
NP-COMPLETENESS STUDY QUESTIONS
Fundamental Algorithms, Fall 2004, Professor Yap

Due: Do not submit.

INSTRUCTIONS:

• These Study Questions are in lieu of Homework 6, and focuses on NP-Completeness (Lecture XXX).
This should be your priority in studying Lecture XXX. We want you to be familiar with the concept of
reducibility, and to be able to do simple reductions. In particular, reducing problems to the satisfiability
problem SAT.

1. Prove Lemma 1 (p.7), which shows that the set of well-formed Boolean formulas is in P .

HINT: You must describe a deterministic Turing machine that accepts iff the input has the form #F
for some Boolean formula F . Moreover, M must run in polynomial time. This is an exercise in
programming Turing machines!

2. Exercise 4.2 (p. 10), showing that L ∈ NP iff L is verified in polynomial time by a verification machine.

HINT 1: As usual, an “iff” results require two demonstrations, the “if” part and the “only if” part.
In the Turing machine transition

(u
(a,a′,D)−→ v) (1)

we call (u, a) the precondition of the transition. Note that the Turing machine must satisfy this
precondition (i.e., be in state u and scanning symbol a) in order to be able to execute this transition.
A nondeterministic Turing machine M is said to be in nondeterministic normal form if it has this
property: for each precodition (u, a) there are exactly two transitions with this precondition. It is not
hard to convert any nonterministic Turing machine to this normal form; furthermore, the running time
of the normalized Turing machine on any input is O(T (n)) if the original running time is T (n).

By some convention, we can specify these two transitions as the “first” and the “second” transition
for (u, a). Hence, a computation of M on any input is completely deterministic once we also know the
sequence of choices (i.e., either the first or second transition is taken) made in every step!

HINT 2: A simple Turing machine M can simulate a vertification machine V as follows. Note that
V has two tapes (and two independent tape heads). We let M ’s tape be organized into 3 “tracks”.
Two of the tracks correspond to the 2 tapes of V , and the third track is for book keeping. Since V
has 2 tape heads and M has only one head, in general, M must take Θ(T (n)) steps for each step of
V . Hence the simulation will take O(T (n)2) time.

3. The proof of Lemma 5 lists three propositions (1)-(3) that must be constructed. We only described
(1). Please do the same for (2) and (3).

HINT: the formula for (3) must depend on the graph G.

4. Let the addition predicate A(a, b, c) where a, b, c represent numbers in binary notation, and A(a, b, c)
is true iff a + b = c. Show how to construct in polynomial-time a Boolean formula F (a, b, c) that is
true iff A(a, b, c) is true.

HINT: Assume a and b are m-bit binary numbers. So let a = (a1, . . . , am)2, b = (b1, . . . , bm)2 and
c = (c0, c1, . . . , cm)2. where am, bm, cm are the least significant bit of the respective binary notations.
The formula F (a, b, c) involves these ai’s, bj ’s and ck’s. We can introduce the sequence of carries
d = (d0, d1, . . . , dm) where dm = 0 and d0 = c0 and di’s is the carry bit into column i. Thus we have
a + b = c iff for all i = 1, . . . , m,

ai + bi = ci + 2di−1 + di.

This equation can be expressed as a boolean formula. E.g., a = (1, 0, 0, 1, 1), b = (1, 1, 0, 0, 1), c =
(1, 0, 1, 1, 0, 0) and d = (1, 0, 0, 1, 1, 0). This gives the formula

G(a, b, c, d) =
m∧∧

i=1
“(ai + bi = ci + 2di−1 + di)′′

c© Chee-Keng Yap December 14, 2004



Since the di’s are not given, you need to replace them by 0’s and 1’s, and take a disjunction over
different copies of G(a, b, c, d):

F (a, b, c) =
∨∨

d
G(a, b, c, d).

Unfortunately, this leads to an exponential size formula as there are 2m possible choices for d. To get
around this, use a recursive formulation where we may assume m is a power of 2.

c© Chee-Keng Yap December 14, 2004


