Homework 2 Solutions
Fundamental Algorithms, Fall 2004, Professor Yap

Due: Thu Oct 7, in class
SOLUTION PREPARED BY Instructor and T.A.s

INSTRUCTIONS:

e Please read questions carefully. When in doubt, please ask.

1. (20 Points)
Give the ©-order for the following sums. If the sum is of polynomial-type or exponential-type sum, you
must prove this fact before you invoke the general theorem for such sums. If it is neither polynomial-
type nor exponential-type sum, you may be able to reduce to such a sum. [cf. Hw2 from Fall 2001]
() S0 =220, (3).
(b) Sn =3, (lg" n).
(c) Sp = 22;1 lng'n
(d) S = Yip it/ 18

Solution:

(a) Observe that S, = + Y1 | % — 3i% + 2i. Let’s define f(n) = g(n* — 3n® + 2n?).

Note that by expanding f(n) < ¢* f(n/2) we get ¢ = 32 and n > 4 and therefore S,, is a polynomial-
type sum and S,, = O(n?).

Most students got it right.

(b) Observe lgi n>2 lgi_1 n for 1 > 4.

Hence S, is a growing exponentially-type sum and S,, = O(lg" n).

Most students got it right.

(c) We divide this sum into 2 parts as follows: S, = 22:1%" flisn) + 3 g1gny f(3,n). First, by

(2

using Stirling formula, which gives n! = 6((n/e)"*t1/2), we get Ele%n fl,n) < 2lgnf(2lgn,n) =

lgn(2lgn)2lgn+l/2
O( (lé n)21an
we can take ¢ = 2 when i > 21gn. Therefore, S,, = H(Ig"T,!n) and by using Stirling formula it is equal
to H(W/l?izl/z)
Most students did not notice that it should be divided into 2 separate sums and/or did not expand n!
using Stirling formula. No points were taken off for those 2 issues.
(d) Note that i'/'8? = 2. Since i > 2 therefore 1/1gi is defined. Hence S,, = 2n.

Several students did not notice that this is a sum over a constant.

) = O((Ign)3/?). In order to show that > o1gni1 (i, n) is increasing exponentially

2. (15 Points)
Use the Master Theorem to solve the following. You must justify why a given recurrence falls under
any of the 3 possible cases.
(a) T(n) = 18T (n/3) + n3.
(b) T'(n) = 27T (n/3) + n3.
(c) T(n) = 18T (n/3) + n?lgn.
Solution:
(a) a = 18 and b = 3 therefore the watershed function is W (n) = n'°8:1® where 2 < log; 18 < 3.
This is case (+) because it is clear that n® = Q(W(n)n?)) for some ¢ > 0. In order to confirm the
regularity condition we need to show that there there is a constant ¢ < 1 such that en® > 18W (n/3).
When solving af(n/b) < cf(n) we find that ¢ < 2/3. Hence, we conclude by the Master Theorem that
T(n) = O(n?).
Most students got it right.
(b) a = 27 and b = 3 therefore the watershed function is W (n) = n!°8s 27 = n3. Hence, f(n) = O(w(n))
and therefore case (0) applies. T'(n) = ©(w(n)logn) = O(n3logn). Most students got it right.
(c) Same watershed function as in (a), however here case (-) applies. Therefore, T'(n) = ©(n'°8: 18).
Several students did not notice that this is case (-).



3. (15 Points)
Suppose algorithm A; has running time satisfying the recurrence

Ti(n)=aT(n/2)+n
and algorithm Ay has running time satisfying the recurrence
Ts(n) = 2aT(n/4) + n.

Here, a > 0 is some constant. Compare these two running times for various values of a.
Solution:

The exponents of the watershed functions are, respectively, a1 =1ga and as = (Iga)/2+ (1/2), which
are equal when a = 2.

When a = 2, Wi (n) = Wa(n) = fi(n) = fa(n) = n. Therefore this is case (0) and the solution for both
equations after applying the Master theorem is T'(n) = ©(nlgn).

When a > 2 then oy > ao, fi(n) = Wi(n)n; © therefore this is case (-) and the solution is ©(n®) for
both cases.

