Homework 1
Fundamental Algorithms, Fall 2004, Professor Yap
Due: Thu Sep 23, in class

INSTRUCTIONS:

- Please read questions carefully. When in doubt, please ask.
- There are links from the homework page to the old homeworks from previous classes, including solutions. Feel free to study these.

1. (15 Points)

In the first lecture, we described a conventional program for merging two sorted lists.
(a) Please draw a comparison-tree for merging two sorted lists of numbers, $(x<y)$ and $(a<b<c<d)$. Your comparison-tree should be obtained by "unwinding" the algorithm described in class. HINT: you can appeal to symmetry to only draw a portion of the comparison-tree.
(b) What is the height of your comparison tree?
(c) Determine $M(2,4)$ (give as good an upper and lower bound as you can). Do not quote some known result - you need to do an argument from first principles. HINT: make two separate arguments for upper and lower bounds, respectively.
2. (20 Points)

We want to consider the "best case time" in comparison trees. If T is a tree, let $B(T)$ denote the length of a shortest path from the root to a leaf of T.
(a) Define $M^{\prime}(m, n)$ to be the length of a shortest path in some comparison-tree for merging two lists of sizes m and n. More precisely, $M^{\prime}(m, n)=\min _{T}\{B(T)\}$ where T ranges over all comparison-trees for merging two lists of sizes m and n. Determine $M^{\prime}(m, n)$.
(b) Define $S^{\prime}(n)$ to be the length of the length of a shortest path in some comparison-tree for sorting a list of size n, i.e., $S^{\prime}(n)=\min _{T}\{B(T)\}$ where T ranges over all comparison-trees for sorting n elements. Determine $S^{\prime}(n)$.
HINT: (a) and (b) are quite easy, once you understand what the problem is about.
3. (15 Points)

Use the Rote Method to solve the following recurrence:

$$
T(n)=n \lg n+4 T(n / 2)
$$

Be sure to indicate each of the EGVS steps. You can choose your own initial conditions (the "strong form"). NOTE: $\lg n$ means $\log _{2} n$.
4. (20 Points)

Consider the real recurrences:

$$
T_{0}(n)=n+2 T_{0}(n / 2)
$$

and

$$
T_{1}(n)=n+2 T_{1}(\lfloor n / 2\rfloor+2) .
$$

The initial conditions are given by $T_{0}(n)=T_{1}(n)=0$ for $n<4$.
(a) Use real induction to show that $T_{0}(n) \leq T_{1}(n)$. HINT: Use the fact that $T_{1}(n)$ is non-decreasing in n.
(b) Fix $k_{0}>0$. Use real induction to show that for all $0 \leq k \leq k_{0}, T_{0}(n+k)=T_{0}(n)+O(k \lg n)$.
(c) Show that $T_{1}(n)=O\left(T_{0}(n)\right)$. HINT: you can reduce to the case (b) by showing $T_{1}(n) \leq T_{0}(n+k)$.

