Homework 2
Fundamental Algorithms, Fall 2004, Professor Yap
Due: Thu Oct 7, in class

INSTRUCTIONS:

- Please read questions carefully. When in doubt, please ask.

1. (20 Points)

Give the Θ-order for the following sums. If the sum is of polynomial-type or exponential-type sum, you must prove this fact before you invoke the general theorem for such sums. If it is neither polynomialtype nor exponential-type sum, you may be able to reduce to such a sum. [cf. Hw2 from Fall 2001]
(a) $S_{n}=\sum_{i=1}^{n}\binom{i}{3}$.
(b) $S_{n}=\sum_{i=1}^{n}\left(\lg ^{i} n\right)$.
(c) $S_{n}=\sum_{i=1}^{n} \frac{i!}{\lg ^{i} n}$.
(d) $S_{n}=\sum_{i=2}^{n} i^{1 / \lg i}$.
2. (15 Points)

Use the Master Theorem to solve the following. You must justify why a given recurrence falls under any of the 3 possible cases.
(a) $T(n)=18 T(n / 3)+n^{3}$.
(b) $T(n)=27 T(n / 3)+n^{3}$.
(c) $T(n)=18 T(n / 3)+n^{2} \lg n$.
3. (15 Points)

Suppose algorithm A_{1} has running time satisfying the recurrence

$$
T_{1}(n)=a T(n / 2)+n
$$

and algorithm A_{2} has running time satisfying the recurrence

$$
T_{2}(n)=2 a T(n / 4)+n
$$

Here, $a>0$ is some constant. Compare these two running times for various values of a.
4. (30 Points)

Use domain and range transformations to solve the following two recurrences:
(a) $T(n)=4 T(n / 2)+n^{2} / \log n$.
(b) $T(n)=4 T(n / 2)+n^{2} \log n$.

Do not use real induction to solve this. You might wish to refer to a similar question in Hw2, Spring 2003.
5. (20 Points)

Using real induction, give good upper and lower bounds for

$$
T(n)=T(n-\lg n)+n
$$

HINT: first try to find an upper bound by expanding the recurrence and simplifying the intermediate expressions.