When a < 2 then a1 < ag, fi(n) = n therefore this is case () and by applying the Master theorem
we find that solution is O(n) for both cases.

Thus, we conclude that A is never slower than A; in asymptotic running time.

4. (30 Points)
Use domain and range transformations to solve the following two recurrences:
(a) T(n) = 4T (n/2) + n?/logn.
(b) T(n) = 4T (n/2) + n?logn.
Do not use real induction to solve this. You might wish to refer to a similar question in Hw2, Spring
2003.
Solution:
(a) By applying domain transformation of n = 2% we get T'(2%) = 4T(281) 4 4% /k. We then set t(k)
to be equal to T'(4%) and get t(k) = 4t(k — 1) + 4* /k. By doing range transformation of dividing both
sides by 4% we define S(k) = t(k)/4* to get S(k) = S(k — 1) + 1/k. By setting S(0) = 0 we get a
telescopic series that sums up to S(k) = Zle 1/k. This is the Harmonic function, whose solution is
Ink + ©(1). By applying the inverse of range transformation we get t(k) = ©(4¥Ink). By applying
the inverse domain transformation we get T'(n) = ©(n?Inlgn).
(b) We apply the same domain transformation as in (a) and get ¢(k) = 4t(k — 1) + 4¥k. To do range
transformation we divide both sides by 4% i.e., define S(k) = t(k)/4F, to get S(k) = S(k — 1) + k.
After setting S(0) = 0 we get a telescopic series that sums up to S(k) = Zle i and equals to ©(k?).
Therefore, t(k) = ©(4*k?) and T'(n) = 6(n?1g’n).

In both sections, several students did not correctly solve the arithmetic/harmonic series and/or did
not perform the inverse transformations in order to get the final solutions for T'(n).

5. (20 Points)
Using real induction, give good upper and lower bounds for

T(n)=T(n—1gn)+n.
HINT: first try to find an upper bound by expanding the recurrence and simplifying the intermediate
expressions.
Solution:
The tightest result is T'(n) = ©(n?/lgn).
After expanding several steps of the recurrence we can see that
i

T(n) > T(n—ilgn)+in—Y ilgn

J=1



This leads to T'(n) = Q(n?/1lgn). Then by real induction we show that T'(n) = O(n?/lgn) as follows:

T(n)=T(n—-1gn)+n

_ 2
< (n-lgn)*
Te(n — Ig )
L (n?+1g%n) . _COnlgn
~ lg(n—lgn)  Tlg(n —lgn)
21+ 1g” Cnl
< C(n +lgn) ,Cnlgn (since lgn > lg(n — lgn), we subtract a smaller quantity)
lg(n —1gn) lgn
(n* +1g”n)
—c 2 T8 901 *
e a0 - 1 *)

Note that lg(n —1gn) =lgn +1g(1 — 1ng) Consider

In(l—x)=—z—2?/2—23/3—... (for z < 1)
=—2(14+z/2+2%/3+...)
>-—ax(l+z4+2>+...)

1
> 927 (if z < 5)

Now lg(1 — 2) = 55 In(1 — 2) > $2£. Using this we get lg(n —lgn) > lgn — ?nngZ =(1-:%)lgn>
(1= 2)lgn. Continuing our argument from (x) we have

(n* +1g”n)

(1-2)Ign

(n?+1g’n)n —3
lgn n

= Cn—2(1+ i)-l—l n(l—l—i) —(2C -1)n
- T lgn n—3 & n—3
n?  16C(n —3)
__’_7
lgn lgn

2

<C S (for sufficiently large C').
lgn

IN

T(n)<C —(2C =1)n

C

—(2C—-1)n

<C

+4lgn—(2C —1)n (since 16(n — 3)2 > n? for n > 4)

The credits for this question are as follows: For only exploring the steps of the recurrence and not
giving any bounds you got 5 points. For each reasonable bound and its proof you got 10 points. For
a bound which was not reasonable but for which you gave a proof, you got 8 points. For only stating

a correct bound without proving it you got 5 points. Only few students found the correct bounds and
their proofs.



