
Homework 1 Solutions
Fundamental Algorithms, Fall 2004, Professor Yap

Due: Thu Sep 23, in class
SOLUTION PREPARED BY T.A. Vikram Sharma and Chee Yap

INSTRUCTIONS:

• Please read questions carefully. When in doubt, please ask.

• There are links from the homework page to the old home-works from
previous classes, including solutions. Feel free to study these.

1. (15 Points)
In the first lecture, we described a conventional program for merging two
sorted lists.
(a) Please draw a comparison-tree for merging two sorted lists of numbers,
(x < y) and (a < b < c < d). Your comparison-tree should be obtained
by “unwinding” the algorithm described in class. HINT: you can appeal
to symmetry to only draw a portion of the comparison-tree.
(b) What is the height of your comparison tree?
(c) Determine M(2, 4) (give as good an upper and lower bound as you
can). Do not quote some known result – you need to do an argument
from first principles. HINT: make two separate arguments for upper and
lower bounds, respectively.

Solution:
(a) Omitted, but most of the students got it right. However, one has to
make sure that the tree covered all the 15 possible cases that could occur
as input while merging, implying that there should be 15 leaves in the
tree.
(b) should be 5.
(c) The exact answer id M(2, 4) = 5. However, this is non-trivial to prove.
You receive full credit if you can show 4 ≤ M(2, 4) ≤ 5, which is what the
following argument shows. Upper bound is 5 from the part (b). Lower
bound: assume a < x < b < y < c. These 4 comparisons, i.e, the ones
between x and a, b and the ones between y and b.c are necessary.
Comments: 1) Some students were not clear about the definition of height
of a tree; which is the length of the longest path from the root to a leaf,
and not the number of nodes along the path (which is one more than the
height). 2) For part (c) we desired a “good” upper and lower bound. For
lower bounds one can trivially say that there is at least one comparison,
but as shown above, this is not good enough. Better than that is to say
that we need at-least n comparisons, where n is the number of elements in
the smaller list — such an argument was also proposed by some students.
For the complete argument of why M(2, 4) = 5 you can refer Knuth’s
Vol.3 on Sorting and Searching Page 198. Gave 3− 4 points to those who
showed 3 ≤ M(2, 4) ≤ 5.

1

2. (20 Points)
We want to consider the “best case time” in comparison trees. If T is a
tree, let B(T) denote the length of a shortest path from the root to a leaf
of T .
(a) Define M ′(m,n) to be the length of a shortest path in some comparison-
tree for merging two lists of sizes m and n. More precisely, M ′(m,n) =
min

T
{B(T)} where T ranges over all comparison-trees for merging two lists

of sizes m and n. Determine M ′(m,n).
(b) Define S′(n) to be the length of the length of a shortest path in
some comparison-tree for sorting a list of size n, i.e., S′(n) = min

T
{B(T)}

where T ranges over all comparison-trees for sorting n elements. Deter-
mine S′(n).

HINT: (a) and (b) are quite easy, once you understand what the problem
is about.

