^{2}+\lg ^{2} n\right)}{\lg (n-\lg n)}-2 \frac{C n \lg n}{\lg n}+n \tag{*}\\
& =C \frac{\left(n^{2}+\lg ^{2} n\right)}{\lg (n-\lg n)}-(2 C-1) n
\end{align*}
$$

$$
\leq C \frac{\left(n^{2}+\lg ^{2} n\right)}{\lg (n-\lg n)}-2 \frac{C n \lg n}{\lg n}+n \quad(\text { since } \lg n \geq \lg (n-\lg n), \text { we subtract a smaller quantity) }
$$

Note that $\lg (n-\lg n)=\lg n+\lg \left(1-\frac{\lg n}{n}\right)$. Consider

$$
\begin{aligned}
\ln (1-x) & =-x-x^{2} / 2-x^{3} / 3-\ldots & & \\
& =-x\left(1+x / 2+x^{2} / 3+\ldots\right) & & \\
& \geq-x\left(1+x+x^{2}+\ldots\right) & & \\
& =\frac{-x}{1-x} & & \\
& \geq-2 x & & \left(\text { if } x \leq \frac{1}{2}\right)
\end{aligned}
$$

Now $\lg (1-x)=\frac{1}{\ln 2} \ln (1-x) \geq \frac{-2 x}{\ln 2}$. Using this we get $\lg (n-\lg n) \geq \lg n-\frac{2 \lg n}{\ln 2 n}=\left(1-\frac{2}{\ln 2 n}\right) \lg n \geq$ $\left(1-\frac{3}{n}\right) \lg n$. Continuing our argument from $(*)$ we have

$$
\begin{array}{rlr}
T(n) & \leq C \frac{\left(n^{2}+\lg ^{2} n\right)}{\left(1-\frac{3}{n}\right) \lg n}-(2 C-1) n & \\
& =C \frac{\left(n^{2}+\lg ^{2} n\right)}{\lg n} \frac{n-3}{n}-(2 C-1) n & \\
& =C \frac{n^{2}}{\lg n}\left(1+\frac{3}{n-3}\right)+\lg n\left(1+\frac{3}{n-3}\right)-(2 C-1) n & \\
& \leq C \frac{n^{2}}{\lg n}+\frac{16 C(n-3)}{\lg n}+4 \lg n-(2 C-1) n & \\
& \leq C \frac{n^{2}}{\lg n} & \quad\left(\text { since } 16(n-3)^{2} \geq n^{2} \text { for sufficiently large } n \geq 4\right)
\end{array}
$$

The credits for this question are as follows: For only exploring the steps of the recurrence and not giving any bounds you got 5 points. For each reasonable bound and its proof you got 10 points. For a bound which was not reasonable but for which you gave a proof, you got 8 points. For only stating a correct bound without proving it you got 5 points. Only few students found the correct bounds and their proofs.