Solution:
(a)M ′(m,n) = 1. This question assumed that the two lists are already
sorted. Then suppose our algorithm compares the largest element of one
list to the smallest of other and if the former is smaller than the latter
then our algorithm terminates; otherwise, proceeds to carry the merging,
say using the standard algorithm. The comparison tree of this algorithm
has a minimum hight of one, which is the least we can obtain. This shows
that M ′(m,n) ≤ 1, but we know that we have to make one comparison
whatsoever may be the case, thus M ′(m,n) = 1.
(b) S′(n) = n − 1. Again, suppose that our algorithm verifies if the in-
put is already sorted. More precisely, suppose the input elements are
x1, x2, . . . , xn and the algorithm begins by checking if x1 < x2, x2 <
x3, . . . xn−1 < xn, which are n− 1 comparisons; if each of these hold then
the algorithm terminates, otherwise proceeds to sort the input using some
sorting algorithm. The minimum length of the comparison tree corre-
sponding to this algorithm is n− 1 which happens when we are fortunate
enough to have the input of the form x1 < x2 < . . . < xn. This gives us
that S′(n) ≤ n − 1. However, note that any sorting algorithm needs to
determine the relative order of the input elements for which it has to make
these, or an equivalent set (i.e, those which will also lead us to the same
conclusion about the relative order of the inputs) of, n − 1 comparisons.
Thus S′(n) = n− 1.
Comments: In this problem many students did not realize that the prob-
lem asked to minimize the functions M ′(m,n) and S′(n) over all the pos-
sible algorithms for merging two lists and sorting a list, respectively. Once
this is realized one can guess, and that is what we did, the best case and the
algorithm first verifies the guess and terminates if the input satisfied the
guess and otherwise proceeds to solve the respective problem. Three-four
points were given for each part if the answer was close but not correct.

3. (15 Points)

2

Use the Rote Method to solve the following recurrence:

T (n) = n lg n + 4T (n/2).

Be sure to indicate each of the EGVS steps. You can choose your own
initial conditions (the “strong form”). NOTE: lg n means log2 n.

Solution

T (n) = 4T (n/2) + n lg n
= 4(4T (n/4) + n/2 lg(n/2)) + n lg n (expanding one step)
= 42T (n/4) + n lg n + 2n lg(n/2)
= 42(4T (n/8) + n/4 lg(n/4)) + n lg n + 2n lg(n/2) (expanding one more step)
= 43T (n/23) + n lg n + 2n lg(n/2) + 4n lg(n/4)
= 4i+1T (n/2i+1) +

∑i
j=0 2jn lg(n/2j),

this is our guess for the ith step. We verify it by expanding the recurrence
once more:

= 4i+1(4T (n/2i+2) +
∑i

j=0 2jn lg(n/2j) + n/2i+1 lg(n/2i+1)
= 4i+2T (n/2i+2) +

∑i+1
j=0 2jn lg(n/2j).

Hence we have verified the guess. We now use properties of geometric
progression to solve the recurrence. Also, for stopping criterion we choose
i = blg nc; thus 1

2 ≤
n

2i+1 < 1. We now choose us the boundary condition
to be T (n) = 0, for n < 1. Using this we get:

T (n) =
∑blg nc

j=0 2jn lg(n/2j)

= n
[∑blg nc

j=0 2j lg n
]
− n

[∑blg nc
j=0 2jj

]
= n

[
lg n2blg nc+1

]
− n

[
lg n2blg nc+1 + 2blg nc+1 + 2

]
= n2blg nc+1 + 2n
= Θ(n2).

In the above argument we used the following summation:

k∑
j=0

jxj =
x((k + 1)(x− 1)xk+1 − (xk+1 − 1))

(x− 1)2

with x replaced by 2.
Comments: In this problem many students were successful in carrying
out the expansion and the guess. However, to verify the guess one has to
expand the recursive term once more in the guess, i.e, certain term of the
form T (g(n)) which appears on the right hand side of the guess. Once
that is done the result should have the same form as the guess except
with the index , in this case i, replaced by i + 1. For this problem one
also needed some knowledge of geometric series and those derived from
it, since the exact sum gives the cancellation of n2 lg n term leading the

3

summation, otherwise if one were to simply proceed by O notation the
answer will seem to be Θ(n2 lg n), which we now know to be wrong. One
would get most points if they were to carry successfully the EGV steps,
for the stopping criterion one point was due, and I took off a point or two
for being unable to get the Θ(n2) form. In case the guess was wrong then
roughly 4 − 5 points could be lost, since then the rest of the argument
fails, the same applies for the case of expansion.

4. (20 Points)
Consider the real recurrences:

T0(n) = n + 2T0(n/2)

and
T1(n) = n + 2T1(bn/2c+ 2).

The initial conditions are given by T0(n) = T1(n) = 0 for n ≤ 4.
(a) Use real induction to show that T0(n) ≤ T1(n). HINT: Use the fact
that T1(n) is non-decreasing in n.
(b) Use real induction to show that for all 0 ≤ k < k0, T0(n + k) =
T0(n) + O(k0 lg n).
(c) Show that T1(n) = O(T0(n)).

Solution:
(a)

T0(n) = n + 2T0(n/2) (recurrence for T0(n))
≤ n + 2T1(n/2) (by induction hypothesis)
≤ n + 2T1(bn/2c+ 2) (since T1(n) is non-decreasing in n)
= T1(n) (recurrence for T1(n))

(b) Assume that inductively, there is a C > 0 such that for all 0 ≤ k,
T0(n + k) ≤ T0(n) + Ck lg n. Then,

T0(n + k) = (n + k) + 2T0(n/2 + k/2) (by recurrence for T0)

≤ (n + k) + 2T0(n/2) + Ck lg(n/2) (by induction)
= (n + k) + 2T0(n/2) + Ck lg n− Ck
≤ n + 2T0(n/2) + Ck lg n (for C ≥ 1)
= T0(n) + Ck lg n (recurrence for T0)

COMMENT: Note that this proof has shown the bound for any k, not
just those less than some fixed k0. But in the next part (c), we only need
this result for k ≤ k0 = 2.

4

(c) Assume that inductively, T1(n) ≤ C ′T0(n) for some n ≥ n0.

T1(n) = n + 2T1(bn/2c+ 2) (by recurrence for T1)
≤ n + 2C ′T0(bn/2c+ 2) (by induction hypothesis)
≤ n + 2C ′T0(n/2 + 2) (since T0 is increasing)
≤ n + 2C ′(T0(n/2) + 2C lg(n/2)) (by recurrence for T0)
= 2C ′T0(n/2) + n + 4CC ′ lg(n/2)
= 2C ′T0(n/2) + n + 4C ′ lg(n/2) (since we can choose C = 1 from (b) above)
≤ C ′(2T0(n/2) + n) (if C ′n ≥ n + 4C ′ lg(n/2))
= C ′T0(n).

We let C ′ = 2 then we want n ≥ 8 lg(n/2) which holds for all values of
n ≥ 32.
Comments: A general remark regarding operations with O in respect to
the inductive step: One has to make sure that the constant hidden by O
should be the same at the end of the induction, as is done in the above
argument, because if it were increasing as the argument proceeds then we
cannot bound the recurrence by O. This was the reason why the hint was
wrong, but I elucidate in more detail. Suppose we were trying to show
that for some constant k ≥ 0,T1(n) = T0(n + k), as suggested by the hint.
Then we have,

T1(n) = 2T1(bn/2c+ 2) + n (from recurrence for T1)
= 2T0(bn/2c+ 2 + k) + n (by induction hypothesis)
= 2 [T0(bn/2c) + C(k + 2) lg(n/2)] + n (using part (b))
= 2T0(bn/2c) + 2C(k + 2) lg(n/2) + n
= 2T0(bn/2c) + n + 2C(k + 2) lg(n/2)
≤ 2T0(n/2) + n + 2C(k + 2) lg(n/2) (since T0 is increasing)
= T0(n) + 2C(k + 2) lg(n/2)
= T0(n) + Ck lg(n) (if Ck lg n = 2C(k + 2) lg(n/2)).

Canceling out C on both sides we want k lg n = 2(k + 2) lg(n/2), for all
n, but this does not hold since the right hand side is increasing 2 times
faster than the left. This subtle point will be eluded from you if you
were to carry a straight forward argument using O. The distribution of
points was 7, 7, 5, for (a), (b), (c) respectively. One point was kept for
those who could successfully get the δ involved in the real induction. This
was assuming that the argument avoided the pitfalls mentioned above, in
which case one or two points could be lost.

5

